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Let k be a number field with algebraic closure k, and let S be a
finite set of places of k containing all the archimedean ones. Fix
d ≥ 2 and α ∈ k such that the map z 7→ zd + α is not postcritically
finite. Assuming a technical hypothesis on α, we prove that there
are only finitely many parameters c ∈ k for which z 7→ zd + c is
postcritically finite and for which c is S-integral relative to (α).
That is, in the moduli space of unicritical polynomials of degree
d, there are only finitely many PCF k-rational points that are
((α), S)-integral. We conjecture that the same statement is true
without the technical hypothesis.

1. Introduction

Let k be a field with algebraic closure k, and let f ∈ k(z) be a rational func-
tion defined over k. A point x ∈ P1(k) is preperiodic if fn(x) = fm(x) for
some integers n > m ≥ 0, where fn := f ◦ · · · ◦ f denotes the n-fold compo-
sition of f with itself, with f0 := id. The map f is said to be postcritically

finite, or PCF, if all of its critical points in P1(k) are preperiodic under
the iteration of f . In both complex and arithmetic dynamics, PCF maps
have proven themselves to be objects of particular interest for their special
dynamical and arithmetic properties. See, for example, [1, 2, 4, 7, 9, 10, 16–
20, 24–26]. In particular, in an algebraic moduli space of discrete dynamical
systems, the points corresponding to PCF maps appear to play a similar
role as other special points, such as CM points on classical modular curves.
In this paper, for d ≥ 2 an integer, we consider PCF parameters in the one-
parameter family of unicritical polynomials fd,c(z) := zd + c, and we prove
a finiteness result concerning integrality of such parameters with respect to
a given non-PCF parameter.
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If k has characteristic zero, for example if k = C, then the polynomial
fd,c has critical points at z = 0,∞. Since ∞ is fixed, it follows that fd,c is
PCF if and only if the forward orbit

{fnd,c(0) : n ≥ 0}

of the critical point z = 0 is a finite set. Any such PCF parameter c must
lie in Q, since such c is a root of the polynomial fnd,c(0)− fmd,c(0) for some
integers n > m ≥ 0. (In fact, such c must be an algebraic integer, since this
polynomial is monic with integer coefficients.)

Moreover, by [9, Theorem 1.1], the PCF parameters form a set of
bounded arithmetic height. In particular, for any number field k, there are
only finitely many c ∈ k for which fd,c is PCF. For example, for d = 2 and
k = Q, it is well known that the only PCF parameters are c = 0,−1,−2.
Indeed, as noted above, the PCF parameters c ∈ Q are algebraic integers
and hence lie in Z; it is also easy to check that if c ≥ 1 or c ≤ −3, then
the orbit of 0 under z 7→ z2 + c is unbounded. Thus, c = 0,−1,−2 are the
only rational numbers that might be PCF parameters for d = 2, and direct
computation shows they are all PCF. (When c = 0, we have 0 7→ 0 is fixed;
when c = −1, we have 0 7→ −1 7→ 0 is periodic; and when c = −2, we have
0 7→ −2 7→ 2 7→ 2 is preperiodic.)

We set the following notation throughout this paper.

k a number field, with algebraic closure k
Mk the standard set of places of k
S a finite subset of Mk, including all the archimedean places
kv the completion of k at a place v ∈Mk, with absolute value | · |v
Cv the completion of an algebraic closure of kv, with absolute value | · |v
fd,c the polynomial fd,c(z) = zd + c, where d ≥ 2 is an integer.

If L1 and L2 are two fields that contain k, we say that a field homo-
morphism σ : L1 → L2 is a k-embedding if it is the identity on k. Such a k-
embedding σ extends to a map from P1(L1) to P

1(L2) by setting σ(∞) := ∞.
If D is an effective divisor on P1 defined over k, recall that a point x ∈ P1(k)
is S-integral (on P1) relative to D, or that x is (D,S)-integral, if for any
place v ∈Mk with v ̸∈ S, for any point α in the support of D, and for any
k-embeddings σ : k →֒ Cv and τ : k →֒ Cv, the points σ(x) and τ(α) lie in
different residue classes of P1(Cv). In particular, if x, α ∈ k, we have

{

|σ(x)− τ(α)|v ≥ 1 if |τ(α)|v ≤ 1; and

|σ(x)|v ≤ 1 if |τ(α)|v > 1.
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(This definition may also be extended to allow x = ∞ or α = ∞ by declaring
that |σ(∞)|v = |∞|v := ∞ for any place v ∈Mk, and that ∞ > a for any
a ∈ R; but in this paper we only need to consider x, α ∈ k, as above.) The
above definition is, of course, only a special case — for P1 — of a more
general notion of integrality of a point relative to an effective divisor on a
variety over k; see, for example, [21].

For each integer d ≥ 2, and for each place v of k, the family fd,c(z) =
zd + c has an associated v-adic generalized Mandelbrot set Md,v, or multibrot

set, defined by

(1.1) Md,v := {c ∈ Cv : the orbit {fnd,c(0) : n ≥ 0} is bounded}.

If c ∈ Cv is a PCF parameter for fd,c, then clearly c ∈ Md,v. If v is an
archimedean place, so that Cv

∼= C, then Md,v is the set of parameters c ∈ C
for which the Julia set of fd,c is connected. It is easy to check that Md,v is
compact for archimedean v.

Our main result is as follows.

Theorem 1.1. Let k be a number field with algebraic closure k, let S ⊆Mk

be a finite set of places of k including all the archimedean places, let d ≥ 2 be

an integer, and for any c ∈ k, let fd,c(z) := zd + c. Let α ∈ k, and suppose

that

• fd,α is not PCF, and

• for every archimedean place v of k, and for every k-embedding τ of

k(α) into Cv, the image τ(α) does not lie in the boundary ∂Md,v of the

multibrot set Md,v of equation (1.1).

Then there are only finitely many parameters c ∈ k that are S-integral rela-
tive to (α), and for which fd,c is PCF.

The hypothesis that α ̸∈ ∂Md,v for archimedean v is reminiscent of a
similar condition called “totally Fatou” in the context of [27]. Since this
hypothesis is a dense open condition (with respect to the metric topology)
at each of the finitely many archimedean places of k(α), it can reasonably
be considered to hold for most α ∈ k. Still, we conjecture that this condition
should not be required at all, as follows.

Conjecture 1.2. Let k be a number field with algebraic closure k, let S ⊆
Mk be a finite set of places of k including all the archimedean places, let

d ≥ 2 be an integer, and for any c ∈ k, let fd,c(z) := zd + c.
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Let α ∈ k, and suppose that fd,α is not PCF. Then there are only finitely

many parameters c ∈ k that are S-integral relative to (α), and for which fd,c
is PCF.

On the other hand, the hypothesis that α is not a PCF parameter cannot
be removed, as we will show in Theorem 5.1.

For the family fd,c, the parameter c lives in a moduli space isomorphic
to A1, and the values of c for which fd,c is PCF may be considered as special
points on this variety, analogous to torsion points on an abelian variety
or CM points on a modular curve. (For example, the main results of [22]
and [23] concern integrality of singular moduli, i.e., of CM points.) From
this perspective, Theorem 1.1, Conjecture 1.2, and Theorem 5.1 describe
the integrality of these (dynamically) special points relative both to special
and to non-special points on this moduli space. We propose generalizations
of this idea to other moduli spaces, including higher-dimensional moduli
spaces, in Section 6.

Our strategy to prove Theorem 1.1 is as follows. First, at each place v
of k, we apply the equidistribution theorems of [20] or [32], which say that
atomic measures supported equally on the Galois orbits of PCF parame-
ters converge weakly to the so-called bifurcation measure of the family fd,c
at v. However, we wish to integrate the function log |x− α|v against these
measures, and the discontinuity at x = α means that the equidistribution
theorems do not apply directly in this case. Therefore, we invoke [8, Theo-
rem 1.4] (which we state here as Theorem 3.3) for v non-archimedean, and
the hypothesis that α ̸∈ ∂Md,v for v archimedean, to prove our desired local
convergence result, which we state as Theorem 3.2.

Second, we write the (strictly) positive canonical height ĥd,α(α) associ-
ated with the map fd,α as a sum of canonical local heights. According to
Theorem 3.2, given a hypothetical sequence of PCF parameters (xn)n≥1 in k
that are S-integral with respect to (α), we may approximate these canonical
local heights by integrals of log |x− α|v with respect to atomic measures νn
supported on the Galois orbits of xn. Finally, using the ((α), S)-integrality
of xn, we rewrite the sum of canonical local heights and invoke the prod-
uct formula to show that the sum approaches 0, contradicting the fact that
ĥd,α(α) > 0.

The outline of the paper is as follows. In Section 2, we recall some fun-
damental facts about canonical (local) heights, and we relate the bifurcation
measure at v ∈Mk of the family fd,c to the canonical local height λ̂d,c,v. We
then state and prove Theorem 3.2 in Section 3, computing certain canonical
local heights in terms of limits involving PCF parameters. In Section 4, we
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use Theorem 3.2 to prove Theorem 1.1. Section 5 is devoted to the statement
and proof of Theorem 5.1, showing that the conclusions of Theorem 1.1 and
Conjecture 1.2 fail when α is allowed to be a PCF parameter. Finally, in
Section 6, we state and discuss a generalization of Conjecture 1.2.

2. Canonical heights and bifurcation measures

2.1. Call-Silverman canonical heights

For any place v ∈Mk and for f(z) ∈ Cv[z] a polynomial of degree d ≥ 2, the
associated (Call-Silverman) canonical local height function λ̂f,v : Cv → R is
given by

(2.1) λ̂f,v(x) := lim
n→∞

1

dn
logmax

{

1,
∣

∣fn(x)
∣

∣

v

}

.

The function λ̂f,v takes nonnegative values, and it is strictly positive exactly

at points x ∈ Cv for which fn(x) → ∞ as n→ ∞. (That is, λ̂f,v is zero
precisely on the filled Julia set of f at v, i.e., on the set of points z that do not
escape to ∞ under iteration of f .) Moreover, λ̂f,v differs from the standard
local height function λv(x) := logmax{1, |x|v} by a bounded amount, and
the two coincide for all but finitely many v.

For a polynomial f(z) ∈ k[z] of degree d ≥ 2, the associated (Call-
Silverman) canonical height function ĥf : k → R is given by

(2.2) ĥf (x) =
1

[k : Q]

∑

v∈Mk

Nvλ̂f,v(x) = lim
n→∞

1

dn
h
(

fn(x)
)

.

The coefficients Nv = [kv : Qp] in equation (2.2), where v|p, are the integers
appearing in the product formula over k, i.e.,

∑

vNv log |x|v = 0 for all x ∈
k×. The function h is the standard Weil height on k, given by

h(x) :=
1

[k : Q]

∑

v∈Mk

Nv logmax{1, |x|v} =
1

[k : Q]

∑

v∈Mk

Nvλv(x).

Both h and ĥf have natural extensions to k, but we will only need their

values on k, for which the above definitions suffice. The function ĥf takes

on nonnegative values, with ĥf (x) = 0 if and only if x ∈ k is preperiodic

under f . In addition, ĥf differs from h by a bounded amount, and it satis-

fies the functional equation ĥf (f(z)) = dĥf (z). Call-Silverman heights were
introduced in [11]; see also [28, Sections 3.4–3.5].
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2.2. The bifurcation measure

To simplify notation, for the polynomial fd,c(z) = zd + c, we will denote the

associated canonical local height function at v by λ̂d,c,v, and the associated

canonical height function by ĥd,c. If we view the parameter c as the variable
in this notation, then we obtain the Green’s function Gd,v : Cv → R given
by

Gd,v(c) := λ̂d,c,v(c) = lim
n→∞

1

dn
logmax

{

1,
∣

∣fnd,c(c)
∣

∣

v

}

.

That is, Gd,v measures the v-adic escape rate of the critical point of fd,c, and
hence Gd,v is zero precisely on the multibrot set Md,v, and strictly positive
on Cv ∖Md,v.

For each place v ∈Mk, recall that P
1
an,v denotes the Berkovich projective

line at v. If v is an archimedean place, then Cv may be identified with C,
and hence P1

an,v is simply the Riemann sphere P1(C). On the other hand,
if v is non-archimedean, then P1

an,v properly contains P1(Cv). In particular,
for each a ∈ Cv and r > 0, there is a point ζ(a, r) ∈ P1

an,v corresponding

to the closed disk D(a, r) := {x ∈ Cv : |x− a|v ≤ r}. The Berkovich point
ζ(0, 1) corresponding to the closed unit disk is called the Gauss point. For
background on P1

an,v, see [6, Chapter 6] or [5, Chapters 1–2].
If v is an archimedean place, so that Cv

∼= C, the (potential-theoretic)
Laplacian of Gd,v is a probability measure µd,v on C, called the bifurcation

measure of the family fd,c. As its name suggests, the support of µd,v is
precisely the bifurcation locus ∂Md,v of the family; see, for example, [3,
Proposition 3.3.(5)] or [20, Sections 4.1–4.2].

If v is a non-archimedean place, then it is easy to see that the sequence
(|fnd,c(c)|v)n≥1 is bounded if and only if |c|v ≤ 1. In fact, we have the explicit
formula Gd,v(c) = logmax{1, |c|v}, which has a unique continuous extension
to P1

an,v ∖ {∞}. There is a Laplacian operator on P1
an,v; see, for example,

[6, Section 13.4] for a brief survey, or [5, Chapters 3–5] for a detailed ex-
position. As shown in [3, Proposition 3.7.(1)], the Laplacian of Gd,v, when
restricted to P1

an,v ∖ {∞}, is the desired probability measure µd,v. In our
case, this measure is µd,v = δζ(0,1), the delta measure at the Gauss point; see
[5, Example 5.19] or [6, Example 13.26].

Since the bifurcation measure µd,v is defined as the Laplacian of

Gd,v(c) = λ̂d,c,v(c), it should not be surprising that we can recover the canon-

ical local height λ̂d,c,v(c) by integrating an appropriate kernel against µd,v,
as follows.
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Lemma 2.1. Let d ≥ 2 be an integer, let v ∈Mk, and let α ∈ Cv. Let λ̂d,α,v
be the canonical local height function of equation (2.1) for the map fd,α(z) =
zd + α. Let µd,v be the bifurcation measure of the family fd,c. Then

(2.3)

∫

P1

an,v

log |x− α|v dµd,v(x) = λ̂d,α,v(α).

Proof. Since λ̂d,α,v(α) = Gd,v(α), and since ∆vGd,v = µd,v, where ∆v is the
Laplacian on P1

an,v, the desired statement is the content of [5, Example 5.22].
More precisely, in the notation of equation (5.8) of that example, we use ζ =
∞, ν = µd,v, and uν(x, ζ) = Gd,v(x), and we bear in mind that the Laplacian
of [5] is the negative of our ∆v. □

Remark 2.2. If we fix the parameter c ∈ Cv, then the Laplacian of the
canonical local height function λ̂d,c,v is a probability measure ρd,c,v on
P1
an,v ∖ {∞}, known as the equilibrium measure of the polynomial fd,c at
v. Note that the bifurcation measure µd,v is a measure on the parameter
space (corresponding to c), whereas the equilibrium measure ρd,c,v is on the
dynamical space (corresponding to z). The support of the equilibrium mea-
sure is precisely the (v-adic) Julia set of fd,c, i.e., the boundary of the filled
Julia set. By similar reasoning as in the proof of Lemma 2.1, we can also
express λ̂d,α,v(α) in terms of the equilibrium measure. Specifically, we can
expand equation (2.3) to

∫

P1

an,v

log |x− α|v dµd,v(x) = λ̂d,α,v(α) =

∫

P1

an,v

log |x− α|v dρd,α,v(x).

3. Logarithmic equidistribution of PCF points

Definition 3.1. Let v ∈Mk and let (xn)n≥1 be a sequence of points in
P1(k). For each integer n ≥ 1, let νn be the atomic probability measure

(3.1) νn :=
1

|Gxn|

∑

y∈Gxn

δy,

where Gxn denotes the set of Gal(k/k)-conjugates of xn, and δy is the delta-
measure on P1

an,v supported at y.
Let µ be a Borel probability measure on X := P1

an,v. We say that the
Galois orbits of (xn)n≥1 are equidistributed with respect to µ if (νn)n≥1

converges weakly to µ, i.e., if for every continuous function g : X → R, we
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have

(3.2) lim
n→∞

∫

X
g(x) dνn(x) =

∫

X
g(x) dµ(x).

(Technically, the weak convergence mentioned in Definition 3.1 should be
called weak-* convergence, and it should include the condition that g is
compactly supported. However, X = P1

an,v is compact, so compact support
is automatic. Moreover, it is common to abuse terminology and call this
notion weak convergence rather than weak-* convergence.)

For archimedean v, the boundary ∂Md,v of the multibrot set Md,v is
the bifurcation locus for the family fd,c. Indeed, for any c ∈ ∂Md,v, there
are nearby parameters γ ∈ Cv

∼= C for which γ ∈ Md,v and hence fd,γ has
connected Julia set, and others for which γ ̸∈ Md,v and hence fd,γ has dis-
connected Julia set. All parameters c ∈ C for which fd,c is PCF clearly lie in
Md,v. If z = 0 is periodic under fd,c, then z = 0 is a (super)attracting peri-
odic point of fd,γ . In that case, the map fd,c is hyperbolic (see, for example,
[12, Section V.2] or [14, Section 14.1]), and hence c lies in the interior of
Md,v. In fact, since the multiplier of the (unique) attracting cycle of fd,γ
varies analytically for γ near such c, there is an open neighborhood of c
containing no other parameters γ for which fd,γ is PCF. On the other hand,
if z = 0 is strictly preperiodic under fd,c, then c is called a Misiurewicz pa-

rameter, and we have c ∈ ∂Md,v. (See, for example, [12, Section VIII.1].)

Theorem 3.2. Let v ∈Mk and α ∈ Cv. Fix an integer d ≥ 2, and let

(xn)n≥1 be a sequence of distinct points in k ∖ {α} such that z 7→ zd + xn
is PCF for each n ≥ 1. If v is an archimedean place of k, assume that

α ̸∈ ∂Md,v. Then

(3.3) lim
n→∞

1

[k(xn) : k]

∑

σ

log |xσn − α|v =

∫

P1

an,v

log
∣

∣x− α
∣

∣

v
dµd,v(x),

where the sum is over all k-embeddings σ : k(xn) →֒ Cv.

We note that if the function x 7→ log |x− α|v were continuous on Cv,
then equation (3.3) would simply be an instance of equidistribution, that
is, equation (3.2) with g(x) = log |x− α|v. However, the discontinuity at
x = α means that equidistribution results (like [5, Theorem 7.52] or [32,
Theorem 3.1]) do not apply directly here.

When v is non-archimedean, the function x 7→ log |x− α|v has a unique
continuous extension to P1

an,v ∖ {α,∞}, and it is this extension that appears
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as the integrand in equation (3.3). In particular, this extended function maps
the Gauss point ζ(0, 1) to logmax{1, |α|v}; intuitively, this is the generic
value of log |x− α|v for x in the closed unit disk D(0, 1). As noted just
before Lemma 2.1, we also have µd,v = δζ(0,1) in this case, and hence the
integral in equation (3.3) evaluates simply to logmax{1, |α|v}.

As we remarked following Theorem 1.1, we expect that the condition
that α ̸∈ ∂Md,v for archimedean v should not be required in Theorem 3.2,
provided α ∈ k. If so, then the resulting strengthened version of Theorem 3.2
for such α would yield Conjecture 1.2, by the argument given in Section 4
below.

In order to prove Theorem 3.2, we will need the following result from [8],
which we state here for the convenience of the reader.

Theorem 3.3. ([8, Theorem 1.4]). Let p ≥ 2 be a prime number, and let

d ≥ 2 be an integer. Define

fc(z) := zd + c.

If c ∈ Cp is a parameter for which fc is postcritically finite, then |c|p ≤ 1.
Moreover, for any a ∈ Cp with |a|p ≤ 1 and for any radius 0 < s < 1, there
are only finitely many c ∈ D(a, s) := {x ∈ Cp : |x− a|p ≤ s} such that fc is

postcritically finite.

Proof of Theorem 3.2. Case 1: v is an archimedean place. By hypothesis,
there exists r > 0 such that the open disk D(α, r) := {y ∈ Cv : |y − α|v < r}
does not intersect the closed set ∂Md,v. If α lies outsideMd,v, then fd,γ is not
PCF for any γ ∈ D(α, r). On the other hand, if α ∈ Md,v, then as noted in
the discussion just before Theorem 3.2, some neighborhood of α contains no
PCF parameters, except perhaps α itself. Either way, then, we may decrease
r > 0 if necessary so that fd,γ is not PCF for any γ ∈ D(α, r)∖ {α}.

Let ψ : Cv → [0, 1] be a continuous function that is 1 on Md,v and is
0 outside some large disk containing Md,v. Define g : Cv → R by g(x) :=
ψ(x) · logmax{r, |x− α|v}, where r is as defined in the previous paragraph.
Observe that g is continuous and has compact support. In light of the pre-
vious paragraph, since each xσn is PCF, we have

(3.4) g(xσn) = log |xσn − α|v

for all n ≥ 1 and all k-embeddings σ : k(xn) →֒ Cv.
By [20, Theorem 3.1], the Galois orbits of (xn)n≥1 are equidistributed

with respect to the bifiurcation measure µd,v. Thus, defining the measures
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νn as in equation (3.1), we have

lim
n→∞

1

[k(xn) : k]

∑

σ

log
∣

∣xσn − α
∣

∣

v
= lim

n→∞

1

[k(xn) : k]

∑

σ

g
(

xσn
)

= lim
n→∞

∫

P1

an,v

g(x) dνn(x) =

∫

P1

an,v

g(x) dµd,v(x)

=

∫

P1

an,v

log |x− α|v dµd,v(x),

where the first equality is by equation (3.4), the second is by definition of νn,
the third is by equidistribution, and the fourth is because the disk D(α, r)
is disjoint from the support ∂Md,v of µd,v.

Case 2: v is non-archimedean. By Theorem 3.3, there are only finitely
many parameters γ ∈ Cv such that fd,γ is PCF with |γ − α|v < 1/2. The
desired equality follows essentially as in Case 1, with [3, Corollary 2.10]
showing the requisite equidistribution.

We also provide an alternative proof not using equidistribution, but still
using results from [8], as follows. As noted just before the start of this proof,
the integral on the right side of equation (3.3) is simply logmax{1, |α|v}.
Recall that each PCF parameter for the family fd,c is an algebraic integer,
and therefore |xσn|v ≤ 1 for every n and σ. Thus, if |α|v > 1, then |xσn − α|v =
|α|v for every n and σ, and hence both sides of equation (3.3) equal log |α|v.

It suffices to show that the left side of equation (3.3) is zero when |α|v ≤
1. By Theorem 3.3, for every 0 < r < 1, there are only finitely many PCF
parameters of the family fd,c in the disk D(α, r). Therefore, for any 0 < r <
1, there is some N ≥ 1 such that r < |xσn − α|v < 1 for any n ≥ N and any
k-embedding σ. Thus, we have

0 ≥ lim
n→∞

1

[k(xn) : k]

∑

σ

log
∣

∣xσn − α
∣

∣

v
≥ log r

for every such r. Letting r ↗ 1, the limit is 0, as desired. □

Remark 3.4. Theorems 1.1, 3.2 and 3.3 can, in principle, be extended to
other one-parameter families that satisfy appropriate stability conditions at
all places v ∈Mk, as the zd + c family does for archimedean places away
from the boundary of the multibrot set, and at non-archimedean places
without restriction. However, in light of the much stronger conjectural gen-
eralizations we propose in Section 6, we have stated our results here only
for the unicritical family zd + c.
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For archimedean places v, Theorem 3.2 is the reason for the second
hypothesis of Theorem 1.1, that α ̸∈ ∂Md,v. Our Conjecture 1.2, which is
Theorem 1.1 with this hypothesis removed, is based on the expectation that
a version of Theorem 3.2 should hold for any non-PCF algebraic α ∈ Q even
if α ∈ ∂Md,v, possibly proven using some results in Diophantine approxima-
tion.

For example, in [30, Lemma 5.2], Szpiro and Tucker used Roth’s Theorem
to prove a bound on local heights of algebraic points in orbits, which they
then applied to prove results analogous to Theorems 1.1 and 3.2 for periodic
points of a fixed map f . However, it is unclear how such arguments may be
generalized to our setting.

One obstacle to such a generalization is that the functorial properties of
arithmetic heights are well suited to preimages and periodic points in the
context of [30, Lemma 5.2], but they work less well for parameters c satisfying
fnd,c(0) = fmd,c(0), if n and m are allowed to vary freely. Another obstacle
is that even if one places restrictions on n and m — such as specifying
m = 0, as for the Gleason polynomials to be discussed in Section 5 — the
arithmetic of the resulting number fields Q(c) in the parameter setting is
not well understood. In particular, it is not currently known how fast the
degrees [Q(c) : Q] grow with respect to the period n. We will describe this
obstacle in more detail in Remark 4.2.

4. Finiteness of integral PCF points

We are now prepared to prove Theorem 1.1, using Theorem 3.2.

Proof of Theorem 1.1. Replacing k by a finite extension if necessary, we may
assume that α ∈ k. Increasing the finite set S if necessary, we may also
assume that |α|v ≤ 1 for every v ∈Mk ∖ S.

As in Section 2, let ĥd,α be the (Call-Silverman) canonical height on
P1(k) attached to fd,α(z) = zd + α (and the divisor (∞)). For any β ∈ k, we
have

ĥd,α(β) =
1

[k : Q]

∑

v∈Mk

Nvλ̂d,α,v(β),

where the integers Nv = [kv : Qp] are as in equation (2.2). In addition, be-
cause fd,α is not PCF, the critical point z = 0 is not preperiodic, and hence

ĥd,α(α) = dĥd,α(0) > 0.
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Suppose, towards a contradiction, that (xn)n≥1 is a sequence of distinct
elements in k which are S-integral relative to (α) and which are PCF pa-
rameters for the family fd,c. Then by Lemma 2.1 and Theorem 3.2, we have

0 < ĥd,α(α) =
1

[k : Q]

∑

v∈Mk

Nvλ̂d,α,v(α)

=
∑

v∈Mk

Nv

[k : Q]

∫

P1

an,v

log |x− α|v dµd,v(x)

=
∑

v∈Mk

lim
n→∞

Nv

[k(xn) : Q]

∑

σ

log
∣

∣xσn − α
∣

∣

v
.(4.1)

Because each xn is S-integral relative to (α), and because |xσn|v ≤ 1 and
|α|v ≤ 1 for every v ∈Mk ∖ S and every σ, we have

(4.2) log
∣

∣xσn − α
∣

∣

v
= 0 for every n ≥ 1, every σ, and every v ∈Mk ∖ S.

In particular, the inner sum in expression (4.1) is zero for all v ∈Mk ∖ S.
Thus, the inequality of (4.1) becomes

0 <
∑

v∈S

lim
n→∞

Nv

[k(xn) : Q]

∑

σ

log
∣

∣xσn − α
∣

∣

v

= lim
n→∞

1

[k(xn) : Q]

∑

v∈S

∑

σ

Nv log
∣

∣xσn − α
∣

∣

v

= lim
n→∞

1

[k(xn) : Q]

∑

v∈Mk

∑

σ

Nv log
∣

∣xσn − α
∣

∣

v
= lim

n→∞
0 = 0.

Here, the switch of the sum and limit sign in the first equality is by the
finiteness of S, the second inequality is by equation (4.2) — which is the
key use of the S-integrality hypothesis, in order to extend from the sum
over v ∈ S back to the full sum over all v ∈Mk — and the third is by the
product formula for the field k(xn). Thus, we have 0 < 0, yielding the desired
contradiction. □

Remark 4.1. The expression ĥd,α(α) that appears in equation (4.1) is
precisely (d− 1)−1 times Silverman’s critical height of fd,α(z) = zd + α.
(See [29, Section 6.2].)

Remark 4.2. As noted at the end of Remark 3.4, there are technical ob-
stacles to applying Roth’s Theorem strategy of Szpiro and Tucker from [30,
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Lemma 5.2], even if one imposes a restriction likem = 0, i.e., that the prepe-
riodic points xn are all periodic. (Equidistribution does not apply when the
singularity of log |x− α|v intersects the bifurcation locus; by using their [30,
Lemma 5.2], Szpiro and Tucker are able to prove an analog of equation (4.1)
in a different setting.) The issue is that although the Gleason polynomial
fNd,c(0) ∈ Q[c] is conjectured to be irreducible (or to have a bounded amount
of splitting), very little has actually been proven for general periodsN . Thus,
the sum in equation (4.1) over all Galois conjugates of the (pre)periodic
points xn — i.e., over those conjugates for which the integrality hypothesis
yields |xσn − α|v = 1 for all v ̸∈ S —may, a priori, involve only a tiny fraction
of the roots of fNd,c(0). By contrast, any reasonable analog of [30, Lemma 5.2]

would necessarily involve the full polynomial fNd,c(0), which might have sig-
nificantly higher degree. This disparity could jeopardize the application of
Roth’s Lemma to proving equation (4.1).

Thus, although we hope that it should be possible to apply some sort
of Diophantine approximation argument to relax our technical hypothesis
that the parameter α avoids the bifurcation locus, such a strategy currently
seems to be unfeasible without first obtaining strong bounds for the growth
of the degrees [Q(c) : Q] relative to the tail length m and period n−m of a
preperiodic point c.

5. Accumulation at PCF parameters

Theorem 1.1 requires that the parameter α not be PCF. The following result
shows that this hypothesis cannot be removed, independent of the other
hypothesis of Theorem 1.1, that τ(α) ̸∈ ∂Md,v.

Theorem 5.1. Let k be a number field with algebraic closure k, let S ⊆Mk

be a finite set of places of k including all the archimedean places, let d ≥ 2
be an integer, and for any c ∈ k, let fd,c(z) := zd + c. Let r ≥ 1, and let

α1, . . . , αr ∈ k be parameters such that each map fd,αi
is PCF. Then there

are infinitely many parameters c ∈ k that are S-integral relative to the divisor

D := (α1) + · · ·+ (αr) and for which fd,c is PCF.

Proof. For each i = 1, . . . , r, there are minimal integers mi ≥ 0 and ni ≥ 1
such that

(5.1) fmi+ni

d,αi
(0) = fmi

d,αi
(0).
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That is, ni is the minimal period of the periodic cycle that the critical
point z = 0 of fd,αi

ultimately lands on, and mi is the length of the strictly
preperiodic tail of the forward orbit of z = 0.

Let n ≥ 1 be any positive integer different from each of n1, . . . , nr. Define

Φd,n(c) :=
∏

ℓ|n

f ℓd,c(0)
µ(n/ℓ) ∈ Z[c],

where µ is the Möbius function. The degree of Φd,n is
∑

ℓ|n µ(n/ℓ)d
ℓ−1 > 0,

and hence Φd,n has (at least one) root β ∈ k. By [24, Theorem 1.1], the
critical point z = 0 is periodic with minimal period exactly n under the
map fd,β . (See also [10, Section 2]. The polynomials Φd,n are called Gleason

polynomials. They have simple roots, which are precisely the parameters for
which the critical point z = 0 is periodic of minimal period n.) Since there
are infinitely many choices of such integers n, it suffices to show that for
each such n, all the roots β ∈ k of Φd,n are S-integral relative to D.

Consider such n and β. For each i = 1, . . . , r, each place v ∈Mk ∖ S, and
all k-embeddings σ : k(αi) →֒ Cv and τ : k(β) →֒ Cv, we abuse notation and
write αi for σ(αi) and β for τ(β). Because v is non-archimedean, and because
the orbit of z = 0 is preperiodic under both fd,αi

(z) = zd + αi and fd,β(z) =
zd + β, it follows that |αi|v ≤ 1 and |β|v ≤ 1, as noted in the discussion
preceding Lemma 2.1.

Thus, both fd,αi
and fd,β have explicit good reduction; see [6, Sec-

tion 4.3], especially Proposition 4.10.(a). In particular, by [6, Proposi-
tion 4.19], for any point y in the closed unit disk D(0, 1) ⊆ Cv, the image of
the open diskD(y, 1) under fd,αi

isD(fd,αi
(y), 1), and similarly for fd,β . Sup-

pose, towards a contradiction, that |αi − β|v < 1 for some 1 ≤ i ≤ r. Then
by a simple induction, it follows that D(fmd,αi

(0), 1) = D(fmd,β(0), 1) for every
m ≥ 0.

Because of the critical point at z = 0, the map fmd,αi
: D(0, 1) →

D(fmd,αi
(0), 1) is not one-to-one, and similarly for fd,β . Since f

n
d,β(0) = 0, we

have fnd,β(D(0, 1)) = D(0, 1). If there were some 1 ≤ m ≤ n− 1 such that
fmd,β(D(0, 1)) = D(0, 1), then by [6, Theorem 4.18.(b)], the map fd,β would
only have one periodic point in D(0, 1), and that point would have period
m; but this contradicts the fact that z = 0 has minimal period n > m under
fd,β . Thus, the n disks

D
(

f jd,αi
(0), 1

)

= D
(

f jd,β(0), 1
)

, j = 0, 1, . . . , n− 1

are distinct and hence disjoint. By [6, Theorem 4.18.(b)] again, this time
applied to fd,αi

, there is a unique periodic cycle of fd,αi
in these disks, and
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it has minimal period n. However, the point fmi

d,αi
(0) lies in one of these

disks and is periodic of minimal period ni ̸= n. By this contradiction, we
must have |αi − β|v = 1 for all 1 ≤ i ≤ r. □

Remark 5.2. The only fact about the finite set S of places used in proof
of Theorem 5.1 is that S contains all the archimedean places. In particular,
the proof works just fine even if S consists only of the archimedean places.
This is possible because the parameters β constructed in the proof are roots
of Gleason polynomials, so that the critical point of fd,β is periodic.

One might ask whether it is possible to choose the parameters β ∈ k
so that the critical point of fd,β is strictly preperiodic, i.e., so that each β
is a Misiurewicz parameter. The answer is yes, at least if we assume that
the finite set S includes not only all archimedean places of k, but also all
non-archimedean places v dividing the degree d. (Still, as with the Gleason
case, the set S can be chosen independent of the divisor D.)

To see this, observe that for each Misiurewicz parameter β, there are
integers m ≥ 2 and n ≥ 1 such that fmd,β(0) = fm+n

d,β (0) but no simpler or-
bit relations hold. Conversely, by a degree-counting argument similar to
the one we made for Gleason polynomials, for any such m and n, there
are Misiurewicz parameters β satisfying this condition. Thus, we have
fm−1
d,β (0) = ζfm+n−1

d,β (0) for some d-th root of unity ζ with ζ ̸= 1.
With notation as in the proof of Theorem 5.1, let m ≥ 2 be an integer

different from each of m1, . . . ,mr, let n ≥ 1 be any positive integer, and let
β ∈ k be a (Misiurewicz) parameter satisfying fm−1

d,β (0) = ζfm+n−1
d,β (0) for

some d-th root of unity ζ with ζ ̸= 1. (Clearly there are infinitely many
choices of such m and n, and hence infinitely many choices of such β.) As in
the proof, if we suppose that |αi − β|v < 1 for some v ∈Mk ∖ S and some
1 ≤ i ≤ r, then D(f ℓd,αi

(0), 1) = D(f ℓd,β(0), 1) for every ℓ ≥ 0.

Let R = |fm−1
d,β (0)|v; then R > 0 because β is Misiurewicz. Since v ∤ d, we

have |ζ − 1|v = 1, and hence the three points 0, fm−1
d,β (0), and fm+n−1

d,β (0) =

ζ−1fm−1
d,β (0) each have v-adic distance R from one another. If R < 1, then

the disk D(0, 1) would map into itself under fnd,β , and since this map is

not one-to-one, the n-periodic point fm+n−1
d,β (0) would be attracting. More-

over, because of the attracting periodic point, D(0, 1) maps into itself under
fnd,β but under no smaller iterate of fd,β . Since D(0, 1) also maps into it-
self under m− 1 iterations, we must therefore have n|(m− 1). But then,
again because of the attracting periodic point, the distance between 0 and
fm+n−1
d,β (0) would be strictly greater than the distance between fm−1

d,β (0) and

fm+n−1
d,β (0), a contradiction. Hence, we must have R = 1.
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Recall thatm ̸= mi. We may assume without loss thatm > mi. Indeed, if
mi > m, then we may reverse the roles of αi and β in what follows, because in
that case, the PCF parameter αi must be Misiurewicz rather than Gleason.

Define

U := D
(

fm−1
d,αi

(0), 1
)

= D
(

fm−1
d,β (0), 1

)

and

V := D
(

fm+n−1
d,αi

(0), 1
)

= D
(

fm+n−1
d,β (0), 1

)

.

Then the disks U and V are distinct, sinceR = 1. On the other hand, because
fmd,β(0) = fm+n

d,β (0), both U and V map to the disk

W := D
(

fmd,αi
(0), 1

)

= D
(

fmd,β(0), 1
)

under fd,β and hence also under fd,αi
. Because the point fmi

d,αi
(0) is periodic

under fd,αi
, it follows that fm−1

d,αi
(0) is also periodic, sincemi < m. Therefore,

the distinct disks U and V are both part of a periodic cycle of disks under
fd,αi

. However, two distinct elements of a periodic cycle cannot have the
same image, but U and V both map toW under fd,αi

. By this contradiction,
we see that |αi − β|v = 1, as desired.

For more on Gleason and Misiurewicz polynomials, see, for example,
[10, 24].

6. Conjectural generalizations

Fix d ≥ 2, and let Ratd denote the space of rational functions f : P1 → P1

of degree d, which is an affine variety naturally identified with a Zariski
open subset of P2d+1. Following [28, Section 4.4], the moduli space Md is
the quotient space of Ratd by the conjugation action of PGL2. We recall the
following definition from [4, Section 1.4].

Definition 6.1. Let k be a number field with algebraic closure k. An al-

gebraic family of critically marked rational maps of degree d over k is a
quasiprojective variety X equipped with

• a regular map x 7→ fx from X to Ratd, and

• for each i = 1, . . . , 2d− 2, a regular map ci : X → P1,

all defined over k, such that for each x ∈ X(k), the critical points of fx,
listed with multiplicity, are c1(x), . . . , c2d−2(x). If the image of X under the
composition X → Ratd ↠ Md has dimension N ≥ 0, we say that X is an N -

dimensional algebraic family of critically marked rational maps of degree d.



✐

✐

“1-Benedetto” — 2023/9/2 — 1:51 — page 311 — #17
✐

✐

✐

✐

✐

✐

PCF unicritical polynomials 311

Given an algebraic family (X, fx, c1, . . . , c2d−2) as in Definition 6.1, let
K := k(X) be the function field of X. Then the family defines a rational
function f(z) ∈ K(z) of degree d, with critical points ci ∈ P1(K), for i =
1, . . . , 2d− 2. Still following [4], along with [13, Section 6], for n ≥ 1, we
say an n-tuple (ci1 , . . . , cin) of these marked critical points is dynamically

dependent if there is a (possibly reducible) closed subvariety Y of (P1)n

defined over K such that

• (ci1 , . . . , cin) lies on Y ,

• F(Y ) ⊆ Y , where F := (f , . . . , f),

• There is some j ∈ {1, . . . , n} and a nonempty Zariski open subset
X ′ ⊆ X with the following property. Consider the projection map
πj : (P

1)n → (P1)n−1 that deletes the j-th coordinate. Then for all
x ∈ X ′, the restriction of πj to the specialization Yx is finite.

(In [13], DeMarco calls such a subvariety Y a dynamical relation, and adds
the third condition, which did not appear in [4], in order to disallow families
with certain degenerations.) If there is no such dynamical dependence, then
we say that the n critical points ci1 , . . . , cin are dynamically independent.

For example, if c1 is persistently preperiodic, meaning that there are inte-
gers s > r ≥ 0 so that f r(c1) = f s(c1), then the one-tuple (c1) is dynamically
related, with the subvariety Y ⊆ P1 consisting of the (finitely many) points
in the forward orbit of c1 under f . Similarly, if c1, c2 satisfy f r(c1) = f s(c2) for
some r, s ≥ 0, then the pair (c1, c2) is dynamically related, with Y ⊆ P1 × P1

defined by the equation f r(y1) = f s(y2).
Inspired by Baker and DeMarco’s conjecture on Zariski density of PCF

points in dynamical moduli spaces [4, Conjecture 1.10], as well as by De-
Marco’s related conjecture in [13, Conjecture 6.1], we propose the following
generalization of our earlier Conjecture 1.2.

Conjecture 6.2. Let k be a number field, let S be a finite set of places of k
including all the archimedean places, and let d ≥ 2 and N ≥ 1. Let (X, fx)
be an N -dimensional algebraic family of critically marked rational maps of

degree d, defined over k. Let D be a nonzero effective divisor on X. Suppose

that:

• the composition X → Ratd ↠ Md is quasifinite,

• X has at most N dynamically independent critical points, and
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• at least one irreducible component of D has at least N dynamically

independent critical points.

Then the set

(6.1) {x ∈ X(k) : fx is PCF, and x is S-integral on X relative to D}

is not Zariski dense in X.

For example, our family fd,c(z) = zd + c has parameter c lying in
X = A1, and the largest possible set of dynamically independent critical
points has cardinality 1, consisting only of the critical point at z = 0. If
D = (α1) + · · ·+ (αr) with fd,α1

not PCF, then the irreducible component
(c = α1) has a dynamically independent critical point, since the critical point
z = 0 is not preperiodic under fd,α1

. Thus, Conjecture 1.2 implies Conjec-
ture 6.2 for this case, and the two are precisely the same if D = (α1).

On the other hand, in light of Theorem 5.1, the set of equation (6.1)
for the family fd,c is Zariski dense in X = A1 when D = (α) and when fd,α
is PCF. More generally, in the notation of Conjecture 6.2, if no irreducible
component of D has N (or more) dynamically independent critical points,
then we expect, possibly after enlarging the finite set S, that the set of
equation (6.1) is Zariski dense in X.

We note that the hypotheses of Conjecture 6.2 exclude the case that
X is the flexible Lattès locus in Md (when d is a square), since in that
case N = 1, but any component of any divisor D of X would correspond
to a Lattès and hence PCF map, and therefore would have no dynamically
independent critical points.

Remark 6.3. As in [4], the dimension of the variety X in Definition 6.1
might be strictly larger than the dimension N of the family. However, in
practice, the map X → Md is usually quasifinite, which implies that both
X and its image in Md have the same dimension. For example, our family
c 7→ fd,c(z) = zd + c has X = A1, and the image in Md also has dimension
1, since zd + a is conjugate to zd + b if and only if b = ζa for some (d− 1)-st
root of unity ζ. Thus, the hypothesis in Conjecture 6.2 that X → Md is
quasifinite, which we assume so that both X and the divisor D behave well
under this map, already applies to almost all families of interest.

For any integer d ≥ 2, one may define the moduli space M
1
d[P] of criti-

cally marked rational functions of degree d, up to conjugation, as a geometric
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quotient scheme; see [15, Section 10.1]. That is, each point of M
1
d[P] corre-

sponds to a conjugacy class of tuples (f, c1, . . . , c2d−2), where f is a rational
function of degree d whose critical points in P1 are c1, . . . , c2d−2. (In the ter-
minology of [15, Sections 9–10], the critical portrait P here consists solely
of the 2d− 2 marked critical points, but with no restrictions on their or-

bits. We use M
1
d[P] instead of M1

d[P] to allow two or more critical points
to coincide in a higher-multiplicity critical point, while still ensuring that f
does not degenerate to a map of lower degree.) The following conjecture is
essentially Conjecture 6.2 applied to this geometric moduli space.

Conjecture 6.4. Let k be a number field, let S be a finite set of places

of k including all the archimedean places, and let d ≥ 2. Let X be a closed

subvariety of M
1
d[P], defined over k, which has at most dimX dynamically

independent critical points. Suppose that D is a nonzero effective divisor on

X at least one of whose irreducible components has at least dimX dynami-

cally independent critical points. Then the set

(6.2) {x ∈ X(k) : x is PCF and S-integral on X relative to D}

is not Zariski dense in X, where x being PCF means that x corresponds to

a PCF rational map.

Conversely, again in light of Theorem 5.1, if no irreducible component of
the divisor D in Conjecture 6.4 has dimX dynamically independent critical
points, then we expect, possibly after enlarging the finite set S, that the
set (6.2) is Zariski dense in X.

Returning to the family fd,c(z) = zd + c, we also propose the following
further integrality conjecture, inspired by the special case of the Dynamical
André-Oort Conjecture proven in [20, Theorem 1.1].

Conjecture 6.5. Let k be a number field, let S be a finite set of places of

k including all the archimedean places, and let d ≥ 2 be an integer. Write

fd,c(z) := zd + c. Let D be a nonzero effective divisor on A2 such that at

least one of its irreducible components is not of any of the following three

forms:

a) {c} × A1, where c ∈ k and fd,c is PCF,

b) A1 × {c}, where c ∈ k and fd,c is PCF,

c) the solution set of x− ζy = 0, where ζ is a (d− 1)-st root of unity.
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Then the set

(6.3)

{

P = (a, b) ∈ A2(k)

∣

∣

∣

∣

P is S-integral on A2 relative to D,
and both fd,a and fd,b are PCF

}

is not Zariski dense in A2.

Conversely, if every irreducible component of the divisor D in Conjec-
ture 6.5 is of one of the three forms (a)–(c), then we expect that the set (6.3)
is Zariski dense in A2, possibly after enlarging the finite set S. Indeed, by
Theorem 5.1, we certainly have Zariski density of this set if each of the
components of D is of the form (a) or (b). Theorem 5.1 also shows that for
any PCF parameter a, there are infinitely many PCF parameters b that are
S-integral relative to (a), yielding the Zariski density of the set of pairs (a, b)
of PCF parameters that are S-integral relative to the diagonal divisor given
by x = y. Furthermore, a simple computation shows that for any (d− 1)-st
root of unity ζ, the map fd,ζc is PCF if and only if fd,c is PCF. Thus, the set
of pairs of PCF parameters that are S-integral relative to the divisor given
by x = ζy is also Zariski dense in A2. Although we have not investigated
the situation for divisors D with irreducible components of all three forms,
these examples illustrate why divisors of the form (c), and not just those
with components of the forms (a) and (b), must be excluded when stating
Conjecture 6.5.

All of the preceding conjectures, and not just Conjecture 6.5, may be
viewed as integrality variants of the Dynamical André-Oort Conjecture de-
scribed in [3, 4, 20], wherein PCF points play the role of special points. We
therefore close with the following conjecture, in the Shimura variety setting
of the original André-Oort Conjecture. For the notion of special points or
subvarieties of a Shimura variety, we refer the reader to [31, Section 1].

Conjecture 6.6. Let k be a number field, let S be a finite set of places of

k including all the archimedean places, and let X be a special subvariety of

a Shimura variety, defined over k. If D is a nonzero effective divisor on X
at least one of whose irreducible components is not special, then the set

{P ∈ X(k) : P is special and S-integral on X relative to D}

is not Zariski dense in X.



✐

✐

“1-Benedetto” — 2023/9/2 — 1:51 — page 315 — #21
✐

✐

✐

✐

✐

✐

PCF unicritical polynomials 315

Acknowledgements

The first author gratefully acknowledges the support of NSF grant DMS-
150176. The second author gratefully acknowledges the support of Simons
Foundation grant 622375 and the hospitality of the Korea Institute for Ad-
vanced Study during his visit. The authors thank Laura DeMarco for helpful
discussions, and Phillip Habegger for independently raising a question sim-
ilar to Conjecture 1.2. We also express our gratitude to Lucien Szpiro for
his mathematical legacy and his deep insights, which have influenced the
underlying philosophy of this article; we dedicate this paper to his mem-
ory. Finally, we thank the referees for their careful reading of the paper and
helpful suggestions.

References

[1] W. Aitken, F. Hajir, and C. Maire, Finitely ramified iterated extensions,
Int. Math. Res. Not. IMRN 2005, no. 14, 855–880.

[2] J. Anderson, I.I. Bouw, O. Ejder, N. Girgin, V. Karemaker, and
M. Manes, Dynamical Belyi maps, in Women in Numbers Europe II,
Springer, Cham (2018), 57–82.

[3] M. Baker and L. DeMarco, Preperiodic points and unlikely intersections,
Duke Math. J. 159 (2011), 1–29.

[4] M. Baker and L. DeMarco, Special curves and postcritically finite poly-

nomials, Forum Math. Pi 1 (2013), e3, 35 pp.

[5] M. Baker and R. Rumely, Potential theory and dynamics on the

Berkovich projective line, Mathematical Surveys and Monographs 159,
American Mathematical Society, Providence, RI, 2010.

[6] R.L. Benedetto, Dynamics in one non-archimedean variable, American
Mathematical Society, Providence, 2019.

[7] R.L. Benedetto, X. Faber, B. Hutz, J. Juul, and Y. Yasufuku, A large ar-

boreal Galois representation for a cubic postcritically finite polynomial,
Res. Number Theory 3 (2017), DOI:10.1007/s40993-017-0092-8.

[8] R.L. Benedetto and S. Ih, Discreteness of postcritically finite maps in p-
adic moduli space, Trans. Amer. Math. Soc., accepted pending revisions
(2023). Available at arXiv:2005.04656.



✐

✐

“1-Benedetto” — 2023/9/2 — 1:51 — page 316 — #22
✐

✐

✐

✐

✐

✐

316 R. L. Benedetto and S. Ih

[9] R.L. Benedetto, P. Ingram, R. Jones, and A. Levy, Attracting cycles in

p-adic dynamics and height bounds for postcritically finite maps, Duke
Math. J. 163 (2014), 2325–2356.

[10] X. Buff, On postcritically finite unicritical polynomials, New York J.
Math. 24 (2018), 1111–1122.

[11] G. Call and J.H. Silverman, Canonical heights on varieties with mor-

phisms, Compos. Math. 89 (1993), 163–205.

[12] L. Carleson and T.W. Gamelin, Complex dynamics, Springer-Verlag,
New York, 1997.

[13] L. DeMarco, Bifurcations, intersections, and heights, Algebra Number
Theory 10 (2016), no. 5, 1031–1056.

[14] A. Douady and J.H. Hubbard, Étude dynamics des polynômes com-
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