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On type II degenerations of
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We give a simple argument to prove Nagai’s conjecture for type II
degenerations of compact hyperkähler manifolds and cohomology
classes of middle degree. Under an additional assumption, the tech-
niques yield the conjecture in arbitrary degree. This would com-
plete the proof of Nagai’s conjecture in general, as it was proved
already for type I degenerations by Kollár, Laza, Saccà, and Voisin
[10] and independently by Soldatenkov [18], while it is immediate
for type III degenerations. Our arguments are close in spirit to a
recent paper by Harder [8] proving similar results for the restrictive
class of good degenerations.

1. Introduction

Any one-dimensional degeneration X //∆ of compact Kähler manifolds in-
duces monodromy operators Tk acting on the cohomology groups Hk(X,C)
of a smooth fibre X := Xt, t ̸= 0. After a base change, one can assume that Tk

is unipotent, i.e. the operator Tk − id is nilpotent. Alternatively, this can be
expressed by saying that the logarithmic monodromy operator Nk := log Tk

acting on Hk(X,C) is nilpotent. Thus, the index of nilpotence defined as

nilp(Nk) := max{i | N i ̸= 0}

is finite and it is known that nilp(Nk) ≤ k, see [7, Ch. IV]. Clearly, if X //∆
is a smooth family, then Nk = 0 for all k. In general, there is no direct
link between the nilp(Nk) for different k. However, following the general
philosophy that the geometry of a compact hyperkähler manifold X is largely
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determined by its Hodge structure of weight two H2(X,Z), it was conjectured
by Nagai [14] that N2 determines all even N2k.

Conjecture 1.1 (Nagai). The even logarithmic monodromy operators
N2k, k ≤ n, of a degeneration of compact hyperkähler manifolds X //∆ with
unipotent monodromy satisfy

nilp(N2k) = k · nilp(N2).

Using Verbitsky’s result [1, 20] that cup-product yields inclusions
SkH2(X,C) ⊂ H2k(X,C) for k ≤ n, Nagai already observed that

nilp(N2k) ≥ k · nilp(N2).

Thus, for type III degenerations, i.e. nilp(N2) = 2, the conjecture follows
from the two inequalities 2k ≥ nilp(N2k) ≥ k · nilp(N2), see also [10, Sec. 6]
or [6, Sec. 5.1].

For projective degenerations of type I, i.e. N2 = 0, the conjecture was first
established by Kollár, Laza, Saccà, and Voisin [10]. An independent proof,
also valid in the non-projective case, was given by Soldatenkov [18, Cor. 3.6].
For type II degenerations, i.e. nilp(N2) = 1, it was proved in [10, Thm. 6.19]
that k ≤ nilp(N2k) ≤ 2k − 2 for all 2 ≤ k ≤ n− 1, which follows from the
observation that the level of the Hodge structure of H2k(X,Q)/SkH2(X,Q)
does not exceed 2k − 2.

Thus, in order to establish Nagai’s conjecture in full, only the case of type
II degenerations remains open. In fact, for all known examples of compact
hyperkähler manifolds the conjecture was established by Green, Kim, Laza,
and Robles [6], relying on a complete understanding of the cohomology ring
as a representation of the LLV algebra. Special cases of degenerations of
Hilbert schemes and generalized Kummer varieties have been treated in [14].

The purpose of this note is to give an elementary proof of the following.

Theorem 1.2. Let X //∆ be a type II degeneration of compact hyperkähler
manifolds of dimension 2n. Then Nn+1 = 0 on H2n(X,C), i.e.

nilp(N2n) = n.

Furthermore, nilp(N2k) ≤ n− 1 for all k < n and, assuming condition (2.7),
in fact nilp(N2k) = k for all k ≤ n.
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Assuming that the degeneration is good, the result for nilp(N2n) and
nilp(N2n−2) was proved before using different but related arguments by
Harder [8]. In this sense, our arguments show that the restrictive assump-
tion in [8] that the degeneration is good can be dropped. Good degener-
ations had earlier been studied by Nagai [14] who observed already that
nilp(N2k) ̸∈ {1, . . . , k − 1}. In particular, for good type II degenerations one
has nilp(N2n−2) = n− 1 which in fact holds for general type II degenera-
tions.

In Section 3 we establish a link between the perverse and the monodromy
filtration. It leads to the following reformulation of Nagai’s conjecture.

Corollary 3.4. The Nagai conjecture (for type II degenerations) holds if
and only if the Hodge structure on the graded pieces GrPi H

2k(X,Q) of the
perverse filtration has level at most 2k − 2|i− k|.

The techniques that will be used to prove Theorem 1.2 also yield infor-
mation about the logarithmic monodromy action in odd degree. In Section 4
we shall prove the following.

Theorem 4.1. Let X //∆ be a type II degeneration of compact hyperkähler
manifolds of dimension 2n. Then the odd logarithmic monodromy operators
N2k−1, k ≤ n, satisfy

nilp(N2k−1) ≤ min{2k − 3, n− 1}.

Furthermore, assuming condition (2.7), in fact nilp(N2k−1) ≤ k − 1 for all
k ≤ n.

There is also a lower bound for nilp(N2k−1) depending on the level of
the Hodge structure, see Corollary 4.2.

2. Even degree

In the following, X //∆ will always be a degeneration of compact hyper-
kähler manifolds with unipotent monodromy and X = Xt, t ̸= 0, denotes a
fixed smooth fibre.

2.1. We begin by recalling some well-known properties of the logarithmic
monodromy operator N =

⊕

Nk.
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Lemma 2.1. For classes α ∈ Hk(X,C) and α′ ∈ Hℓ(X,C) one has

(2.1) Nk+ℓ(α ∧ α′) = Nk(α) ∧ α′ + α ∧Nℓ(α
′).

Furthermore, for a degeneration of compact hyperkähler manifolds, the oper-
ator N2 is compatible with the Beauville–Bogomolov form:

(2.2) q(N2(α), α
′) + q(α,N2(α

′)) = 0.

Proof. The monodromy operator T on H∗(X,C) is an algebra isomorphism
and, hence,

(2.3) Tm(α ∧ α′) = Tm(α) ∧ Tm(α′)

for all m ≥ 0. Now use Tm = exp(mN) and expand (2.3) in m. Comparing
linear terms, yields the first assertion. The proof of the second assertion is
similar, relying on the fact that the monodromy operator T2 is orthogonal,
i.e. q(T2(α), T2(α

′)) = q(α, α′). □

Let us now consider a degeneration X //∆ of compact hyperkähler man-
ifolds with T2 − id of order two or, equivalently, such that N2

2 = 0 but N2 ̸= 0,
i.e. a degeneration of type II. For the convenience of the reader we recall the
following observation due to Schreieder and Soldatenkov [16, Prop. 4.1].

Lemma 2.2. For a type II degeneration of compact hyperkähler manifolds
the image of the logarithmic monodromy operator

N2 : H
2(X,C) //H2(X,C)

is an isotropic plane.
Furthermore, for any basis w1, w2 ∈ Im(N2) one has

(2.4) N2(α) = q(w2, α)w1 − q(w1, α)w2

up to scaling N2 by a factor.

Proof. Due to (2.2), one has q(N2(α), N2(α
′)) = −q(α,N2

2 (α
′)) = 0, which

shows that the image is indeed isotropic. A computation with Hodge num-
bers, see [7, Ch. VI], yields dim Im(N2) = 2.

Thus, one can write N2 = λ1( )w1 + λ2( )w2 for certain linear forms
λ1, λ2 on H2(X,C). Then, since by (2.2) one has q(N2(α), α) = 0 for all
α ∈ H2(X,C), one finds λ1(α) q(w1, α) + λ2(α) q(w2, α) = 0, which proves
[λ1( ) : λ2( )] = [q(w2, ) : −q(w1, )]. □
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2.2. Let us now fix a non-trivial isotropic class β ∈ H1,1(X) and denote
by Lβ the operator α ✤

//α ∧ β which is of bidegree (1, 1). Furthermore, we
let Λc

σ be the operator of bidegree (−2, 0) defined as the contraction by the
holomorphic symplectic form σ, see also Remark 2.3. Then the operator

M := [Lβ ,Λ
c
σ]

is of bidegree (−1, 1) and enjoys similar properties as the monodromy oper-
ator N . For example,

(2.5) Mk+ℓ(α ∧ α′) = Mk(α) ∧ α′ + α ∧Mℓ(α
′)

for classes α ∈ Hk(X,C) and α′ ∈ Hℓ(X,C). Furthermore, M is of type II,
i.e. M2

2 = 0, and the image of M2 is an isotropic plane, namely Im(M2) =
⟨β, σ̄⟩. More precisely, up to a scaling factor

M(σ) = −q(σ̄, σ)β and M(α) = q(β, α) σ̄

for any α ∈ H1,1(X). So, similarly to Lemma 2.2, we can write, up to a
scaling factor,

M2 = q(β, ) σ̄ − q(σ̄, )β.(2.6)

The quickest way to prove these facts is via the (complex) Looijenga–Lunts–
Verbitsky Lie algebra g(X), see [12, 20] or the summaries [6, Thm. 2.7] and
[19, Sec. 2]. It is generated by all Lx and Λx, where x ∈ H2(X,C) can be any
class satisfying the Lefschetz property. As Lβ and Λc

σ are linear combinations
of certain Lx and Λx, cf. Remark 2.3 below, the known commutator relations
in g(X) also hold for [Lβ ,Λ

c
σ] and the property that g(X) acts by derivation

on the algebra H∗(X,C) extends to the operator M .

Remark 2.3. (i) If one writes σ = ωJ +
√
−1ωK , where ωJ , ωK are the

Kähler classes of complex structures J and K defined by the choice of a
hyperkähler metric, then Λc

σ = ΛωJ
−
√
−1ΛωK

. Here, ΛωJ
and ΛωK

are the
usual dual Lefschetz operators associated to the Lefschetz classes ωJ and ωK .
In other words, if Λω depending on a Lefschetz class ω is extended linearly
on the whole H2(X,C), then Λc

σ = Λσ̄. For an explanation of the sign we
refer to [5, p. 118], see also [17, Sec. 3.1].

(ii) There exists an isomorphism g(X) ≃ so(H̃(X,C)), see [12, 20]. Here,
H̃(X,C) denotes the Mukai extension of H2(X,C), i.e. its direct sum with
a hyperbolic plane. Furthermore, g(X) ≃ g−2 ⊕ (g′ ⊕ Ch)⊕ g2 where g±2 ≃
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H2(X,C), g′ ≃ so(H2(X,C)), and h is the standard counting operator, i.e.
h(v) = (d− 2n)v for v ∈ Hd(X,C), cf. [6, 12, 19, 20].

2.3. Nagai’s conjecture for the operator M2n can be verified by a computa-
tion. This is the content of the next result. For k = n the assertion will give
Nagai’s conjecture for the middle cohomology, see Section 2.6. For k ≤ n/2
one in fact has the stronger result M2k+1 = 0 on H2k(X,C), simply because
M is of bidegree (−1, 1).

Proposition 2.4. For all k ≤ n we have Mn+1 = 0 on H2k(X,C).

Proof. Since M is of bidegree (−1, 1), we have M ℓ+1 = 0 on Hp,q(X)
for p ≤ ℓ. Thus, to prove the assertion, it suffices to show Mn+1(α) =
0 for α ∈ Hp,q(X) with p+ q = 2k and p > n. Using the isomorphism
σp−n : Ω2n−p

X
∼

//Ωp
X for n < p ≤ 2n, we can write α = σp−n ∧ γ for some

γ ∈ H2n−p,q. Then, by (2.5)

Mn+1(α) = Mn+1(σp−n ∧ γ) =
∑

i+j=n+1

(

n+ 1

i

)

M i(σp−n) ∧M j(γ)

=
∑

i+j=n+1
j≤2n−p

(

n+ 1

i

)

M i(σp−n) ∧M j(γ),

where we use that for bidegree reasons H2n−p,q(X) is annihilated by M j for
j > 2n− p. On the other hand, since M2(σ) = 0, we have M i(σp−n) = 0 for
i > p− n. This yields the assertion. □

2.4. The arguments in the previous proof can be used to deduce Mk+1 = 0
on H2k(X,C) assuming the following holds for all p+ q ≤ 2n− 2:

(2.7) {γ ∈ Hp,q(X) | γ ∧ β = 0, γ ∧ σ̄ = 0} = 0.

In fact, it suffices to show triviality for those γ ∈ H2k(X,C), 2k < 2n, that
are furthermore contained in the image of Mk+1 or satisfy Λσ̄(γ) ∧ β = 0.

Corollary 2.5. Assuming (2.7), one has Mk+1 = 0 on H2k(X,C) for all
2k ≤ 2n.

Proof. It suffices to prove that Mk+1 = 0 on H2k(X,C), k < n, is implied by
Mk+2 = 0 on H2k+2(X,C), which reduces the assertion to the middle degree
2n covered by Proposition 2.4.
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Let α ∈ Hp,q(X) with p+ q = 2k < 2n (and q < k) and assume that ℓ is
maximal with M ℓ(α) ̸= 0. Suppose ℓ ≥ k + 1. Since ℓ+ 1 ≥ k + 2, α ∧ w ∈
H2k+2(X,C), and M2(w) = 0 for all classes w ∈ H2(X,C), we have

0 = M ℓ+1(α ∧ w) = (l + 1)M ℓ(α) ∧M(w).

As the image of M acting on H2(X,C) is spanned by σ̄ and β, assumption
(2.7) yields the contradiction M ℓ(α) = 0. □

Remark 2.6. The condition (2.7) is trivially satisfied for q < n, for Lσ̄ is
injective on Hp,q(X) for q < n. Also, if β were a Kähler class or simply a
class with q(β) ̸= 0, then Lβ would be injective for 2k < 2n. At this point,
we do not know how realistic (2.7) is. Note that, unlike condition (5.2) in [6,
Thm. 5.2], which is shown to be equivalent to Nagai’s conjecture, condition
(2.7) may fail without contradicting Nagai’s conjecture.

Remark 2.7. (i) Note that the argument in the above proof reducing
Mk+1 = 0 on H2k(X,C) to Mk+2 = 0 on H2k+2(X,C) works for 2k < n,
for in this case Lσ̄ is injective on H2k(X,C). In other words, without assum-
ing (2.7), to confirm Nagai’s conjecture (for the operator M) it suffices to
show Mk+1 = 0 on H2k(X,C) for n ≤ 2k < 2n.

(ii) Also, one can combine the arguments in the proofs of Proposi-
tion 2.4 and Corollary 2.5 to show that Mn = 0 on H2k(X,C) for 2k <
2n, because in this case one only needs (2.7) for (0, 2k)-classes which
holds true. Indeed, Mn(α) = 0 for α ∈ Hp,q(X) with p < n. For p ≥ n,
write again α = σp−n ∧ γ and compute Mn(α) =

∑

i+j=n

(

n
i

)

M i(σp−n) ∧
M j(γ) =

(

n
p−n

)

Mp−n(σp−n) ∧M2n−p(γ) = c · βp−n ∧M2n−p(γ) for some

constant c with M2n−p(γ) ∈ H0,2(k−p+n)(X) and so M2n−p(γ) = c′ · σ̄k−p+n.
Hence, for w ∈ H2(X,C) with M(w) = σ̄ we obtain 0 = Mn+1(w ∧

α) = c · c′ · (n+ 1) · βp−n ∧ σ̄k−p+n+1. Since σ̄2n−p induces an isomorphism
Hp−n,p−n(X) ≃ Hp−n,3n−p(X) and since k − p+ n+ 1 ≤ 2n− p, multiply-
ing classes in Hp−n,p−n(X) with σ̄k−p+n+1 is injective and, in particular,
βp−n ∧ σ̄k−p+n+1 ̸= 0. This proves c · c′ = 0 and, therefore, Mn(α) = 0.

2.5. Let X be a compact hyperkähler manifold and H∗(X,C) its complex
cohomology algebra. In addition, H2(X,C) is endowed with the complex
linear extension of the Beauville–Bogomolov pairing q.

Assume V ⊂ H2(X,C) is an isotropic plane with a basis v1, v2 ∈ V . Since
vn+1 = 0 in H2n+2(X,C) for any isotropic class v, the choice of V = ⟨v1, v2⟩
endows H∗(X,C) with the structure of a graded algebra over the Artin
algebra C[x1, x2]/(x1, x2)

n+1.
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The next proposition is a two-parameter version of the observation [9,
Prop. 2.2].

Proposition 2.8. Any element in the special orthogonal group
SO(H2(X,C)) lifts to an automorphism of the cohomology ring H∗(X,C)
provided that b2 ≥ 4.

Proof. We use the shorthand H∗ := H∗(X,C) and denote by Aut(H∗)
the complex algebraic group of automorphisms of the graded C-algebra
H∗. Then, we have to show that the image G of the restriction map
Aut(H∗) //GL(H2) contains SO(H2, q). For this we use that monodromy
defines a discrete subgroup in Aut(H∗) whose image in GL(H2) contains a fi-
nite index subgroup of the integral special orthogonal group SO(H2(X,Z)).
Since by [2] the latter is Zariski dense in SO(H2, q) when q is indefinite,
which holds by our assumption b2 ≥ 4, we indeed have SO(H2, q) ⊂ G. □

Corollary 2.9. Assume b2 ≥ 5, and let V = ⟨v1, v2⟩ and V ′ = ⟨v′1, v′2⟩
be two isotropic planes in H2(X,C). Then the induced graded
C[x1, x2]/(x1, x2)

n+1-algebra structures on H∗(X,C) are isomorphic.

Proof. If b2 ≥ 5, any two isotropic planes V = ⟨v1, v2⟩ and V ′ = ⟨v′1, v′2⟩ are
contained in the same orbit of the action of the complex special orthogonal
group SO(H2, q), i.e. there exists g ∈ SO(H2(X,C), q) with g(V ) = V ′. Since
g lifts to an automorphism of the graded C-algebra H∗(X,C), the induced
C[x1, x2]/(x1, x2)

n+1-algebra structures are isomorphic. □

Corollary 2.10. Let X //∆ be a type II degeneration of compact hyper-
kähler manifolds with b2 ≥ 5, and let β ∈ H1,1(X) be a non-trivial isotropic
class on a smooth fibre X := Xt, t ̸= 0. Then the monodromy operator N
and the operator M = [Lβ ,Λ

c
σ], for 0 ̸= σ ∈ H2,0(X), are conjugate under a

graded automorphism of the algebra H∗(X,C).

Proof. According to (2.4) and (2.6) we can write N2 = q(w2, )w1 −
q(w1, )w2 for a certain basis w1, w2 of the isotropic plane Im(N2) ⊂
H2(X,C) and, up to a scaling factor, M2 = q(β, ) σ̄ − q(σ̄, )β. Now choose a
graded algebra automorphism of H∗(X,C) that maps the basis w1, w2 of the
image of N2 to the basis β, σ̄ of the image of M2. Let N ′ denote the conjugate
of the logarithmic monodromy operator N under this algebra isomorphism.

Then N ′
2 = M2 up to a scaling factor and both operators N ′ and M

are contained in the total Lie algebra g(X). For N ′ this follows from the
corresponding assertion for N , which is a consequence of [18, Prop. 3.5], see
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also [6, Sec. 4], and for M = [Lβ ,Λ
c
σ] it holds by definition. Also, N ′ and M

are both of degree zero and hence contained in the degree zero part of g(X).
Now use that the degree zero part of g(X) is isomorphic to so(H2(X,C))⊕
Ch, where h is the degree operator. Hence, any two degree zero elements
of g(X) with identical action on H2(X,C) coincide. Thus, the fact that
N ′

2 = M2 immediately implies N ′ = M . □

Remark 2.11 (b2 = 4). Note that the existence of an isotropic plane im-
plies b2 ≥ 4. If b2 = 4, weaker versions of Corollaries 2.9 and 2.10 hold. In
this case, the set of isotropic planes is the Fano variety of lines on a quadric
in P3, which is the disjoint union of two lines. In particular, SO(H2, q) does
not act transitively on it. However, the special orthogonal group exchanges
any two lines in the same component or, equivalently, whenever their corre-
sponding isotropic planes are transverse. Therefore, Corollary 2.9 holds for
b2 = 4 too provided that V and V ′ are transverse.

Furthermore, if b2 = 4, the proof of Corollary 2.10 does not work, because
the isotropic planes Im(N2) and ⟨β, σ̄⟩ may not be transverse. Nonetheless,
we can always replace β by a non-trivial isotropic class in H1,1(X) with this
property. For instance, if β does not work, exchange it with the class η to be
constructed in the proof of Theorem 3.2. We conclude that even for b2 = 4,
the monodromy operator N in Corollary 2.10 is conjugate to M = [Lβ ,Λ

c
σ]

for some non-trivial isotropic class β ∈ H1,1(X). In particular, we do not
need any restriction on Betti number b2 for Theorems 1.2 and 3.2.

2.6 Proof of Theorem 1.2. According to Corollary 2.10 (and Remark 2.11),
the monodromy operator N and the operator M correspond to each other
under a graded algebra automorphism of H∗(X,C). Consider their actions on
H2k(X,C) for k ≤ n. Since Mn+1 = 0 on H2k(X,C) by Proposition 2.4, we
can conclude that Nn+1 = 0 holds as well. The stronger statement Nn = 0
on H2k(X,C) for 2k < 2n follows from Remark 2.7, (ii).

Furthermore, assuming (2.7), we deduce from Corollary 2.5 that Mk+1 =
0 on H2k(X,C), which again by Corollary 2.10 implies the assertion Nk+1 =
0. □

3. Nagai’s conjecture and the perverse filtration

Let X be a compact hyperkähler manifold of complex dimension 2n. In
this section we show that, quite remarkably, Nagai’s conjecture prescribes
the shape of the perverse filtration associated to a Lagrangian fibration
f : X //B.
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3.1. We start by recalling the filtration associated to a nilpotent operator,
see [4, §1.6].

Given a nilpotent endomorphism N of a finite dimensional vector space
V of index of nilpotence k, i.e. Nk ̸= 0 and Nk+1 = 0, the weight filtration
of N centred at k is the unique increasing filtration WN

0 V ⊂ WN
1 V ⊂ · · · ⊂

WN
2k−1V ⊂ WN

2kV = V , such that

NWN
i ⊆ WN

i−2 and N i : GrNk+iV
∼

//GrNk−iV.

Here, we use N to denote also the induced maps on the graded pieces
GrNi V := WN

i V/WN
i−1V .

Examples 3.1. Let us consider some geometric examples.

(i) For 0 ̸= σ̄ ∈ H0,2(X), the weight filtration of the nilpotent opera-
tor Lσ̄ on H∗(X,C) centred at n is the conjugate Hodge filtration, i.e.
WLσ̄

i H∗(X,C) =
∑

q≥2n−iH
p,q(X), see [5, Prop. 2.6].

(ii) Assume f : X //B is a Lagrangian fibration. Up to a scalar factor,
there exists a unique class β ∈ H2(X,Q) which is the pullback of an ample
class in H2(B,Q), see [13]. The weight filtration of Lβ on H∗(X,Q) centred
at n is the perverse filtration

PiH
d(X,Q) :=

∑

j≥0

βj ·Ker
(

βn−(d−2j)+i+1 : Hd−2j(X,Q) //H2n−d+2j+2i+2(X,Q)
)

,

i.e. WLβ

i H∗(X,Q) ∩Hd(X,Q) = Pd+i−2nH
d(X,Q), see [3, Thm. 2.1.5]. In

particular, the graded pieces GrPi H
d(X,Q) are pure Hodge structures of

weight d.

(iii) Let X //∆ be a type II degeneration of compact hyperkähler man-
ifolds with unipotent monodromy and X = Xt, t ̸= 0, a fixed smooth fibre.
Up to a shift, the weight filtration of the logarithmic monodromy operator
N on H∗(X,C) centred at n coincides with the monodromy filtration Wmon

defined in [15, Sec. 11.2.5]. On the other hand, by Corollary 2.10, the weight
filtration of N is conjugate to the weight filtration of M = [Lβ ,Λ

c
σ]. Together

this becomes

GrWmon

k+j Hk(X,C) ≃ GrNn+jH
k(X,C) ≃ GrMn+jH

k(X,C).
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Observe that the dimension of GrNn+jH
k(X,C) is independent of the choice

of X //∆ by Corollary 2.10, see [10, 18] for the analogous statements in
type I and III.

3.2. The goal of this section is to provide an equivalent formulation of Na-
gai’s conjecture, see [6, Prop. 1.15] for another one using the representation
theory of the LLV algebra. We begin by establishing a link between the
monodromy filtration and the perverse filtration.

As before, X denotes a compact hyperkähler manifold of complex dimen-
sion 2n.

Theorem 3.2. Let N be the logarithmic monodromy operator on H∗(X,C)
of a type II degenerations and assume that there exists a Lagrangian fibration
f : X //B. For the two induced filtrations there exists an isomorphism

(3.1) GrNn+jH
ℓ(X,C) ≃

⊕

p+q=ℓ

GrPj+qH
p,q(X).

Proof. Let (g, I, J,K) be a hyperkähler structure on the complex manifold
X, i.e. a Riemannian metric g which is Kähler with respect to three com-
plex structures I (the one defining X), J , and K satisfying the quaternion
relations I2 = J2 = K2 = IJK = −1. 0 Assume q(ωI) = q(ωJ) = q(ωK) = 2
and let β = f∗α be the pullback of an ample class α ∈ H2(B,Q) normalized
such that q(ωI , β) = 1. The class η := ωI − β is isotropic, i.e. q(η) = 0. Note
also that q(β, η) = q(β, ωI) = q(σ̄, σ) = 1. We shall denote by U ⊂ H2(X,C)
the orthogonal complement of ⟨β, ωI , ωJ , ωK⟩.

By Proposition 2.8, Corollary 2.9 and Remark 2.11, there exists an
automorphism φ ∈ Aut(H∗(X,C)) of the graded algebra H∗(X,C) which
is an involution on H2(X,C) with φ(σ) = β, φ(η) = σ̄, and φ|U = id. Let
y := φ(ωJ), z := φ(ωK) ∈ H2(X,C). Then the following are all sl2-triples:

Eσ := Lσ =
1

2
LωJ

+

√
−1

2
LωK

, Fσ := Λc
σ = Λσ̄ =

1

2
ΛωJ

−
√
−1

2
ΛωK

,

Hσ = (p− n) id on Hp,q(X),

Eσ̄ := Lσ̄ =
1

2
LωJ

−
√
−1

2
LωK

, Fσ̄ := Λc
σ̄ = Λσ =

1

2
ΛωJ

+

√
−1

2
ΛωK

,

Hσ̄ = (q − n) id on Hp,q(X),
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Eβ := φEσφ
−1 = Lβ , Fβ := φFσφ

−1 = Λη =
1

2
Λy −

√
−1

2
Λz,

Hβ = [Eβ , Fβ ] = φHσφ
−1,

and

Eη := φEσ̄φ
−1 = Lη, Fη := φFσ̄φ

−1 = Λβ , Hη = φHσ̄φ
−1.

Since Hβ is a morphism of Hodge structures, we obtain the decomposition

(3.2) Hp,q(X) =
⊕

i

V p,q,i

such that Hβ = (p+ q − i− n) id on V p,q,i. In particular, the representation
theory of sl2-triples gives V p,q,i ≃ GrPi H

p,q(X). Next one observes that

EM := 2M = 2[Eβ , Fσ] = 2[Lβ ,Λ
c
σ], FM := 2[Fσ̄, Eη] = 2[Λc

σ̄, Lη],(3.3)

HM := [EM , FM ] = Hβ −Hσ

is an sl2-triple. Indeed, by [11, Lem. 3.9] or [6, Thm. 2.7], see also Section 2.2,

EM |H2(X,C) = q(β, ) σ̄ − q(σ̄, )β and FM |H2(X,C) = q(σ, ) η − q(η, )σ.

From here it is straightforward to check that (EM , FM , HM ) is an sl2-triple
in the Lie algebra so(H2(X,C)) and, hence, also in the LLV algebra g(X) ≃
so(H̃(X,C)).

Finally by (3.3), the eigenspaces of HM are
⊕

p+q=ℓ V
p,q,j+q ≃

GrMn+jH
ℓ(X,C), and hence

GrNn+jH
ℓ(X,C) ≃ GrMn+jH

ℓ(X,C) ≃
⊕

p+q=ℓ

GrPj+qH
p,q(X),

which concludes the proof of the theorem. □

Remark 3.3. Despite being evocative from a geometric viewpoint, it is not
necessary to assume the existence of a Lagrangian fibration in Theorem 3.2.
Indeed, in the above proofs we can replace β with any non-zero isotropic
class of type (1, 1) by [9, Prop. 2.2].

The theorem immediately yields an equivalent reformulation of Nagai’s
conjecture in terms of the perverse filtration.
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Corollary 3.4. The Nagai conjecture (for type II degenerations) holds if
and only if the Hodge structure GrPi H

2k(X,Q) has level at most 2k − 2|i−
k|.

Proof. The Nagai conjecture for N says that nilp(N2k) = k, i.e.
GrNn+jH

2k(X,C) = 0 for |j| > k, see Section 3.1. By Theorem 3.2 this condi-
tion is equivalent to GrPi H

p,q(X) = 0 for |i− q| > k, i.e. GrPi H
2k(X,Q) has

level at most 2k − 2|i− k|. □

The (q, i)-entry in the following picture is the direct summand V 2−q,q,i

of H2(X,C).

2 η

1 σ U σ̄

0 β

0 1 2 q

i Gr
M

n+1

Gr
M

n

Gr
M

n−1

The sums along the columns give the Hodge decomposition of H2(X,Q);
the sums along the rows split the perverse filtration on H2(X,Q); the sums
along the northeast-southwest diagonals split the weight filtration of M .
Complex conjugation and the conjugate via φ of complex conjugation ac-
count for the symmetries of this diamond, respectively the reflection about
the vertical and horizontal middle axes. The Nagai conjecture predicts the
existence of these diamonds in any cohomological degree.

The arguments above also yield the following observation concerning the
cohomology of odd degree of a compact hyperkähler manifold, see also [5,
Lem. 1.2] or [21, Cor. 8.1] where the hypothesis b2 ≥ 4 is not needed.

Corollary 3.5. If b2 ≥ 4, then all odd Betti numbers b2k−1 are divisible
by 4.

Proof. If b2 ≥ 4, there exists a non-zero isotropic class β of type (1, 1). Con-
sider then the involution φ in the proof of Theorem 3.2 and the decomposition
(3.2), both well-defined by Remark 3.3. The map φ exchanges the eigenvec-
tors of Hσ̄ and Hβ , i.e. φ(V p,q,i) = V i,p+q−i,p. By complex conjugation, we
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obtain

(3.4) V q,p,i ≃ V p,q,i ≃ V i,p+q−i,p ≃ V p+q−i,i,p.

We conclude that

H2k−1(X,C) =
⊕

p+q=2k−1

V p,q,i ≃
⊕

p+q=2k−1,p<k,i<k

(V p,q,i)⊕4,

which proves the assertion. □

4. Odd degree

We shall now discuss the action of the logarithmic monodromy on the odd
degree cohomology. Again, X //∆ is a type II degeneration of compact
hyperkähler manifolds of dimension 2n.

Theorem 4.1. The odd logarithmic monodromy operators N2k−1, k ≤ n,
satisfy

nilp(N2k−1) ≤ min{2k − 3, n− 1}.
Furthermore, assuming condition (2.7), in fact nilp(N2k−1) ≤ k − 1 for all
k ≤ n.

For any degeneration types one has nilp(N2k−1) ≤ 2k − 3, as the level of
the Hodge structure H2k−1(X,C) is at most 2k − 3. For type III degenera-
tions, i.e. nilp(N2) = 2, Soldatenkov proves [18, Prop. 3.15] that the upper
bound 2k − 3 is attained if H3(X,C) ̸= 0. In fact, one can show that for
type III degenerations nilp(Nd) is always the level of the Hodge structure
Hd(X,C), see [9, Prop. 3.12]. For type I degenerations all logarithmic mon-
odromy operators are trivial, cf. [10].

4.1Proof of Theorem 4.1. As we argue in Section 2.6, it suffices to show
the analogous statements for M2k−1. Since M is of bidegree (−1, 1) and
the Hodge structure of H2k−1(X,Q) has level at most 2k − 3, we have
nilp(M2k−1) ≤ 2k − 3.

To show that nilp(M2k−1) ≤ n− 1, we imitate the arguments in the proof
of Proposition 2.4 to show Mn = 0 on H2k−1(X,C). Assume α ∈ Hp,q(X)
with p+ q = 2k − 1. If p < n, then clearly Mn(α) = 0 and for p = n, we have
Mn(α) ∈ H0,2k−1(X) = 0. For p > n, we write again α = σp−n ∧ γ for some
γ ∈ H2n−p,q(X). Then use M i(σp−n) = 0 for i > p− n and M j(γ) = 0 for
j ≥ 2n− p to conclude Mn(α) = 0. □
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Note that the induction in the proof of Corollary 2.5 under the assump-
tion (2.7) will work here as well. So, assuming (2.7), one can actually show
nilp(N2k−1) ≤ k − 1 for all k ≤ n.

4.2. Let us now turn to lower bounds, which can not be obtained directly
from nilp(N2).

Corollary 4.2. Assume that the level of the Hodge structure H2k−1(X,Q),
k ≤ n, is 2ℓ− 1 > 0. Then

ℓ ≤ nilp(N2k−1).

If H3(X,Q) ̸= 0, then ℓ = k − 1 and, therefore,

k − 1 ≤ nilp(N2k−1).

In particular, nilp(N3) = 1 and nilp(N2n−1) = n− 1.

Proof. We prove first that ℓ ≤ nilp(M2k−1). By assumption,
Hk−ℓ,k+ℓ−1(X) ̸= 0, and so there exists an integer i such that
V k−ℓ,k+ℓ−1,i ̸= 0. Then, by (3.4) and (3.1), GrMn+jH

2k−1(X,C) ̸= 0 if
j = |k − ℓ− i| and |k + ℓ− 1− i|. Therefore, we obtain

ℓ = min
i

max{|k − ℓ− i|, |k + ℓ− 1− i|} ≤ nilp(M2k−1).

If H3(X,Q) ̸= 0, the level of the Hodge structure H2k−1(X,Q), for
k ≤ n, is exactly 2(k − 1)− 1. Indeed, since σ̄n−2 induces an isomorphism
H1,2(X) ≃ H1,2n−2(X), the map σ̄k−2 : H1,2(X) //H1,2k−2(X) is injective,
and so H1,2k−2(X) ̸= 0. □
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