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On Kakeya maps with regularity

assumptions

Yuqiu Fu and Shengwen Gan

In R
n, we parametrize Kakeya sets using Kakeya maps. A Kakeya

map is defined to be a map

ϕ : Bn−1(0, 1)× [0, 1] → R
n, (v, t) 7→ (c(v) + tv, t),

where c : Bn−1(0, 1) → R
n−1. The associated Kakeya set is defined

to be K := Im(ϕ).
We show that the Kakeya set K has positive measure if either

one of the following conditions is true.
(1) c is continuous and c|Sn−2 ∈ Cα(Sn−2) for some α > (n−2)n

(n−1)2 ,

(2) c is continuous and c|Sn−2 ∈W 1,p(Sn−2) for some p > n− 2.

1. Introduction

The Kakeya set conjecture says if a set K ⊂ R
n contains a unit line segment

in each direction (such a set is called a Kakeya set), then K has Hausdorff
dimension n. The n = 2 case is solved by Davies [1], so we shall restrict
ourselves to n ≥ 3. Although we cannot solve the full conjecture, we can
prove some positive results by assuming some regularity on the Kakeya set.

We start by defining the Kakeya map. Notation-wise all the balls are
closed balls. For example, by Bn−1(0, 1) we mean the closed unit ball in
R
n−1.

Definition 1 (Kakeya map). Given a direction map c : Bn−1(0, 1) →
R
n−1, we define the associated Kakeya map to be the map

(1) ϕ : Bn−1(0, 1)× [0, 1] → R
n, (v, t) 7→ (c(v) + tv, t).

We define the associated Kakeya set to be K := Im(ϕ).

Remark. By construction, for any v ∈ Bn−1(0, 1), K contains a line seg-
ment in direction (v, 1). Actually, this line segment in direction (v, 1) has
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one of its endpoint at (c(v), 0). This is the reason that we call c the direction
map. Sometimes, it is good to write ϕ = ϕc to highlight the dependence on
c, but we just omit the subscript and write as ϕ since c is always priorly
fixed and there is no ambiguity.

Let us talk about the regularity assumptions that we will impose on ϕ.
First of all, we assume c is a continuous map. Second, we assume c|Sn−2

(which is the restriction of c to Sn−2) lies in some function spaces of high
regularity, for example, Cα(Sn−2),W 1,p(Sn−2).

We state our main results.

Theorem 1. If c : Bn−1(0, 1) → R
n−1 is continuous and c|Sn−2 is α-Hölder

continuous for some α > (n−2)n
(n−1)2 , then Im(ϕ) has positive Lebesgue measure.

Theorem 2. If c : Bn−1(0, 1) → R
n−1 is continuous and c|Sn−2 lies in

W 1,p(Sn−2) for some p > n− 2, then Im(ϕ) has positive Lebesgue measure.

Remark. In a previous version of Theorem 2, the regularity assumption
was c ∈ Hs(Bn−1(0, 1)) for some s > (n− 1)/2. However, the definition of
fractional Sobolev space on bounded domains as well as on manifolds is
quite tricky and is not the main purpose of this paper, so we switch to a less
tricky space W 1,p(Sn−2), which is defined by pulling back to the Euclidean
space. To define W 1,p(Sn−2), we first choose two charts {U1, U2} to cover
Sn−2. Let ψi : Ui → Bn−2(0, 1) be diffeomorphisms. For f being a function
on Sn−2, we define the norm:

(2) ∥f∥W 1,p(Sn−2) :=

2∑

i=1

∥f ◦ ψ−1
i ∥W 1,p(Bn−2(0,1)).

It is not hard to check by the chain rule that for different choices of the
charts, the norms defined as above are comparable.

The proofs will largely rely on the winding number from topology. In the
rest of this section, we briefly discuss the winding number and its properties.

1.1. Winding number

We first set up some notation. Given a continuous function

f : Sn → Sn,



✐

✐

“4-Gan” — 2023/6/9 — 18:10 — page 91 — #3
✐

✐

✐

✐

✐

✐

On Kakeya maps with regularity assumptions 91

we use deg f to denote the degree of f. There are many ways to define
the degree of a function, which all turn out to be equivalent. In [2] Section
2.2, the degree of f is defined to be the integer d such that the induced
homomorphism

f∗ : Hn(S
n) → Hn(S

n)

satisfies f∗(α) = dα (noting that Hn(S
n) ≈ Z).

We also note that Sn and R
n+1 \ {0} are homotopically equivalent, so

Hn(S
n) ≈ Hn(R

n \ {0}) are isomorphic. Therefore, we can define the degree
of

f : Sn → R
n+1 \ {0}

using homology groups in the same way. In this case, we usually call it the
winding number of f at 0, denoted by wind(f, 0). We can replace 0 by any
other point x and define wind(f, x) as well.

We remark that we can also define the winding number in the following
way. Suppose we are given a continuous function

g : Sn−1 → R
n,

then for z ∈ R
n \ Im(g) we define

gz : S
n−1 → Sn−1, z 7→

g(x)− z

|g(x)− z|
.

The winding number of g at z can be defined equivalently as

wind(g, z) := deg gz.

Morally speaking, wind(g, z) is the number of times that the “hypersurface”
g(Sn−1) wraps around z.

Next, we interpret the winding number of f from an analytic point of
view. More precisely, we have the following lemma.

Lemma 1. Assume f : Sn → R
n+1 \ {0} is smooth. Consider another

smooth function

f̃ : Bn+1(0, 1) → R
n+1

satisfying f̃ |Sn = f . Suppose 0 ∈ R
n+1 is a regular value of f̃ in the sense

that Df̃(x) is nonsingular for any x ∈ f̃−1(0). Then we have

(3) wind(f, 0) =
∑

x∈f̃−1(0)

sgn(x).
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Hn+1(B
n+1, Bn+1 \ {xi})

Hn+1(B
n+1
i , Bn+1

i \ {xi}) Hn+1(R
n+1,Rn+1 \ {0})

Hn+1(B
n+1, Bn+1 \ f̃−1(0)) Hn+1(R

n+1,Rn+1 \ {0})

Hn(S
n) Hn(S

n)

≈

f̃∗

ki ≈

f̃∗pi

≈

j

f̃∗

≈

Figure 1.

Here, sgn(x) = 1 if det(Df̃(x)) > 0 and = −1 if det(Df̃(x)) < 0.

One noticeable thing according to this lemma is that the right hand side
of (3) only depends on the value of f̃ on Sn. This lemma is fundamental
from the point of view of algebraic topology, but we still provide the proof.

Proof. Write f̃−1(0) = {x1, . . . , xm}. This is a finite set because 0 is a regular
value of f̃ . Of course, it could also be an empty set. We can find a small
number δ > 0 so that {Bn+1(xi, δ)}

m
i=1 are disjoint and each f̃ |Bn+1(xi,δ) is

a diffeomorphism onto some neighborhood of 0. For simplicity, we denote
Bn+1(0, 1) by Bn+1 and denote Bn+1(xi, δ) by B

n+1
i .

Note that f̃ induces a commutative diagram as in Figure 1. This is
essentially the same as the diagram in [2] page 136. We explain what those
arrows mean. The arrows with ≈ mean that the relative homology groups
are isomorphic. ki and pi are induced by inclusions. The top two groups are
isomorphic to Z, and the top homomorphism

Hn(B
n+1
i , Bn+1

i \ {xi})
f̃∗
−→ Hn(R

n+1,Rn+1 \ {0})

becomes the multiplication by an integer called the local degree of f̃ at
xi, written deg f̃ |xi

. Since f̃ |Bn+1
i

is a diffeomorphism, we have deg f̃ |xi
=

sgn(xi). For the definition of homomorphism j, we first consider the inclusion

(Bn+1, Sn) →֒ (Bn+1, Bn+1 \ f̃−1(0)),

which induces the homomorphism

Hn+1(B
n+1, Sn) → Hn+1(B

n+1, Bn+1 \ f̃−1(0)).
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Since Hn+1(B
n+1, Sn) ≈ Hn(S

n), we denote the above map by

j : Hn(S
n) → Hn+1(B

n+1, Bn+1 \ f̃−1(0)).

In the bottom homomorphism

Hn(S
n)

f̃∗
−→ Hn(S

n),

it is a multiplication by an integer and this integer is exactly deg f̃ |Sn which
also equals the winding number wind(f, 0) . Similar to [2] Proposition 2.30,
we can show that

wind(f, 0) = deg f̃ |Sn =

m∑

i=1

deg f̃ |xi
=

m∑

i=1

sgn(xi).

This finishes the proof. □

The way we connect the winding number with the Kakeya problem is
through the following lemmas.

Lemma 2. Given a continuous map g : Bn(0, 1) → R
n, let g|Sn−1 be the

restriction of g to Sn−1. For any z /∈ g(Sn−1), we have wind(g|Sn−1 , z) ̸= 0
implies z ∈ Im(g).

Lemma 2 is a direct corollary of Lemma 1. The next lemma is known as
the isoperimetric inequality.

Lemma 3. Given a smooth map g : Sn−1 → R
n, we have

(4)

(∫

Rn\Im(g)
|wind(g, z)|

n

n−1dz

)n−1

n

≲ A(g).

Here, A(g) =
∫
Sn−1 | det(

√
Dg∗(ω)Dg(ω))|dω is the area of the self-

intersecting “hypersurface” Im(g). Dg∗ denotes the transpose of Dg. Locally,
| det(

√
Dg∗(ω)Dg(ω))|dω is the volume form on Im(g).

Lemma 3 can be found in an equivalent form as equation (2.10) of [4].
We note that z 7→ wind(g, z) is constant on each connected component of
R
n \ Im(g). So if we denote the volumes these components by {Vk}k and
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the values of wind(g, z) on these components by {nk}k, we see that (4) is
equivalent to

(5) (
∑

k

|nk|
n

n−1Vk)
n−1

n ≲ A,

which is equation (2.10) of [4].
Now we briefly discuss the main idea of the paper. Given a continuous

Kakeya map ϕ : Bn−1(0, 1)× [0, 1] → R
n, we want to show the Kakeya set

K = Im(ϕ) has positive Lebesgue measure. It will be helpful to consider two
maps:

• ϕt(v) := ϕ(v, t), the restriction of ϕ to the t-slice,

• γt := ϕt|Sn−2 , the restriction of ϕt to the boundary sphere.

For v0 /∈ Im(γt), we denote by windt(v0) the winding number of γt at
point v0, that is, the degree of the map

Sn−2 → Sn−2, v 7→
γt(v)− v0
|γt(v)− v0|

.

If we can find some t0 such that windt0(v0) ̸= 0 for some v0 /∈ Im(γt0), then
by continuity, we have v /∈ Im(γt) and windt(v) ̸= 0 for t close enough to t0
and v close enough to v0. Thus by Lemma 2, we know there is an open neigh-
borhood of (t0, v0) contained in Im(ϕ), and hence it has positive Lebesgue
measure.

From the above discussion we see our main obstacle is the case that
|Im(ϕ)| = 0 (so windt(v) is defined for almost every v) and the winding
number is 0 where it is defined. We will show this cannot happen if we
assume some regularity property on the Kakeya map.

Let us first consider an easy case: ϕ is Lipschitz. By the area formula,
we have

(6)

∫

Bn−1×[0,1]
| det(Dϕ(x))|dx =

∫

Im(ϕ)
#{x : ϕ(x) = y}dy.

Using parameter x = (v, t) and recalling the definition of ϕ in (1), one can
calculate that

Dv,tϕ(v, t) =

(
Dvc(v) + tIn−1 0

v 1

)
.

Therefore, det(Dϕ) = det(Dv,tϕ(v, t)) is a monic polynomial of degree n− 1
in variable t. Therefore, det(Dϕ) is nonzero almost everywhere. This im-
plies (6) is nonzero, and hence |Im(ϕ)| > 0. In fact we shall see in Section 4
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that using the winding numbers we can show |Im(ϕ)| is bounded from below
by some positive constant depending only on the Lipschitz constant of ϕ.

Let us come back to Theorem 1 and Theorem 2 where the regularity
assumption of the Kakeya map is weaker than Lipschitz. The strategy is
still proof by contradiction. We assume Im(ϕ) has zero Lebesgue measure.
Then we use smooth maps to approximate Hölder continuous or Sobolev-
regular Kakeya maps. We will eventually derive a contradiction using an
isoperimetric inequality and the following key estimate:

(7) 1 ≲

∫ 1

0
|

∫

Rn−1

windt(x)dx|dt.

One intuition for this to be true is that the inner integral is a polyno-
mial in t with leading term tn−1. This is very similar to an observation by
Katz and Rogers in [3]. They showed that if c is a polynomial of degree
d, then |Im(ϕ)| is bounded from below by some constant c(n, d) > 0. The
key observation there is, by the area formula (6) and Bezout’s theorem,
|Im(ϕ)| ≥ Cd

∫
| det(Dϕ)|dvdt, and the latter integral is always at least c(n)

for some constant c(n) > 0. The difference in our approach is that instead
of considering the integral of | det(Dϕ)| in (t, v), we consider the integral of∫
det(Dϕt)dv for each fixed t. This is the signed volume on the t-slice and

can be related to the winding number.
This paper is structured as follows. In Section 2 we will prove Theorem 1,

and in Section 3 we will prove Theorem 2. Section 4 will be a discussion of
two other problems related to the Kakeya maps with regularity assumptions.

Notation. We use A ≲ B to denote that A ≤ CB for constant C which
depends only on the dimension n. A ∼ B will mean A ≲ B and B ≲ A. We
will use A ≲q B to denote A ≤ CqB for some constant Cq depending on q
(and n). The closed unit ball in R

k is denoted by Bk(0, 1), and the unit
sphere in R

k is denoted by Sk−1.

2. Hölder continuous Kakeya map

Let n ≥ 3. Suppose we have a Kakeya map

ϕ : Bn−1(0, 1)× [0, 1] → R
n, (v, t) 7→ (c(v) + tv, t)

where c : Bn−1(0, 1) → R
n−1 is continuous and Cα on Sn−2. We will prove

the following theorem.
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Theorem 3. If α > (n−2)n
(n−1)2 , then Im(ϕ) has positive Lebesgue measure.

We start with some definitions. Denote the restriction of c to Sn−2 by c.
Let cϵ be the ϵ-mollification of c. To be precise, let ρ : Rn−1 → R be a radial
compactly supported smooth bump function in R

n−1 adapted to Bn−1(0, 1),
and let

ρϵ(y) := dϵϵ
2−nρ(y/ϵ),

where the normalization constant dϵ is set to be

(8) dϵ = ϵn−2(

∫

Sn−2

ρ((y0 − y)/ϵ)dy)−1

for any y0 ∈ Sn−2. Note that the right hand side of (8) is independent of
y0 ∈ Sn−2 since ρ is a radial function. Also, we have dϵ ∼ 1.

We write c in components as c = (c1, · · · , cn−1). Finally we define cϵ
to be (c1 ∗ ρϵ, · · · , cn−1 ∗ ρϵ), where ci ∗ ρϵ(x) :=

∫
Sn−2 ci(y)ρϵ(x− y)dy for

x ∈ Sn−2. So the convolution ci ∗ ρϵ(x) averages the value of ci over an ϵ-
neighborhood of x on Sn−2.

Define γt to be the map

Sn−2 → R
n−1, v 7→ c(v) + tv,

and γt,ϵ to be the map

Sn−2 → R
n−1, v 7→ cϵ(v) + tv.

Then from the Hölder continuity of c we have |γt(v)− γt,ϵ(v)| ≲c ϵ
α, which

implies:

(9) windt,ϵ(x) = windt(x) if dist(x, Imγt) ≳c ϵ
α.

Here windt(x) = wind(γt, x) is the degree of the map

(10) Sn−2 → Sn−2, y →
γt(y)− x

|γt(y)− x|
,

and windt,ϵ(x) = wind(γt,ϵ, x) is the degree of the map

(11) Sn−2 → Sn−2, y →
γt,ϵ(y)− x

|γt,ϵ(y)− x|
.
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We will need the following identity from differential topology that relates
the integral of winding numbers with the integral of the determinant of the
differential.

Lemma 4. Suppose f : Sn−2 → R
n−1 is smooth. Let f̃ : Bn−1(0, 1) →

R
n−1 be a smooth map satisfying f̃ |Sn−2 = f . Then, we have

∫

Rn−1

wind(f, x)dx =

∫

Bn−1(0,1)
det(Df̃(y))dy.

Proof. We recall that we say x ∈ R
n−1 is a regular value of f if for any

y ∈ f−1(x) we have det(Df(y)) ̸= 0. In particular, x is a regular value if
f−1(x) is an empty set.

By Lemma 1, if x ∈ R
n−1 \ Im(f) is a regular value of f̃ , then

wind(f, x) =
∑

y∈f̃−1(x)

sgn(y),

where sgn(y) equals 1 if det(Df̃(y)) > 0, and −1 if det(Df̃(y)) < 0. We also
note that by Sard’s theorem almost every x ∈ R

n−1 is a regular value of f̃ .
So,

∫

Rn−1

wind(f, x)dx =

∫

Rn−1

∑

y∈f−1(x)

sgn(y)dx

=

∫

Bn−1(0,1)
det(Df̃(y))dy.

(Rigorously speaking, we should write the integration domain as R
n−1 \

Im(f). But since Im(f) has zero measure, we still write it as Rn−1 without
any ambiguity.) □

Remark. From the previous lemma, we see that the value of the integral

∫

Bn−1(0,1)
det(Df̃(y))dy

only depends on the value of f̃ on Sn−2. Therefore, for any smooth function
f : Sn−2 → R

n−1, it makes sense to define the integral

∫

Bn−1(0,1)
det(Df(y))dy.
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Proposition 1. Let windϵ,t(x) be defined as in (11). We have

(12) 1 ≲

∫ 1

0
|

∫

Rn−1

windt,ϵ(x)dx|dt.

The implicit constant is independent of ϵ.

Proof. Fix ϵ > 0. By Lemma 4 and the remark above, we have

∫

Rn−1

windt,ϵ(x)dx =

∫

Bn−1(0,1)
det(Dγt,ϵ(v))dv

=

∫

Bn−1(0,1)
γ∗t,ϵ(dx1 ∧ · · · dxn−1).

Here γ∗t,ϵ(dx1 ∧ · · · dxn−1) is the pullback of the differential form. Further by
Stokes’ theorem, we have

∫

Bn−1(0,1)
γ∗t,ϵ(dx1 ∧ · · · dxn−1) =

∫

Bn−1(0,1)
d
(
γ∗t,ϵ(x1dx2 ∧ · · · dxn−1)

)

=

∫

Sn−2

γ∗t,ϵ(x1dx2 ∧ · · · dxn−1).

If we write cϵ(v) = (c1,ϵ(v), . . . , cn−1,ϵ(v)), we have

γt,ϵ(v) = (tv1 + c1,ϵ(v), . . . , tvn−1 + cn−1,ϵ(v)).

Therefore
∫

Sn−2

γ∗t,ϵ(x1dx2 ∧ · · · dxn−1)

=

∫

Sn−2

(tv1 + c1,ϵ(v))d(tv2 + c2,ϵ(v)) ∧ · · · ∧ d(tvn−1 + cn−1,ϵ(v))

= tn−1

∫

Sn−2

v1dv2 ∧ · · · ∧ dvn−1 + e(t)

= tn−1 + e(t),

where e(t) is a polynomial in t with degree at most n− 2 and coefficients
determined by c, ϵ. In summary, we have shown

∫

Rn−1

windt,ϵ(x)dx = tn−1 + e(t).
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Next we claim that

(13)

∫ 1

0

∣∣tn−1 + e(t)
∣∣dt ≳ 1.

If the claim (13) is true, we may then conclude

1 ≲

∫ 1

0

∣∣tn−1 + e(t)
∣∣dt =

∫ 1

0

∣∣
∫

Rn−1

windt,ϵ(x)dx
∣∣dt.

So it suffices to prove the claim (13). The proof can be found in [3], but
we give the proof here for the sake of completeness. Since tn−1 + e(t) is a
monic polynomial of degree n− 1, we write

tn−1 + e(t) = (t− r1) · · · (t− rn−1),

where r1 · · · rn−1 are complex numbers. We observe that for t in a subset of
[0, 1] with measure greater than 1/4, we have the estimate

|t− rj | ≥
1

4n
≳ 1, j = 1, · · ·n− 1,

which means for t in a subset of [0, 1] with measure greater than 1/4 we
have

|tn−1 + e(t)| = |t− r1| · · · |t− rn−1| ≳ 1.

Therefore, (13) holds. □

Proof of Theorem 3. Let ϕ be the restriction of ϕ to Sn−2 × [0, 1]. For the
sake of contradiction we assume that |Imϕ| = 0 and windt(x) = 0 where it
is defined. Then by Proposition 1 and (9) we have

(14)

∫ 1

0

∫

NCϵα (Imγt)
|windt,ϵ(x)|dxdt ≳ 1.

Here NCϵα(Imγt) denotes the Cϵα-neighborhood of Imγt. C is a constant
depending on the Hölder constant of c.

Next we show

(15) |NCϵα(Imγt)| ≲ ϵ−n+2(ϵα(n−1)) = ϵ(n−1)α−n+2,

and

(16) A(γt,ϵ) ≲ ϵ(α−1)(n−2).

(For the definition of A(γt,ϵ), see the line next to equation (4).)



✐

✐

“4-Gan” — 2023/6/9 — 18:10 — page 100 — #12
✐

✐

✐

✐

✐

✐

100 Y. Fu and S. Gan

Indeed to see (15), we choose a maximal ϵ-separated subset S of Sn−2,
so |S| ∼ ϵ2−n. We claim that the union of balls

⋃
xi∈S

BC1ϵα(γt(xi)) covers
NCϵα(Imγt), when C1 is large enough. In fact for any y ∈ NCϵα(Imγt), there
exists an x ∈ Sn−2, such that |y − γt(x)| ≲ ϵα. Also by the choice of S, there
exists an xi ∈ S such that |x− xi| ≤ ϵ. So by the Hölder continuity, we have

|y − γt(xi)| ≤ |y − γt(x)|+ |γt(x)− γt(xi)| ≤ C1ϵ
α,

which means y ∈ NC1ϵα(γt(xi)) ⊂
⋃

xi∈S
BC1ϵα(γt(xi)) if C1 is sufficiently

large. So (15) follows.
To see (16), we only need to show |∇γt,ϵ| ≲ ϵα−1 (here ∇ is the gradient

on Sn−2), which will imply

A(γt,ϵ) ≲

∫

Sn−2

| det(Dγt,ϵ)| ≲

∫

Sn−2

|∇γt,ϵ|
n−2 ≲ ϵ(α−1)(n−2).

Recall that ρ is the mollifier with ρϵ(y) = dϵϵ
2−nρ(y/ϵ) and dϵ ∼ 1, so

we have

|∇γt,ϵ(y)| = dϵ|∇

∫

Sn−2

γt,ϵ(x)ϵ
2−nρ(

y − x

ϵ
)dx|

∼ |

∫

Sn−2

γt,ϵ(x)ϵ
2−n∇(ρ(

y − x

ϵ
))dx|

= |

∫

Sn−2

(γt,ϵ(x)− γt,ϵ(y))ϵ
1−n∇ρ(

y − x

ϵ
)dx|

≲

∫

NCϵ(x)∩Sn−2

|γt,ϵ(x)− γt,ϵ(y)|ϵ
1−ndy

≲

∫

NCϵ(x)∩Sn−2

|x− y|αϵ1−ndy

≲ ϵα−1.

So we indeed have (16).
Lemma 3 states

(∫

Rn−1

|windt,ϵ(x)|
n−1

n−2dx

)n−2

≲ A(γt,ϵ)
n−1.
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Combining what we have so far with Hölder’s inequality we obtain

1 ≲

∫ 1

0

∫

NCϵα (Im(γt))
|windt,ϵ(x)|dxdt

≤ |NCϵα(Im(γt))|
1/(n−1)

×

(∫ 1

0

∫

NCϵα (Im(γt))
|windt,ϵ(x)|

(n−1)/(n−2)dxdt

)(n−2)/(n−1)

≲ ϵ((n−1)α−n+2)/(n−1)ϵ(α−1)(n−2)

= ϵα−
n−2

n−1
+(α−1)(n−2).

This is a contradiction if α− n−2
n−1 + (α− 1)(n− 2) > 0, that is, α > (n−2)n

(n−1)2 .
□

3. Sobolev regular Kakeya map

We use the same notation as in Section 2 but instead of assuming c|Sn−2

is Hölder continuous Cα, we assume c is continuous and c|Sn−2 lies in the
Sobolev space W 1,p(Sn−2) for some p > n− 2. We write p = n− 2 + δ for
some small δ > 0.

To compare this regularity assumption with that in Theorem 1, by the
Sobolev embedding, we know that c|Sn−2 is δ′-Hölder continuous for some
δ′ = O(δ). On the other hand when δ is small the space W 1,p and Cα for

α > (n−2)n
(n−1)2 are mutually non-inclusive.
We will prove the following theorem.

Theorem 4. If c is continuous and c|Sn−2 ∈W 1,n−2+δ(Sn−2) for some δ >
0 then Im(ϕ) has positive Lebesgue measure.

Proof. Since c|Sn−2 ∈W 1,n−2+δ(Sn−2), we also have γt ∈W 1,n−2+δ(Sn−2).
We consider the mollified cϵ as we did in Section 2. Also recall the definitions
of windt(x) and windt,ϵ(x) in (10) and (11).

By Proposition 1, we have

(17)

∫ 1

0
|

∫

Rn−1

windt,ϵ(x)dx|dt ≳ 1.

Suppose for the sake of contradiction that |Im(ϕ)| = 0 and windt(x) = 0
wherever it is defined. Since by the Sobolev embedding c|Sn−2 is in some
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Hölder space Cδ′ for some δ′ > 0, the same reasoning as in (9) yields

(18) windt,ϵ(x) = windt(x) if dist(x, Imγt) ≳c ϵ
δ′ .

So if we split

∫ 1

0
|

∫

Rn−1

windt,ϵ(x)dx|dt ≤

∫ 1

0
|

∫

N
Cϵδ

′ (Imγt)
windt,ϵ(x)dx|dt

+

∫ 1

0
|

∫

Rn−1\N
Cϵδ

′ (Imγt)
windt,ϵ(x)dx|dt

=: I1 + I2,

then

I2 =

∫ 1

0
|

∫

Rn−1\N
Cϵδ

′ (Imγt)
windt,ϵ(x)dx|dt = 0,

since we assumed windt(x) = 0 and we have (18).
In the rest of the proof we will show that I1 → 0 as ϵ→ 0, which con-

tradicts (17). We claim that

(19) A(γt,ϵ) :=

∫

Sn−2

| det
(√

(Dω(c ∗ ρϵ + tω))∗(Dω(c ∗ ρϵ + tω))
)
|dω ≲c 1.

Here the notation is from Lemma 3. In the integral, we think of c ∗ ρϵ + tω
as a function Sn−2 → R

n−1.
To prove (19), we cover Sn−2 by two coordinate charts {U1, U2} with co-

ordinate maps ψi : Ui → Bn−2(0, 1). Note that the function tω is smooth and
∥c ∗ ρϵ∥W 1,p(Sn−2) ≲ ∥c∥W 1,p(Sn−2). So after change of variables and pulling

back using ψi, the inequality (19) becomes
∫
Bn−2(0,1) | det(

√
(Df)∗(Df))| ≲c

1, where f is a function on Bn−2(0, 1) satisfying ∥f∥W 1,p(Bn−2(0,1)) ≲ 1 +
∥c∥W 1,p(Sn−2). Expanding the integrand we see that

∫
| det(

√
(Df)∗(Df))| =

∫
| det((Df)∗(Df))|

1

2

≲

∫
|Df |n−2 ≲ ∥f∥n−2

W 1,n−2 ≲c 1.

So, we prove the claim (19).
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Therefore applying the isoperimetic inequality (Lemma 3) gives us

|

∫

N
Cϵδ

′ (Imγt)
windt,ϵ(x)dx| ≲ |NCϵδ′ (Imγt)|

1/(n−1)∥windt,ϵ∥L(n−1)/(n−2)

≲ |NCϵδ′ (Imγt)|
1/(n−1)A(γt,ϵ) ≲c |NCϵδ′ (Imγt)|

1/(n−1).

In the last inequality, we used (19).
Since

∫ 1

0
|NCϵδ′ (Imγt)|

1/(n−1)dt ≲

(∫ 1

0
|NCϵδ′ (Imγt)|dt

)1/(n−1)

≤ |NCϵδ′ (Imϕ)|
1/(n−1),

we conclude

I1 ≲c |NCϵδ′ (Imϕ)|
1/(n−1) → 0

as ϵ→ 0 (because by assumption |Imϕ| = 0). Hence we finish the proof of
Theorem 4. □

4. Other results related to the Kakeya problem

In this section we discuss two Kakeya-type problems which are under differ-
ent settings from the previous sections, and may be of independent interest.

4.1. Tube-Kakeya set with Lipschitz spacing condition

In the previous sections, we studied the Kakeya set which is the union of
line segments. In this subsection, we study the tube-version of the Kakeya
set which is the union of δ-tubes.

Definition 2 (Tube-Kakeya set). For 0 < δ < 1, we choose Vδ to be a
maximal δ-separated subset of Bn−1(0, 1). For a map c : Bn−1(0, 1) → R

n−1,
we consider the set of tubes {T δ

c(v),v}v∈Vδ
, where T δ

x,v is the δ-neighborhood

of the segment {(x+ tv, t) : t ∈ [0, 1]}. We call the union of these tubes

⋃

v∈Vδ

T δ
c(v),v

the tube-Kakeya set.
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It is conjectured that for any map c we have

|
⋃

v∈Vδ

T δ
c(v),v| ≳ϵ δ

ϵ,

for ϵ > 0. In this subsection, we will assume some regularity on the map c
and prove the result. We define the Lipschitz constant of c by

∥c∥Lip := max
v,v′∈Bn−1(0,1)

|c(v)− c(v′)|

|v − v′|
.

Our result is:

Proposition 2. If {T δ
c(v),v}v∈Vδ

is a collection of tubes as in Definition 2,

then

|
⋃

v∈Vδ

T δ
c(v),v| ≳ (∥c∥Lip + 1)−(n−1)2 .

Proof. Consider the map

ϕ : Bn−1(0, 1)× [0, 1] → R
n, (v, t) 7→ (c(v) + tv, t),

which is the Kakeya map corresponding to c.
Denote the Lipschitz constant L = ∥c∥Lip. Note that Bn−1(0, 1) ⊂⋃

v∈Vδ
B(v, 2δ), and ϕ(B(v, 2δ)× [0, 1]) ⊂ T 100Lδ

c(v),v (recall that T 100Lδ
c(v),v is the

100Lδ-neighborhood of the segment {(c(v) + tv, t) : t ∈ [0, 1]}). Therefore,

(20) Im(ϕ) ⊂
⋃

v∈Vδ

T 100Lδ
c(v),v .

Choose a maximal δ-separated subset of Bn−1(0, 100Lδ), denoted by
{x1, · · · , xM} with M ∼ Ln−1. We see for any v ∈ Vδ,

T 100Lδ
c(v),v ⊂

⋃

1≤i≤M

T δ
c(v)+xi,v

.

Combined with (20), we have

Im(ϕ) ⊂
⋃

1≤i≤M

⋃

v∈Vδ

T δ
c(v)+xi,v

.

We also observe that
⋃

v∈Vδ
T δ
c(v)+xi,v

=
⋃

v∈Vδ
T δ
c(v),v + (xi, 0), which implies

|
⋃

v∈Vδ

T δ
c(v)+xi,v

| = |
⋃

v∈Vδ

T δ
c(v),v|,



✐

✐

“4-Gan” — 2023/6/9 — 18:10 — page 105 — #17
✐

✐

✐

✐

✐

✐

On Kakeya maps with regularity assumptions 105

for any xi. As a result, we have

|Im(ϕ)| ≤M |
⋃

v∈Vδ

T δ
c(v),v| ≲ ∥c∥n−1

Lip |
⋃

v∈Vδ

T δ
c(v),v|.

It remains to find a lower bound of |Im(ϕ)|. We note the following in-
equalities

1 ≲

∫ 1

0

∫

Rn−1

|windt(x)|dxdt

≲ (

∫ 1

0

∫

Rn−1

|windt(x)|
n−1

n−2dxdt)
n−2

n−1 |Im(ϕ)|
1

n−1

≲ (

∫ 1

0
A(ϕt|Sn−2)

n−1

n−2dt)
n−2

n−1 |Im(ϕ)|
1

n−1

≲ (∥c∥Lip + 1)n−2|Im(ϕ)|
1

n−1

Here, the first inequality is by Proposition 1 , the second inequal-
ity is Hölder’s inequality, the third inequality is by the isoperimet-
ric inequality (Lemma 3), and the fourth inequality is by A(ϕt|Sn−2) ≲
∥ det

√
Dϕ∗tDϕt∥∞ ≲ ∥Dϕt∥

n−2
∞ ≲ (∥c∥Lip + 1)n−2.

We obtain

|
⋃

v∈Vδ

T δ
c(v),v| ≳ ∥c∥

−(n−1)
Lip |Im(ϕ)| ≳ (∥c∥Lip + 1)−(n−1)2 .

□

Furthermore we may ask the estimate for the tube-Kakeya set under
the α-Hölder regularity assumption. Motivated by Theorem 1, we wonder
whether the following is true.

Question 1. Does there exists α < 1 so that

(21) |
⋃

v∈Vδ

T δ
c(v),v| ≳ϵ,∥c∥Cα δ

ϵ,

for any ϵ > 0 ?

4.2. Line-Kakeya set

In this subsection we would like to use a slightly different notation for the
Kakeya map. The direction set is parametrized by Sn−1, as opposed to
Definition 1 where the direction set is parametrized by Bn−1(0, 1).
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Definition 3. For any function c : Sn−1 → R
n, we let ϕc be the map

ϕc : S
n−1 × [0, 1] → R

n, (v, t) 7→ c(v) + tv.

We call ϕc a Kakeya map, and call Kc := Im(ϕc) =
⋃

v∈Sn−1 c(v) + [0, 1] · v
the associated Kakeya set.

We can also define the line-Kakeya set where line segments are replaced
by infinite lines

K̃c :=
⋃

v∈Sn−1

c(v) + R≥0 · v.

Proposition 3. If c is continuous and Im(c) ⊂ B(0, R), then K̃c ⊃
R
n\B(0, R).

Proof. We prove it using the degree theory from topology. For any point
x /∈ B(0, R), we define a map

f : Sn−1 → Sn−1

f(v) =
x− c(v)

|x− c(v)|
.

We see that f is not surjective (actually Im(f) is contained in a half sphere),
and hence f has degree 0, which implies f has a fixed point (see for example
Section 2.2 of [2]). Let v be a fixed point of f. Then

v =
x− c(v)

|x− c(v)|

or equivalently,

x = c(v) + |c(v)− x| · v ∈ K̃c.

□

We could immediately obtain the following result for a segment-Kakeya
set provided that c has small image.

Proposition 4. If c is continuous and diam(Im(c)) < 1
2 . Then Kc has pos-

itive Lebesgue measure.

Proof. By the assumption, we have c(Sn−1) ⊂ B0.9, a ball of radius 0.9. By
Proposition 3, we have K̃c ⊃ R

n \B0.9. Therefore Kc ⊃ B1 \B0.9. □
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BR

r

Figure 2.

We could also prove a local version of the theorem. To be precise, for
each subset U of Sn−1 and a continuous c as above, we define the line-Kakeya
set with directions in U to be K̃c(U) =

⋃
v∈U c(v) + R≥0 · v.

Proposition 5. If Br is a small closed ball of radius r in Sn−1, then K̃c(Br)
contains an infinite cone with the cone angle ≳ r.

Proof. Suppose c(Br) lies in BR(⊂ R
n), a ball of radius R. We can find

another continuous map c̃ on the whole sphere Sn−1, such that c̃(Sn−1) ⊂
BR and c̃|Br

= c|Br
. Without loss of generality, we assume the center of

BR(⊂ R
n) is 0 and the center of Br(⊂ Sn−1) is the north pole (0, · · · , 0, 1)

of Sn−1.
Consider the cone C = {(x̄, xn) ∈ R

n : xn − R
r >

|x̄|
r } which is the shaded

region in Figure 2. By Proposition 3, C ⊂ K̃c̃. Also note that for any x ∈ C
and y ∈ BR, we have

x−y
|x−y| ∈ Br ⊂ Sn−1, so actually we have C ⊂ K̃c̃(Br) =

K̃c(Br). □
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