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Derived categories of Quot schemes of

locally free quotients via

categorified Hall products

Yukinobu Toda

We prove Qingyuan Jiang’s conjecture on semiorthogonal decom-
positions of derived categories of Quot schemes of locally free quo-
tients. The author’s result on categorified Hall products for Grass-
mannian flips is applied to prove the conjecture.

1. Introduction

1.1. Quot formula

Let X be a smooth quasi-projective variety over C, G a coherent sheaf on
X and d ≥ 0 be an integer. The relative Quot scheme

QuotX,d(G )→ X(1.1)

parametrizes rank d locally free quotients of G . All the fibers of the above
morphism are Grassmannian varieties, whose dimensions are different in
general. Here we remark that QuotX,0(G ) = X.

Let us take a right exact sequence

E
−1 φ
→ E

0 → G → 0(1.2)

where E 0 and E −1 are locally free sheaves on X. Let δ := rank(E 0)−
rank(E −1). By taking its dual, we obtain the right exact sequence

E0
φ∨

→ E1 →H → 0

where Ei := (E −i)∨ and H is the cokernel of ϕ∨. Note that rank(E1)−
rank(E0) = −δ. As a dual side of (1.1), we also consider the relative Quot
scheme QuotX,d(H )→ X.
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We will see that there exist quasi-smooth derived schemes over X (see
Section 2.1)

QuotX,d(G )→ X ← QuotX,d(H )(1.3)

which depend on a sequence (1.2) and with classical truncations QuotX,d(G )
and QuotX,d(H ) that have virtual dimensions dimX + δd− d2 and
dimX − δd− d2 respectively. The following is the main result in this pa-
per:

Theorem 1.1. (Theorem 2.16) Suppose that δ ≥ 0. There is a semiorthog-
onal decomposition of the form

Db(QuotX,d(G ))

=

〈(
δ

i

)
-copies of Db(QuotX,d−i(H )) : 0 ≤ i ≤ min{d, δ}

〉
.

The above result is a generalization of the conjecture by Qingyuan
Jiang [Jia, Conjecture A.5] whenX is smooth (see Corollary 1.2). The case of
d = 1 is called projectivization formula and proved in [Kuz07, Theorem 5.5],
[JL, Theorem 3.4], [Todb, Theorem 4.6.11]. The d = 2 case is proved in [Jia,
Theorem 6.19]. The Quot formula in Theorem 1.1 recovers several known
formulas (see [Jia, Section 1.4.2] for details), e.g. Kapranov exceptional col-
lection for Grassmannian [Kap84] (by setting X to be a point), the projec-
tivization formula [Kuz07, JL, Todb] (by setting d = 1). The proof involves
semiorthogonal decomposition of Grassmannian flip [BCF+21, Todc], which
itself generalizes Bondal-Orlov standard flip formula [BO].

Suppose that G has homological dimension less than or equal to one.
Then there is a sequence (1.2) so that ϕ is injective, and in that case H =
Ext1OX

(G ,OX) (which is independent of a choice of (1.2) with ϕ injective),
and δ = rank(G ). In [Jia, Conjecture A.5], the conjecture is stated for derived
categories of the classical Quot schemes QuotX,d(G ), QuotX,d(H ), when G

has homological dimension less than or equal to one, H = Ext1OX
(G ,OX),

and under some Tor-independence condition. The Tor-independence condi-
tion implies that the dimensions of the above classical Quot schemes coincide
with the virtual dimensions if they are non-empty (see [Jia, Lemma 6.7]). So
in this case, they are equivalent to QuotX,d(G ), QuotX,d(H ) respectively,
where we take a sequence (1.2) so that ϕ is injective. We also note that, if
QuotX,d(G ) = ∅ then QuotX,d(G ) is equivalent to ∅ regardless of the virtual
dimension, and the same is true for QuotX,d(H ). Therefore we obtain the
following corollary, which proves [Jia, Conjecture A.5] when X is smooth:
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Corollary 1.2. Suppose that G has homological dimension less than or
equal to one, and H := Ext1OX

(G ,OX). Assume that dimQuotX,d(G ) =
dimX + δd− d2 and dimQuotX,d(H ) = dimX − δd− d2, where δ =
rank(G ) ≥ 0. Then we have a semiorthogonal decomposition of the form

Db(QuotX,d(G ))

=

〈(
δ

i

)
-copies of Db(QuotX,d−i(H )) : 0 ≤ i ≤ min{d, δ}

〉
.

Example 1.3. When G is locally free, then H = 0. Suppose that δ ≥ d.
Then QuotX,d(G ) is a Grassmannian bundle over X with fiber Gr(d, δ),
and QuotX,d(H ) = X for d = 0, ∅ for d > 0. In this case, Corollary 1.2
gives

Db(QuotX,d(G )) =

〈(
δ

d

)
-copies of Db(X)

〉
.

When X is a point, the above semiorthogonal decomposition gives Kapranov
exceptional collection of Grassmannian variety [Kap84].

Remark 1.4. In [Jia, Conjecture A.5], the conjecture is formulated in a
more general assumption on X. We focus on the case that X is a smooth
quasi-projective variety over C in order to avoid some technical subtleties.
This assumption is enough for applications in [Jia, Section 1.5].

Remark 1.5. Each fully-faithful functor Db(QuotX,d−i(H )) →֒
Db(QuotX,d(G )) in Theorem 1.1 can be shown to be of Fourier-Mukai type,
though we will not discuss its details. However the proof of Theorem 1.1
does not give any information about the kernel objects.

We prove Theorem 1.1 by interpreting (−1)-shifted cotangent derived
schemes in (1.3) (see Section 2.2 for (−1)-shifted cotangent derived schemes
or stacks) as d-critical Grassmannian flip in the sense of [Toda] (see Re-
mark 2.8), and then use Koszul duality together with categorified Hall prod-
ucts for families of Grassmannian flips. The categorified Hall products for
Grassmannian flip are used in [Todc] as an intermediate step toward the
categorification of wall-crossing formula of Donaldson-Thomas invariants on
the resolved conifold.
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1.2. Applications

The Quot formula in Corollary 1.2 has lots of applications on derived cate-
gories of classical moduli spaces (see [Jia, Section 1.5]). Here we mention two
examples: one is a generalization of [Tod21, Corollary 5.11] and [Jia, Corol-
lary 1.3] on semiorthogonal decompositions of varieties associated with Brill-
Noether loci for curves, and the other one is a categorical blow-up formula
of Hilbert schemes of points on surfaces obtained by Koseki [Kos].

Let C be a smooth projective curve over C with genus g. We denote by
Picd(C) the Picard variety parameterizing degree d line bundles on C, which
is a g-dimensional complex torus and (non-canonically) isomorphic to the
Jacobian Jac(C) of C. The Brill-Noether locus on Picd(C) is defined by

W r
d (C) := {L ∈ Picd(C) : h0(L) ≥ r + 1}.

There is a scheme Gr
d(C) parameterizing grd’s which appears in the classical

study of Brill-Noether loci (see [ACGH85, Chapter 4, Section 3]). It is set
theoretically given by

Gr
d(C) = {(L,W ) : L ∈W r

d (C),W ⊂ H0(C,L), dimW = r + 1}

where W is a vector subspace. If C is a general curve, then Gr
d(C) is a

smooth projective variety of expected dimension g − (r + 1)(g − d+ r). As
explained in [Jia, Section 1.5.1], for any δ ≥ 0 there is a coherent sheaf G

on X = Picg−1+δ(C) of rank δ that has homological dimension less than or
equal to 1 and such that

QuotX,r+1(G ) = Gr
g−1+δ(C), QuotX,r+1(H ) = Gr

g−1−δ(C).

Here H = E xt1OX
(G ,OX). By applying Corollary 1.2, we have the following:

Corollary 1.6. Let C be a general smooth projective curve with genus g.
Then for any r ∈ Z≥0 and δ ≥ 0, there is a semiorthogonal decomposition

Db(Gr
g−1+δ(C)) =

〈(
δ

i

)
-copies of Db(Gr−i

g−1−δ(C)) : 0 ≤ i ≤ min{δ, r + 1}

〉
.

Here for i = r + 1, we have G−1
g−1−δ(C) = Picg−1−δ(C).
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The case of r = 0 gives the semiorthogonal decomposition of symmetric
products

Db(Symg−1+δ(C)) =
〈
Db(Symg−1−δ(C)), δ-copies of Db(Jac(C))

〉

proved in [Tod21, Corollary 5.11]. The case of r = 1 is given in [Jia, Corol-
lary 1.3], and it is

Db(G1
g−1+δ(C)) =

〈
Db(G1

g−1−δ(C)), δ-copies of Db(Symg−1−δ(C)),

(
δ

2

)
-copies of Db(Jac(C))

〉
.

The result of Corollary 1.6 extends the above results to an arbitrary r ∈ Z≥0.
Another application is on semiorthogonal decompositions of Hilbert

schemes of points on surfaces under blow-up. Let S be a smooth projective
surface and Ŝ → S be a blow-up at a point. Then the Göttsche formula [G9̈0]
for the Euler numbers of Hilbert schemes of points Hilbn(S) in particular
implies the blow-up formula

∑

n≥0

e(Hilbn(Ŝ))qn =
∑

n≥0

e(Hilbn(S))qn ·
∏

d≥1

1

(1− qd)
.(1.4)

Note that if we define p(j) to be the number of partitions of j, we have the
formula

∑

j≥0

p(j)qj =
∏

d≥1

1

(1− qd)
.

On the other hand, Nakajima-Yoshioka [NY11] proved that Hilbn(S) and
Hilbn(Ŝ) are related by wall-crossing diagrams. One can show that each wall-
crossing diagram fits into the framework of Quot formula in Theorem 1.1,
see [NY11, Theorem 4.1], [Kos, Theorem 4.1]. Based on this observation and
using Theorem 1.1, the following blow-up formula is obtained in [Kos]:

Theorem 1.7. (Koseki [Kos]) There is a semiorthogonal decomposition of
the form

Db(Hilbn(Ŝ)) =
〈
p(j)-copies of Db(Hilbn−j(S)) : j = 0, . . . , n

〉
.

The semiorthogonal decomposition in Theorem 1.7 categorifies the blow-
up formula (1.4).
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1.3. Notation and convention

In this paper, all the varieties or (derived) stacks are defined over C. For an
introduction to derived algebraic geometry, we refer to [Toë14]. For a locally
free sheaf E on a stack X, we often regard it as a total space of its associated
vector bundle, i.e. Spec Sym(E ∨)→ X. For a derived Artin stack M, we
denote by t0(M) its classical truncation. Explicitly if M = [SpecA•/G] for a
commutative dg-algebraA• with non-positive degrees and an algebraic group
G acting on A•, we have t0(M) = [SpecH0(A•)/G], also see Remark 2.4. For
a complex of vector bundles E • with differential dE • on X, we denote by
Sym(E •) the sheaf of dg-algebras on X, whose underlying graded sheaf is
the super-symmetric product of E •, and the differential dSym(E •) is uniquely
determined by the condition that dSym(E •)|E • = dE • and the Leibniz rule.

For a derived stack M, the triangulated category Db(M) is defined to be
the homotopy category of the ∞-category of quasi-coherent sheaves on M

with bounded coherent cohomologies. The tangent complex of M is denoted
by TM (see [Toë14, Section 3.1]), and the cotangent complex LM is defined
to be its dual. A derived stack M is called quasi-smooth if its cotangent com-
plex LM is perfect and LM|t0(M) has cohomological amplitude contained in
[−1, 1]. The rank of LM|t0(M) is called the virtual dimension ofM. For exam-
ple if Y is a smooth (classical) Artin stack, E → Y is a vector bundle with a
section s, the derived fiber product Y ×0,E ,s Y is quasi-smooth with virtual
dimension dimY − rank(E ), which is called derived zero locus of s. When
Y = SpecA for a commutative C-algebra and E is determined by a pro-
jective A-module M , then the derived zero locus is SpecK(A,M, s), where
K(A,M, s) is the Koszul complex · · · → ∧M∨ s

→M∨ s
→ A→ 0, see [Toë14,

Last paragraph of Section 2.2].

2. Proof of Theorem 1.1

2.1. Derived structures of Quot schemes

Let X be a smooth quasi-projective variety over C, G a coherent sheaf on
it. Recall that the Quot scheme QuotX,d(G ) represents the functor

QuotX,d(G ) : (Sch/X)op → (Set)

which sends T → X to the equivalence classes of GT ↠ P where P is a
locally free sheaf on T of rank d and GT is the pull-back of G to T .
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Let us take a right exact sequence

E
−1 φ
→ E

0 → G → 0(2.1)

such that E i are locally free sheaves of finite rank on X. The surjection
E 0

↠ G induces the closed immersion

QuotX,d(G ) →֒ QuotX,d(E
0).(2.2)

Below we fix a vector space V of dimension d, and denote by GLX(V ) :=
GL(V )×X → X the group scheme over X. We also set

C(E 0) := [Hom(E 0, V ⊗OX)/GLX(V )].

Here we have identified the locally free sheaf Hom(E 0, V ⊗OX) with the
associated vector bundle over X, i.e. Spec Sym(E 0 ⊗ V ∨)→ X.

Lemma 2.1. There is an open immersion QuotX,d(E
0) ⊂ C(E 0).

Proof. For T → X, the T -valued points of the stack C(E 0) consist of (P, s)
where P is a vector bundle on T of rank d and s : E 0

T →P is a morphism.
Indeed giving a X-morphism T → C(E 0) is equivalent to giving a GLT (V )-
torsor F → T and a GLT (V )-equivariant morphism F → Hom(E 0

T , V ⊗
OT ). The GLT (V )-torsor F corresponds to a vector bundle P on T such
that F is isomorphic to the local framing of P, i.e. the set of sections of F

over an étale morphism U → T is the set of isomorphisms PU
∼=
→ V ⊗OU .

Then the GLT (V )-equivariant morphism F → Hom(E 0
T , V ⊗OT ) corre-

sponds to a vector bundle morphism E 0
T →P on T .

From the definition of QuotX,d(E
0), it is isomorphic to the open sub-

stack of E(E 0) whose T -valued points correspond to (P, s) such that s is
surjective. □

We have the following vector bundle over C(E 0) with a section s

[(
Hom(E 0, V ⊗OX)⊕Hom(E −1, V ⊗OX)

)
/GLX(V )

]
// C(E 0).

s

tt

(2.3)

The section s is induced by the GLX(V )-equivariant morphism

s : Hom(E 0, V ⊗OX)→ Hom(E 0, V ⊗OX)⊕Hom(E −1, V ⊗OX),(2.4)

f 7→ (f, f ◦ ϕ).
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We denote by E • the two term complex (E −1 φ
→ E 0) such that E 0 is of

degree zero. Let C(E •) be the derived zero locus of s. The Koszul complex
associated with s is

· · · → ∧2E −1 ⊗ Sym(E 0 ⊗ V ∨)
s
→ E

−1 ⊗ Sym(E 0 ⊗ V ∨)
s
→ Sym(E 0 ⊗ V ∨)→ 0

which coincides with Sym(E • ⊗ V ∨), see Subsection 1.3 for the dg-algebra
structure on Sym(E • ⊗ V ∨) over X. Therefore C(E •) is written as

C(E •) :=
[
Spec Sym(E • ⊗ V ∨)/GLX(V )

]
.(2.5)

Note that C(E •) is a derived closed substack of C(E 0). We set

QuotX,d(G ) := QuotX,d(E
0) ∩ C(E •),

in other word QuotX,d(G ) is the derived zero locus of s restricted to the
open substack QuotX,d(E

0) ⊂ C(E 0).

Lemma 2.2. The derived stack QuotX,d(G ) has virtual dimension
dimX + δd− d2, with classical truncation QuotX,d(G ).

Proof. The derived stack C(E •) is a derived zero locus of s, so it is quasi-
smooth with virtual dimension

dimC(E 0)− rank(V ⊗ E
−1∨)

= dimX + d rank(E 0)− dimGL(V )− d rank(E −1)

= dimX + δd− d2.

The derived stack QuotX,d(G ) is an open substack of C(E •), so it also has
virtual dimension dimX + δd− d2.

For a X-scheme T → X, a T -valued point of the classical truncation
of QuotX,d(G ) consists of a surjection E 0

T ↠ P such that the composition

E
−1
T → E 0

T ↠ P is zero. This is equivalent to giving a surjection GT ↠ P,
i.e. a T -valued point of QuotX,d(G ). □

By taking the dual of the sequence (2.1), we obtain the right exact
sequence

E0
φ∨

→ E1 →H → 0.
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Here we have set Ei := (E −i)∨, and H is defined to be the cokernel of ϕ∨.
We apply the above construction for the quotient E1 ↠ H . By replacing
V with V ∨ and noting GLX(V ) = GLX(V ∨), we have the closed immersion
and an open immersion

QuotX,d(H ) →֒ QuotX,d(E1) ⊂ C(E1) := [Hom(E1, V
∨ ⊗OX)/GLX(V )].

We also have the vector bundle with a section s∨

[(Hom(E1, V
∨ ⊗OX)⊕Hom(E0, V

∨ ⊗OX)) /GLX(V )] // C(E1).

s∨

tt

(2.6)

The section s∨ is induced by the morphism

s∨ : Hom(E1, V
∨ ⊗OX)→ Hom(E1, V

∨ ⊗OX)⊕Hom(E0, V
∨ ⊗OX)

given by f 7→ (f, f ◦ ϕ∨). Similarly to (2.5), the derived zero locus of s∨ is
written as

C(E•[1]) := [Spec Sym(E•[1]⊗ V )/GLX(V )] .

Here E•[1] is the complex (E0
φ∨

→ E1) such that E1 is of degree zero. We set

QuotX,d(H ) := QuotX,d(E1) ∩ C(E•[1]).(2.7)

The same proof of Lemma 2.2 shows that QuotX,d(H ) has virtual dimen-
sion dimX − δd− d2, and its classical truncation is QuotX,d(H ).

2.2. (−1)-shifted cotangent derived stacks

For a derived Artin stack M, its (−1)-shifted cotangent is defined by
(see [Cal19])

ΩM[−1] := Spec SymOM
(TM[1]).

Here TM is the tangent complex of M.
In the case that M is a derived zero locus, the classical truncation of

ΩM[−1] has the following critical locus description. Let Y = [Y/G] for a
smooth quasi-projective scheme Y and G is an affine algebraic group acting



✐

✐

“10-Toda” — 2023/6/20 — 18:40 — page 248 — #10
✐

✐

✐

✐

✐

✐

248 Yukinobu Toda

on Y . Let F → Y be a vector bundle on it with a section s, which is identi-
fied with a G-equivariant vector bundle F → Y together with a G-invariant
section s̃ of F → Y . Suppose that M is a derived zero locus of s, that is
M = [M̃/G] where M̃ is the derived zero locus of s̃. Let w be the function

w : F∨ → A
1, w(y, v) = ⟨s(y), v⟩(2.8)

for y ∈ Y and v ∈ F∨|y, which is identified with a G-invariant function w̃
on F∨. We set

Crit(w) := [Crit(w̃)/G] ⊂ F∨

which is a closed substack of F∨. Here Crit(w̃) ⊂ F∨ is the scheme theoretic
critical locus of w̃, defined by the ideal generated by the image of dw̃ : TF∨ →
OF∨ . (Alternatively Crit(w) is the closed substack of F∨ defined by the ideal
generated by the image of dw : H0(TF∨)→ OF∨).

Lemma 2.3. Suppose that M is the derived zero locus of a section s of
a vector bundle F → Y for a quotient stack Y = [Y/G] as above. Then the
classical truncation t0(ΩM[−1]) of ΩM[−1]) is isomorphic to Crit(w).

Proof. We denote by M ⊂ Y the classical truncation of M̃ , that is the clas-
sical zero locus of s̃. Note that M ⊂ Y is a G-invariant closed subscheme,
and we have M := t0(M) = [M/G], see Remark 2.4. The shifted tangent
complex TM[1] restricted toM is given by

TM[1]|M = (g⊗OM → TY |M
ds
→ F|M)

where TY = [TY /G] which is a vector bundle on Y, F is located in degree
zero. In particular M is quasi-smooth, see Subsection 1.3 for the definition
of quasi-smoothness. Let us take a distinguished triangle in Db(M)

R → TM[1]→ TM[1]|M.

Here we regarded the last term as an object inDb(M) by the push-forward of
the closed immersionM →֒M. Then R is concentrated in negative degrees,
TM[1] and TM[1]|M are concentrated on non-positive degrees. Therefore by



✐

✐

“10-Toda” — 2023/6/20 — 18:40 — page 249 — #11
✐

✐

✐

✐

✐

✐

Derived categories of Quot schemes 249

taking the symmetric products and the zero-th cohomology, we have

H0(SymOM
(TM[1]))

∼=
→ H0(SymOM

(TM|M[1])).

We also have the distinguished triangle

g⊗OM[1]→ (TY |M
ds
→ F|M)→ TM[1]

where in the middle term F|M is located in degree zero. Again by taking
the symmetric products and the zero-th cohomology, we obtain

H0(SymOM
(TY |M

ds
→ F|M))

∼=
→ H0(SymOM

(TM|M[1])).

Therefore the stack t0(ΩM[−1]) is isomorphic to the classical truncation of

Spec SymOM
(TY |M

ds
→ F|M) = [Spec SymOM

(TY |M
ds̃
→ F |M )/G].

The classical truncation of the derived scheme Spec Sym(TY |M
ds̃
→ F |M ) is

isomorphic to Crit(w̃) (see [JT17, Proposition 2.8], [Todb, Section 2.1.1]),
therefore the lemma holds. □

Remark 2.4. We use the fact taking the classical truncation t0(−) com-
mutes with taking the quotient stack. Indeed let Y be a derived scheme with
a G-action, and Y = t0(Y). The quotient stack [Y/G] is obtained as a col-
imit of the simplicial derived scheme that is equal to G×n ×Y in degree n.
As t0(−) commutes with taking colimits, see [TV08, Paragraph after Defi-
nition 2.2.4.3], we see that t0([Y/G]) = [Y/G].

The above construction is summarized in the following diagram

Y �
� 0 //

□

F

��
M
?�

OO

� � // Y,

s

[[ t0(ΩM[−1])
∼= //

��

Crit(w) �
� //

��

F∨

��

w

!!
M M � � // Y A1.

(2.9)

Here the left square is a derived Cartesian.
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We return to the setting of the previous subsections. Let V be a d-
dimensional vector space. We set Y (d) and Y(d) to be

Y (d) := Hom(E 0, V ⊗OX)⊕Hom(V ⊗OX ,E −1),(2.10)

Y(d) := [Y (d)/GLX(V )].

Again we have regarded Y (d) as the total space of a vector bundle over X.
For T → X, the T -valued points of the stack Y(d) consist of tuples

(P, α, β), α : E
0
T →P, β : P → E

−1
T(2.11)

where P is a locally free sheaf on T of rank d. Note that the projection

Y(d)→ [Hom(E 0, V ⊗OX)/GLX(V )] = C(E 0)

identifies Y(d) with the dual vector bundle of (2.3). We define the super-
potential

w : Y(d)→ A
1, (P, α, β) 7→ ⟨s(α), β⟩ = Tr(α ◦ ϕT ◦ β).(2.12)

Here over the T -valued points, the last expression is given by taking the
trace of the composition

α ◦ ϕT ◦ β : P
β
→ E

−1
T

φT

→ E
0
T

α
→P.

From the diagram (2.9), Lemma 2.3 (applied for Y = C(E 0), F is the vector
bundle (2.3) so that F∨ = Y(d), the section s is (2.4)) implies that we have
the isomorphism

Crit(w)
∼=
→ t0(ΩC(E •)[−1]).(2.13)

Remark 2.5. Let a = rank(E 0) and b = rank(E −1), and denote by Qa,b the
quiver with two vertices {0, 1}, the a-arrows from 0 to 1 and b-arrows from
1 to 0. We denote by

RQa,b
(d) := [(V ⊕a ⊕ V ∨⊕b)/GL(V )],

the moduli stack of representations of Qa,b with dimension vector (1, d) for
d = dimV . If X is a point, then Y(d) is isomorphic to RQa,b

(d). In general
there is a projection h : Y(d)→ X whose fiber is isomorphic to RQa,b

(d).
Moreover Y(d) ∼= RQa,b

(d)×X if E 0 and E −1 are free OX-modules.
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We have the isomorphism

Y(d)
∼=
→

[(
Hom(E1, V

∨ ⊗OX)⊕Hom(V ∨ ⊗OX ,E0)
)
/GLX(V )

]
(2.14)

by the correspondence over T -valued points

(P, α, β) 7→ (P∨, β∨, α∨), α∨ : P
∨ → (E0)T , β∨ : (E1)T →P

∨.

Under the isomorphism (2.14), the projection

Y(d)→ [Hom(E1, V
∨ ⊗OX)/GLX(V )] = C(E1)

identifies the stack Y(d) with the dual vector bundle of (2.6). Moreover under
the isomorphism (2.14), the super-potential (2.12) is also identified with

w(α, β) = ⟨s∨(β∨), α∨⟩ = Tr(β∨ ◦ ϕ∨ ◦ α∨),

where over the T -valued points, the last expression is the trace for the com-
position

β∨ ◦ ϕ∨ ◦ α∨ : P
∨ α∨

→ (E0)T
φ∨

→ (E1)T
β∨

→P
∨.

Therefore again by Lemma 2.3, we also have the isomorphism

Crit(w)
∼=
→ t0(ΩC(E•[1])[−1]).(2.15)

Let χ0 be the determinant character of GL(V )

χ0 : GL(V )→ C
∗, g 7→ det g,(2.16)

which naturally determines a line bundle on Y(d), denoted by the same
symbol χ0.

Lemma 2.6. The GIT semistable locus

Y(d)χ0-ss ⊂ Y(d), Y(d)χ
−1

0 -ss ⊂ Y(d)

consists of (P, α, β) in (2.11) such that α is surjective, β∨ is surjective,
respectively.

Proof. We only prove the case of Y(d)χ0-ss. By the Hilbert-Mumford crite-
rion in terms of the Θ-stack Θ := [A1/C∗] (see [HL]), the semistable locus
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Y(d)χ0-ss consists of p ∈ Y(d) such that for any g : Θ→ Y(d) with g(1) = p,
we have wt(g(0)∗χ0) ≥ 0. Since Θ→ SpecC is the good moduli space for
Θ, see [Alp13, Example 8.2], any map g : Θ→ Y(d) composed with the pro-
jection Y(d)→ X factors through Θ→ SpecC by the universal property
of the good moduli space, see [Alp13, Theorem 6.6]. Therefore any map
g : Θ→ Y(d) is contained in a fiber of Y(d)→ X. Moreover α is surjective
if and only if α|x is surjective for any x ∈ X. Therefore we may assume that
X is a point. In this case, the lemma follows from [Todb, Lemma 5.1.9]. □

Let us take the GIT quotient

Y(d)→ Y (d)//GLX(V ) := Spec(h∗OY (d))
GLX(V )

where h : Y (d)→ X is the projection. The above morphism is a good moduli
space morphism for Y(d) in the sense of [Alp13], see [Alp13, Theorem 13.2].
We have the commutative diagram

Y(d)χ0-ss //

w+

''

Y (d)//GLX(V )

w

��

Y(d)χ
−1

0 -ssoo

w−

vv
A1.

(2.17)

Lemma 2.7. The equivalences (2.13), (2.15) restrict to isomorphisms

Crit(w+)
∼=
→ t0(ΩQuotX,d(G )[−1]), Crit(w−)

∼=
→ t0(ΩQuotX,d(H )[−1]).

(2.18)

Proof. We only prove the first isomorphism. Lemma 2.6 implies that the
following diagram is Cartesian

Y(d)χ0-ss � � //

��
□

Y(d)

��
QuotX,d(E

0) �
� // C(E 0)

(2.19)

where each horizontal arrow is an open immersion. Note that Crit(w) ∩
Y(d)χ0-ss = Crit(w+) as Y(d)χ0-ss ⊂ Y(d) is an open immersion. Therefore
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we obtain the Cartesian square

Crit(w+) �
� //

��
□

Crit(w)

��
QuotX,d(E

0) �
� // C(E 0).

(2.20)

We also have the following Cartesian diagrams from the definition of (−1)-
shifted cotangents and QuotX,d(G )

t0(ΩQuotX,d(G )[−1])
� � //

��
□

t0(ΩC(E •)[−1])

��
QuotX,d(G ) �

� // C(E •),

QuotX,d(G ) �
� //

� _

��
□

C(E •)
� _

��
QuotX,d(E

0) �
� // C(E 0).

(2.21)

The lemma follows from the Cartesian squares (2.20), (2.21) together with
the isomorphism (2.13). □

When X is a point, the top row in (2.17) is a Grassmannian flip considered
in [Todc, (4.5)]. In general, it is a family of Grassmannian flips parametrized
by X.

Remark 2.8. The diagram

t0(ΩQuotX,d(G )[−1])

))

t0(ΩQuotX,d(H )[−1])

uu
Y (d)//GLX(V )

is a d-critical flip in [Toda]. If QuotX,d(G ) and QuotX,d(H ) are smooth of
expected dimensions, then the above diagram is identified with

QuotX,d(G )

((

QuotX,d(H )

vv
Y (d)//GLX(V ).

In general, the above diagram is not necessary a d-critical flip since the
relative Quot schemes are not necessary written as critical loci.



✐

✐

“10-Toda” — 2023/6/20 — 18:40 — page 254 — #16
✐

✐

✐

✐

✐

✐

254 Yukinobu Toda

2.3. Koszul duality

We apply Koszul duality equivalences to relate derived categories of relative
Quot schemes with triangulated categories of C∗-equivariant factorizations.
Below we use the convention in [KT21, Section 2.2, 2.3].

Let G̃L(V ) be defined by

G̃L(V ) := GL(V )×PGL(V ) ×GL(V ).

There is a natural exact sequence

1→ GL(V )
∆
→ G̃L(V )

τ
→ C

∗ → 1(2.22)

where ∆ is the diagonal embedding, and τ is the character defined by
τ(g1, g2) = g1g

−1
2 . The above exact sequence splits non-canonically. Indeed

for each k ∈ Z, t 7→ (tk, tk−1) gives a splitting of τ . So for each k ∈ Z, there
is an isomorphism

ιk : GL(V )× C
∗

∼=
→ G̃L(V ), (g, t) 7→ (tkg, tk−1g).(2.23)

Once we fix a splitting as above, giving a G̃L(V )-action is equivalent to
giving a GL(V )-action together with an auxiliary C∗-action which com-
mutes with the above GL(V )-action. The GLX(V )-action on Y (d) over

X naturally extends to an action of G̃LX(V ) := G̃L(V )×X over X. In-
deed GLX(V )×X GLX(V ) naturally acts on Y (d), where the first factor of
GLX(V )×X GLX(V ) acts on Hom(E 0, V ⊗OX) and the second factor acts

on Hom(V ⊗OX ,E −1), and the G̃LX(V )-action is given by its restriction.
For k = 0 in (2.23), the auxiliary C∗-action is given by the weight one action
on the second factor of Y (d), for k = 1 it is the weight one action on the
first factor of Y (d).

The triangulated category of C∗-equivariant factorizations

MFC
∗

(Y(d), w)(2.24)

is defined to be the category whose objects consist of

P0
f
→ P1

g
→ P0⟨τ⟩(2.25)

where P0, P1 are G̃LX(V )-equivariant coherent sheaves on Y (d), f , g are

G̃LX(V )-equivariant morphisms such that f ◦ g = ·w, g ◦ f = ·w. Here ⟨τ⟩
means the twist by the G̃L(V )-character τ . The category (2.24) is defined to
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be the localization of the homotopy category of the factorizations (2.25)
by its subcategory of acyclic factorizations (see [EP15]). The categories
MFC

∗

(Y(d)χ
±1

0 -ss, w±) are also defined in a similar way.
We now state the Koszul duality equivalence in [Hir17, Proposition 4.8]

(also see [Isi13, Shi12, Todb]) in the setting of the diagram (2.9):

Theorem 2.9. ([Hir17, Isi13, Shi12, Todb]) Let Y = [Y/G] for a smooth
quasi-projective scheme Y and G is an affine algebraic group acting on Y .
Let F → Y be a vector bundle on it with a section s, and M the derived zero
locus of s. Then there is an equivalence

Db(M)
∼
→ MFC

∗

(F∨, w)

where C∗ acts on fibers of F∨ → Y with weight one, and w is the func-
tion (2.8).

By applying Theorem 2.9, we obtain the following:

Proposition 2.10. We have the equivalences

Db(QuotX,d(G ))
∼
→ MFC

∗

(Y(d)χ0-ss, w+),(2.26)

Db(QuotX,d(H ))
∼
→ MFC

∗

(Y(d)χ
−1

0 -ss, w−).

Proof. We apply Theorem 2.9 for Y = QuotX,d(E
0) and the vector bundle

F → Y with section s given by the pull-back of (2.3) by the open immersion
QuotX,d(E

0) ⊂ C(E 0). Then from the Cartesian square (2.19), we obtain
the first equivalence in (2.26) by Theorem 2.9. Here we have used the choice
of splitting (2.23) for k = 0 in order to specify the auxiliary C∗-action. The
second equivalence in (2.26) is similarly proved using another splitting (2.23)
for k = 1. □

2.4. Window subcategories

We fix a basis of V and a Borel subgroup B ⊂ GL(V ) to be consisting
of upper triangular matrices, and set roots of B to be negative roots. Let
M = Zd be the character lattice for GL(V ), and M+

R
⊂MR the dominant

chamber. By the above choice of negative roots, we have

M+
R

= {(x1, x2, . . . , xd) ∈ R
d : x1 ≤ x2 ≤ · · · ≤ xd}.
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We set M+ := M+
R
∩M . For c ∈ Z, we set

Bc(d) := {(x1, x2, . . . , xd) ∈M+ : 0 ≤ xi ≤ c− d}.(2.27)

Here Bc(d) = ∅ if c < d.

Remark 2.11. For χ ∈ Bc(d), we have the associated Young diagram whose
number of boxes at the i-th row is xd−i+1. The above assignment identifies
Bc(d) with the set of Young diagrams with height less than or equal to d,
width less than or equal to c− d. For example, the following picture illus-
trates the case of (2, 5, 5, 8) ∈ Bc(d) for d = 4 and c ≥ 12:

Figure 1: (2, 5, 5, 8) ∈ Bc(d), d = 4, c ≥ 12

By fixing a splitting (2.23), we define the triangulated subcategory

Wc(d) ⊂ MFC
∗

(Y(d), w)(2.28)

to be split generated by factorizations whose entries are of the form
V (χ)⊗OX

P⟨τ i⟩ for χ ∈ Bc(d), i ∈ Z and P ∈ Db(X). Here V (χ) is the
irreducible GL(V )-representation with highest weight χ (i.e. the Schur
power of V associated with the Young diagram determined by χ), and

τ : G̃L(V )→ C∗ is the character in (2.22). Note that the subcategory (2.28)
does not depend on a choice of a splitting (2.23), since a different splitting
only affects on V (χ)⊗OX

P⟨τ i⟩ by a power of τ . We also set

a := rank(E 0), b := rank(E −1), δ = a− b.(2.29)

Lemma 2.12. The following compositions are equivalences

Wa(d) ⊂ MFC
∗

(Y(d), w) ↠ MFC
∗

(Y(d)χ0-ss, w+),

Wb(d) ⊂ MFC
∗

(Y(d), w) ↠ MFC
∗

(Y(d)χ
−1

0 -ss, w−).
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Proof. We only prove the first equivalence. The lemma is proved in [Todc,
Proposition 4.3] when X is a point and there is no super-potential and
an auxiliary C∗-action, i.e. Db(Y(d)) instead of MFC

∗

(Y(d), w). Namely let
W′

a(d) ⊂ Db(Y(d)) be the triangulated subcategory generated by V (χ)⊗OX

P for χ ∈ Ba(d) and P ∈ Db(X). If X is a point, then the composition
functor

W
′
a(d) ⊂ Db(Y(d)) ↠ Db(Yχ0-ss(d))(2.30)

is an equivalence by [Todc, Proposition 4.3]. If E i are free OX -modules so
that Y(d) ∼= RQa,b

(d)×X (see Remark 2.5 for the notation RQa,b
(d)), then

(2.30) is an equivalence by taking the ⊠-product of the equivalence (2.30)
in the case of Y(d) = RQa,b

(d) with Db(X). For a general X, let us take the
factorization

Y(d)
π
→ [X/GLX(V )]→ X

where GLX(V ) acts on X trivially (so [X/GLX(V )] = X ×BGL(V )), and
π is a natural morphism induced by the projection Hom(E1, V

∨ ⊗OX)⊕
Hom(V ∨ ⊗OX ,E0)→ X, which is an affine space bundle. For χ, χ′ ∈ Ba(d)
and P,P ′ ∈ Db(X), we have the natural morphism in Dqcoh([X/GLX(V )])

Hom[X/GLX(V )](V (χ)⊗P, V (χ′)⊗P
′ ⊗ π∗OY(d))(2.31)

→ Hom[X/GLX(V )](V (χ)⊗P, V (χ′)⊗P
′ ⊗ π∗OY(d)χ0-ss).

For a Zariski open subset U ⊂ X, we write Y(d)U := π−1([U/GLU (V )]) and
denote by πU : Y(d)U → [U/GLU (V )] the restriction of π to Y(d)U . Then
we have

RΓ([U/GLU (V )],Hom[X/GLX(V )](V (χ)⊗P, V (χ′)⊗P
′ ⊗ π∗OY(d)))

= RHomY(d)U (π
∗
U (V (χ)⊗P|U ), π

∗
U (V (χ′)⊗P

′|U )),

RΓ([U/GLU (V )],Hom[X/GLX(V )](V (χ)⊗P, V (χ′)⊗P
′ ⊗ π∗OY(d)χ0-ss))

= RHomY(d)
χ0-ss

U
(π∗

U (V (χ)⊗P|U )|Y(d)
χ0-ss

U
), π∗

U (V (χ′)⊗P
′|U )|Y(d)

χ0-ss

U
).

Therefore the morphism (2.31) is an isomorphism Zariski locally on X (by
the equivalence (2.30) when E i are free), hence (2.31) is an isomorphism.
By taking derived global section RΓ([X/GLX(V )],−) of the isomorphism
(2.31), we see that the functor (2.30) is fully-faithful. For the essential sur-
jectivity of (2.30), we modify the argument of [Todc, Proposition 4.3] by
replacing Kapranov exceptional collections on Grassmannians with relative
exceptional collections of Grassmannian bundles in [Jia, Theorem 3.70].
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The above argument applies verbatim with an auxiliary C∗-action.
Namely let C∗ acts on Y(d) with weight one on the second factor,
and W′′

a(d) ⊂ Db([Y(d)/C∗]) the triangulated subcategory generated by
V (χ)⊗OX

P⟨τ i⟩ for χ ∈ Ba(d), P ∈ Db(X) and i ∈ Z where τ is the weight
one character for the auxiliary C∗-action. Then the composition functor

W
′′
a(d) ⊂ Db([Y(d)/C∗]) ↠ Db([Y(d)χ0-ss/C∗])

is an equivalence. Then the lemma holds by applying the super-potential
w to the above equivalence (e.g. applying [Păd, Proposition 2.1] for X =
[Y(d)/C∗], I = {1}, A1 = W′′

a(d)). □

2.5. Categorified Hall products

For a one parameter subgroup λ : C∗ → GL(V ), let V λ≥0 ⊂ V be the sub-
space of non-negative λ-weights, and V λ=0 ⊂ V the λ-fixed subspace. We
have the Levi and parabolic subgroups

GL(V )λ=0 ⊂ GL(V )λ≥0 ⊂ GL(V )

where GL(V )λ=0 is the centralizer of λ and GL(V )λ≥0 is the subgroup of
g ∈ GL(V ) such that there is a limit of λ(t)gλ(t)−1 ∈ GL(V ) for t→ 0. We
set

Y(d)λ≥0 :=
[(
Hom(E 0, V λ≥0 ⊗OX)⊕Hom(V λ≤0 ⊗OX ,E −1)

)
/GLX(V )λ≥0

]

Y(d)λ=0 :=
[(
Hom(E 0, V λ=0 ⊗OX)⊕Hom(V λ=0 ⊗OX ,E −1)

)
/GLX(V )λ=0

]
.

Here the right hand sides make sense since the GL(V )-action on V restricts
to the GL(V )λ≥0-action on V λ≥0. We have the following diagram

Y(d)λ≥0

qλ

��

pλ //

wλ≥0

$$

Y(d)

w

��
Y(d)λ=0

wλ=0

// A1.

(2.32)

Here pλ is induced by the natural inclusion V λ≥0 ⊂ V and surjection V ↠

V λ≤0, and qλ is given by taking the t→ 0 limit of the λ-action.
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Remark 2.13. The morphisms pλ, qλ are morphisms of algebraic stacks.
Indeed the diagram Y(d)λ=0 ← Y(d)λ≥0 → Y(d) is identified with some com-
ponents of the diagram

Map(BC
∗,Y(d))← Map(Θ,Y(d))→ Y(d)

where Θ = [A1/C∗], and the above arrows are induced by {0}/C∗ ∈ Θ, 1 ∈ Θ,
respectively (see [HL, Theorem 1.4.8]).

In the diagram (2.32), the function wλ≥0 is a defined to be the pull-
back of w by pλ, which uniquely descends to a function wλ=0. Since pλ is
proper (as any fiber of pλ is a closed subscheme of the partial flag variety
GL(V )/GL(V )λ≥0), the following functor is well-defined

pλ∗q
∗
λ : MFC

∗

(Y(d)λ=0, wλ=0)→ MFC
∗

(Y(d), w).(2.33)

See [BFK14, Section 3] for the above functors of the categories of factoriza-
tions.

We take the following special choice for λ

λ(t) = (t, 1, . . . , 1).

Then dimV λ=0 = d− 1 and GL(V )λ=0 = C∗ ×GL(V λ=0), so that we have

Y(d)λ=0 = BC
∗ × Y(d− 1).

We have the decomposition

MFC
∗

(Y(d)λ=0, wλ=0) =
⊕

j∈Z

OBC∗(j)⊠MFC
∗

(Y(d− 1), w)

where OBC∗(j) is the C∗-representation of weight j, and each direct sum-
mand is equivalent to MFC

∗

(Y(d− 1), w).
It is easy to see that, when X is a point, the stack Y(d)λ≥0 is isomorphic

to the moduli stack of short exact sequences of Qa,b-representations (see
Remark 2.5)

0→ R′′ → R→ R′ → 0

where R has dimension vector (1, d) and R′′ has dimension vector (0, 1). It
is straightforward to extend the above statement for an arbitrary X. Here
we give some more details:
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Lemma 2.14. For T → X, the T -valued points of the stack Y(d)λ≥0 consist
of diagrams

0 //

��

E 0
T

α

��

E 0
T

α′

��
0 // P ′′ // P //

β

��

P ′

β′

��

// 0

0 // E −1
T E

−1
T

(2.34)

where the middle horizontal sequence is an exact sequence of vector bundles
on T such that rank(P ′′) = 1, rank(P ′) = d− 1. The morphisms pλ, qλ
sends the above diagram to (P, α, β), (P ′′, (P ′, α′, β′)) respectively.

Proof. We set Z(d)λ≥0 = [Y (d)/GLX(V )λ≥0] where Y (d) is given in (2.10).
We have the factorization of the projection Y(d)λ≥0 → X

Y(d)λ≥0 →֒ Z(d)λ≥0 → [X/GLX(V )λ≥0]→ [X/GLX(V )]→ X.

Here GLX(V )λ≥0 and GLX(V ) act on X trivially. For T → X, giving its lift
to [X/GLX(V )] is equivalent to giving a vector bundle P → X of rank
d. The fiber of [X/GLX(V )λ≥0]→ [X/GLX(V )] is [GL(V )/GL(V )λ≥0].
Since GL(V )λ≥0 is the subgroup of GL(V ) which preserves the one dimen-
sional subspace V λ>0 ⊂ V , the stack [GL(V )/GL(V )λ≥0] is isomorphic to
the projective space P(V ) which parametrizes one dimensional subspaces
in V . Therefore giving a lift of T → [X/GLX(V )] to [X/GLX(V )λ≥0] is
equivalent to giving a rank one vector subbundle P ′′ ⊂P. By taking its
cokernel, we obtain the exact sequence 0→P ′′ →P →P ′ → 0 of the
middle horizontal sequence in (2.14). Then giving its lift to T → Z(d)λ≥0

is equivalent to giving morphisms E 0
T →P → E

−1
T . Since V λ≥0 = V and

V λ≤0 = V/V λ>0, the above lift T → Z(d)λ≥0 factors through T → Y(d)λ≥0

if and only if P → E
−1
T factors through P ↠ P ′ → E

−1
T . Therefore we ob-

tain the lemma. □

The functor (2.33) gives the categorified Hall product

∗ : OBC∗(j)⊠MFC
∗

(Y(d− 1), w)→ MFC
∗

(Y(d), w)
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which is in fact induced by the stack of the diagrams (2.34). By the iteration,
we also have the functor

∗ : OBC∗(j1)⊠ · · ·⊠OBC∗(jl)⊠MFC
∗

(Y(d− l), w)→ MFC
∗

(Y(d), w).
(2.35)

In the case that X is a point, the above product is a special case of cate-
gorical Hall products for quivers with super-potential (see [Păd, Section 3]).
The above product is their generalization to the family of moduli stacks of
representations of quivers.

2.6. Semiorthogonal decomposition

We take a lexicographical order on Zd, i.e. for m• = (m1, . . . ,md) ∈ Zd

and m′
• = (m′

1, . . . ,m
′
d) ∈ Zd, we write m• ≻ m′

• if mi = m′
i for 1 ≤ i ≤

k for some k ≥ 0 and mk+1 > m′
k+1. For j• = (j1, j2, . . . , jl) and j′• =

(j′1, j
′
2 . . . , j

′
l′) with l, l′ ≤ d, we define j• ≻ j′• if we have j̃• ≻ j̃′•, where j̃• is

defined by

j̃• = (j1, j2, . . . , jl,−1, . . . ,−1) ∈ Z
d.(2.36)

We recall that (a, b, δ) is defined in (2.29), and χ0 is the determinant char-
acter (2.16) which determines a line bundle on Y(d). Below, we also assume
that δ ≥ 0, i.e. a ≥ b. By abuse of notation, we use the same symbol χ0

for the line bundle on Y(d′) for any other d′ defined by the determinant
character on GL(Cd′

).

Proposition 2.15. For 0 ≤ j1 ≤ · · · ≤ jl ≤ δ − l, the categorified Hall
product (2.35) restricts to the fully-faithful functor

∗ : OBC∗(j1)⊠ · · ·⊠OBC∗(jl)⊠ (Wb(d− l)⊗ χjl
0 )→Wa(d)(2.37)

such that, by setting Cj• to be the essential image of the above fully-faithful
functor, we have the semiorthogonal decomposition

Wa(d) = ⟨Cj• : 0 ≤ l ≤ d, j• = (0 ≤ j1 ≤ · · · ≤ jl ≤ δ − l)⟩.

Here Hom(Cj• , Cj′•) = 0 for j• ≻ j′•.

Proof. The proposition is given in [Todc, Corollary 4.22] when X is a spec-
trum of a complete local ring and there is no auxiliary C∗-action. The ar-
gument applies verbatim with an auxiliary C∗-action. The categorified Hall
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products are defined globally, and they have right adjoints by the same
proof in [Todc, Lemma 6.6]. Therefore in order to show that (2.37) is fully-
faithful and forms a semiorthogonal decomposition, it is enough to check
these properties formally locally on X (see the arguments of [Todd, Propo-
sition 6.9, Theorem 6.11] or the last part of [Todc, Theorem 5.16]). Therefore
the proposition holds. □

The following is the main result in this paper:

Theorem 2.16. Suppose that δ ≥ 0. Then there is a semiorthogonal de-
composition of the form

Db(QuotX,d(G ))

=

〈(
δ

i

)
-copies of Db(QuotX,d−i(H )) : 0 ≤ i ≤ min{d, δ}

〉
.

Proof. In Proposition 2.15, each semiorthogonal summand Cj• is equivalent
to Wb(d− l). Therefore the corollary follows from Proposition 2.15 together
with Lemma 2.12 and equivalences (2.26). □
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