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A note on singular Hermitian

Yang-Mills connections
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We give an example of a homogeneous reflexive sheaf over C3 which
admits a non-conical Hermitian Yang-Mills connection. This is ex-
pected to model bubbling phenomenon along complex codimension
2 submanifolds when the Fueter section takes zero value.

The guiding wisdom in the study of Hermitian Yang-Mills (HYM) connec-
tions is the principle that metric properties of HYM connections trans-
late into algebro-geometric properties of holomorphic vector bundles and
vice versa. For instance, the celebrated Donaldson-Uhlenbeck-Yau theorem
[20][5][23] states that over compact Kähler manifolds, a holomorphic vec-
tor bundle admits a unique HYM connection if and only if it is polystable.
This has been extended to reflexive sheaves by Bando and Siu [1], and by
now there is a developed theory comparing the compactified moduli spaces
of HYM connections versus the stable vector bundles [11]. In a more local
setting, recent works [14][2][3] give an algebro-geometric characterization of
analytic tangent cones of admissible Hermitian-Yang-Mills connections over
any reflexive sheaves.

Remark. In our terminology, a HYM connection A over Cn has tangent
cone connection A∞ at infinity, if for some rescaling sequence x 7→ λix with
λi → ∞, the pullback connections λ∗

iAi converge up to gauge transforms to
A∞ in C∞

loc-topology on the complement of a (possibly empty) real codi-
mension 4 subset in Cn. By the higher dimensional generalisation of Uh-
lenbeck compactness [23][22], such subsequential smooth convergence away
from codimension four holds as soon as we have a sequence of admissible
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[EP/L015234/1], the EPSRC Centre for Doctoral Training in Geometry and Num-
ber Theory (The London School of Geometry and Number Theory), University
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Yang-Mills connections on a fixed Euclidean ball with a fixed uniform L2-
energy bound; taking the rescaling into account, the existence of at least one
tangent cone is guaranteed if lim supr→∞

1
r2n−4

∫

B(r) |F |2 < ∞. For a short

summary of known results on compactness, see [15].

The purpose of this paper is to provide a surprising example which shows
that in the noncompact setting the holomorphic structre alone does not need
to capture everything about HYM connections:

Theorem 0.1. There is a HYM connection on the homogeneous reflexive

sheaf1 ker(C3 (x,y,z)−−−−→ C) over the Euclidean space C3 with locally finite L2

curvature, whose tangent cone at infinity is flat.

Complex geometrically, the Euler sequence shows that the reflexive sheaf
is isomorphic over C3 \ {0} to the pullback of the cotangent bundle of CP2

via C3 \ {0} → CP
2 (and therefore is homogeneous). Indeed, by [14][2] the

local tangent cone at the origin must be the pullback of the Levi-Civita
connection on ΩP2 up to twisting by a central U(1)-connection. The surprise
is that the HYM metric in our example, and also its tangent cone at infinity,
do not agree with this näıve conical HYM connection as one would predict
from the complex geometry. Thus the roles of the tangent cone at infinity
and the local tangent cone must be fundamentally asymmetrical. This has
a similar flavour to the recent discovery of exotic Calabi-Yau metrics on Cn

[15][4][21].
Despite the appearance our main result does not violate the Price mono-

tonicity formula, which states that r4−dimR

∫

B(r) |F |2 must be an increas-
ing function in the radius r. Geometrically, the curvature has faster than
quadratic decay in the generic region near infinity, resulting in a flat tan-
gent cone at infinity, but has slower than quadratic decay close to the z-axis,
transverse to which the HYM connection is modelled on scaled copies of the
standard one-instanton. Thus on large spheres the curvature becomes con-
centrated in a very small solid angle, and when we take the tangent cone
the L2 curvature is lost in the limit.

Our strategy is to produce an ansatz from the monad construction, and
then use some fairly standard nonlinear existence machinery to find a HYM
connection asymptotic to the ansatz near infinity. The monad construction
is motivated by studying a family of HYM connections bubbling along a
complex curve S inside a Calabi-Yau 3-fold [8]. Near a local patch of S, the

1The notation C means the trivial line bundle over C3.
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HYM connections restricted to the normal directions to S are modelled on
(framed) ASD instantons, whose variation along S is governed by a holomor-
phic map (called the Fueter map) from S to the framed instanton moduli
space. We are interested in the simplest case of instantons with rank 2 and
charge 1, so the framed moduli space is C2/Z2. Now the most generic kind of
zero for a holomorphic map C → C2/Z2 is up to linear change of coordinates
given by z 7→ (z1/2, 0) to leading order. Via the ADHM construction, this
particular Fueter map translates into a monad ansatz for the HYM connec-
tion. In our actual construction we take a regularized version of the monad
ansatz with better curvature decay properties.

This Fueter section viewpoint is an essential part of Donaldson and Se-
gal’s proposal [8] concerning enumerative invariants from gauge theory in
higher dimensions. In a number of contexts related to special holonomy
(Calabi-Yau 3-folds, G2-manifolds, Spin(7) manifolds), there are generali-
sations to the 4-manifold ASD instanton equation (HYM connections, G2-
instantons, Spin(7)-instantons), and one would like to define a weighted
count of the number of solutions, which relies on certain compactness con-
jectures on the moduli space of such instantons [19]. Conjecturally, the main
phenomenon one needs to account for is bubbling of these instantons along
some codimension 4 locus S, and in each of these contexts, there is a ver-
sion of the Fueter equation that governs how the transverse ASD instanton
bubbles varies over a large scale on S (cf. [12][19]). Our construction com-
plements this program, by providing a local model for codimension 6 singu-
larities to be naturally embedded inside the codimension 4 bubbling locus,
due to the most generic type of Fueter section singularity. This viewpoint
is developed further in [16], where we use this local model to construct a
sequence of HYM connections over the unit ball in C3, such that the L2-
energy is uniformly bounded, but the number of interior singularities inside
a shrinked ball can be arbitrarily large.

Notation. The symbol f ≲ g means f ≤ Cg for some constant C. The
symbol f ∼ g denotes uniform equivalence f ≲ g ≲ f . A dyadic scale refers
to the region {x⃗ ∈ C3 : 2k ≲ |x⃗| ≲ 2k+1} for some k.

Acknowledgement. The author thanks his supervisor Simon Donaldson
and co-supervisor Mark Haskins for their inspirations, the Simons Center
for hospitality, Aleksander Doan for very useful discussions, and the referees
for the efforts to improve the presentation.
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1. An ansatz from monad construction

We begin with a general curvature formula for the cohomology of a monad
over a complex manifold. It follows readily from standard curvature formulae
for subbundles and quotient bundles.

Lemma 1.1. Consider a monad E0
α−→ E1

β−→ E2, namely a complex of Her-
mitian holomorphic vector bundles with α injective fibrewise and β surjective
fibrewise. Let E = kerβ/im(α) be the cohomology bundle. Then the curva-
ture FE of the natural induced connection on E satisfies

⟨FEs, s
′⟩ = ⟨FE1

s, s′⟩ − ⟨(ββ†)−1(∇β)s, (∇β)s′⟩ − ⟨(α†α)−1(∇α†)s, (∇α†)s′⟩,

where FE1
is the Chern connection on E1, and s, s′ are representing smooth

sections of E satisfying α†s = α†s′ = βs = βs′ = 0, and ∇α†, ∇β are co-
variant derivatives computed on the Hom bundles.

Remark. The special cases of E0 = 0 or E2 = 0 reduce to the standard
formula for the curvature of subbundles and quotient bundles [7, section
3.1.3]. In general, the above lemma follows by applying the quotient bundle
curvature formula to E1 → kerβ.

Example 1.2. [7, Chapter 3] (ADHM construction of one-instantons) Start
from the monads over Euclidean2 C2

x,y, written in matrix notation

C
α=(x,y,a1,a2)t−−−−−−−−−→ C

4 β=(−y,x,b1,b2)−−−−−−−−−→ C,

where the underlines signify trivial vector bundles, and the parameters
a1, a2, b1, b2 satisfy the ADHM equation

a1b1 + a2b2 = 0, |a1|2 + |a2|2 = |b1|2 + |b2|2 > 0.

The natural connections on cohomology bundles Ea,b are ASD instantons on
C2 with rank 2, charge 1 and curvature scale3 ∼

√

|a1|2 + |a2|2. The situa-
tion with a1 = a2 = b1 = b2 = 0 is viewed as a degenerate case. As Hermitian
vector bundles Ea,b are identified as kerβ ∩ kerα† ⊂ C4 = C2 ⊕ C2, and the
monad construction provides a natural projection map into the second C2

2The notation C
2
x,y means C2 with coordinates x, y.

3We say the curvature scale is of order O(r) if in a ball of radius r around the
given point, the curvature |F | = O(r−2).
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factor, giving a trivialisation of Ea,b near infinity known as framing data.
Notice the framed instantons are isomorphic under the U(1)-symmetry

(a1, a2, b1, b2) 7→ (a1e
iθ, a2e

iθ, b1e
−iθ, b2e

−iθ).

The moduli space of framed instantons centred at the origin is

{a1b1 + a2b2 = 0, |a1|2 + |a2|2 = |b1|2 + |b2|2}/U(1)

≃ {a1b1 + a2b2 = 0}/C∗ ≃ C
2/Z2,

by identifying the symplectic quotient with the GIT quotient.

We now describe our main ansatz. Take the monad over Euclidean C3
x,y,z

(1) C
α=(x,y,1,0)t−−−−−−−→ C

4 β=(−y,x,0,z)−−−−−−−−→ C,

and equip the trivial bundle C4 with the nonstandard Hermitian structure
given by the diagonal matrix hC4 = diag((|x⃗|2 + 1)−1/2, (|x⃗|2 + 1)−1/2, 1, 1)
where |x⃗|2 = |x|2 + |y|2 + |z|2. The monad has a unique singular point at
the origin in C3 where β fails to be surjective; in fact simple linear algebra
shows the cohomology sheaf E is isomorphic to the homogeneous coherent

sheaf ker(C3 (x,y,z)−−−−→ C),4 so is in particular reflexive by [9, Prop. 39, chapter
2]. Using the Euler sequence over P2

0 → ΩP2 → O(−1)⊕3 → O → 0,

E is isomorphic as vector bundles over C3 \ {0} to the pullback of ΩP2 via
C3 \ {0} → P2.

Remark. (Heuristics) The way we arrive at this ansatz (1) is as follows.
The goal is to write down a HYM connection which when restricted to each
z = const slice is approximately a rank 2 charge 1 ASD instanton, and the
way these instantons vary with z is controlled by a Fueter map from the
z plane to the moduli space C2/Z2 of framed instantons. The Fueter map
we choose is z → (z1/2, 0), so the curvature scale of these ASD instantons

4Any element in a fibre of E = kerβ/im(α) has a unique representative modulo
im(α) of the form (s1, s2, 0, s4)

t which lies in the kernel of β. Thus E is isomorphic

to ker(C3 (−y,x,z)−−−−−→ C), which after linear transformations is the same as claimed.
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is O(|z|1/2). The most näıve construction directly motivated by the ADHM
construction is

C
α=(x,y,z1/2,0)t−−−−−−−−−→ C

4 β=(−y,x,0,z1/2)−−−−−−−−−−→ C,

where C4 carries the Euclidean metric. We need to remove the ambiguity due
to the choice of square root. This can be done via fibrewise linear transforma-
tions to the 3rd and 4th coordinates of C4, after which the monad complex
becomes (1), and the Hermitian metric on C

4 becomes diag(1, 1, |z|, |z|). This
ansatz still suffers from the degeneracy on the plane z = 0, so we take the
noncanonical step to replace |z| by

√

|x⃗|2 + 1, which now makes the metric
smooth, and since within the curvature scale O(|z|1/2) of the ASD instantons
√

|x⃗|2 + 1 is only a small perturbation of |z| when |z| ≫ 1, we expect the
ASD instanton bubbling picture to be preserved. Finally, to make the con-
nection almost flat when we approach infinity far away from x = y = 0, we
conformally rescale the Hermitian metric on C4 by a factor of (|x⃗|2 + 1)−1,
which amounts to twisting by a U(1)-connection.

The key point is that the mean curvature ΛFE has fast enough decay at
infinity.

Lemma 1.3. The curvature FE of the natural connection on E induced by
the monad construction admits the estimate |ΛFE | ≤ Cℓ, where ℓ is a fixed
function defined up to uniform equivalence by

(2) ℓ ∼
{

1
(|x|2+|y|2+|z|)|x⃗| , |x⃗| ≳ 1,

1
|x|2+|y|2+|z|2 , |x⃗| ≲ 1.

Proof. We shall compute the curvature FE . Taking into account the non-
standard Hermitian structure, the adjoint maps are given by

α† = (x̄(|x⃗|2 + 1)−1/2, ȳ(|x⃗|2 + 1)−1/2, 1, 0),

β† = (−ȳ
√

|x⃗|2 + 1, x̄
√

|x⃗|2 + 1, 0, z̄)t,

hence

(3)
α†α = (|x|2 + |y|2)(|x⃗|2 + 1)−1/2 + 1,

ββ† = (|x|2 + |y|2)
√

|x⃗|2 + 1 + |z|2.
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Since α, β are holomorphic, α†, β† are antiholomorphic,

(4)























∇α† = ∂̄α† = (dx̄(|x⃗|2 + 1)−1/2 − x̄(xdx̄+ydȳ+zdz̄)
2(|x⃗|2+1)3/2 ,

dȳ(|x⃗|2 + 1)−1/2 − ȳ(xdx̄+ydȳ+zdz̄)
2(|x⃗|2+1)3/2 , 0, 0),

∇β = (∇β†)† = (∂̄β†)† = (−dy − y(x̄dx+ȳdy+z̄dz)
2(|x⃗|2+1) ,

dx+ x(x̄dx+ȳdy+z̄dz)
2(|x⃗|2+1) , 0, dz).

Let s = (s1, s2, s3, s4)
t be a smooth local section of E represented as a

section of C4 with βs = α†s = 0, so by expressing s1, s2 in terms of s3, s4,

{

s1 =
−x(|x⃗|2+1)1/2s3+zȳs4

|x|2+|y|2 ,

s2 =
−y(|x⃗|2+1)1/2s3+zx̄s4

|x|2+|y|2 ,

we see

|s1|+ |s2| ≤
(|s3|+ |s4|)(|x⃗|+ 1)

|x|+ |y| .

Under the Hermitian structure

|s|2h = (|s1|2 + |s2|2)(|x⃗|2 + 1)−1/2 + (|s3|2 + |s4|2),

we have

(5) |s1|+ |s2| ≤ Cmin{(|x⃗|+ 1)1/2,
|x⃗|+ 1

|x|+ |y|}|s|h.

Now the Chern curvature on C4 is given by FE1
= ∂̄(∂hC4h−1

C4 ), so

⟨
√
−1FE1

s, s⟩ = O(
|s1|2 + |s2|2
(|x⃗|2 + 1)3/2

).

Substituting (3)(4)(5) into the curvature formula in Lemma 1.1,5

⟨
√
−1ΛFEs, s⟩
= −(α†α)−1(|x⃗|2 + 1)−1

√
−1Λ(s1dx̄+ s2dȳ) ∧ (s̄1dx+ s̄2dy)

− (ββ†)−1
√
−1Λ(−s1dy + s2dx) ∧ (−s̄1dȳ + s̄2dx̄) +O(ℓ|s|2h).

(6)

5This is a tedious but unenlightening calculation, in which one tries to absorb
most terms into the O(ℓ|s|2h) error term, such as the effect from FE1

. The only
terms that we keep in ∇β is (−dy, dx, 0, 0), and the only terms we keep in ∇α†

is ((|x⃗|2 + 1)−1/2dx̄, |x⃗|2 + 1)−1/2dȳ, 0, 0). Terms such as y(x̄dx+ȳdy+z̄dz)
2(|x⃗|2+1) in ∇β are

only significant if |x|+ |y| is large, but since this term is multiplied by s1 it is

suppressed by the factor |x⃗|+1
|x|+|y| from (5), and in the end can be ignored.
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Combined with a cancellation effect expressed by the inequality

(|x⃗|2 + 1)−1(α†α)−1 − (ββ†)−1 = O(
1

(ββ†)
√

|x⃗|2 + 1
),(7)

this implies ⟨
√
−1ΛFEs, s⟩ = O(ℓ|s|2h), or equivalently |ΛFE | = O(ℓ) as re-

quired. □

Remark. From the proof one can readily extract estimates on |FE |. In
particular near the origin |FE | = O(|x⃗|−2) is locally in L2. For |x|+ |y| ≳
|z|1/2 + 1, the curvature decays like |FE | = O( |x⃗|

(|x|2+|y|2)2 ). In particular when

|x|+ |y| ≳ |x⃗| ≫ 1, the curvature has cubic decay. Thus if one takes a scaling
sequence λ∗

i∇E with λi → ∞, then on any given compact subset K ⊂ C3 \
{x = y = 0}, the curvature |λ∗

iFE | ≤ C(K)λ−1
i → 0 as λi → ∞, so up to

gauge the connections λ∗
i∇E converge in C1

loc to a flat connection away from
the real codim 4 subset {x = y = 0}. Higher derivative computation shows
this convergence in fact holds in C∞

loc, so we say the tangent cone at infinity
is flat. The curvature becomes concentrated near the z-axis near the spatial
infinity of C3.

For later usage, we estimate the potential integral

(8) G(x, y, z) =

∫

C3

ℓ(x⃗′)

|(x− x′, y − y′, z − z′)|4dVol(x⃗
′).

Lemma 1.4. The function G > 0 is well defined on C3 \ {0}, and satisfies

{

∆G = const · ℓ,
|G| ≤ C|x⃗|−1max(log |x⃗|

|x|+|y|+|z|1/2 , 1), |x⃗| ≳ 1.

Proof. The general strategy is to break up the integral over C3 into various
dyadic scales, estimate each contribution to the potential integral G(x, y, z),
and then sum up the estimates. The sources fall into several characteristic
regions: the small ball |x⃗′| ≲ 1, the dyadic scale |x⃗′| ∼ |x⃗|, and all the other
dyadic scales where |x⃗− x⃗′| ∼ max{|x⃗|, |x⃗′|}. Within each dyadic scales, the
quantity |x⃗′| can be replaced by constants up to uniform equivalence, thus
making the integral estimate elementary.

The singularity of the source ℓ at the origin is O( 1
|x⃗|2 ), which is mild

enough to guarantee the potential integral is well defined and has the correct
Laplacian. This contribution to G is bounded by O(|x⃗|−1).
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We focus on the estimates for |x⃗| ≳ 1. The L1 integral of the source ℓ at
a scale |x⃗′| ∼ 2k is bounded by

∫

|x⃗′|∼2k

1

(|x′|2 + |y′|2)|x⃗′|dVol(x⃗
′) ≲ 23k,

so by summing over contributions toG from all dyadic scale except |x⃗′| ∼ |x⃗|,

|G−
∫

|x⃗|∼|x⃗′|

ℓ(x⃗′)dVol(x⃗′)

|(x− x′, y − y′, z − z′)|4 |

≲

log2 |x|
∑

1

23k|x|−4 +

∞
∑

log2 |x|

23k2−4k ≲ |x⃗|−1.

Thus the only important contribution comes from the dyadic scale |x⃗| ∼
|x⃗′|. The strategy is then to divide and conquer all regions |x⃗− x⃗′| ∼ 2k

for all k ≲ log2 |x|. For |x|2 + |y|2 ≳ |z|, the |x⃗| ∼ |x⃗′| contribution to G is
controlled by

∫

|x⃗|∼|x⃗′|

1

|(x− x′, y − y′, z − z′)|4
dVol(x⃗′)

(|x′|2 + |y′|2)|x⃗|

≲ |x⃗|−1max(1, log
|x⃗|

|x|+ |y|),

and for |x|2 + |y|2 ≲ |z| is controlled by O(|x⃗|−1| log |x⃗|
|z|1/2 |). Combining the

above shows the claim. □

1.1. Asymptotic geometry near infinity

First we examine the asymptotic geometry for |x|+ |y| ≫ |z|1/2 + 1, namely
the generic region near spatial infinity, suitably away from the z-axis to
ensure fast curvature decay. Consider the case |x| ≲ |y|, so |y| ≫ |x⃗|1/2 + 1.
A basis of holomorphic sections on E can be represented by sections of kerβ:

s(1) = (0, 0, 1, 0)t, s(2) = (z/y, 0, 0, 1)t.

The projections of s1, s2 to the orthogonal complement of Im(α) are respec-
tively

{

s′1 = s(1) − α(α†α)−1α†s(1) = s(1) − 1
(|x|2+|y|2)(|x⃗|2+1)−1/2+1(x, y, 1, 0)

t,

s′2 = s(2) − α(α†α)−1α†s(2) = s(2) − x̄z/y
|x|2+|y|2+(|x⃗|2+1)1/2 (x, y, 1, 0)

t.
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The Hermitian metric H0 on the cohomology bundle is represented by the
matrix

H0(s(i), s(j)) = hC4(s′i, s
′
j) = δij +O(

|x⃗|
|y|2 ).

By repeatedly differentiating6 H0 in the x, y, z variables,

|∂kH0| = O(
|x⃗|

|y|2+k
), k ≥ 1,

where ∂k refers to the k-th partial derivatives. The natural connection ∇E

on E is just the Chern connection induced by the Hermitian structure H0,
so in particular |FE | = O( |x⃗|

|y|4 ) compatible with Remark 1. The mean cur-
vature ΛFE has better decay properties. For this, we can apply the more
accurate formula in Lemma 1.1 to derive an explict expression for the matrix
(⟨ΛFEs

′
i, s

′
j⟩) as formula (6). The same cancellation effect as in (7) happens.

The higher order version of Lemma 1.3 then follows from inductively taking
derivatives, each differentiation improving the decay by a factor of O(|y|−1):

|∂k⟨ΛFEs
′
i, s

′
j⟩| ≤ C(k)|x⃗|−1|y|−2−k,

or equivalently |∇k
E(ΛFE)| ≤ C(k)|x⃗|−1|y|−2−k.

Similarly in the case |x| ≳ |y|, we can find another basis of holomorphic
sections on E, with

H0 = δij +O(
|x⃗|
|x|2 ), |∂kH0| ≤ C(k)

|x⃗|
|x|2+k

, k ≥ 1,

and |∇k
E(ΛFE)| ≤ C(k)|x⃗|−1|x|−2−k. To summarize, the Hermitian structure

on E in the generic region |x|+ |y| ≫ |z|1/2 + 1 is approximately flat.

6Each time a derivative hits an expression such as 1
|x|2+|y|2 or 1

(|x⃗|2+1)1/2
it brings

down the decay by an extra factor O( 1
|y| ), and each time it hits x, y, z, the homo-

geneity is lowered by degree one. Since the complicated expressions are built from
such basic factors, one can proceed by induction on the order of derivatives. When
|x| < 1

2 |y|, there is an additional trick of a Taylor expansion in x
y , which allows one

to estimate away all appearance of x. Such tricks allow one to restrict only to the
case where |x| ∼ |y|, and ignore all terms with subleading homogeneity such as 1
in

√

|x⃗|2 + 1, which simplifies the induction. We will use these lines of reasoning
several times below.
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Next we turn to the vicinity of the z-axis 1 ≪ |z|1/2 ≲ |x|+ |y|. Observe
that if the ambient Hermitian structure on C4 is changed from hC4 to

(|x⃗|2 + 1)1/2hC4 = diag(1, 1, (|x⃗|2 + 1)1/2, (|x⃗|2 + 1)1/2),

then the induced connection on E is twisted by a U(1) connection with
curvature 1

2 ∂̄∂ log(|x⃗|2 + 1). We shall focus on this twisted situation around

a given point (0, 0, ζ) ∈ C3 with |ζ| ≫ 1, and choose a square root ζ1/2. After
rescaling the basis vectors on C4, the twisted monad can be written as

(9) C
(x,y,ζ1/2,0)t−−−−−−−→ C

4 (−y,x,0,ζ1/2)−−−−−−−−→ C,

where the Hermitian structure on C4 is

h̃C4 = diag(1, 1,
(|x⃗|2 + 1)1/2

|ζ| ,
|ζ|(|x⃗|2 + 1)1/2

|z|2 ).

For |x|+ |y|+ |z − ζ| ≲ |ζ|1/2, repeated differentiation shows















h̃C4 = diag(1, 1, 1 +O(1+|z−ζ|
|ζ| ), 1 +O(1+|z−ζ|

|ζ| )),

|∂k∂xh̃C4 |+ |∂k∂yh̃C4 | ≤ C(k) 1
|ζ|3/2+k/2 , k ≥ 0.

|∂k∂zh̃C4 | ≤ C(k) 1
|ζ|1+k/2 , |∂k∂z∂z̄h̃C4 | ≤ C(k) 1

|ζ|2+k/2 , k ≥ 0.

To leading order, the ambient Hermitian metric on C4 is Euclidean, and
the twisted monad (9) dimensionally reduces to the monad in the ADHM
construction with parameters (a1, a2, b1, b2) = (ζ1/2, 0, 0, ζ1/2) (cf. Exam-
ple 1.2). In particular, the connection on the cohomology bundle of the
twisted monad is approximately a framed instanton whose moduli param-
eter is identified as (ζ1/2, 0) ∈ C2/Z2. From a more global viewpoint, the
twisted monad connection in the normal direction to the z-axis is described
by the Fueter map into the moduli space of framed instantons:

(10) C → C
2/Z2, ζ 7→ (ζ1/2, 0).

Notice the Fueter map is independent of the choice of square root ±ζ1/2.
One can then estimate the difference between ∇E and the instanton

connection∇ζ associated with the ADHMmonad7, in the region {|x|+ |y| ≲

7The connection ∇ζ is viewed as a connection over C3, which is ASD in the x, y
direction and trivial in the z direction.
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|ζ|1/2, z = ζ}, by taking into account both the control on h̃C4 , and the effect
of U(1)-twisting:

|∇k
ζ (FE − F∇ζ

)| ≤ C(k)|z|−2−k/2, |∇k
ζ (ΛFE)| ≤ C(k)|z|−2−k/2,

where we use that ADHM instantons are HYM. The regularity scale of ∇E

in this region is comparable to the regularity scale of ∇ζ which is ∼ |ζ|1/2,
meaning that when we rescale these connections from balls of size O(|ζ|1/2)
to unit balls, they have uniform Ck-bounds.

Combining the estimates on ΛFE in all the regions, we have a unified
higher order estimate for ΛFE :

Corollary 1.5. In the region |x| ≳ 1,

|∇k
E(ΛFE)| = O(|x⃗|−1(|x|+ |y|+ |z|1/2)−2−k).

The estimates on the full curvature itself can be summarized as

Corollary 1.6. In the region |x⃗| ≳ 1,

|∇k
EFE | = O(

|x⃗|
(|x|+ |y|+ |z|1/2)4+k

).

2. Perturbation into HYM metric

We seek a nonlinear perturbation of the ansatz to a genuine HYM connec-
tion. The strategy is to solve Dirichlet boundary value problems on larger
and larger domains exhausting C3, obtain uniform estimates and then ex-
tract limits as in [17]. The analysis involved is by now fairly standard.

Theorem 2.1. Let E be a reflexive sheaf over a compact Kähler manifold
(Z, ω) with nonempty boundary ∂Z, which is locally free near the boundary.
For any Hermitian metric f on the restriction of E to ∂Z there is a unique
Hermitian H on E, which is smooth on the locally free locus, has finite L2

curvature, and

√
−1ΛFH = 0 in Z, H = f over ∂Z.

Proof. (Sketch) Donaldson [6] proved the special case when E is a vector
bundle using the heat flow method. The key point is that |ΛF | is a subso-
lution to the heat equation with zero boundary data, which forces |ΛF | to
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decay exponentially in time. This together with uniform Ck control on the
connection in the flow leads to long time existence and convergence to HYM
connection at infinite time. Here the issue of stability does not appear.

The singularity problem can be addressed by the continuity method due
to Bando and Siu [1]; we follow the exposition in [13], Section 6. The idea is
to take repeated blow ups Z̃ in the interior of Z̄ so that E|Z̄\Sing(E) extends

as a vector bundle Ẽ across the exceptional locus. Equip Ẽ with a fixed
reference Hermitian metric H̃1 admitting the given boundary data. One can
find a sequence of degenerating Kähler metrics ωϵ → ω on Z̃ as ϵ → 0, such
that

• ωϵ agrees with ω on the O(ϵ) neighbourhood of the exceptional locus.

• Near the blow up loci ωϵ is locally modelled on a rescaling of the
standard metric on Bl0C

k × Cn−k, where k is the complex codimension
of the blow up centre.

• The curvature of H̃1 has uniform L2 curvature bound as ϵ → 0.

• The metrics ωϵ have uniform Dirichlet-Sobolev constants.

Applying Donaldson’s result to solve the Dirichlet problem, we obtain
HYM connections H̃ϵ on Ẽ for the background metrics ωϵ. Using the almost
subharmonicity estimate in the analyst’s Laplacian convention (cf. Lemma
2.5 in [17]), and the HYM condition on H̃ϵ,

∆ logTr(H̃ϵH̃
−1
1 ) ≥ −|ΛFH̃1

|, ∆ logTr(H̃1H̃
−1
ϵ ) ≥ −|ΛFH̃1

|,

and the uniform Dirichlet-Sobolev inequality, there is a uniform L2 bound
on log Tr(H̃ϵH̃

−1
1 ) and log Tr(H̃1H̃

−1
ϵ ). On any compact subset of the locally

free locus of E, the almost subharmonicty implies furthermore L∞ estimates
on log Tr(H̃ϵH̃

−1
1 ) and log Tr(H̃1H̃

−1
ϵ ), so that H̃ϵ is locally uniformly equiv-

alent to H̃1 independent of ϵ. Then the Bando-Siu interior estimate (cf. Ap-
pendix C, D in [13]) gives Ck

loc-estimates on H̃ϵ over the locally free locus
of E, uniform in ϵ. Furthermore, there are uniform L2 curvature bounds on
H̃ϵ because of the topological energy formula for HYM connections

(11)

∫

Z̄
|FH̃ϵ

|2ωn
ϵ = −const ·

∫

Z̄
Tr(FH̃ϵ

∧ FH̃ϵ
)ωn−2

ϵ

= −const

∫

∂Z
Tr(∂H̃ϵH̃

−1
ϵ ∧ FH̃ϵ

) ∧ ωn−2
ϵ .
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Now taking a subsequential weak limit as ϵ → 0, we obtain a HYM
metric H over the locally free locus of E, which must have bounded L2

curvature. The uniqueness statement follows from the fact that if H, H ′

are two solutions to the Dirichlet problems with finite L2-curvature, then
log Tr(HH ′−1) and log Tr(H ′H−1) are both subharmonic. □

Theorem 2.2. There is a HYM connection H on E over Euclidean C3 with
locally finite L2 curvature, which admits the decay estimates on {|x| ≳ 1}:

(12)

|∇k
E log(HH−1

0 )| ≤ C(k)(|x|+ |y|+ |z|1/2)−k|x⃗|−1

×max(1, log
|x⃗|

|x|+ |y|+ |z|1/2 ), k ≥ 0.

In particular, the tangent cone at infinity is flat. The asymptotic estimate
(12) and the HYM condition ΛFH = 0 determine H uniquely.

Proof. Recall H0 is the natural Hermitian metric for the cohomology sheaf
E of our monad (1), whose curvature is FE . We solve the Dirichlet problem
on large balls B(R) ⊂ C3 with boundary data H0 on ∂B(R), and denote the
solution as HR. Crucially we need the almost subharmonicity estimate (cf.
Lemma 2.5 in [17], and Lemma 1.3):

(13)

{

∆ logTr(HRH
−1
0 ) ≥ −|ΛFE | ≥ −Cℓ,

∆ logTr(H0H
−1
R ) ≥ −Cℓ,

Notice near the origin (13) continues to hold in the distributional sense, since
the L2 curvature of H0 and HR are finite, and the singularity has complex
codimension 3 (cf. proof of Proposition 3.1 in [14]). Using the boundary
condition Tr(HRH

−1
0 ) = Tr(H0H

−1
R ) = rank(E) = 2, we apply Lemma 1.4

and the comparison principle for the Laplacian to get

log
Tr(HRH

−1
0 )

2
≥ −CG, log

Tr(H0H
−1
R )

2
≥ −CG,

or equivalently there is a pointwise estimate on B(R):

(14) e−CGH0 ≤ HR ≤ eCGH0,

which is uniform as R → ∞. Using the upper bound for |G| in {|x| ≳ 1}
provided by Lemma 1.4,

| log(HRH
−1
0 )| ≤ C|x⃗|−1max(1, log

|x⃗|
|x|+ |y|+ |z|1/2 ).
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Recall also the higher order control on the mean curvature of the ansatz
in Lemma 1.5. Applying Bando and Siu’s interior regularity estimate (cf.
Appendix C, D in [13]) to rescaled balls, we derive the higher order estimate
on {1 ≲ |x⃗| < R/2}:

|∇k
E log(HRH

−1
0 )| ≤ C(k)(|x|+ |y|+ |z|1/2)−k|x⃗|−1

×max(1, log
|x⃗|

|x|+ |y|+ |z|1/2 ), k ≥ 0.

Using the same topological energy formula as (11) for HR instead of H̃ϵ, and
noticing all boundary terms are already controlled, the L2-curvature inside
the unit ball is controlled. All estimates are uniform in R. Taking a subse-
quential limit as R → ∞, we obtain the HYM connection H with estimates
(12). Since the deviation is so small that the leading order asymptotic ge-

ometry at infinity is unchanged, and in particular |FH | = O( |x⃗|
(|x|2+|y|2+|z|)2 )

as |x⃗| → ∞, we see the tangent cone at infinity is flat, as in the Remark of
section 1.

To see the uniqueness, notice if H ′ is another HYM metric satifying (12),

then both log Tr(H′H−1)
2 and log Tr(HH′−1)

2 are subharmonic in the distribu-
tional sense, and are asymptotic to zero at infinity. □

2.1. Further discussions

The tangent cone connection at the origin is determined a priori by complex

geometry of the reflexive sheaf E ≃ ker(C3 (x,y,z)−−−−→ C) (cf. [2][14]). Complex
geometrically, it is isomorphic to E, or equivalently the pullback of the
cotangent bundle on CP

2. The Levi-Civita connection on ΩP2 is HYM with
respect to the integral Fubini-Study metric ωFS :

ΛωFS
FΩ

P2
= 4πµ · IdΩ

P2
, µ =

degree

rank
(ΩP2) = −3

2
.

The tangent cone at the origin is the pullback of the Levi-Civita connec-
tion, up to a conformal change of the Hermitian structure by a factor |x⃗|−3

which cancels out the Einstein constant. Equivalently, the tangent cone is

the natural connection on the kernel of C3 (x,y,z)−−−−→ C, but C3 is equipped
with the nonstandard Hermitian structure diag( 1

|x⃗| ,
1
|x⃗| ,

1
|x⃗|). An application

of [14] shows that our HYM connection on E is asymptotic to the tangent
cone at the origin with polynomial decay rate.
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Some additional insights can be gained by studying the growth rate of
holomorphic sections as in [2]. On a reflexive sheaf with a conical HYM
connection, there is a convexity estimate (cf. Proposition 3.5 in [2])

(

∫

B1/4

|s|2)(
∫

B(1)
|s|2) ≥ (

∫

B(1/2)
|s|2)2.

A basic heuristic in [2] is that if a singular HYM connection is sufficiently
close to being conical on a certain scale, then the convexity behaviour trans-
fers to the HYM connection, so that log

∫

B(r) |s|2/ log r has some monotonic-
ity property, and one can define the local growth degree

d(s) =
1

2
lim
r→0

log
∫

B(r) |s|2

log r
− dimC

which induces a filtration on the germ of holomorphic sections, intimately
related to a Harder-Narasimhan-Seshardri filtration.

In the setting of our example, this motivates us to define the growth
degree at infinity

d∞(s) =
1

2
lim
r→∞

log
∫

B(r) |s|2

log r
− dimC =

1

2
lim
r→∞

log
∫

B(r) |s|2

log r
− 3,

inducing a filtration on the holomorphic sections with at most polynomial
growth. It is then easy to check explicitly that there are holomorphic sec-
tions whose growth degree at infinity is larger than the growth degree at the
origin, so the two filtration structures are different. We expect that there are
large classes of examples generalizing our construction, and these filtration
structures should play a major role in a more systematic theory. In partic-
ular, it would be interesting to relate the filtration and the tangent cone at
infinity.
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