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We prove a version of the Arezzo-Pacard-Singer blow-up theorem
in the setting of Poincaré type metrics. We apply this to give new
examples of extremal Poincaré type metrics. A key feature is an
additional obstruction which has no analogue in the compact case.
This condition is conjecturally related to ensuring the metrics re-
main of Poincaré type.
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1. Introduction

An important problem in Kähler geometry is to find whether or not an ex-
tremal Kähler metric exists in a given Kähler class. The Yau-Tian-Donaldson
conjecture states that this should related to some notion of algebro-geometric
stability ([15, 30, 32]).
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A natural question is what happens in the unstable case, when no ex-
tremal metric exists on some compact polarised manifold (V, L). In [15],
[16] and [17], Donaldson suggested the following conjectural picture. From
the algebro-geometric point of view there should be an optimal destabiliser.
That is, a destabilising object that has the smallest possible Donaldson-
Futaki invariant, after rescaling by a suitable norm (see [26] for results in
this direction in the toric case). If we for simplicity assume that the optimal
destabiliser is a test configuration whose central fibre is a union of smooth
irreducible components Xi meeting in smooth divisors Di, then the con-
jectural picture is that when taking a minimising sequence for the Calabi
functional, suitable rescalings yield complete extremal metrics on Xi \Di.

A large class of extremal metrics on X \D for a smooth, compact X and
smooth divisor D, come from metrics with cusp/Poincaré type singularities,
whose study goes back at least as far as [13]. For example, there are the
Kähler-Einstein metrics of [14], [19] and [31] (see also [23] and [22] for further
results on the asymptotics of these metrics), toric metrics on Pn \ Pn−1 of
[1] and [12], and metrics on the total space of certain P1-bundles using the
momentum construction, see [25]. This type of asymptotics forms a natural
candidate for the asymptotics of the extremal metrics conjectured to arise
when the original compact manifold V of the previous paragraph is unstable.

In the present article, we will prove a perturbation result for extremal
metrics on X \D with Poincaré type singularities, which yield further ex-
amples from the given known ones. However, our results will also show that
there are obstructions to such perturbations novel to the Poincaré type case.
The obstructions come from holomorphic vector fields on D.

There are already examples of complete extremal metrics on some X \D
which are not of Poincaré type (and where no extremal Poincaré type metric
can exist). See [25] for examples which only occur at the boundary of the
extremal cone, and [3] for examples which fill the whole Kähler cone. This
leads to a YTD type conjecture for the existence of these type of metrics,
first formulated by Székelyhidi in [25], and further refined in [3].

Conjecture 1.1 ([25], [3]). Let (X,L,D) be a triple consisting of a line
bundle L over a compact Kähler manifold X with a smooth divisor D. Then
there exists an extremal Poincaré type metric on X \D in the class c1(L) if
and only if

• the relative Donaldson-Futaki invariant of any test configuration for
the triple (X,L,D) is non-negative, with equality if and only if the
test configuration is a product;
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• the Székelyhidi numerical constraints is satisfied;

• the restriction of the extremal vector field of X for the class c1(L) to
D equals the extremal vector field of D for the class c1(L)|D.

In the above, the Poincaré type metric has an associated Kähler class,
which is a class on the compact manifold X (not X \D). See Definition 2.1
for the precise definition.

The new obstruction to perturbations in the Poincaré type case that we
find in this article can be thought of as giving further evidence to this con-
jecture, as it is the exactly the final condition in the above conjecture which
is the novel condition required to obtain extremal Poincaré type metrics on
the blow-up. On the other hand, the results suggest that one might expect
more types of asymptotics than the Poincaré type asymptotics to occur for
the complete metrics conjectured to arise when a compact Kähler manifold
is unstable.

Remark 1.2. For the third point in Conjecture 1.1 to make sense, we need
to know that there is an associated extremal vector field, as in the compact
case of [18]. That this holds follows from the results of Section 4 and in
particular Lemma 4.6, combined with the argument of Lemma 6.8. This
implies that there is a unique projection to the holomorphic vector fields on
X that are tangent to D, once a maximal torus has been chosen and we work
with metrics invariant under this maximal torus.

1.1. Statement of results

The main theorem is an extension of the blow-up theorems of Arezzo-Pacard
[4, 5], Arezzo-Pacard-Singer [6] and Székelyhidi [27, 29] to the Poincaré type
case. Below we will let G be the connected component of the identity of the
group of automorphisms of X that preserve, but not necessarily fix D. Let T
be a (compact) torus in G, chosen such that it contains the extremal vector
field XS(ω) of the Poincaré type metric, and let K be a maximal compact
subgroup of G containing T . Let H be the centraliser of T in K. We will let
t, k and h denote the Lie algebras of T,K and H, respectively.

We will let µ : X \D → k denote the normalised moment map, where we
are using the natural inner-product to consider this as a map to k instead
of k∗. Note that if p is a fixed point of T , then µ(p) ∈ h. We explain after
Lemma 4.2, a result of Auvray, why these moment maps exist under the
assumptions we are making.
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Next, let XD denote the extremal vector field on D for the class Ω|D
relative to a maximal torus of the automorphism group of D which contains
the automorphisms of D coming from automorphisms in T . Finally we will
let Xε denote the extremal vector field for the class Ωε, defined by (4) below,
on the complement of D in the blow-up, relative to the lift of the maximal
torus T to the blow-up. This vector field is a vector field on X preserving
D, and so can be restricted to D.

Theorem 1.3. Let X be a compact complex manifold and suppose ω ∈ Ω
is a Poincaré type Kähler metric on the complement of a smooth divisor D
as in Definition 2.1, which moreover is an extremal Kähler metric. Suppose
further that ω is invariant under the action of the maximal compact subgroup
K in G, containing XS(ω), the extremal vector field of ω.

Let p1, · · · , pk ∈ X \D and a1, · · · , ak > 0 be chosen such that
XS(ω)(pi) = 0 for all i and

∑

i

an−1
i µ(pi) ∈ t.(1)

Suppose also that

t+ ⟨µ(p1), · · · , µ(pk)⟩R = h(2)

and that any vector field in h vanishing at all the points pi necessarily is in
t. Finally, suppose that

Xε|D = XD.(3)

Then there is a constant ε0 > 0 such that for all ε ∈ (0, ε0) the blow-up of
X at the points pi admits an extremal Poincaré type Kähler metric with
Poincaré type singularity along π−1(D) ∼= D in the class

Ωε = π∗(Ω)− ε2
(∑

i

ai[Ei]
)
,(4)

where π is the blow-down map and Ei = π−1(pi) are the exceptional divisors.

Note that in the statement above, the conditions (1) and (2) are exactly
analogous to the conditions in the compact case, whereas the condition (3) is
novel to the Poincaré type setting. In the analysis, this extra condition arises
from additional cokernel elements associated to the Lichnerowicz operator of
a Poincaré type metric. More geometrically, Auvray has shown in [10] that
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a Poincaré type extremal metric on X \D induces an extremal metric on
D, and so, in particular, the extremal vector field on X \D has to induce
the one on D. This is condition (3). Finally, the condition regarding the
invariance of ω is automatic in the compact case, after conjugating K. We
expect the same holds in the Poincaré type case.

1.2. Strategy for proving the main theorem

Good knowledge of the linear theory for the Lichnerowicz operator associ-
ated to a Poincaré type metric is crucial to prove our main theorem, The-
orem 1.3. We will now describe the general setup and strategy for proving
the theorem once this linear theory is in place. We take the same approach
as in [6] for the compact case.

Even though it is important to consider all points being blown up simul-
taneously in the construction, let us for simplicity consider the case when
we are blowing up one point p in X. The basic strategy is to

• consider the blow-up BlpX as being made up of two parts – the com-

plement X \Bε of a ball in X, and B̃ε, the pre-image of a ball about
the origin in Bl0C

n ;

• construct many extremal metrics on X \Bε and B̃ε;

• show that under the assumptions of Theorem 1.3 we can match two of
these extremal metrics on each component along their common bound-
ary to construct an extremal metric on the whole of BlpX.

The constructions of the extremal metrics on B̃ε is identical to the con-
struction of [6] in the compact case. The new step is constructing extremal
metrics of Poincaré type on the complement of a ball about the blown up
point in X \D, starting from the given one on the whole of X \D. A new
technical point for the Poincaré type case is that we will need to allow some
metrics which also are not necessarily extremal in order to achieving the
matching. We then return to consider whether or not the metrics actually
are extremal at the very end, once we have a metric on the blow-up. There is
a finite dimensional set of obstructions, which is precisely the condition (3)
in Theorem 1.3.



✐

✐

“9-Sektnan” — 2023/6/20 — 18:39 — page 190 — #6
✐

✐

✐

✐

✐

✐

190 Lars Martin Sektnan

1.3. Organisation of the article

In Section 2, we recall some background on Poincaré type metrics. In par-
ticular, we discuss more precisely the asymptotics we assume. We introduce
the function spaces that will be important for us and discuss a useful de-
composition of these spaces, using a tubular neighbourhood discussion as in
[7]. This will be important when we in Section 3 prove Theorem 3.1 which
shows that except for a discrete set of weights, the Lichnerowicz operator
associated to a Poincaré type metric is always a Fredholm operator on the
weighted function spaces.

In Section 4 we explicitly find the kernel and cokernel of the Lichnerowicz
operator for the weights relevant to proving Theorem 1.3. The key is the
characterisation in Theorem 3.1 of the cokernel for a given weight in terms
of the kernel for a different weight, together with an integration by parts
lemma and a construction due to Auvray. In Section 5 we extend the linear
theory of Sections 3 and 4 to the doubly weighted spaces that will be needed
in the analysis.

Section 6 is devoted to proving the blow-up theorem. It carries out the
non-linear analysis needed to prove Theorem 1.3. This follows the strategy of
Arezzo-Pacard closely as outlined in subsection 1.2 above, and is split into
several steps – getting better and better approximations to the extremal
equation, before then showing an extremal metric can be found. The only
fundamentally new step here compared to the compact case is to use the
extra assumption (3) to ensure that the metrics we obtain in the end actually
are extremal.

We end the article in Section 7 by showing how the main theorem gives
rise to new examples of compact smooth Kähler manifolds X with a smooth
divisor D admitting an extremal Poincaré type metric on X \D in a Kähler
class Ω.

2. Background on Poincaré type metrics

2.1. Definition of a metric of Poincaré type

Consider the punctured unit (open) disk B∗
1 ⊆ C with the metric

|dz|2
(|z| log |z|)2 .(5)
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Here we use the notation |dz|2 = dx2 + dy2, where z = x+ iy. This is the
standard cusp or Poincaré type metric on B∗

1 . Note that if one lets

t = log(− log(|z|2))

and θ be the usual angular coordinate, this equals

|dz|2
(|z| log |z|)2 = dt2 + e−2tdθ2.

A computation shows that an i∂∂-Kähler potential for this metric is given
by 4 log(− log(|z|2)).

In [9], Auvray made a definition of a compact complex manifold ad-
mitting a metric with the asymptotics of the product of this metric with a
smooth metric on D, near D. His definition was for a simple normal cross-
ings divisor. However, in this article we will only be considering a smooth
irreducible divisor, so we only recall the notion of such a metric in this
context.

Given such a divisor D, one can define a model potential for a Poincaré
type metric as follows. Pick a holomorphic section σ ∈ H0(X,O(D)) such
that D is the zero set of σ. Fix a Hermitian metric | · | on O(D), which we
assume satisfies |σ| ≤ e−1. Let ω0 be a Kähler metric on the whole of the
compact manifold X and for a constant λ > 0, let f = log(λ− log(|σ|2)).
For sufficiently large λ, ωf = ω0 − i∂∂f is then a positive (1, 1)-form on
X \D. Poincaré type metrics are defined to be metrics on X \D defined by
a potential with similar asymptotics to f near D.

Definition 2.1 ([9, Def. 0.1],[7, Def. 1.1]). Let X be a compact complex
manifold and let D be a smooth irreducible divisor in X. Let ω0 be a Kähler
metric on X in a class Ω ∈ H2(X,R). A smooth, closed, real (1, 1) form on
X \D is a Poincaré type Kähler metric if

• ω is quasi-isometric to ωf . That is, there exists a C such that

C−1ωf ≤ ω ≤ Cωf .

Moreover, the class of ω is Ω if
• ω = ω0 + i∂∂φ for a smooth function φ on X \D with |∇j

ωf
φ| bounded

for all j ≥ 1 and φ = O(f).
If ω is a Poincaré type metric in a class Ω, then ω has finite volume. In

fact, its volume equals that of any smooth metric in Ω on the whole of X.
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2.2. Function spaces

We begin by defining the Sobolev spaces W 2,k(X \D) =W 2,k(X \D,ω)
associated to a Poincaré type metric ω on X \D. First, L2(X \D) is defined
to be the completion of C∞

c (X \D) with respect to the norm

∥f∥L2(X\D) =
( ∫

X\D
|f |2ωn

) 1

2 .

For a function of class Ck, we then let ∥∇kf∥L2(X\D) denote the L2-norm

of |∇kf |, where the ∇kf denotes the higher covariant derivatives of f and
the pointwise norms are computed with respect to the norm induced by the
metric g on the tensor bundle in which ∇kf lies. The W 2,k-Sobolev norm is
then defined by

∥f∥W 2,k(X\D) =

k∑

i=0

∥∇kf∥L2(X\D).

We let W 2,k(X \D) be the completion of C∞
c (X \D) under this norm.

Next we define the Hölder spaces. These are defined used quasi-
coordinates, introduced in [14]. Quasi-coordinates are immersions intoX \D
depending on a parameter ς ∈ (0, 1) whose union covers U \D for some neig-
bourhood U of D in X. In the model case B∗

1 ×D, we can cover the product
of D with a smaller punctured disk B∗

r ×D by the following maps.
For ς ∈ (0, 1) and some fixed R ∈ (12 , 1), let ϕς : BR(0) → B∗

1 be given
by

z 7→ e
1+ς

1−ς

1+z

1−z .

As ς varies between 0 and 1 this covers a punctured ball B∗
r around 0 in B∗

1

(see e.g. [19, Sec. 2]). Let ωPT be the Kähler form associated to the standard
cusp metric on B∗

1 . One then has

ϕ∗ς (ωPT ) =
idz ∧ dz
(1− |z|2)2

which is quasi-isometric to the Euclidean metric independently of ς. The
Ck,α-norm for a function f on B∗

1 is then defined to be

∥f∥Ck,α(B1\B r
2
) + supς∈(0,1)

(
∥ϕ∗ς f∥Ck,α

BR(0)

)
.
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In the global case in arbitrary dimension, one first fixes a finite set
of charts U1, · · · , Ud for X such that the union of Ui ∩D covers D and
Ui ∩D = {z ∈ Ui : z1 = 0}, i.e. D is in Ui given by the vanishing of the first
coordinate function. By composing the coordinate map with the product of
ϕς and the identity map on the last n− 1 coordinates, this gives maps

Φi
ς : BR(0)× Vi → X \D

for some open sets Vi ⊆ Cn−1, whose union over all ς ∈ (0, 1) and i ∈
{1, · · · d} covers U \D for some open set U ⊆ X containing D. Letting U0

be an open set with compact closure in X \D and which contains the com-
plement of U , the Ck,α-norm on X \D is then defined to be

∥f∥Ck,α(X\D) = ∥f∥Ck,α(U0) +maxdi=1supς∈(0,1)∥(Φi
ς)

∗f∥Ck,α(BR(0)×Vi).(6)

To obtain Fredholm properties of the relevant operators for the scalar
curvature problems, we now add weights to our discussion, see [9, Defn.
3.1]. Let t be a perturbation, to be defined after equation (9) below, of the
function u = log(− log(|σ|2)).

Definition 2.2. Let η ∈ R. The L2-norm with weight η on X \D is

∥f∥2L2
η(X\D) =

∫

X\D
|f |2e−2ηtωn,(7)

where we recall that ω is our Poincaré type metric on X \D. We define the
weighted W 2,k-norm by

∥f∥2
W 2,k

η (X\D)
=

k∑

i=0

∥∇if∥L2
η(X\D).(8)

Finally, we define the Ck,α
η -space to be

Ck,α
η (X \D) = eηtCk,α(X \D)

equipped with the norm

∥f∥Ck,α
η (X\D) = ∥e−ηtf∥Ck,α(X\D).

Note that we could equally well use u and obtain uniformly equivalent
norms, but only t will be used for other parts of the argument, and so it is
more convenient to use this as the weight function.
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We will end the section by recalling a useful decomposition of functions
on X \D that will be important for the estimates we will prove later. This
relies on a tubular neighbourhood discussion of Auvray as in [9] and [7, Sec.
3] (building on similar ideas in the work [11] of Biquard).

The exponential map obtained from a smooth metric ω0 defined on the
whole of X identifies a neighbourhood V of D in the normal holomorphic
bundle of D with an initial tubular neighbourhood N of D in X. The holo-
morphic normal bundle admits an S1-action and so, by possibly reducing V
to ensure it is preserved by the S1-action, we can then endow N with an
S1-action, too. From the projection to D in the holomorphic normal bundle
of D, we similarly get a projection

π : N \D → D,(9)

which moreover is invariant under the S1-action.
The function u = log(− log(|σ|2)) can be perturbed to a function t : X \

D → R which is S1-invariant in N \D and such that to any order, it is
O(e−u). That is, for any k there is a C > 0 such that

∥t− u∥Ck(X\D) ≤ C∥e−u∥Ck(X\D).

Introducing a parameter A, we can then define NA to be the union of D
with the points x ∈ N \D for which t(x) ≥ A. We will take A to be fixed
and write N = NA, i.e. we chose N to be NA from the beginning. One then
obtains a map

Π = (π, t) : N \D → D × [A,∞),(10)

which is an S1-fibration.
Auvray further constructed a 1-form ϑ associated to the S1-action above.

This has the key properties that in trivialising charts for N where D is given
by z1 = 0, to any order it satisfies

ϑ = dθ +O(1),

where θ is the the angular coordinate associated to z1. The 1-form ϑ also
integrates to 2π on each fibre of the S1-fibration (10). The model Poincaré
type metric ω̃ in a class [ω0] then has an expansion

g̃ = dt2 + e−2tϑ2 + π∗h0 +O(e−t),



✐

✐

“9-Sektnan” — 2023/6/20 — 18:39 — page 195 — #11
✐

✐

✐

✐

✐

✐

Blowing up extremal Poincaré type manifolds 195

at any order. Here h0 is the metric on D associated to the Kähler form ω0

on X restriced to D.
Still following [7, Sec. 3], we can use the above to decompose a function

f on X \D orthogonally into

f = f0 + f⊥,(11)

where f0 is supported in N and is S1-invariant, and where f⊥ has average
0 on each fibre of 10 near D. Thus in the tubular neighbourhood about D
we can then identify f0 with a map [A,∞)×D → R.

We then have that f ∈ Ck,α
loc (X \D) is in Ck,α(X \D) if and only if each

of f0 and f⊥ are. Moreover, using the identification of f0 with a function on
the cylinder, f0 ∈ Ck,α(X \D) if and only if

f0 ∈ Ck,α([A,∞)×D),

the cylindrical Hölder space. The Ck,α-norm of function ψ on the cylinder
[A,∞)×D is defined as

sups≥A+1∥ψ∥Ck,α([s−1,s+1]×D,dt2+gD)

where t is the coordinate on [A,∞) and gD is some metric on D. This
equivalence between the cylindrical and Poincaré type Hölder norms for S1-
invariant functions is proved e.g. in [24, Lemma 6.7].

2.3. Basic properties

In this section we collect a couple of basic properties of the function spaces,
that we will call upon later.

Lemma 2.3. Let η, η′ ∈ R. Then

Ck,α
η

(
X \D

)
⊆W 2,k

η′

(
X \D

)

if and only if η < η′ + 1
2 .

Proof. Note that eηt ∈ Ck,α
η and has finite L2

η′ norm if and only if 2η − 2η′ −
1 < 0, i.e. if and only if η′ > η − 1

2 , showing one direction of the claim. Here
we used that, in charts, the volume form of the Poincaré type metric is
mutually bounded with the volume form e−tdt ∧ dθ ∧ ωD.
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Conversely, for the case η = 0, this follows because for all f ∈ Ck,α(X \
D), |∇if | is bounded andX \D has finite volume with respect to the volume
form given by e−2η′tωn, where ω is a Poincaré type metric, if η′ > −1

2 . For

the case of other values of η, note that because eηt ∈ Ck,α
η (X \D) for all k, α,

we have that |∇if | ∈ Ck−i,α
η (X \D) for all i. It then follows that |e−ηt∇if |

is bounded for every i, and so we can apply the previous argument. □

Lemma 2.4. For all δ, ε > 0 there exists a compact subset K ⊆ X \D and
C > 0 such that

∥f∥W 2,k+4
η+δ

≤ ε∥f∥W 2,k+4
η

+ C∥f∥W 2,k+4(K).(12)

Proof. For a real number s, let Ks = {x : t(x) ≤ s}. Note that since they are
compact subsets, on each Ks all the different weighted norms are equivalent,
with the constant of equivalency depending on s, δ and η. In particular,

∥f∥W 2,k+4
η+δ (Ks)

≤ C∥f∥W 2,k+4(Ks)(13)

for some constant C depending on the same parameters.
Note that ∥f∥W 2,k+4

η+δ
= ∥e− δ

2
tf∥W 2,k+4

η
. We then have that for any s,

∥f∥2
W 2,k+4

η+δ (X\D)
= ∥e− δ

2
tf∥2

W 2,k+4
η (Kc

s)
+ ∥f∥2

W 2,k+4
η+δ (Ks)

.

Pick s such that e−
δ

2
s < ε. Then as δ is positive, e−

δ

2
t < ε on Kc

s and so the
above combined with equation (13) gives that

∥f∥W 2,k+4
η+δ (X\D) < ε∥eδtf∥W 2,k+4

η (Kc
s)
+ C∥f∥W 2,k+4(Ks)

from which (12) follows by picking K = Ks. □

3. Fredholm properties of the Lichnerowicz operator

The goal of this section is to prove the following theorem on the Fredholm
properties of the Lichnerowicz operator, under a stronger assumption on the
asymptotics of a Poincaré type metric.

Theorem 3.1. Let X be a Kähler manifold, let D be a smooth irreducible
divisor in X and suppose ω is a Poincaré type metric on X \D that satisfies
equation (15) below. Suppose η is not an indicial root for the Lichnerowicz



✐

✐

“9-Sektnan” — 2023/6/20 — 18:39 — page 197 — #13
✐

✐

✐

✐

✐

✐

Blowing up extremal Poincaré type manifolds 197

operator D∗D = D∗
ωDω. Then D∗D is a Fredholm operator Ck+4,α

η → Ck,α
η .

Moreover, we have that

Im D∗DCk+4,α
η

= (Ker(D∗DCk+4,α
1−η

))⊥,(14)

where ⊥ denotes the L2-inner product and subscripts denote the domains of
the operators.

The set of indicial roots will be defined below. It is a discrete subset
of R.

3.1. Assumption on the metric

We first describe the asymptotics we will assume for the rest of the article.
Recall from the previous section that the model Poincaré type metric ω̃ in
a class [ω0] has an expansion

g̃ = dt2 + e−2tϑ2 + π∗h0 +O(e−t),

where t is a function invariant under the S1-action on a tubular neighbour-
hood of D and asymptotic to log(− log(|σ|2). We will consider the case when
the metric g associated to ω satisfies

g = a(dt2 + e−2tϑ2) + π∗gD +O(e−βt),(15)

for some Kähler metric gD on D and a, β > 0, again up to any given order.
Crucially for us, Auvray has in [10, Thm. 4.8] shown that when D is smooth,
i.e. has no intersecting irreducible components, this expansion holds for ex-
tremal Poincaré type metrics, where h is in fact an extremal metric on D.
In particular, this holds in the case we are considering in this article. We
need the parameter a, as this is changed when changing the Kähler form to
ω + ki∂∂̄

(
log(− log(|σ|2))

)
for some constant k.

3.2. The key estimates

The goal of this section is to prove two key estimates for the proof of The-
orem 3.1, namely Propositions 3.2 and 3.3.

We start by proving Proposition 3.2, which is a Schauder type estimate
for the Lichnerowicz operator acting on the weighted Sobolev spaces. We will
adopt a strategy similar to that of Biquard in [11] for the Laplace operator,



✐

✐

“9-Sektnan” — 2023/6/20 — 18:39 — page 198 — #14
✐

✐

✐

✐

✐

✐

198 Lars Martin Sektnan

and use the decomposition of a function f into an S1-invariant part and
an orthogonal part near D. To leading order, the Lichnerowicz operator
respects this decomposition. The reason for doing this is that then we can
apply the theory of Lockhart-McOwen in [20] to the S1-invariant part of the
function. We now recall the parts of the Lockhart-McOwen theory that will
be relevant for us.

The results of Lockhart-McOwen (which build on the results of [2] and
others) are in the setting of elliptic operators on manifolds with cylindrical
ends. They apply in particular to elliptic operators L of order l on the
model cylinder CY = (0,∞)× Y , where Y is compact, that are translation
invariant in the cylinder coordinate t. For such an operator,

∥f∥W 2,k+l
δ (CY ) ≤ c∥Lf∥W 2,k

δ (CY )

for all δ which are not an indicial root of L. An indicial root is a δ ∈ R such
that there is a solution to the eigenvalue problem of the Fourier transform
of L of the form

eiδtp(t, x),

where, for each x ∈ Y , p is a polynomial in t. The set of indicial roots is a
discrete subset of R.

Using this inequality together with a partition of unity argument,
Lockhart-McOwen then obtain that, for these weights, on the half-cylinder
HY = [1,∞)× Y , we have that for every b > 1, there is c such that

∥f∥W 2,k+l
δ (HY ) ≤ c

(
∥Lf∥W 2,k

δ (HY ) + ∥f∥L2([1,b]×Y )

)
.(16)

For us, the relevant model operator is

f 7→ 1

2

( ∂2
∂t2

− ∂

∂t

)2
(f)−

( ∂2
∂t2

− ∂

∂t

)
(∆Df)(17)

− 1

2

( ∂2
∂t2

− ∂

∂t

)
(f) +D∗

DDDf,

which is the Lichnerowicz operator associated to the standard cusp metric
on B∗

1 ×D acting on S1-invariant functions, where the S1-action is the prod-
uct of the standard action on B∗

1 and the trivial action on D. This model
operator corresponds to the case when a = 1 in the assumption (15). We will
focus on this case, but the argument goes over to all other positive values
of a.

We let operators with a subscript D denote operators on D defined with
respect to the metric on D from equation (15). In particular, note that
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this operator has coefficients that are translation invariant in t, and so the
Lockhart-McOwen theory applies to this operator.

Proposition 3.2. Let X be a compact Kähler manifold and let D ⊆ X be a
smooth divisor. Suppose that ω is a Poincaré type Kähler metric satisfying
(15). Suppose η is not an indicial root for the operator (17). Then there
exists a compact subset K ⊆ X \D and a c > 0 such that

∥f∥W 2,k
η (X\D) ≤ c(∥D∗

ωDωf∥W 2,k−4
η (X\D) + ∥f∥L2(K)).(18)

Proof. If K ′ ⊂ K are compact subsets of X \D such that K ′ is contained
in the interior of K, then a similar inequality holds with X \D replaced by
K ′, by ellipticity of D∗

ωDω. Therefore we can restrict to considering functions
supported in the tubular neighbourhood N about the divisor. Note also that
it suffices to establish the estimate

∥f∥W 2,k
η (X\D) ≤ c(∥D∗

ωDωf∥W 2,k−4
η (X\D) + ∥f∥W 2,k(K))(19)

for the same reason, i.e. by enlarging K further it implies the bound (18).
In the proof we will use the decomposition in equation (11) of f into an
S1-invariant part f0 and a complementary part f⊥.

For the S1-invariant part f0 of the function, we can then identify f0
with a function on the cylinder [A,∞)×D. The Lichnerowicz operator D∗D
differs from the Lichnerowicz operator of the model cusp metric acting S1-
invariant functions on B∗ ×D by O(e−t), due to the assumption (15). Here
B is the ball of radius e−eA/2 about the origin in C, the radius value cor-
responding to t = A. Lemma 2.4 implies that it suffices to prove that (19)
holds for functions on [A,∞)×D and the operator in equation (17). But
this is a constant coefficients operator in t and so the Lockhart-McOwen
theory applies. The inequality (16) is then exactly what we require for the
bound on f0.

For the complementary part f⊥, recall that its average on each fibre of
the fibration Π in equation (10) is 0. This implies that there is a c′ > 0 such
that

∥
(
∆2 −D∗D

)
f⊥∥W 2,k

η
≤ c′∥f⊥∥W 2,k−1

η+1
.(20)

For the two operators ∆2 and D∗D agree to leading order, and so is a
bounded order three operator. But in [7, p.9], Auvray showed that for the
component f⊥ one gets higher decay than η for the lower order derivatives.
For example for the first derivative, this follows simply by integrating over
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a fibre, and using that the derivative have to vanish somewhere, since the
mean is null on the fibre. Thus we get the estimate (20).

To finish the proof, note that Biquard ([11, Theorem 5.1 and Lemma
6.3]) showed a similar bound to the one we require for the Laplace operator.
Thus it also holds for the square of the Laplacian, i.e. there exists a C > 0
and compact subset K ⊆ X \D such that

∥ϕ∥W 2,k
η

≤ C
(
∥∆2ϕ∥W 2,k−4

η
+ ∥ϕ∥L2(K)

)
.

Combining this with the estimate (20), we get that, by possibly increasing C,

∥f⊥∥W 2,k
η

≤ C
(
∥D∗Df⊥∥W 2,k−4

η
+ ∥f⊥∥W 2,k−1

η+1
+ ∥f⊥∥L2(K)

)
.

By Lemma 2.4, we can pick a compact subset K ′ ⊆ X \D and constant
C ′ > 0 such that

∥f⊥∥W 2,k−1
η+1

≤ 1

2C
∥f⊥∥W 2,k−1

η
+ C ′∥f⊥∥W 2,k−1(K′)

≤ 1

2C
∥f⊥∥W 2,k

η
+ C ′∥f⊥∥W 2,k−1(K′).

Combining this with the above, we obtain the estimate (19), and therefore
(18), by possibly increasing K and C. □

Next we will prove a regularity result. This follows [21, Lem. 12.1.1]

Proposition 3.3. Suppose f ∈ L2
η− 1

2

and suppose that D∗
ωDωf ∈ Ck−4,α

η in

the sense of distributions for a weight η. Then f ∈ Ck,α
η . Moreover, there is

a c > 0 such that

∥f∥Ck+4,α
η

≤ c
(
∥D∗

ωDωf∥Ck,α
η

+ ∥f∥L2

η−
1
2

)
.

Proof. From the usual elliptic theory, it follows that f ∈ Ck,α
loc (X \D), so

we need to estimate the Ck,α
η -norm. Using the Schauder estimates and that

the weighted norms are equivalent to the unweighted norm on any compact
subset K of X \D, we get immediately that there is a c > 0, depending on
K, such that

∥f∥Ck+4,α
η (K) ≤ c

(
∥D∗Df∥Ck,α

η (X\D) + ∥f∥L2

η−
1
2

(X\D)

)
.

Thus we have to show that the required bound holds near the divisor.
As before, we divide the argument into one for the S1-invariant part and
one for the component f0.
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We begin with the case when f is S1-invariant with respect to the local
S1-action, and so can be identified with a function on a cylinder [λ,+∞)×D
for some fixed λ. There is a c > 0, independent of s, such that for all s >
λ+ 2, we have

∥f∥Ck+4,α([s−1,s+1]×D) ≤ c(∥D∗Df∥Ck,α([s−2,s+2]×D) + ∥f∥L2([s−2,s+2]×D)).

Such an estimate reduces to an estimate of the torus-invariant model op-
erator given by (17), because of the assumed estimate (15). In turn, the
estimate for the model follows from ellipticity of the operator.

Next, we multiply this by e−δs. We have

∥e−δsf∥2L2([s−2,s+2]×D) ≤ max{e−4δ, e4δ}∥e−δtf∥L2([s−2,s+2]×D),

since e−2δt ≤ e−2δ(s+2) in [s− 2, s+ 2]×D if δ < 0 and e−2δt ≤ e−2δ(s−2) if
δ > 0. Here the L2-norm is computed with respect to the volume form dt ∧
ωn−1
D and ωD is the smooth metric ω0 restricted to D. Since the volume form

of the Poincaré type metric ω is mutually bounded with e−tdt ∧ dθ ∧ ωn−1
D

and f is S1-invariant, it follows that

∥e−δsf∥2L2([s−2,s+2]×D) ≤
max{e−4δ, e4δ}

2π
∥f∥2L2

δ− 1
2

(X\D).

So by possibly increasing c we get an inequality of the form

∥e−δsf∥Ck,α([s−1,s+1]×D)

≤ c(∥e−δsD∗Df∥Ck−4,α([s−2,s+2]×D) + ∥f∥L2

δ− 1
2

(X\D)).

Now, by a similar argument as above, one can show that
∥e−δsf∥Ck,α([s−1,s+1]×D) is mutually bounded with ∥e−δtf∥Ck,α([s−1,s+1]×D),

independently of s. Similarily for ∥e−δsD∗Df∥Ck−4,α([s−2,s+2]×D). Thus there
is a c > 0 such that for all s > λ+ 2, we have

∥e−δtf∥Ck,α([s−1,s+1]×D)

≤ c(∥e−δtD∗Df∥Ck−4,α([s−2,s+2]×D) + ∥f∥L2

δ− 1
2

(X\D)).

Thus by taking the supremum over all s > λ+ 2, we get the required result.
For the remaining component f⊥ the proof reduces, as in the proof of

Proposition 3.2, to the case of the Laplacian. Indeed, by the same argument,
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we get an estimate of the form

∥f⊥∥Ck+4,α
η

≤ c
(
∥D∗

ωDωf
⊥∥Ck,α

η
+ ∥f⊥∥L2(K) + ∥f⊥∥L2

η−
1
2

)

for some compact subset K ⊆ X \D. But since the (η − 1
2)-weighted norm

is equivalent to the unweighted norm on any compact subset of X \D, the
term ∥f⊥∥L2(K) can be bounded by a constant multiple of ∥f⊥∥L2

η−
1
2

, which

yields the required inequality. □

3.3. Proof of Theorem 3.1

We will now use the estimates of the previous section to prove Theorem 3.1.
The finite dimensionality of the kernel and the closedness of the image of
D∗D follow directly from Proposition 3.2 using standard contradiction ar-
guments, see e.g. [21, Ch. 9]. Note that due to the inclusion W 2,k

η ⊆W 2,k
η′

whenever η ≤ η′, the finite-dimensionality of the kernel of the Lichnerowicz
operator holds for all weights, not just away from the indicial roots. The
finite dimensionality of the cokernel (and hence the Fredholm property of
the Lichnerowicz operator), will then follow from the characterisation in
equation (14) which we prove below.

To show equation (14), we use the regularity result, Proposition 3.3. We
first establish that for any weight δ, the kernel of the adjoint of D∗D on
(L2

δ)
∗ can be identified with the kernel of C4,α

1

2
−δ

.

First note that L2
δ(X \D)∗ can be identified with L2

−δ by using the
L2-inner product. Also, the operator D∗D is formally self-adjoint, hence if
f ∈ L2

−δ is in the kernel of the adjoint operator (L2
δ)

∗ → (W 2,2
δ )∗, it solves

D∗D(f) = 0 in the sense of distributions. By Proposition 3.3 and the fact
that by Lemma 2.3, C4,α

1

2
−δ−ε

⊆ L2
−δ if ε > 0, it follows that f ∈ C4,α

1

2
−δ−ε

for

any ε > 0.
Next, let Lε denote the operator D∗D with domain W 2,4

η− 1

2
+ε

. Note that

Im Lε =
(
Ker(L∗

ε)
)⊥
.

The above paragraph applied to δ = η − 1
2 + ε gives that Ker(L∗

ε) can be
identified with Ker LCk+4

1−η−2ε
. Hence

(
Ker(L∗

ε)
)⊥

=
(
Ker LCk+4

1−η−2ε

)⊥
.
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However, since η is not an indicial root, Ker LCk+4
1−η−2ε

does not change for

|ε| sufficiently small and so in particular

(
Ker(L∗

ε)
)⊥

=
(
Ker LCk+4

1−η

)⊥
.

To complete the proof, note that again by Lemma 2.3, Ck,α
η ⊆ L2

η− 1

2
+ε

if and only if ε > 0. Hence by Proposition 3.3 and picking ε > 0 sufficently
small in the above

Im LCk+4,α
η

= Im Lε ∩ Ck,α
η

=
(
Ker LCk+4

1−η

)⊥
.

This completes the proof of Theorem 3.1.

4. Explicit analysis of the (co)-kernel for the relevant
weights

It is only when η < 0 that all the elements of Ck,α
η can be potentials for a

Poincaré type metric. We would therefore like to tell what the kernel and
cokernel of the Lichnerowicz operator is for small negative weights. The
first goal of this section is to prove such a characterisation. We will then
make a slight adjustment to these spaces which are more suited for the
perturbation problem that we want to solve. Note that our presentation is
for the case when D is irreducible (and smooth, as always). However, our
techniques extend in a straightforward way to the case when D is smooth,
but has multiple components. In Remark 4.9 we discuss the changes in the
statements in the case of multiple components.

4.1. The standard spaces

We begin by describing the main result of this subsection, Proposition 4.3.
We will need the following definition. In the statement h is the space of

real holomorphic vector fields on X.

Definition 4.1 ([10, Defn. 1.1] ). Let X be a real holomorphic vector
field on X. We say X is tangent to D if, when writing X as the real part of∑

i fi
∂
∂zi

in coordinates near D where D is given by z1 = 0, we have f1 = 0

on D. We write hD// for the subspace of h of such vector fields. The space of
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potentials for vector fields in hD// with zeros for a given Poincaré type metric

ω is denoted hD//,ω or simply hD// when the metric is understood.

Vector fields tangent to D as in Definition 4.1 enter in our discussion of
weighted spaces because of the following result of Auvray.

Lemma 4.2 ([9, Lem. 5.2] ). Let X ∈ h be a real holomorphic vector
field on X. Then its L2-norm ∥X∥L2(X\D,ω) with respect to a Poincaré type
Kähler metric ω on X \D is finite if and only if X ∈ hD//.

This also implies that we have the moment maps mentioned in Sec-
tion 1.1. Recall that if h is a hamiltonian for a vector field X with respect to
some ω′, then h+ 1

2⟨X,∇ϕ⟩ is a hamiltonian for X with respect to ω′ + i∂∂̄ϕ.
This gives a formula for the change in the moment map, but in general this
may violate the equivariance requirement in the definition of a moment map.
However, this does not happen when ϕ itself is invariant under the action.
Thus if we pick ω′ = ω0 the background smooth metric on X, which we can
with loss of generality assume to be invariant, and ω = ω0 + i∂∂̄ϕ is an in-
variant Poincaré type metric (which we assume to exist in the statement of
Theorem 1.3), then we do have a moment map, obtained from the moment
map in the compact setting.

We will also need to extend certain functions on D to X. We achieve this
as follows. For a function f onD, we can extend f to an S1-invariant function
π∗f near D by using the projection π : N \D → D from equation (9). Using
an S1-invariant bump function supported on N and only depending on t,
we can then consider χπ∗f as a globally defined function.

Now, let hD be the space of real holomorphic vector fields on D and
let s be the codimension of the subspace consisting of vector fields induced
by a vector field tangent to D. Recall that φ was the Kähler potential of
the Poincaré type metric ω. The functions on D we need to extend to a
neighbourhood of D are given by taking a function f ∈ Ker D∗

DDD, and
then pulling back the corresponding real holomorphic vector field Xf to the
tubular neighbourhood around D. Here D∗

DDD denotes the Lichnerowicz
operator on D associated to the metric ω0|D. Pulling back vector fields is
not a canonical operation, but this can be achieved here by pulling back the
function f , then taking the gradient with respect to the initial background
metric ω (defined on the whole of X). This produces the required extension
of the vector field, and we will simply use the notation π∗Xf for this vector
field defined near D.
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We then let ψf be given by

ψf = χ(π∗f + dφ(π∗Xf )).(21)

Given a basis 1 = f0, f1, · · · , fr for Ker D∗
DDD, we let ψi = ψfi . We will

assume f0, · · · , fs form a basis for the subspace of Ker D∗
DDD of potentials

for vector fields on D induced by vector fields on X.
Finally, let hD0 denote the vector fields in hD// whose induced vector field

on D vanishes, and let hD0 denote the potentials for such vector fields. Our
characterisation of the kernel and cokernel for the relevant weights is then
the following.

Proposition 4.3. Consider the Lichnerowicz operator

D∗D = D∗
ωDω : C4,α

η (X \D) → C0,α
η (X \D)

on the Poincaré type weighted spaces. Then there is a κ > 0 such that

Ker D∗DC4,α
η

= hD// if η ∈ (0, 1),

Ker D∗DC4,α
η

⊆ hD0 and is of codimension 1 if η ∈ (−κ, 0),

C0,α
η ∩ hD//

⊥
= Im(D∗DC4,α

η
)⊕ ⟨D∗D(ψi) : i ∈ [s+ 1, r]⟩ if η ∈ (−κ, 0).

Note that by Theorem 3.1, the cokernel for η ∈ (0, 1) can be identified
with the kernel for the weight 1− η, which also lies in (0, 1) and hence equals

hD//. Proposition 4.3 then says that when going to small negative weights,

the kernel decreases to a codimension one subspace of hD0 and the cokernel
increases by the span of the elements D∗D(ψi) for i ∈ {s+ 1, · · · , r}.

The following integration by parts result will be used several times.

Lemma 4.4. Let f ∈ C4,α
η and g ∈ C4,α

η′ with η + η′ < 1. Then

∫

X\D
D∗D(f)gωn =

∫

X\D
⟨D(f),D(g)⟩ωn.

Proof. For simplicity we consider the case when η′ = η, so in particular
η < 1

2 . It will however be clear that the same argument goes through for
any choice of η and η′ satisfying η + η′ < 1.

Let χ : R → R be a bump function supported on (−∞, 1] and equal to
1 in (−∞, 0] and let χa(x) = χ(x− a). We can consider χ as a function on



✐

✐

“9-Sektnan” — 2023/6/20 — 18:39 — page 206 — #22
✐

✐

✐

✐

✐

✐

206 Lars Martin Sektnan

X \D by composing with the function t. We then have that

lim
a→∞

∫

X\D
χaD∗D(f)gωn =

∫

X\D
D∗D(f)gωn,(22)

lim
a→∞

∫

X\D
χa⟨D(f),D(g)⟩ =

∫

X\D
⟨D(f),D(g)⟩ωn.(23)

Since χag has compact support, it follows that

∫

X\D
χaD∗D(f)gωn =

∫

X\D
⟨D(f),D(χag)⟩ωn.

This differs from
∫

X\D
χa⟨D(f),D(g)⟩ωn

by terms involving at least one derivative of χa, hence is an integral over
Ka = {x ∈ X \D : t(x) ∈ [a, a+ 1]}.

Since f ∈ C4,α
η , we have that |D(f)| ≤ ceηt for some c > 0. Also, the

derivative of χa is bounded on [a, a+ 1] independently of a. Finally, we have
that by possibly increasing c, g and the norm of its gradient is bounded by
ceηt as well. Thus

|
∫

X\D
χaD∗D(f)gωn −

∫

X\D
⟨D(f),D(χag)⟩ωn| ≤ C

∫

Ka

e2ηtωn

for some C > 0. This latter integral is mutually bounded with

∫ a+1

a
e2ηt−tdt,

which goes to zero as a→ ∞ precisely if η < 1
2 . Thus the limits in (22)

and (23) agree, and the proof is complete. □

We can now prove Proposition 4.3. First note that 0 is an indicial root.
Indeed, the constant functions are in the kernel of D∗D and are in Ck,α

δ
precisely when δ ≥ 0, so the kernel changes at δ = 0. By the duality between
the kernel and cokernel for weights δ and 1− δ, it follows that 1 is also an
indicial root. Moreover, Auvray showed in [8] that there are no indicial roots
in (0, 1). Thus there exists a κ > 0 such that the kernel and cokernel of D∗D
are constant in the intervals stated.
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We first establish the claim for η ∈ (0, 1). If f ∈ C4,α
η (X \D) with η < 1

2 ,
we may apply Lemma 4.4 to conclude that

∫

X\D
D∗D(f)f =

∫

X\D
|Df |2.

Thus if f ∈ Ker D∗D, we have that f ∈ Ker D. This choice of weights means
that the holomorphic vector field Xf associated to f then is in L2. Thus it

follows from Lemma 4.2 that Xf ∈ hD// and hence f ∈ hD//. Since the elements

of hD// are in C4,α
η for any η > 0, it follows that the kernel is as stated for

η ∈ (0, 12). Since there are no indicial roots in (0, 1), the same conclusion
then holds for all η ∈ (0, 1).

For η ∈ (−κ, 0) the kernel is strictly smaller, since the constants are

in hD//, but not in the domain of D∗D for these weights. In fact, for these
weights, the associated holomorphic vector field has to have norm in the
order of eη

′t for some η′ ≤ η, since the kernel does not jump between indicial
roots. Hence if f ∈ Ker DC4,α

η
with η < 0, we have to have that XD

f , the

induced vector field on D, is trivial, i.e. f ∈ hD0 . Indeed, in taking the norm
of a vector field

∑

i

σi
∂

∂zi

with σ1(0) = 0, we have, in the model case, that the contribution from σ1
∂
∂z1

is

g11|σ1|2 = O(
|z1|2

|z1|2 log2(|z1|2)
)

= O(e−2t).

For σi
∂
∂zi

with i > 1, the contribution to the norm is O(1). Since the general

case is mutually bounded with this it follows that for f to lie in C4,α
η with

−1 ≤ η < 0, one necessarily has to have σi = 0 for all i > 1, and then

∥Xf∥ = O(e−t),

as required. Note that since hD0 also contains the constants, the codimension

of Ker D∗D in hD0 is at least one.
By [20, Thm. 1.4], the index in this range of weights equals the index in

the local case, which Auvray showed in [8, Lem. 3.10] is −dim Ker D∗
DDD,
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i.e. −(r + 1). Note that the dimension of potentials for holomorphic vector
fields on D induced by a vector field tangent to D on X is s+ 1. Also,

Im(D∗DC4,α
η

) ⊆ hD//

⊥
.

Thus if we can exhibit at least r − s linearly independent elements in C0,α
η ∩

hD//

⊥
that are not in the image of D∗D on C4,α

η and which are linearly
independent of the image as well, then we have found the full cokernel of
D∗D, because then our reduction of the kernel above implies that

ind (D∗DC4,α
η

) = dim Ker DC4,α
η

− dim Coker DC4,α
η

≤
(
dim (hD//)− (s+ 1)

)
−
(
dim (hD//) + r − s

)

= −(r + 1),

and so the kernel cannot be smaller, nor can the cokernel be any larger.
In [8], Auvray showed that

D∗D(ψf ) ∈ C0,α
−1 ,

for any f ∈ kerD∗
DDD. If this is in the image of D∗D on C4,α

η with η < 0,
say

D∗D(ψf ) = D∗D(v),

then

ψf − v ∈ Ker D∗DC4,α

η′

for any η′ > 0. By the previous part, this implies ψf − v = h ∈ hD//.

We now invoke Lemma 4.5 below which says that ψf − h ∈ C4,α
η for some

weight η < 0 if and only if f is a potential for the vector field onD induced by
h, under a suitable normalisation. This completes the proof, because then
for each ψf coming from an f inducing a holomorphic vector field on D
which also is induced by a holomorphic vector tangent to D, we can choose
a h ∈ hD// such that ψf − h ∈ C4,α

η with η < 0 and D∗D(ψf − h) = D∗D(ψf ).
Hence

D∗D(ψf ) ∈ Im D∗DC4,α
η

if and only if the gradient of f is a holomorphic vector field onD also induced
by a holomorphic vector field on X tangent to D.
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Lemma 4.5. For f ∈ Ker D∗
DDD, let ψ = ψf = χ(Π∗f + dφ(Π∗Xf )).

Then there is a h ∈ hD// such that ψ − h ∈ C4,α
η for some η < 0 if and only if

the associated vector field Xf of f on D is induced by a vector field in hD//.

Proof. Let Z ∈ hD// be a vector field on X such that Z|D = Xf . Let h be the

potential for Z with respect to the Poincaré type metric ω = ω0 + i∂∂φ. Let
h0 be the corresponding potential with respect to the smooth background
metric ω0. Using [10, Prop. 1.2], we then have that

h = h0 + dφ(Z)

= h0 + (∇ω0h0) · φ.

Up to a constant, f is the restriction of h0 to D, and so we can renormalise
h to assume this is true. It then follows that

χΠ∗f0 − h0 ∈ C4,α
η

for some η < 0. Hence

ψf − h ∈ C4,α
η

for some η < 0, too.
Conversely, suppose ψf − h ∈ C4,α

η for some η < 0. Then the associated
vector fields are also equal to order eηt and so their restrictions to D must
be equal. □

A final consequence of our explicit analysis that we want to mention now
is that the extremal vector field of an extremal Poincaré type metric is the
restriction to X \D of a vector field on X tangent to D.

Lemma 4.6. Let ω ∈ Ω be Poincaré type metric on X \D. Then

S(ω) ∈ Ck,α(X \D)

for any k and α. In particular, if ω is an extremal metric, then S(ω) ∈ hD//.

Proof. Auvray showed in [9, Prop. 1.6] that the Ricci form ρω associated to
ω is bounded at any order, i.e. lies in the space C∞(Λ1,1, X \D). Similarly,
so does ω, by the definition of a Poincaré type metric. Hence both ρω ∧ ωn−1



✐

✐

“9-Sektnan” — 2023/6/20 — 18:39 — page 210 — #26
✐

✐

✐

✐

✐

✐

210 Lars Martin Sektnan

and ωn lie in C∞(Λn,n, X \D), and so the scalar curvature function

S(ω) =
nρω ∧ ωn−1

ωn

lies in C∞(X \D), as required. It therefore follows that if ω is extremal,
S(ω) lies in the kernel of the Lichnerowicz operator and by the above also
in Ck,α

η for any η ≥ 0. Taking e.g. η = 1
2 , Proposition 4.3 then implies that

S(ω) ∈ hD//. □

4.2. The modified Hölder spaces

Since we work with Hölder spaces in which not all of the potentials for
holomorphic vector fields are contained, it will be convenient to modify these
spaces slightly, which we do in this section. In general we could pullback
functions f from D to X \D by using the tubular neighbourhood discussed
in Section 2.2. We choose a cutoff function χ only depending on the variable
t and consider χΠ∗(f), where Π is the (local) fibration map. These functions
all lie in Ck,α

0 (X \D) if f ∈ Ck,α(D), and we will need to include some of
these functions when solving the blow-up problem.

We begin with a Lemma which finds a function whose image via the
Lichnerowicz operator is the pulled back function, for functions on D that
are potentials for holomorphic vector fields on D.

Lemma 4.7. Let ω be a Poincaré type metric on X \D satisfying (15).
Then there exists η < 0 such that for all f̃ ∈ Ker D∗

DDD there exists σ ∈
C0,α
η (X \D), ϕ ∈ C4,α(D) and f ∈ Ker D∗

DDD such that

D∗
ωDω(χΠ

∗(ϕ) + tχΠ∗f) = χΠ∗f̃ + σ.(24)

Moreover, f is unique and ϕ is unique up to an element of Ker D∗
DDD.

Finally, if f̃ = 1, we can take f = 1 and ϕ = 0.

Proof. We begin with the case of the model metric on ∆∗ ×D. Recall from
(17) that the Lichnerowicz operator Lmod then is given by

f 7→ 1

2

( ∂2
∂t2

− ∂

∂t

)2
(f)−

( ∂2
∂t2

− ∂

∂t

)
(∆Df)−

( ∂2
∂t2

− ∂

∂t

)
(f) +D∗

DDDf.

Then for the function t ·Π∗f , with f a function on D, we get that

Lmod(t · f) = Π∗(f +∆Df + tD∗
DDDf).
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In particular, for all f ∈ Ker D∗
DDD, we have

Lmod(t ·Π∗f) = Π∗(f +∆D(f)).

Now, note that since

∫

D
(f +∆D(f)) · f =

∫

D
|f |2 + |df |2,

we have that f +∆D(f) /∈
(
Ker D∗

DDD

)⊥
= Im D∗

DDD.
In fact, if f1, · · · , fr is a basis of Ker D∗

DDD, then fi +∆Dfi form a basis
of a complementary space to Im D∗

DDD. This follows by integrating by parts
again, since if D∗DD(ϕ) = f +∆Df , then

∫

D
|f |2 + |df |2 =

∫

D
(f +∆D(f)) · f

=

∫

D
D∗

DDD(ϕ)f

=

∫

D
ϕD∗

DDD(f)

= 0,

as f ∈ Ker D∗
DDD. In particular, given any ψ ∈ C0,α(D), there exists f ∈

Ker D∗
DDD and ϕ ∈ C4,α(D) such that

D∗
DDD(ϕ) + f +∆Df = ψ.

Note that f is unique, since Id + ∆D has trivial kernel, and therefore ϕ is
unique as well, up to an element of Ker D∗

DDD.
Applying this to f̃ in the model case, we have that there are ϕ and f

such that

Π∗f̃ = Π∗(D∗
DDD(ϕ) + f +∆Df)

= D∗D(Π∗ϕ+ t ·Π∗f).

We can then let σ be given by

σ = χD∗D(Π∗ϕ+ t ·Π∗f)−D∗D(χΠ∗ϕ+ t · χΠ∗f),

which lies in C0,α
η for any η, since σ vanishes identically in a neighbourhood

of D.
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So far we assumed that in the assumption (15) on the asymptotics we
had a = 1. For other values of a, we have that there is an η < 0 such that
the estimates (17) hold, but where we are using the model operator for
aωcusp instead of ωcusp. This affects the coefficients of fi and ∆Dfi above,
but it does not affect the conclusion, because we still obtain a positive com-
bination of fi and ∆Dfi. In particular D∗D(χΠ∗(ϕ) + tχΠ∗f) agrees with
D∗Dmod(χΠ

∗(ϕ) + tχΠ∗f) up to an element of order eηt. Hence we can al-
ways solve our equation up to an error of order eηt with η < 0, as required.
The statement about f̃ = 1 follows because in that case, if we take f = 1
too, then ∆D(f) = 0. □

We now decompose hD as

hD = ⟨1⟩ ⊕ V1 ⊕ V2,(25)

where

V1 = ⟨f1, · · · , fs⟩
and

V2 = ⟨fs+1, · · · , fr⟩.
In other words, we have decomposed the potentials for holomorphic vector
fields into three pieces: the constants, the potentials for vector fields induced
from X, and those not induced from X, respectively. Define the linear map

ϱ : V1 ⊕ V2 → C0,α
0

by

ϱ(f̃) = D∗
ωDω

(
χΠ∗(ϕ) + tχΠ∗(f)

)
,

where ϕ, f are given by Lemma 4.7 if f̃ ∈ V1, and

ϱ(f̃) = D∗
ωDω(ψf̃

),

where ψ
f̃
is given by equation (21), if f̃ ∈ V2. In the first case, Lemma 4.7

does not give a unique ϕ, so to avoid ambiguity we pick the unique ϕ or-
thogonal to Ker D∗

DDD.
Note that

V1 ⊕ V2 ∼= hD,

by sending a function to the corresponding holomorphic vector field. To
slightly ease notation we will in the sequel write that ϱ is a map from hD
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and we are then using this isomorphism. Under this identification, we then
have that the decomposition (25) of hD is R× hD. Also, let

C̃k,α
η = Ck,α

η + hD// ⊆ Ck,α
0

for η < 0. It is more convenient for us to map into this space, as it contains
all the potentials for holomorphic vector fields.

As a consequence of Proposition 4.3, we then have

Lemma 4.8. Let η ∈ (−κ, 0). Consider the map

Φ : C4,α
η (X \D)× R× hD → C̃0,α

η (X \D)(26)

given by

Φ(ϕ, λ, f) = D∗
ωDω

(
ϕ+ λt

)
+ ϱ(f).

Then

Ker Φ = Ker
(
D∗

ωDω

)
C4,α

η
× {0} × {0}

and

Im Φ =
(
hD//

)⊥ ⊂ C̃0,α
η (X \D).

To obtain the above, first use that C̃0,α
η (X \D) ⊂ C0,α

η′ for any η′ > 0.
By picking a small η′ > 0, Proposition 4.3 implies that the image must land

in
(
hD//

)⊥
. This uses that ϱ involves applying the Lichnerowicz operator to

elements that are in C4,α
η′ for any η′ > 0.

To obtain the reverse inclusion, we first perturb from an element in
C̃0,α
η (X \D) to one in C0,α

η via ϱ, using Lemma 4.7. This preserves orthog-

onality to
(
hD//

)⊥
. One then reduces the question to Proposition 4.3. This

gives the statement for the image.
For the kernel, we certainly have that

Ker
(
D∗

ωDω

)
C4,α

η
× {0} × {0} ⊆ Ker Φ.

Computing the change in index between Φ and the Lichnerowicz operator
on C4,α

η shows that the dimension of the kernel of the two has to be the
same. Thus we have an equality in the above inclusion.
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Remark 4.9. When D has mulitple components (say there are m such), hD
is isomorphic Rm × hD, as we may add a separate constant to the potential
on each irreducible component. In (25), the decomposition then becomes

Rm ⊕ V1 ⊕ V2.

V1 still consists of vector fields induced from X \D, and V2 consists of the
vector fields that are not induced from X \D. Note that when restricting to
a single component of D, some of the vector fields in V2 may now be in-
duced from the whole of X. V1 only contains the collection of vector fields
on each irreducible component that are simultaneously induced from one on
the whole of X. V2 thus contains combinations of vector fields on the differ-
ent irreducible components that on their own are induced from X, but not
collectively.

5. Linear theory in doubly weighted spaces

In this section we analyse the Fredholm theory of the Lichnerowicz operator
in doubly weighted spaces, Hölder spaces with weighted norm both near the
divisor as discussed earlier, as well as near the blown-up point, with the
weight function being the distance to the blown-up point.

When solving the extremal equation on the blow-up, in order to get
uniform estimates, we want to use the radius function around the points
as a weight function. We now define a doubly weighted norm on the com-
plement of the points in X \D that are to be blown up. Pick T -invariant
holomorphic normal coordinates zj at pj , which after scaling can be as-
sumed to be defined for when the norm is at most 2. These coordinates
are holomorphic normal coordinates at pj in which the T -action is via uni-

tary transformations. We define the doubly weighted Hölder norm Ck,α
δ,η on

Y = X \
(
D ∪ {p1, · · · , pk}

)
to be

∥ϕ∥Ck,α
δ,η (Y ) = ∥ϕ∥Ck,α

η (V,ω) +
∑

i

supr∈(0, 1
2
)r

−δ∥ϕ∥Ck,α(B2r\Br(pj),r−2ω),

where V is the complement to ∪jB 1

2
(pj) in X \D. Here in e.g. Ck,α(B2r \

Br, r
−2ω), the second entry denotes the metric we are using to compute

norms with. Also we let rε = ε
2n−1

2n+1 .
We then have a similar Fredholm result to Theorem 3.1 for the doubly

weighted spaces.
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Theorem 5.1. Let ω be a Poincaré type metric on X \D satisfying equa-
tion (15). Suppose (δ, η) are weights such that δ is not an indicial root of ∆2

on Cn \ {0}, i.e. δ /∈ Z \ (4− 2n, 0), and η is not an indicial root of D∗D on
the Poincaré type weighted spaces. Then

D∗
ωDω : Ck+4,α

δ,η (Y ) → Ck,α
δ−4,η(Y )

is Fredholm. Moreover,

Im D∗DCk+4,α
δ,η

= (Ker(D∗DCk+4,α
4−2n−δ,1−η

))⊥,(27)

where ⊥ denotes the orthogonal complement with respect to the L2-inner
product and subscripts denote the domains of the operators.

This follows from the Fredholm theory of Section 3 together with that of
weighted spaces of punctured compact manifolds, see e.g. [20]. Indeed, one
could use cut-off functions to view a function on Y has having a component
on X \D that lies in Ck+4,α

η (X \D) and a component on X \ {p1, · · · , pk}
in C4,α

δ (X \ {p1, · · · , pk}), or the relevant weighted Sobolev spaces. From
this one can establish estimates similar to those of Propositions 3.2 and 3.3.
Then the result follows by going through the argument of Section 3.3 again.
Note that on the weighted spaces for X \ {p1, · · · , pk}, the Lichnerowicz
operator has a similar characterisation of its image in terms of the orthogonal
complement to a complementary weight. There the image of Ck+4,α

δ is the
orthogonal complement to the kernel of the Lichnerowicz operator acting on
Ck+4,α
4−2n−δ.
We end this section with characterising the (co)-kernel for the weights

relevant to us. We can also define modified doubly weighted Hölder spaces,
like in Section 4.2. If we pick the cut-off function χ to be 0 sufficiently close
the blow-up points, then these functions will not interact with the δ weights.
We can then define the map

Φ : C4,α
δ,η × hD → C̃0,α

δ−4,η

as in equation (26).
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Proposition 5.2. Suppose that δ ∈ (4− 2n, 0) and that η ∈ (−κ, 0).Then

Ker D∗DC4,α
δ,η

⊆ hD0 and is of codimension 1,

C0,α
δ,η ∩ hD//

⊥
= Im(D∗DC4,α

δ,η
)⊕ ⟨D∗D(ψi) : i ∈ {1, · · · , s}⟩

Ker Φ = Ker
(
D∗

ωDω

)
C4,α

δ,η

× {0}

Im Φ =
(
hD//

)⊥
.

This follows from Theorem 5.1 and that when the weights are in (4−
2n, 0), the elements of the kernel on the doubly weighted spaces actually
extend across the punctured points (the weights are negative, and so these
vector fields vanish at the puncture). Thus such functions can be considered
as elements in Ck+4,α

η (X \D), and the result is then a direct consequence
of Proposition 4.3 and Lemma 4.8.

6. Solving the non-linear equation

Having the linear theory in place, we are now ready to solve the extremal
equation. We begin by stating the system of equations we would like to solve
in order to solve the extremal equation on the blow-up. This is identical to
the case of [6]. Let X̃ denote the blow-up of X in the points p1, · · · , pk. We
identify D ⊆ X with its pull-back to X̃ via the blow-down map, and still
denote this D.

Let Bj
ε denote the (open) ball of radius rε = ε

2n−1

2n+1 about pj in X \
D, where the radius is measured as the Euclidean distance in some fixed
T -invariant holomorphic normal coordinates about pj . Let Yε denote the

complement in X \D of the union of these balls. Let B̃j
ε denote the subset

of Bl0C
n given as the pre-image via the blow-down map of a ball of radius

Rε√
aj

about the origin in Cn, where Rε = ε−
2

2n+1 . For each ε > 0 we have an

identification

X̃ \D ∼= Yε

k∐

j=1

B̃j
ε/ ∼(28)

of the blow-up with a connected sum, where the equivalence relation ∼ is
the gluing of the boundary ∂Bj

ε of Bj
ε with the boundary ∂B̃j

ε of B̃j
ε via the

coordinate change

zj = ε
√
aj · wj .
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Here zj = (zj1, · · · , zjn) are the holomorphic normal coordinates about pj
fixed earlier, and wj are the coordinates on the complement of the excep-
tional divisor in Bl0C

n coming from its identification with Cn \ {0}.
The aim is then to construct extremal metrics on each of the pieces

in (28) and show that we can match them to sufficiently high order over
their common boundary. This is done in several steps. We follow [6] and
make an initial perturbation of an approximate metric ωε constructed ear-
lier to obtain a metric which is extremal to a high order (in terms of the
distance function to the blown up points). This initial perturbation only de-
pends on the constants aj . Given boundary data, we then perform a second
perturbation to construct a metric which is extremal to higher order. We
then use this metric to construct metrics that are extremal up to a finite di-
mensional set of obstructions on the two pieces Yε and ∪k

j=1B̃
j
ε , parametrised

by certain boundary data. We then show that for all sufficiently small ε > 0
we can use these metrics to solve the same boundary value problem and thus
solve the extremal equation. This is the content of the next sections.

Remark 6.1. In the weighted analysis near the blow-up points, we need to
take special care with the case of surfaces as one then needs to work with
different weights. This features in both [6] and [27]. However, the way to
approach this is no different in our case than in the compact case. Since our
focus is on the new behaviour the Poincaré type asymptotics introduce, we
will not go further in discussing how to alter the argument for the surface
case, and instead simply refer to [6].

6.1. The initial perturbation

In order to solve the extremal equation, one can make an initial approximate
solution in the appropriate class as follows. This step features in both the
approach of [6] and [27], but we will follow an argument closer to that of the
latter. We focus on the case of one point, with the construction for several
points simply being that one does exactly the same construction around each
point separately, with appropriate scaling. Around a point p to be blown up,
recall that we use T -invariant holomorphic normal coordinates to write the
Kähler form as

ω = i∂∂

( |z|2
2

+ ϕ(z)

)

for some ϕ which is O(|z|4). After scaling ω, we can assume the normal
coordinates are defined for |z| ≤ 2 (when blowing up several points we scale
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ω so that this holds for all the points and such that all these balls are
disjoint).

The Burns-Simanca metric ζ is a metric on the blow-up Bl0C
n of Cn at

the origin which is scalar flat and asymptotically Euclidean. We write

ζ = i∂∂

( |w|2
2

+ ψ(w)

)
,

where w is the coordinates away from the exceptional divisor in Bl0C
n

induced from its identification with Cn \ {0}.
Let rε = ε

2n−1

2n+1 . By taking a slightly different viewpoint in the connected
sum construction, we consider BlpX as the manifold obtained by gluing the
complement of a ball around p in X with a neighbourhood of the expectional
divisor in the blow-up of Cn in the origin. This is achieved by identifying
the annulus B2rε \Brε with a corresponding annulus around the exceptional
divisor on Bl0C

n, using the coordinate transformation w = ε−1z. The ap-
proximate solution will be constructed by gluing ω and ζ on this annulus.

Let γ be a cut-off function R → [0, 1] with

γ(x) = 0, x < 1,

γ(x) = 1, x > 2.

Define γ1 to be

γ1(r) = γ(
r

rε
),

and let γ2 = 1− γ1. We define the approximate solution to be ω on the
complement of B1 and

i∂∂
( |z|2

2
+ γ1(|z|)ϕ(z) + ε2γ2(|z|)ψ(ε−1z)

)

on B1 \Bε.
Since 2n−1

2n+1 < 1, we have that rε > ε and so Bε ⊆ Brε . On Brε , we have
γ1 = 0 and γ2 = 1, so that the approximate solution is

iε2∂∂(
|ε−1z|2

2
+ ψ(ε−1z)) = ε2ζ.(29)

So in the pre-image of Bε in BlpM under the blow-down map, we let the
approximate solution equal the scaled Burns-Simanca metric ε2ζ.
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When blowing up several points, we do not want to impose that the
volume of all the exceptional divisors are equal. The change of coordinates
is now zj = ε

√
aj · wj , so we instead use the scaling

i∂∂
( |z|2

2
+ γ1(|z|)ϕ(z) + ajε

2γ2(|z|)ψ(ε−1z)
)

in the annular region around the point pj , so that the approximate solution
is in the correct class, i.e. we obtain ajε

2ζ in (29) near pj .
We now wish to find a better approximate solution to the extremal

equation on X̃ \D. We stress that in contrast to the next steps, finding the
function Γ = Γa1,··· ,ak

achieving this only depends on the direction into the
Kähler cone we are going, i.e. only the aj , and does not involve any boundary
data.

To find a better approximate solution, we need to match the metric
glued in from X \D with the scaled Burns-Simanca metrics on around each
point to higher order. We cannot find such a metric on the whole of X \D,
but under our assumptions we can achieve it on the complement on the
blown-up points, applying the linear theory of Section 5.

When using the coordinate identifications above, the Burns-Simanca
metric ajζ has an asymptotic expansion

ajζ = i∂∂̄

( |z|2
2

− an−1
j |z|4−2n + ϕ(z)

)

where ϕ is O(|z|6−2n) when dim(X) > 3 and O(log(|z|)) when dim(X) = 3,
and

ajζ = i∂∂̄

( |z|2
2

− aj log(z) + ϕ(|z|)
)

with ϕ = O(1) when dim(X) = 2. Here z = zj is the holomorphic normal
coordinates about pj . Thus to match ω + i∂∂̄

(
ε2n−2Γ

)
up with ajε

2ζ to
higher order, we wish to find a solution to

D∗D
(
Γ
)
= h−

k∑

j=1

an−1
j δpj

,(30)

where h is a holomorphy potential. In the compact case, what we require is
that h is a potential for a vector field in t. In our case, h ̸⊆ C0,α

η , so we cannot
simply do this. However, using the modified Hölder spaces of Section 4.2, we
can find a function Γ decaying near the divisor, an average zero holomorphy
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potential fΓ ∈ hD, a constant λΓ, and hΓ ∈ hD// such that this holds, i.e. we
can solve

D∗D
(
Γ + λΓt

)
= hΓ + ϱ(fΓ)−

k∑

j=1

an−1
j δpj

.(31)

This follows from Proposition 5.2.
Since we also want this to give an approximate solution to the extremal

equation on the blow-up, we need to be able to lift h to a holomorphic vector
field on the blow-up. This is only possible when h induces a holomorphic
vector field that lies in the subalgebra t of hD//, i.e. if the requirement (1) in
Theorem 1.3 hold.

Note that while the functions induced from the vector fields on D do
lift to the blow-up, they are not potentials for holomorphic vector fields
on the blow-up. When trying to solve the extremal equation on the blow-
up, we will first solve a more general equation where the scalar curvature
is a holomorphy potential plus one of the lifted functions induced from a
holomorphic vector field on D. To solve the actual extremal equation, we
need this additional contribution coming from vector fields on D to be zero.
This is the source of the new obstructions to obtaining an extremal metric
on the blow-up in the Poincaré type case.

Remark 6.2. In contrast to imposing that h ∈ t, we do not impose that
f = 0 now, because in the Arezzo-Pacard type argument we will need to let
the divisor volumes vary. Therefore it is only at the end, when we know the
actual divisor volumes, that we will check that no term like ϱ(f) was needed.
This will use the assumption (3). A posteriori we see that f would have to
be 0 for the classes we consider, by differentiating the family Xε with respect
to ε.

6.2. The second perturbation

The next step in the proof is to construct an even better approximate solu-
tion near the gluing region to the extremal equation, given boundary data on
the common boundary of the pieces in the connected sum presentation (28)
of X̃ \D.

The highest order term of the Lichnerowicz operator agrees with that
of the bi-Laplacian ∆2. In the gluing region, the metrics are approximately
Euclidean, and so in this region the metric Laplacian agrees with the usual
Laplacian to high order. Using the ε-dependent identification of the fixed
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annular region B2 \B 1

2
with such a region either in the punctured manifold

Y or Bl0C
n, we will get the approximate solutions to match up to higher

order by pulling back functions that are biharmonic with respect to the
Euclidean Laplacian on B2 \B 1

2
.

We will pull back functions given by the following

Proposition 6.3 ([6, Prop. 5.3.1]). Suppose υ ∈ C4,α
(
∂B1

)
and that

ς ∈ C2,α
(
∂B1

)
. There is a constant C > 0 such that:

If ∫

∂B1

4nυ − ς = 0

then there exists a biharmonic function V ∈ C4,α
1 (B1 \ {0}) such that

V = υ

∆V = ς

on ∂B1, and

∥V ∥C4,α
1 (B1\{0}) ≤ C

(
∥υ∥C4,α(∂B1) + ∥ς∥C2,α(∂B1)

)
.

If ∫

∂B1

ς = 0

then there exists a biharmonic function W ∈ C4,α
3−2n(C

n \B1) such that

W = υ

∆W = ς

on ∂B1, and

∥W∥C4,α
3−2n(C

n\B1)
≤ C

(
∥υ∥C4,α(∂B1) + ∥ς∥C2,α(∂B1)

)
.

Moreover, if υ, ς are torus-invariant with respect to the action of some
torus contained in U(n), then so are V and W .

Since this is a result for the Euclidean Laplacian, we do not require any
modification to the result in Arezzo-Pacard-Singer.

We end this section by explaining how we will pull V and W back to
the preimage of balls Bl0C

n and Yε, respectively, in order to create better
approximate solutions. For the former, assume that υ and ς are T -invariant
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functions on ∂B1 satisfying
∫
4nυ − ς = 0. Given a positive parameter a > 0,

we define a T -invariant function Vε,a on Bl0B Rε
a

as follows, where we recall

Rε = ε−
2

2n+1 .
Let χ be a T -invariant cut-off function vanishing on Bl0B1 and equal to

1 in the complement of Bl0B2 in Bl0C
n. We will let Vε,a be the function on

Bl0B Rε
a

that vanishes inside Bl0B1 and which outside this region satisfies

Vε,a(w) = χ(w)V (a
w

Rε
),(32)

where V is the function given by Proposition 6.3.
Next, we suppose we are given T -invariant functions υ1, · · · , υk and

ς1, · · · , ςk on ∂B1 and that
∫
ςj = 0 for all j. Then we define a T -invariant

function Wε on Yε as follows. Let χj be a T -invariant cut-off function equal

to 0 outside Bj
2(pj) and equal to 1 in Bj

1(pj). We will let Wε vanish outside

Bj
2 and on Bj

2 \Bj
rε we let

Wε(z) = χj(z)W (
z

rε
),(33)

where W is the function given by Proposition 6.3.

6.3. Constructing extremal metrics on the two pieces

As mentioned before, we wish to solve a boundary value problem on Yε
and on each of B̃j

ε for the extremal equation. In reality we will solve a more
general equation, because of the additional cokernel elements in the Poincaré
type weighted space. Since the points blown up are not on the divisor D,
the construction of such metrics on B̃j

ε is identical to the construction in
[6]. We begin this section by stating our assumptions, before recalling these
results of Arezzo-Pacard-Singer, and then prove the analogous result for the
Poincaré type piece Yε.

As before, for each ε, we will pull functions back to a fixed annular region
A = B2 \B 1

2
⊆ Cn, where Br is the ball of radius r in Cn. When mapping

to this annular region, the points outside of B1 correspond to points in Yε
and the points in B1 lie in one of the B̃j

ε . We will fix data on the boundary
where the two regions meet that are sufficiently small in the weighted norm.

We begin with the case of the construction of extremal metrics on
the blow-up of all sufficently large balls in Cn. This does not involve the
Poincaré type behaviour and so is exactly as for Arezzo-Pacard-Singer. Re-

call that Rε = ε−
2

2n+1 . Suppose that υ ∈ C4,α(∂B1) and ς ∈ C2,α(∂B1) are
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torus-invariant functions satisfying

∥υ∥C4,α + ∥ς∥C2,α ≤ τR4
ε(34)

for some τ > 0 that is to be determined. Suppose further that
∫

∂B1

4nυ − ς = 0.

Provided this condition is satisfied, there are extremal metrics with pre-
scribed extremal vector field X ∈ t, and prescribed average on the boundary,
on the blow-up of all sufficently large balls in Cn.

Proposition 6.4 ([6, Prop.6.2.1]). Let X ∈ t and ν ∈ R. There is a c > 0
and for every τ > 0 there is a ετ > 0 such that if ε ∈ (0, ετ ) then for any υ, ς
satisfying (34), there is a T -invariant function ϕε,a ∈ C4,α

(
Bl0B Rε

a

)
such

that

ζε,a = a2ζ + i∂∂̄
(
Vε,a + ϕε,a

)

is Kähler, extremal with extremal vector field ε4X, and such that the scalar
curvature Sε,a = S

(
ζε,a

)
satisfies

∫

∂B1

Sε,a
(
Rε
x

a

)
dx = νε2|∂B1|.

Further,

∥ϕε,a
(
Rε
x

a

)
∥C4,α(B1\B 1

2
) ≤ cR3−2n

ε .

If ϕε,a and ϕ̃ε,a′ are determined by the data υ, ς,X, ν and υ̃, ς̃ , X̃, ν̃, re-
spectively, then for δ ∈ (0, 1),

∥ϕε,a
(
Rε
x

a

)
− ϕ̃ε,a′

(
Rε

x

a′
)
∥C4,α(B1\B 1

2
)

≤ cτ

(
R1−δ

ε ∥υ − υ̃∥C4,α +R1−δ
ε ∥ς − ς̃∥C2,α(35)

+R3−2n
ε |ν − ν̃|+R3−2n

ε |a− ã|+R4−4n
ε ∥X− X̃∥

)
,

where cτ depends on τ , a uniform bound on the norms of ν, ν ′ and the norms
of the vector fields X, X̃, as well as a uniform bound

a0 ≤ a ≤ a1
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for a and a′, where a0, a1 > 0.

We now turn to the case of constructing extremal metrics away from
the blown-up points. Suppose υj ∈ C4,α

(
∂B1

)
and ςj ∈ C2,α

(
∂B1

)
are T -

invariant functions on ∂B1 satisfying

∥υj∥C4,α + ∥ςj∥C2,α ≤ τr4ε(36)

where, as before, τ > 0 is a constant that we will determine at the end of
the proof. Moreover, we will assume

∫

∂B1

ςj = 0.(37)

The key result of this section is the analogous result to Proposi-
tion 6.4 away from the blown up points. We will fix a1, · · · , ak > 0 and
let Γ, λΓ, hΓ, fΓ be chosen as in equation (31) with respect to this choice of
these parameters.

Proposition 6.5. There are c, θ > 0 and for every τ > 0 there is a ετ > 0
such that if ε ∈ (0, ετ ) then for any υj , ςj satisfying (36) and (37), and for
any choice of constants a1, · · · , ak > 0 there is a T -invariant function ϕε ∈
C4,α
η

(
Yε
)
, a constant λε ∈ R , an hε ∈ t and an fε ∈ hD such that

ωε = ω + i∂∂̄
(
ε2n−2

(
Γ + λΓt

)
+Wε + ϕε + λεt

)

is Kähler, whose associated vector field has potential

Hε +
1

2
⟨∇

(
Hε

)
,∇

(
ε2n−2

(
Γ + λΓt

)
+Wε + ϕε + λεt

)
⟩,

where

Hε = S(ω) + ε2n−2
(
hΓ + ϱ(fΓ)

)
+ hε + ϱ(fε).

The scalar curvature Sε = S
(
ωε

)
satisfies

∥hε∥+ ∥fε∥+ |Sε − S(ω)| ≤ cεθ.

Further,

∥ϕε
(
rεx

)
∥C4,α(B2\B1)

≤ cr4ε

for all j.
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If ϕε, λε and ϕ̃ε, λ̃ε are determined by the data υj , ςj and υ̃j , ς̃j, respec-
tively (but with the same choice of aj), with corresponding holomorphy po-

tentials hε, fε and h̃ε, f̃ε, and scalar curvatures Sε, S̃ε, then

∥hε − h̃ε∥+ ∥fε − f̃ε∥+ ∥λε − λ̃ε∥+ |Sε − S̃ε|
+ sup

j
∥ϕ

ε|Bj

2rε
\Bj

rε

(
rεx

)
− ϕ̃

ε|Bj

2rε
\Bj

rε

(
rεx

)
∥C4,α(B2\B1)

(38)

≤ cτε
θ
∑

j

(
∥υj − υ̃j∥C4,α + ∥ςj − ς̃j∥C2,α

)
,

where cτ depends only on τ .

The proof of Proposition 6.5 is via the Contraction Mapping Theorem.
The idea is to use an extension operator to rewrite the equation as a fixed-
point problem on the punctured manifold, and there apply the results of
Section 5 to show that for sufficiently small boundary data, the operator
that we are seeking a fixed point of indeed has a solution, provided ε > 0 is
sufficiently small.

We want to solve the equation

S

(
ω + i∂∂̄

(
ϕ̃+ λ̃t

))
= h̃+ ϱ(f̃) +

1

2
⟨∇

(
h̃+ ϱ(f̃)

)
,∇

(
ϕ̃+ λ̃t

)
⟩,

for a function ϕ̃, holomorphy potential h̃, constant λ̃ and zero average holo-
morphy potential f̃ on D. We want to recast this as a perturbation problem,
using the approximate solutions of the previous sections. Using the functions
Γ, fΓ, hΓ and constant λΓ of equation (31), as well asWε of (33) correspond-
ing to our choice of aj , υj and ςj , we expand

ϕ̃ = ε2n−2Γ +Wε + ϕ,

h̃ = S(ω) + ε2n−2hΓ + h,

λ̃ = ε2n−2λΓ + λ

f̃ = ε2n−2fΓ + f.

As we will see in Proposition 6.6, (ϕ, h, λ, f) = (0, 0, 0, 0) then gives a good
approximate solution to the extremal equation.
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The equation we wish to solve for ϕ and h to establish Proposition 6.5
can then be written

S

(
ω + i∂∂̄

(
ε2n−2(Γ + λΓt) +Wε + ϕ

))

= S(ω) + ε2n−2
(
hΓ + ϱ(fΓ)

)
+ h+ ϱ(fΓ)

+
1

2
⟨∇

(
S(ω) + ε2n−2(hΓ + ϱ(fΓ)) + h+ ϱ(f)

)
,

∇
(
ε2n−2(Γ + λΓt) +Wε + ϕ+ λt

)
⟩

Let L be the linearisation of S
(
ω + i∂∂̄(·)

)
at 0. Then L is given by

L(·) = −D∗
ωDω +

1

2
⟨∇(S(ω)),∇(·)⟩.

We also have an expansion

S
(
ω + i∂∂̄(·)

)
= S(ω) + L(·) +Q(·),

for some non-linear operator Q. To establish Proposition 6.5, we will rewrite
the equation using these expansions, so that the contraction mapping theo-
rem can be used. We have that the equation we wish to solve is equivalent
to

D∗
ωDω

(
ϕ+ λt

)
+ h+ ϱ(f)

= Q
(
ε2n−2(Γ + λΓt) +Wε + ϕ+ λt

)
− ε2n−2

(
hΓ + ϱ(fΓ)

)

−D∗
ωDω

(
ε2n−2(Γ + λΓt) +Wε

)

− 1

2
⟨∇

(
ε2n−2(hΓ + ϱ(fΓ)) + h+ ϱ(f)

)
,

∇
(
ε2n−2(Γ + λΓt) +Wε + ϕ+ λt

)
⟩

= Q
(
ε2n−2(Γ + λΓt) +Wε + ϕ+ λt

)
−D∗

ωDω

(
Wε

)

− 1

2
⟨∇

(
ε2n−2(hΓ + ϱ(fΓ)) + h+ ϱ(f)

)
,

∇
(
ε2n−2(Γ + λΓt) +Wε + ϕ+ λt

)
⟩,

using that D∗D
(
Γ + tλΓ

)
= hΓ + ϱ(fΓ) away from the blown-up points. We

will let Qε denote the right hand side of this equation, i.e. the operator

Q
(
ε2n−2(Γ + λΓt) +Wε + ϕ+ λt

)
−D∗

ωDω

(
Wε

)

− 1

2
⟨∇

(
ε2n−2(hΓ + ϱ(fΓ)) + h+ ϱ(f)

)
,∇

(
ε2n−2(Γ + λΓt) +Wε + ϕ+ λt

)
⟩.
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By Proposition 5.2, the operator

C4,α
δ,η (Y )× R× hD// × hD → ˜C0,α

δ−4,η(Y )

given by

(ϕ, λ, h, f) 7→ D∗D
(
ϕ+ λt

)
+ h+ ϱ(f)

has a right inverse P when δ ∈ (4− 2n, 0) and η ∈ (−κ, 0). Note that we
are here using the decomposition of hD as R× hD like in Lemma 4.8. If
our functions were defined everywhere except the blown-up points, we could
then apply P to our original equation to recast it as a fixed point problem.
However, since our functions are only defined on the complement Yε of balls
around the blown-up points, we cannot do this directly. Following Arezzo-
Pacard-Singer, the remedy for this is to define an extension operator

E = Eε : C4,α
δ,η (Yε) → C4,α

δ,η (Y ),

and apply this to the equation before applying P .
The extension operator is defined as follows. At a scale r it is defined to

be

• E(f) = f outside ∪k
j=1B

j
r

• E(f)(zj) = 2|zj |−r
r f(r zj

|zj |) in B
j
r \Bj

r/2

• E(f) = 0 in each B
j
r/2.

We will let Eε denote the above operator on the scale rε. A key property for
us is that, independently of ε, Eε is a bounded operator C4,α

δ,η (Yε) → C4,α
δ,η (Y ).

Using the extension operator, we can then rewrite the equation as a fixed
point problem

(ϕ, λ, h, f) = Nε(ϕ, λ, h, f),(39)

where Nε is the operator

Nε = P ◦ Eε ◦Qε.(40)

A solution to the fixed point problem will then give a solution to the ex-
tremal equation on Yε. Note that Qε, and therefore also Nε, depends on the
boundary data υj , ςj .

The fixed point is guaranteed by the Contraction Mapping Theorem
once the following Proposition is proved. Recall that the boundary data υ =
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(υ1, · · · , υk) ∈
(
C4,α(∂B1)

)k
and ς = (ς1, · · · , ςk) ∈

(
C2,α(∂B1)

)k
is assumed

to satisfy the estimate (36) and condition (37). Below we will let N = Nε

denote the operator (40) associated to this boundary data. We will also let
ξ = (ϕ, λ, h, f) and similarly for ξ′.

Proposition 6.6. For each τ > 0 there is a cτ > 0 and ετ > 0 such that
for all ε ∈ (0, ετ ),

∥N (0, 0, 0, 0)∥ ≤ cτ
(
r2n+1
ε + ε4n−4r6−4n−δ

ε

)
(41)

and

∥N (ξ)−N (ξ′)∥ ≤ cτε
2n−2r6−4n−δ

ε ∥ξ − ξ′∥,(42)

provided ξ, ξ′ have norm at most 2cτ (r
2n+1
ε + ε4n−4r6−4n−δ

ε ).
Moreover, if Ñ is the map associated to a different choice of boundary

data υ̃j , ς̃j also satisfying (36) and (37) then

∥N (ξ)− Ñ (ξ)∥ ≤ cτ
(
r2n−3
ε + ε2n−2r2−2n−δ

ε

)
∥(υ − υ̃, ς − ς̃)∥(43)

for all ξ satisfying ∥ξ∥ ≤ 2cτ
(
r2n+1
ε + ε4n−4r6−4n−δ

ε

)
.

In the above Proposition, the norm on the right hand side of (43) is the

product norm on
(
C4,α(∂B1)

)k ×
(
C2,α(∂B1)

)k
.

This Proposition allows us to use the Contraction Mapping Theorem to
finish the proof of Proposition 6.5, because the estimate (42) shows that N
is a contraction on the set

{ξ ∈ C4,α
δ,η (Yε)× R× hD// × hD : ∥ξ∥ ≤ 2cτ

(
r2n+1
ε + ε4n−4r6−4n−δ

ε

)
},(44)

provided we (potentially) reduce ετ such that

cτ ≤ 1

2
ε2n−2r6−4n−δ

ε

for all ε ∈ (0, ετ ). Moreover, (41) shows that the image of the origin by N is
in this set. Finally, the estimate (43) then shows that the metrics constructed
when applying the Contraction Mapping Theorem satisfy the estimate (38).

We will now prove Proposition 6.6, which, by the above argument, com-
pletes the proof of Proposition 6.5. We follow very closely the argument of
[6], with some input from [27].
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Proof. The right inverse P is bounded independently of ε. By the bound-
edness of E , it therefore suffices to establish a corresponding bound for
Qε(0, 0, 0, 0) to show that (41) holds. Note that

Qε(0, 0, 0, 0) = Q
(
ε2n−2(Γ + λΓt) +Wε

)
−D∗

ωDω

(
Wε

)

− 1

2
⟨∇

(
ε2n−2(hΓ + ϱ(fΓ))

)
,∇

(
ε2n−2(Γ + λΓt) +Wε

)
⟩.

The latter of these terms satisfies the required bound because of linearity
and so we can take the ε-dependent terms out as a factor (here we are using
that ∇hΓ vanishes at each blow-up point to get a sufficiently good bound).
The bound on the second term follows because

D∗
ωDω

(
Wε

)
= D∗

ωDω

(
Wε

)
−∆2(Wε)

in the complement of Bj
ε in the ball of radius 1 about pj . Here ∆ is the

Euclidean Laplacian. Since we are in normal coordinates, and the leading
order term of D∗

ωDω equals ∆2, this implies the bound we require on the
middle term.

We are left with estimating Q(ε2n−2(Γ + λΓt) +Wε), and the key is to
obtain an estimate near the blow-up points. To establish this bound near
these points, we use the fact that for any subset U of the blow-up of X, and
negative δ, there is a c > 0 such that if some function v is sufficiently small
in C4,α

2 (U), then

∥Q(v)∥C0,α
δ−4(U) ≤ c∥v∥C4,α

2 (U)∥v∥C4,α
δ (U),

see [27, Proposition 25]. Note that since we are applying this to a subset
U close the the blow-up points, we can assume that D is far away from U ,
and so we are considering only the blow-up weights here, and can ignore the
divisor weight η. Using the ε-dependence of the functions we are applying
this to, we get precisely the required bound, as in the compact case.

For the second estimate, (42), the boundedness of P and E together with
the Mean Value Theorem implies that it suffices to establish the bound for
the linearised operator of Qε at a convex combination φ of the two functions.
But the linearised operator of Qε at φ equals Lωϕ

− Lω, see [27, Lemma 21].
Near the blown up points, this bound is similar to the bound on Q(v)

above. The key fact is that for any subset U of the blow-up of X, and
negative δ, there is a c > 0 such that if φ is sufficiently small in C4,α

2 (U),
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then

∥Lωϕ
(v)− Lω(v)∥C0,α

δ−4(U) ≤ c∥φ∥C4,α
2 (U)∥v∥C4,α

δ (U),

see [27, Proposition 20]. This gives us exactly the required bound. Indeed, φ
is a convex combination of ϕ and ϕ′, and so ∥φ∥C4,α

2 (U) will be bounded above

by ∥ϕ∥C4,α
2 (U) + ∥ϕ′∥C4,α

2 (U). But ∥ϕ∥C4,α
2 (U) ≤ εδ−2∥ϕ∥C4,α

δ (U), and similarly

for ϕ′, using the comparison of weights (see e.g. [28, p. 167]). Combining
this with the assumption on the δ-norm of ϕ and ϕ′ then gives the required
inequality, after possibly reducing ετ , by using that δ > 4− 2n. Near the
divisor, the argument works in the same way: the two operators agree with
the model one to highest order, which allows us to obtain a similar bound
using the same strategy.

Finally, the third estimate is also obtained using an analogous strategy.
The key is to use the change in the functions like Wε that are associated
to the boundary data υj , ςj in the corresponding estimates. For details, we
refer to [6] and the earlier works [4] and [5]. □

6.4. Matching the metrics

Following [6], in order to see that we can match up the metrics created in
the previous section, we will near where the regions Yε and ∪k

j=1B̃
j
ε pull the

potentials back to some fixed annular region B2 \B 1

2
.

The system we need to solve is the following.

Proposition 6.7 ([6, Section 7]). Suppose that ϕj ∈ C4,α
(
B2 \B1

)
and

ψj ∈ C4,α
(
B1 \B 1

2

)
are the functions obtained via the ε-dependent charts

from Proposition 6.5 and 6.4, respectively, for the same vector field in t, in
such a way that on ∂B1

ψj = ϕj ,

∂rψj = ∂rϕj ,

∆ψj = ∆ϕj ,

∂r∆ψj = ∂r∆ϕj .

Then ϕj and ψj glue across ∂B1 to produce a smooth function on X̃ \D
inducing a Poincaré type metric in the class Ωε given by equation (4), which
is extremal provided the assumption (3) holds.

Note that it is because of the requirement that the vector fields above
are the same that we must insist that hΓ ∈ t in equation (31).
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The proof that this indeed is sufficient is exactly as in [6], with one extra
point to take care of. Their argument shows that establishing the above
allows us to construct a potential of class Ωε for a Poincaré type metric on
X̃ \D. We then need to show that this metric is in fact extremal. In the
Arezzo-Pacard-Singer setting this is automatic, but we have the possibility
that we used some of the additional cokernel elements coming from pulled
back functions from the divisor, and so it may be that the metric constructed
is not extremal in some region away from the blow-up points.

We remove this possibility by using our assumption (3), together with
the following Lemma.

Lemma 6.8. Let X be a compact complex manifold, D ⊆ X a smooth di-
visor, and ω a metric of Poincaré type. Let X be the vector field obtained
by first projecting S(ω) to hD// and then taking the gradient. Then the vector

field is unchanged if we replace ω by ωφ = ω + i∂∂̄ϕ with ϕ ∈ C4,α
η .

The above Lemma implies that the assumption (3) on the extremal
vector field of the class Ωε ensures that projection of the scalar curvature of
any metric of the type we construct in Ωε has 0 component coming from the
pulled back functions from D, i.e. the component ϱ(f) is actually 0. This is
because the approximate metric built from the Burns-Simanca metric has
associated vector field which restricts to the extremal vector field of D on
D, and if two vector fields in h have the same restriction to D and same
projection to hD//, then they are equal. Therefore the metrics constructed by

the Cauchy matching technique have scalar curvature that actually lies in t,
and so the metrics are extremal.

Note that while it may be that a vector field in h is not in L2 (by
Auvray’s result Lemma 4.2 this happens if and only if the vector field is
in hD//). However, the inner product of an element of h with one of hD// is
well-defined, as one can see for example by the duality theory developed in
Section 4. Thus the projection to hD// mentioned in the previous paragraph
is well-defined.

We now prove the Lemma.

Proof. Let f1, · · · , fk be an orthonormal basis for (hD//)ω. Then an orthonor-

mal basis for (hD//)ωφ
is given by replacing fj by the function

fφj = fj +
1

2
⟨∇fj ,∇ϕ⟩.
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The projection map is therefore

ϕ 7→
k∑

j=1

( ∫

X
S(ωφ)f

φ
j ω

n
φ

)
fφj .(45)

We think of this as a map into Rk using our chosen ϕ-dependent bases.
It suffices to show that the derivative of this map at any point is 0.

Let L denote the derivative of the scalar curvature operator at ϕ = 0.
Recall also that the derivative of the operator ϕ 7→ ωn

φ at ϕ = 0 is ψ 7→
∆(ψ)ωn, where ∆ is the Laplace operator of ω. The derivative at ϕ = 0 of
the jth component of the map (45) is therefore the map C4,α

η (X \D) → R

given by

ψ 7→
∫

X
L(ψ)fjω

n +
1

2

∫

X
S(ω)⟨∇fj ,∇ψ⟩ωn +

∫

X
S(ω)fj∆(ψ)ωn.

Integrating the term involving the Laplacian by parts and using that L(ψ) =
−D∗

ωDω(ψ) +
1
2⟨∇S(ω),∇ψ⟩ we therefore get that the derivative is simply

ψ 7→ −
∫

X
D∗

ωDω(ψ)fjω
n.

But from Proposition 4.3 we know that the image of D∗
ωDω on C4,α

η is the

L2-orthogonal complement to (hD//)ω. So since fj ∈ (hD//)ω, the derivative
map is just 0. Calculating the derivative of the operator at any other ϕ is
the same, just replacing ω by ωφ above. Thus the derivative is 0 at any ϕ
and the Lemma is proved. □

The argument to show that we can actually find functions satisfying
Proposition 6.7 is exactly as in [6, pp.39-41]. The factors aj determine the
ratio of the exceptional divisor volumes. By letting these vary for the blown-
up regions we glue in, we recover the degrees freedom lost by the conditions
on the boundary data υj , ςj . By expanding using the low order approxima-
tions (32) and (33), it can be shown that the matching can be achieved. This
step hinges on [6, Lemma 7.0.2], an isomorphism result for a map between
boundary data. Since this does not see the Poincaré type behaviour, we omit
the details and refer to [6].

Note that this step makes us lose control of the Kähler class in general.
However, under the assumption that any vector field in h vanishing at all
the points pi necessarily is in t, we regain this control, i.e. we can enter the
Kähler cone in a straight line with the metrics produced, as in the compact
case.
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7. Examples

In this section, we give three contexts in which we get new examples of
extremal Poincaré type metrics using the main theorem.

7.1. Blowing up Kähler-Einstein metrics

In [14], [19] and [31] Kähler-Einstein Poincaré type metrics were constructed
in the situation when D is a divisor such that KX −D is ample. In this
case, X has no holomorphic vector fields tangent to D. Morever, by the
adjunction formula, KD is ample in this case, and so D has no holomorphic
vector fields. Therefore there are no obstructions to applying Theorem 1.3,
and so we can blow up any finite collection of points on such manifolds, in
any direction into the Kähler cone. The resulting metrics are then constant
scalar curvature Poincaré type metrics.

7.2. Blowing up extremal toric metrics

Another situation where Theorem 1.3 applies is the case of toric manifolds.
For these manifolds, the conditions of the theorem simplify and we begin by
describing this simplification, which could be computed easily in any given
example. We then give some particular cases of toric manifolds where the
results apply.

Recall that a toric manifold X with a Kähler class Ω is determined by
a moment polytope P . Moreover, if D is torus-invariant it corresponds to
a union F of facets of the polytope. This is in general a simple normal
crossings divisor, and D being smooth corresponds to F being a disjoint
union of facets. For such manifolds, all the assumptions apart from (3) in
Theorem 1.3 become redundant, by taking T to be a maximal torus, which
we can do provided the points we blow up are fixed points of the torus action.
Thus in the compact case, one can always produce extremal metrics on the
blow-up in any direction into the Kähler cone for such manifolds, provided
one blows up fixed points of the torus action. Due to the condition (3), this
is not always sufficient in our case.

In terms of the moment polytope Pε of the blow-up, the condition (3) on
the extremal vector field becomes that the associated affine linear function
Aε associated to the pair (Pε, F ) differs along F from the extremal affine
function AF of F by a constant. Here the associated affine linear function
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of a pair (Q,E) is the unique affine linear function A such that

f 7→
∫

∂Q\F
fdσ −

∫

Q
fAdλ

vanishes on all affine linear function, see [15] for details.
We begin with the case of the Abreu/Bryant metric of [1] and [12] on

Pn \ Pn−1, say with class c1
(
O(1)

)
. This is an extremal Poincaré type metric

which is not of constant scalar curvature.
The moment polytope P of Pn with this class is the standard simplex

P = {x : xi ≥ 0, x1 + · · ·+ xn ≤ 1} ⊆ Rn

and the facet F corresponding to the divisor Pn−1 is the boundary compo-
nent

F = {x ∈ P : x1 + · · ·+ xn = 1}.
There is only one fixed point not on the divisor, and this corresponds to the
origin in the moment polytope. Letting y = x1 + · · ·+ xn, we have that the
associated affine linear function A(P,F ) is of the form

A(P,F ) = a+ by.

The ε-blow-up of Pn in this point has moment polytope

Pε = {x : xi ≥ 0, ε ≤ x1 + · · ·+ xn ≤ 1}.

Since this polytope keeps the symmetry of the function y, the associated
affine linear function Aε of (Pε, F ) is of the form

Aε = aε + bεy.

In particular, the restriction to F is a constant, and so Theorem 1.3 applies.
In other words, there is a ε0 > 0 such that there is an extremal Poincaré
type metric on the ε-blow-up for all ε ∈ (0, ε0).

Remark 7.1. In [3], it was actually shown for the case of surfaces that ε0
is as large as it can be, i.e. the Seshadri constant of the blow-up point.

We can now try to blow up these again. When doing so, there is now
more than one point to choose from. Choosing a single point will destroy the
symmetry in the function y, and so the associated affine linear function will
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no longer be constant along F . However, the symmetry is kept if we blow up
in all the new fixed points, with the ε-dependent Kähler class having equal
volumes for all the new exceptional divisors. So for this choice of blow-up
points and divisor volumes, we can apply Theorem 1.3.

We could continue doing this inductively, all the time blowing up all
new fixed points with equal volume for all the exceptional divisors of the
blow-up. Thus Theorem 1.3 can be applied to some successive blow-ups of
the Abreu/Bryant extremal Poincaré type manifold. In particular, we get an
infinite family of different complex manifolds (of different topological type),
all admitting extremal Poincaré type metrics.
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