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Affine symmetries in quantum

cohomology: corrections and new results
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In [CMP09] a general formula was given for the multiplication by
some special Schubert classes in the quantum cohomology of any
homogeneous space. Although this formula is true in the non equiv-
ariant setting, the stated equivariant version is wrong. We provide
correction for the equivariant formula, thus giving a correct argu-
ment for the non equivariant formula.
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In [CMP09] a general formula was given for the multiplication in the quan-
tum cohomology of any homogeneous space by some special Schubert classes
coming from cominuscule weights. Although this formula is true in the non
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equivariant setting, the stated equivariant version is wrong. We provide cor-
rection for the equivariant formula, thus giving a correct argument for the
non equivariant formula. We also provide new product formulas in the equiv-
ariant homology of the affine grassmannian.

Let G be a semisimple simply connected algebraic group and fix T'C B
a maximal torus and a Borel subgroup containing it. Denote by P and
Q" be the coweight and coroot lattices. A dominant coweight \V € PV is
minuscule if (A\V, ) € {0, 1} for any positive root a. A minuscule dominant
coweight is a fundamental coweight. Denote by I, the subset of the set I of
vertices of the Dynkin diagram of G parametrising minuscule coweights.

We consider a finite group Z which has several interpretation. Define Z

has
Z:=PV/Q".

Representatives for this quotient are for example the opposites of the mi-
nuscule fundamental coweights (—w,’)icr,,. The group Z is also the center
of G and if G* the the adjoint group associated to G, then Z = 1 (G*).

The group Z can be realised as a subgroup of the Weyl group W of G as
follows. Let wg be the longest element in W. For ¢ € I,,, define v; € W to be
the smallest element in W such that v;zo; = wowo;. Then the family (v;)er,,
forms a finite subgroup of W isomorphic to Z. Finally Z can be realised as a
subgroup of the extended affine Weyl group Wog = W x PV (see Section

below) by i — 7; := vt _r,.

For P C G a parabolic subgroup, let Ip be the set of vertices in the
Dynkin diagram such that, for ¢ € I, the simple root «; is a root of P
if and only if i € Ip. For w € W, denote by o (w) the Schubert class in
H?)(G/P,7Z) defined by w. Denote by QY the coroot lattice of P and
consider np : Q¥ — QV/QY the quotient map. We define an action of the
Weyl group W of G on the equivariant cohomology H7.(G/P) using, for
w € W, the pull-back in cohomology of the left multiplication by w (see
Subsection . We denote this action by w*. This action is trivial in non-
equivariant cohomology and extends to an action on equivariant quantum
cohomology QHY.(G/P). In this paper we obtain the following formula in
the quantum equivariant cohomology QH’(G/P) for any parabolic subgroup
P C G (see Theorem [6.9)).

Theorem 1.1. Let i be a cominuscule node. In QHY.(G/P) we have

UP<Ui) X U: (Up(w)) = an(wivfw—l(wiv))ap(viw)'
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This result corrects our formula in [CMP09, Theorem 1] which was wrong
in the equivariant setting (the action v} on the second factor on the LHS was
missing). The error in [CMPQ09] comes from an incorrect description of the
ring structure of HI (QK?) the equivariant homology of the adjoint affine
grassmannian (see Section . If QK is the affine grassmannian for G, the
incorrect claim ([CMPQ9, Page 12]) was that H! (Q2K) should be isomorphic
to Z @ HI'(QK). This is not true as explained in Section [5| (see Remark.
This is corrected in the present paper. Especially, in Proposition we
prove the S-algebra isomorphism (here S = H7(pt)):

oI (QK*) ~ S[PY] ®gqv) H (QK).

The incorrect product formula was then used only once in [CMP09, Propo-
sition 3.16]. We give a correct version of Proposition 3.16 in [CMPQ09] in
Proposition

We tried to write this paper as independently from [CMP09] as possi-
ble and included many preliminary results on the algebra and the module
structure of the extended affine Hecke algebra Aaﬁr (see Section|3)) and on its
module structure M which is isomorphic to HZ (QK?d) the homology of the
adjoint affine grassmannian. We also added new results. Especially we pro-
vide a generalization of a formula in [Lam08, Proposition 5.4] to coweights
for the map j24 : HI' (QK?®) — Zz . (S) (see Proposition .

Proposition 1.2. Let pV € PV be antidominant. Set
Wy = (sq, | i € [1,7] and (o, p*) =0) ={w e W | w(u") = p"}

Then
)= D A,

weW/W,v

Finally, we use this formula to give an explicit formula for the image
of the map j : HT(QK) — Z~ (S) for the special elements 7;(v;) = 7v;7; —1

(see Propomtlon . Here W denotes the set of minimal representatives
of the quotient Wog/W.

Proposition 1.3. We have 7;(v;) € W o and

—1
£Tl (vs) Z Z Ti gv 7' (w) vw*lA’Ua

WL p<u; !

where < is the Bruhat order and <j, the weak left Bruhat order.
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We hope to use the above formula to prove Pieri type formulas in
HT(QK) in the spirit of what Lam, Lapointe, Morse and Shimozono
[LLMS10] did in type A.

2. Notations

In this section, we fix notation for affine Kac-Moody Lie algebras, we intro-
duce the finite group Z and define the extended affine Weyl group W,g.

2.1. Affine Lie algebras

We denote by g a simple finite-dimensional Lie algebra of rank r, and by
h a Cartan subalgebra. We denote by G the simply-connected group corre-
sponding to g and by G the adjoint group. The affine Kac-Moody group
corresponding to G will be denoted by G and P C G is the parabolic subgroup
such that G/P is the affine Grassmannian.

The corresponding affine Lie algebra will be denoted by g.g, with Cartan
subalgebra h,g. The simple roots are denoted (Oéz‘)z'e[l,r} and the null-root,
orthogonal to all the simple coroots (aiv)ie[u], will be denoted by €. Recall
that we have the equality e = © + g, where O is the highest root of g. As
in [Kac90, p.82] we will use the decompositions hYz =" & CAg @ Ce and
hat = h ® CK & Cd. We denote by R.g the set of roots of g,g and by R
those of g.

We denote by Q,P,QV, PV the root, weight, coroot, coweight lattices
of g.

2.2. Affine Weyl groups

Let W be the Weyl group of g and let Wog = Q¥ x W be the affine Weyl
group. For AV € QV, the corresponding element in W,g will be denoted by
tyv. The reflection associated to a root « will be denoted by s,. The group
Wag is a Coxeter group with Coxeter generators s; for 1 < ¢ <r and sg =
tevse ([Kum02, Prop 13.1.7], see also Lemma [2.7).

Define the extended affine Weyl group Wog :== PV x W D Wag. The
group Wag acts on the affine weight lattice inside the dual of h,g and restricts
to an action on the sublattice of weights of level 0, defined by (A, K) = 0.
This lattice identifies with P & Ze. Explicitly we have [Kac90l 6.5.5]:

(1) wtyv - (e +ne) = w(p) + (0 — (A7)
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for \V € QY and p € P. We may also define an action of Waﬁr on () @ Ze by
a similar formula:

(2) wtyy - (A +ne) =wA) + (n— (A u"))e

for 4V € PV and A € Q. Note that in general W,g does not act on P & Ze
since (P, PV) ¢ 7Z.

The action of Wyg on P @ Ze stabilizes Ze, so that we may mod out
by Ze and obtain the action of Wag on P defined by wtyv(u) = w(p) for
we W, N €@ and p € P, which readily extends to an action of Wog
(letting AV € PV). Similarly, we may define an action of W,g on PV by
wtyv (1Y) = w(p") for w € W and \V, ¥ € PV.

Notation 2.1. Since an element in Q" is also an element in QY & Ze, we
will denote by w - AV the result of the action of w e Wy on AV as an
element in QY @ Ze, and by w(\Y) the element in QV.

Recall the definition of the fundamental alcove
o={Aebg | (\a)>0forallicll,r]and (\,0Y) <1}.

The stabiliser of A, in Wag will be denoted by Z; it is a subgroup of Watt
isomorphic to PV/QV [LSI0, §10.1]. In loc. cit., the authors also prove the
following result.

Lemma 2.2. Let T € Z. The conjugation by T is an automorphism of the
Coxeter group Wag. In fact, there exists an automorphism f. of the affine
Dynkin diagram such that

. -1
Vie TU{0}, 750, 7 = S7.0, = Sa;. () -
In particular, we have T -€ = €.

Notation 2.3. For 7 € Wyg, set 7(Z) := 727! € W,g. We have /(7(Z)) =
0(Z).

Lemma 2.4. An element 7 in Z permutes the positive real roots.

Proof. According to Lemma we have 7 - (3 nja; +nd) = Y njay () +
nd. Since a real root « + nd is positive if and only if n > 0 or n =0 and
a > 0, 7 indeed permutes positive roots. O
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As explained in [CMPQ9], W,g is not a Coxeter group, but we have a
well defined length function.

Definition 2.5. Every element x € Wag can be uniquely written as 7%
with 7 € Z and T € Wyg

1) Define the length function by ¢(x) := £(T).
2) Define a partial order on Waﬂ‘ by 7t <oy<=T7=0and 7 <7.

Covering relations in Waﬂr for the above partial order are defined by x <y
if v <yand/l(x)=1~0y)—1.

Remark 2.6. The length of x € Waﬁ‘ is also the number of inversions,
namely the cardinal of the set I(x) = {a € Rag | @ > 0, v is real and x(a) <
0}. Indeed, for z = 7z, by Lemma we have I(z) = I(Z).

2.3. Translations

We will need the following lemma.
Lemma 2.7. Let o« € R. We have tov = Se—aSa-

Proof. Set K+ = {u € bYs | (1, K) = 0}. By [Kac90, p.87], it is enough to
compute Sc_8q (1) for € K+. We have

Se—aSalft) = p— (1, (e —a)') (e —a) — (u,a")a
+ {p, 0¥ )a, (e — @) ') (e — a).

Now, for any 5 € R,g, we have by [Kac90, §2.3.5 and §6.2.3]:

v 2e+Bou)  2B,u) v
<M7(6+B) >_ <€+/87€+6) - (675) _<N7B >

Therefore,

Se-asalit) = i+ (%) (e ) — (gaVa —2(u,av) (e - a)
N </~L7av>6 = tav(p)

where the last equality follows from the definition of ¢,v in [Kac90, §6.5.5].

O

Corollary 2.8. For a€ R,k €Z and p” € PV, we have Sqip(pn"’) =
Sa(pY).
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Proof. We have Sotc(itY) = satet—a(itY) = SateSatesS—a(pt’) = s_a(pn")
Sa(1"). The result follows by induction.

Ol

3. extended nil-Hecke ring

The goal of this section is to extend the notion of the nil-Hecke ring defined
by Kostant and Kumar [KK86]. This ring was used in [LS10] to compare
the quantum cohomology of G/ P and the homology of affine Grassmannians
QK. We need a refined version of this nil-Hecke ring that enables dealing
with QK24 the adjoint affine Grassmannian (see Section .

3.1. Definition

We denote by S resp. S the symmetric algebra on P resp. P ® Ze @ ZAy.
Moreover, we denote by Sioc resp. Sioc the localization of S resp. S where we
invert all the roots in R resp. all the real roots in R,g. Moreover, we consider
inside S the subalgebra S’ generated by P and e, and its localization at real
affine roots Sj . C Sioc. Note that moding out by e yields isomorphisms
S'/(e) =~ S and S{,./(€) = Sioc, since any real affine root in R,g can be
written as v+ ne with v € R and n € Z. This is the reason why we are
using Sioc, where € is not invertible, whereas Frac(S) in used in [Kum02].

We extend several classical objects, in particular the affine nil-Hecke
algebra, to the adjoint setting. Our reference for these classical objects is
Kumar’s book [Kum02]. However, there is a little subtlety, since as in [LS10],
we restrict the scalars from S to S. Thus, Kostant and Kumar’s objects
will be denoted with bold letters, whereas Lam and Shimozono’s restricted
objects will be denoted with usual letters.

Definition 3.1. Recall that the rings Qag and Q.g are

(3) Qaff = @ Sloc 57.0 and Qaff = @ Sloc 510
WEW g WEWage

We define the following extended version:

(4) éaﬁ' = @ Sloc 0w and Qvaff = @ Sloc Ow
'UJEV[N/aff ZUGV[N/aff

In both cases, the ring structure is defined by the equations 6,0, = Oy,
dus = u(8)dy, and 6,8 = (u - 8)0y, for u,v € Wyg resp. u,v € Wayg, s € S and
ses.
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Remark 3.2. A subring of Qag is Qg := @, cw.., Sloc Ow; € is central in

Qafr, and we have Q. g/ (€) =~ Qag. We denote by 7m: QLg — QlLg/(€) = Qam
the projection morphism. Applying 7, any relation proved in [Kum02] for
Qafr, that involves only elements in Qg is valid in Qag.

Definition 3.3. As in [Kum02], we consider particular elements in Qag
and Qa.g:

1) Foriel,set A;=A; = O%(&e —05,). For i =0, set Ag = L (5. — s,)

Qo

and Ag = 5 (6. — 0s,) (note that this is coherent with the forthcoming

Definition .

2) For w € Wog and for w = s;, - - - 84, a reduced expression, we set:
Ay :Ail"'Aig S Q;ﬂ' and Ay :Ail-HAig S Qaﬁ‘.

By [Kum02, Theorem 11.1.2], the definition of A,, does not depend on the
chosen reduced expression. Since 7(A;) = A;, the same holds for A4,, and
m(Ay) = Ay.

Recall that for = € Waﬂ‘, there is a unique decomposition x = 77 with
Te€Zand T € Wyg.

Definition 3.4. Let x = 77 € Wag, we set Ay, = 6, Az.

By [Kum02, 11.1.2(e)], the matrix expressing each A, as a linear combi-
nation of elements ¢, is invertible in Sjoc. Applying 7, the matrix expressing
each A, as a linear combination of elements J, is invertible in Sj.. In par-
ticular, the elements A, in Q.g are linearly independent over Sy, and the
following definition makes sense:

Definition 3.5. As in [KK86], the (extended) nil-Hecke ring is generated
over S by the elements A,,.

1) The nil-Hecke ring is

Aaﬁf: @ S‘AwCQaH~

wWEWagr

2) The extended nil-Hecke ring is
A/aff: @ S’chéaﬁ-

we Waff
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Remark 3.6. We will see below that both are indeed subrings of @aﬁ‘.
3.2. Definition and properties of A,

It will be helpful to generalize the definition of A; in the following way.

Definition 3.7. For a real root o = v+ ke with v € R, set A, = %(56 —
Js..)-

Recall [LSI10L §6.1] that we have the equation
(5) Aid = 5i(A) + (A o)1,
We generalize this formula to the elements A, as follows:

Proposition 3.8. Let w € Waﬁ,a € R.g a real root and A € Q. Then we
have:

1) uwAabu = Au(a)-
2) AuA = sa(\)Aa + (A, a¥)1.

Proof. Let w = ut,v,a = v+ ke, A\ € P be as in the proposition. Then,

S byt = G (8o — 8 Vourr = — (B0 — Bs. )0y

gl u(v)
e 5 = Guet) = —— (5. =6, )= A
Cu(y) T () e e e

For the second point, we use the formula and the above conjugation
relation. Let w € Wg and ¢ € I U {0} be such that o = w(«;). We have

Ao\ = 8y Aibp—1 A
= 0y Ay (N) Gy
= du(siw™ (V) Ai + (W' (A), o))

= ws;w L (N)wAidy 1 + (N, w(ey)Y)
= 50N A + (N, aY).

Corollary 3.9. For any real root o, we have Ay € A,g.
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Cogollary 3.10. The (extended) nil Hecke rings Ag and &aff are subrings
Of Qaff-

Proof. The second formula above shows that for s, s’ € S and u,v € W,g, the
product sA,s' A, lies in A,g therefore A,g is a ring. The first formula proves
that for 7,0 € Z and for u,v € Wag, we have 6, A0, Ay = 6705 Ag—1(4) Ay €
&aﬁ proving that &aﬂr is a ring. ]

4. Module and ring structures of Aaﬁ‘

In this section we present three different descriptions of ,&aﬁ‘ and describe
its S-module structure and its ring structure in each case.

4.1. S-module structure of &aff

Recall that we have an injection of Wog in the group of invertibles of A,g,
given by w — dy: in fact 05, =1 — a;A; € Aug thus d, € Aug for all w e
Wog. Therefore the subgroup QY C W,g also injects in A.g, and since A.g
is a ring we have an injection of the Laurent polynomial algebra Z[QV]
inside A,g. Thus A.g is Z[QV]-module via left multiplication. The natural
Z-module basis of Z[Q"] will be denoted by (hyv)aveqv-

We now introduce two new algebraic models of &aﬁ.

Definition 4.1. Let ¢1, 2 be the following morphisms of Z-modules:

e1 ¢ ZIPY]®g0v Aat = Qag
hyv ® Ay = 5tkv Ay,

w2 Z[Z] 7z Aaff — @af‘f
TR® Ay = 0; A .

Note that A,g has a structure of S-bimodule, thus also the two tensor prod-
ucts in this definition. Both maps ¢; and @9 are S-linear on the right,
moreover (; is also S-linear on the left whereas 2 is not.

Proposition 4.2. With the above notations, Im(p1) = Im(ps) = Aug.
Moreover, if J C Ag is a left ideal, then

©1(Z[PY] @z J) = w2(Z|Z) @z J).
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Proof. Observe that ¢ is well-defined: ¢1(hyv ® 1) = @1 (1 ® &, ) = b,
for \V € QY. We now prove that ¢1(Z[PV] ® J) C p2(Z[Z] @ J). Let AV €
PV: there exists 7 € Z and @ € W,g such that tyv = 7@. Then for a € J,
we have ¢1(hyv ® a) = 0, a = 6:0ga € p2(Z[Z] ® J) since dga € J.

The reverse inclusion ¢2(Z[Z] ® J) C p1(Z[PY] ® J) follows similarly
from the fact that any element in Z can be written as a product ¢yvu for
some \Y € PV and v € W. Finally, the equality Im(p2) = A.g follows from
the definition of A,g (Definition . O

4.2. Ring structure of Aag

We give the description of the ring structure of &ag according to the given
three equivalent definitions of this module.

Proposition 4.3. Let z,y € Waﬁ‘, then we have

0 otherwise.

Proof. Write x = o and y = 7y with 0,7 € Z and Z,7 € W,g. Recall that
for u,v € Wog, we have:

Ay if l(uv) = £(u) + £(v)

0 otherwise.

A, ={

By Lemma we have

AgAy = 0,A70:A5
= 5067/1771@)1417
_ bor Arai(zyy if L(r7H(Z)Y) = L(r7H(Z)) + £(7)
0 otherwise

But 4(7=Y2)y) = (xy) since xy = oTTy = or7 1(Z)y, and L(r71(Z)) +
0y) =0(Z) + £(y) = l(x) + £(y). The result follows. O

We now express the product in Ang = @1 (Z[PY] ®z)qv] Aatr). Note that
we need to compute the product (d;,, Ay)(dt,, Ay). We therefore need to
“move” d; ., to the left of A,. The following proposition gives formulas for
this.

Proposition 4.4. Let \Y € PV and let « = v + ke € Rag. Then:
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1) Aabt,y = 05, (tyv)Aa + %(&:w —0t, av))-

2) Styw = Ot vy = Otyu (1= 0t_ . \vyuv )s

8)1—=6t,.v =1+, + -+, . )1 —0,) forneN,
4) 1 =6 =7(Aa —vAQAc—a + Aca).

Proof. (1) From the equality satxv =t, (\v)Sa, We get 0s,0p,, = Ot, vy 0s,
in A,g. By definition of A, (Definition , this relation implies

(1 - 'YAQ)(St)\V = 5tsa()\\/)(1 - ’YAa) .

Thus we get vAadr,, = V0, v, Aa + 0,0 — 0t v _
(2) and (3) are easy consequences of the product formulas in Q..
(4) By Lemma we have

1—=6: v =1—0s.s._.
=1—(1—740)1+vAc_q)
= Y40 — YAc—a + YAaVAc—a
=YAs = VAo +7 (5a(V) A0 + (@V,7)) Acea
= VAo +VAca — Y AcAca,
where we used Proposition [3.8] on the fourth line. [l

The ring structure in &aff = @o(Z[Z] ®7 Aug) is easy to describe:
Proposition 4.5. Let o,7 € Z and let a,b € A,g. Then:
a(0 @ a) - pa(T @ b) = pa(o7 @7 H(a)d).
Proof. This follows from the fact that in &aﬂ‘, we have
0sa0,:b = (55(577'71(a)b. H

In the next proposition, we give an explicit formula for the commuting re-
lation of the elements A, and A € P, generalizing [KK86l, Proposition 4.3.b]:

Proposition 4.6. Let z € Waﬂ‘ and let A € P. We have:

A=as(NA+ Y (Na)A,,

Q. TS <<T

where the sum runs over positive real roots a such that xsq < x.
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Proof. Let x = 77 € Waﬁi with 7 € Z and 7 € Wg. Let A € P. According to
Deﬁnition we have A, = 0,;Az. Using [KK86, Proposition 4.3.b], we get
(sums always run over positive real roots):

AN =0 AN =0, F(NAz +0. > (A a')Az,
Q: TS <T
=72\ Az + Y (A aY)o-Ags,
o TS <T
=z(NA+ > (MaY) A, .
Q: TS <T
Since, by Definition the relation Zs, < ¥ holds if and only if the relation
TS < x holds, we get the result. U

4.3. Module over &afr

We now define a natural module over Aaff which will be identified in the
next section with the homology of the adjoint affine Grassmmannian QK24

Definition 4.7. Let W_4 resp. Wa_ff be the set of minimal length repre-
sentatives of the quotient W,g/W resp. Wag/W. By [LS10, Lemma 3.3],
W is the set of elements w = utyv such that Vie I,(AY,q;) <0 and
A\, a;) =0 = u(a;) >0.

We generalize the characterization of W 4 as follows:

Lemma 4.8. We have utyv € V[N/a_ff if and only if \V <0 and for all i in I
it holds

A,a;) =0 = u(a;) >0.

Proof. Recall that we have a length formula in Waﬁ‘ similar to the one in
Wag:
O(utyw) = Z [(AY, @) + x(u(a) < 0)
aERT
where x(P) =1 if P is true and x(P) =0 if P is false. This is proved in
ICMP09), Corollary 3.13]. It follows that

Y

Outyvs;) — Llutyw) = [(AY, —a;) + x(u(ag) > 0)] — (A, a;) + x(u(a;) < 0)].

This is non-negative for all 7 in I if and only if for all i, (\V, ;) <0, and
(\Y, ;) = 0 implies u(a;) > 0. O
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Definition 4.9. For each w € W g, we define a variable §,, and we set
M= P S
weW 4

Recall [LS10, §6.2] that we may define a left A,g-module structure on M
via:

Ewu 1 L(wu) = L(w) + £(u) and wu € W,
0 otherwise .

A=
As left A, g-module, we have an isomorphism
M ~ A,g/J, where J = @ S Ay
wEW g
is a left ideal in A.g.

Using Proposition we define similarly a left ideal in &aﬁ.

Definition 4.10. Let

T = o1(ZIPY | ®5g T) = 02(Z[Z) @2 T) = €D S 4.
wng:ff

Definition 4.11. We introduce the following three modules.
e Let M be the S-module Z[PY] ®Rziov] M.

e Let My = Z[Z] ®z M. This is an A,g-module with the action given by
(c®a) (T®&) =0cr®7 a) & for 0 ®a € Z[Z] @z Mg = Augr.

o Let Mg = EB S - gw. This is an Aag—module with the action given

we Wa}f

by

A, & = Ewn if L(wu) = £(w) + £(u) and wu € Wa;f’
Y"1 0 otherwise,

forgwe&aff: @ S~Zw.

”LUEWaff
Proposition 4.12. With the above definitions,

1) Moding out by j, the morphism 1 induces an S-module isomorphism
M1 — Aaff/J.
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2) Moding out by j, the morphism 2 induces an Igaﬂ—mggule 1s0mor-
phism My — Aug/J (which is not S-linear if we give Ms the tensor
product S-module structure).

3) The left Igaﬁ—modules J&aﬁ/j and Mg are isomorphic.
Proof. This proposition follows easily from Propositions [4.3] and [4.5] O

Remark 4.13. The &ag—module structure induced on ]\71 by the isomor-
phism in Proposition M(l) can also be described via Proposition

Definition 4.14. The &ag—mg(jule defined by one of the above equivalent
definitions will be denoted by M.

5. Homology of the adjoint affine Grassmannian QK24

In this section, we recall the adjoint affine Grassmannian QK ad e prove
that the A,g-module M is isomorphic to the homology of QK21 we define
a ring structure on this module and study the compatibility of these two
structures.

5.1. Cohomology of the finite-dimensional flag manifold G/B

Recall, see for example [Kum02, Chapter 11], that H7(G/B) has an S-basis
consisting of the elements ¢¥ = 0®(w) indexed by the Weyl group. The
pull-back along the map (G/B)T — G/B induces an inclusion

Hy(G/B) — Hp((G/B)") = 7.

Viewing £ as a function on W, Kumar [Kum02, 11.1.6.(3)] sets dy, =
E4v) = (€% v) and D = (dyv)upew- If (f¥)wew is the basis of SV given
by (f*,v) = f*(v) = 0y, then we have ({*), = D(f"),. Given the identifi-
cation [Kum02 11.1.4(2)], we also have (f",d,) = dy.o-

The dual of H3(G/B) is HI (G/B) and identifies as an S-module with
the S-subalgebra A of A,g generated by (Ay)wew:

(6) HI(G/B)~ @ 5 Au
weW

Note that (Ay)wew is the dual basis to (§¥)wew i.e. (%, Ay) = E4(Ay) =
duw (see [Kum02l, 11.1.5], were A, is denoted by z,). Over F' = Frac(S) we
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also have the basis (6, )wew for HI (G/B). Kumar, in [Kum02, 11.1.2.(e)],
describes the base change:

A, = Z Cu,vdv

with C' = (cy,v)uvew a matrix with coefficients in S, in particular, we have
(Ay)y = C(0y)y. We have the following relation between the matrices C
and D.

Fact 5.1 (See [Kum02, 11.1.7.(a)]). We have D! = CT. Thus,

Sy =Y €"(v)Ay.

w<v

Proof. In fact, from the identity (A,), = C(dy)v, we deduce that (d,), =
C(Ay)y = DT(A,). Since DY, = ¢*(v) and the matrix D is triangular,
we get the result. O

Note also that an explicit formula for the coefficients £“(v) is known: see
[Kum02, Proposition 11.1.11].

5.2. Affine Grassmannian and the Pontryagin ring structure

Let G be the simply-connected almost simple group associated to g, and let
G* be the adjoint quotient of this group. Let K resp. K*! be a maximal
compact subgroup in G resp. G®. Let QK resp. QK21 be the group of
loops | with values in K resp. K®! such that [(0) is the unit element in
K resp. K*. By a loop we mean a map [ :S! — K@) that extends to a
meromorphic map D° — G@d) | where D° denotes the pointed disk. Modding
out a loop by the center of K yields an inclusion QK C QK?1. The action
of TN K on QK resp. QK2 is given by conjugation.

This implies that the equivariant homology of QK and QK2 have a
natural structure of an algebra, given by the Pontryagin product which is
also (T N K)-equivariantly homotopy equivalent to the point-wise product of
loops. In this section, we will recall an algebraic model for HI "5 (QK) and
give one for HI™X (QK??). In particular we will describe the ring structure
as well as an A,g-module structure on HI™5(QK?2!) extending the ring
structure and the A,g-module structure on Hme(QK).
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5.3. Geometry of fixed points in QK24

Since K — K24 is the universal cover of K24 the connected components of
QK2 are isomorphic to QK and are indexed by 71 (G?) = my (K2) = Z.
We now describe the T-fixed points in QK?d. We have, in the loop space
picture

QKT = {gy,, : S' > K* | AV € PV},

where {/Jvtw (t) = exp(2imtA) is the loop induced by the one-parameter sub-
group A of T2 (the maximal torus of K1), For AV € PV, let [\Y] be its
class in PV/QY = 7r1(Kad) and denote by QK[M] be the connected compo-

nent of QK2 containing wtw- We have

ok* = [ oKy,
(AvIepPv/QY

Let myv : QK — QK[/\V} be the left multiplication by Jt v Since T and

@btw commute, this is a T-equivariant isomorphism. Thus, H (QK3d V] ) ~
HI(QK).

5.4. Reminder on HI (QK)

Recall from [KK86] that QK has a cellular decomposition whose cells are
indexed by W,_g. This implies that, as S-module, we have

HI(QK)= @@ S-bw~M

weW 4

Furthermore, according to [Lam08, (3.1) and (3.2)], Aag acts on H! (G/P)
by

Sow if L(vw) = L(v) + L(w) and vw € W4

0 otherwise

Ay - §w = {
and A,g acts on H7(G/P) b

£ if L(vw) = L(w) — l(w) and vw € W
0 otherwise

Av’gw_{
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5.5. S-algebra structure on HI (QK?29)

We use the T' N K-equivariant homology of the T'N K-space QK1 where
TNK acts on QK via TNK — (I'N K)* — G2, The inclusion 7N
K — T induces an isomorphism in equivariant cohomology H7(pt) —
H i (pt). Note that we have Hy o (QK) ~ Hy 1 (5/P) ~ H3(5/P), where
G/ is the affine Grassmannian. Abusing notations slightly, we will denote in
the following H (K simply by H%(QK), and similarly for Hx(QK2d).
The T-equivariant cohomology of the point is the symmetric algebra on
P, namely S, see [Br98, p.5], so that the homology HI (QK?!) will be an
S-module and even an S-algebra. We are not considering T?d-equivariant
homology.

Proposition 5.2. As S-algebras, we have: HI (QK?*d) ~ S[PV] ®s[QV]
HT(QK).

Proof. We have the following inclusions that are compatible with pointwise
multiplication and T-equivariant inducing S-algebra morphisms

QTT Qf HI'(QKT) HI(QK)
Q)T —K™, gl (QK*)T) — B (QK™).

Recall that we have bijections (QKadN)T ~ PV and QKT ~ QV that are group
homomorphisms since ¥, ¥t =, . We thus have HI(QK*)HT) ~
S[PY] and HI' (QKT) ~ [QV] In particular the above diagram induces
an S-algebra morphism S[PY] ®s1qv] HI(QK) — HI (QK?). The restric-
tion of this map to ¢txv @ HI'(QKT) — HI ((QK*HT) is the multiplication
myv. The above decomposition of QK in connected components gives an
isomorphism of S-modules

v (QK*) = @ HI(QKY,)
AV]EPY/QY

proving that the map S[PV] ®gov) HY (QK) — HI(QK?) is surjective.
To prove injectivity, first note that, since H! (QK) is a free S-module
and S[PV] is a free S[Q"]-module, the S-module S[PY] ®giov) HI (1K) is
free. We therefore only need to prove the injectivity of the map after base
extension to F' = Frac(S) the field of fractions of S. Now recall the following
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general result (see [Kum02, C.8 Theorem]|: on the level of T-equivariant
cohomology we have isomorphisms Hj;(QK) ®g F ~ H:(QKT) ®s F and
HA(QK) @5 F ~ HA(QK*)T) ®g F. This induces isomorphisms in 7-
equivariant homology:

HI'(QKT)@s F ~ HI (QK) @5 F

and HI(QK*HT) @ F ~ HI (QK*) @ F.

After base change to F, since H! (QK7T) ~ F[QV] and HI ((QK*HT) ®g
F ~ F[PY], our map is given by

F[PY] ®@pigv) FIQY] — F[PY]

and is therefore injective. O

Recall that, as S-module, we have an isomorphism H! (QK) = M. In
particular the above results identifies H! (QK?d) with the S-module M of
Definition [£.14}

Corollary 5.3. As S-modules, we have: HI (QK?d) ~ M.

Corollary 5.4. The exists an &aﬁ—module structure on HI (QK?3) com-
patible with the Aug-module structure on HI(QK). Furthermore, for this
structure, we have an isomorphism of A.g-modules HI (QK?®) ~ M.

Proof. We define the A,g-module structure on HI'(QK ad) " Since we have
the isomorphism of S-modules HI (QK?d) ~ M; = S[PV] ®Rsiqv] M, we may
extend the A,g-module structure on M to the A,g—module structure M. [J

Remark 5.5. The above ,&aﬁ“—module structure on HI (QK ad) also has a
geometric description, see [CMP09, Proposition 3.3].

Remark 5.6. The above result shows that our claim on [CMP09l Page 12]
that HI' (QK?) is the tensor product ring Z[Z] ®z HI (QK) is wrong: by
localization HI (QK?1) is a subring of F[PV] and this Laurent polynomial
algebra contains no roots of unity, whereas Z[Z] ®z H! (QK) does.

Recall that Waff can be embedded in . ,&aﬁ" via_w dw- The induced
action is denoted by x - & := §, - £ for x € Wog and & € HI (QK?4).

Corollary 5.7. Letw € W and \V, " € PV, we have

U)t)\\/ : wtuv = 6wt>\v : ¢tuv = wtu,(Aeruvy
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Proof. As already explained in the proof of Proposition we have
Otyv * Yt = Vi, We need to check that o, -y, =, But our

identification of HZ (QK?4) with M identifies wt ., with h,v ® 1. Recall that
1=1[4] € Aaff/J (e being the neutral element of W) so that hyv @ 1 = [d,, ]
and &y, @/}tﬂv = [(5tﬂv} [0 615“\/] [0w Oty Ow- 1] since d,,-1 € J. We get

w Jt“v = [5w5t“v (5w—1] = [5tw(uv)] = '[Ztu,(u )

proving the result. U

5.6. Compatibility between the ring and the Aaﬁ"—module
structure

The above description of HI' (QK ad) as ring and as &aﬂc—module is not enough
for our purposes: we need to be able to multiply two classes of the form o ® &,
and 7 ® §,, see also Remark To this end, we recall the definition and
properties of 724 given in [CMP09, §3.3].

Proposition 5.8. There is an S-algebra isomorphism j4 : HI (QK?*) —
Zz (S). 1t satisfies:

1) j*4(€) - & = €& for €,¢ € HI (QK?) ;
2) 74y, ) = i, for XY € PV.
For w € Wa}p jad(gw) is characterized by the two following properties:
(a) jad(gw) is congruent to Ay, modulo erw\{e} A - Ay ;
(b) jad(fw) belongs to Z&a“(S).
The map 524 has the following equivariance property:

Proposition 5.9. Let u € W,\Y € PV, ¢ € HT (QK?). Then
1) 4 utse - €) = b, 0ud (€)u-1 = buty, 5 (€)3u1;
2) 81,0 54(€) = 74 (€)1,
Proof. (1) Let s € S be a scalar, we have:
o 2 (utre - s§) = j(u(s)uty - &) = u(s)j*(uty - §) ;
® Gty 0uf ™ (5E)8um1 = B, 0, usi™ (€)0us = u(8)r, 0, 0ud™ ()81
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Thus, by semi-linearity, it is enough to prove the result for 5 wt .. For
£=1,,, we have jd(uty -4y ) = j*(u wmﬂ ) = 7Pty yusuiy) =
Os We also have &, ., 0uj® (I/Jt V)01 = Ot vy Oubt v Oy-1 =
bV ) uuY) - Thus the result is proved.

(2) Both terms are S-linear so we only need to check this for { wt v
but we have d;,, j* (wtuv) Oty Oty = 0t,,0t,, = Jad(wt LI O

u(AV)tu(pV) "

In particular, the previous Proposition allows computing 724 in terms of j:
Example 5.10. Let 7, = vjt_, € Z and let £ € H! (QK). Then
57 €) = 65, 5(€) G,

We deduce a formula allowing reducing products in the homology of
QK? to products in the homology of QK:

Corollary 5.11. Let o = utyv,7 = vt,v be elements in Z. Let 5,5’ €
HI(QK?). Then

(08 x (&) =07 (Yo x (17'€) x (u;'€)),
where 1!)077- = Qz[)'ufl(p,v)—p,v = ¢U71(>\v)_)\v.
Proof. Since Z is abelian, o7 = 70. We have o7 = ul\v vty = uvl,-1(zv) v
and 70 = vt vutyy = Vuty-1(,v)pav. We get 07 (AY) + XY = uH (wY) + pY
so u t(pV) —p¥ =v7H(AY) =AY, so that 9, is well defined. We also get

uv = vu.
Using Proposition [5.9, we compute:

7-&)

—

(0-&) x (r-&)=5"Yo-8)-
d

= 5 6tkv]a (f)5u ) 5t v 'f
= bubps SUENSD 0y, - E
=9 5tAv U]a (U )515 71(uv)5u 1 ‘él

= 5u5tkv (51,(5%71(“\/)]8‘(1( -1, é’) S g/
= 0ult, 0v0t, 6tu—1(uv>,uvjad(v_1 E)5yr - &
=07 (thor X (v7€) X (u'€))).
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Remark 5.12. In [CMP09, p.12], it is claimed that HI (QK?d) is the tensor
product ring Z[Z] @z HI (QK). As explained in Remark this is not true.
However as the next corollary shows, this is true in the non equivariant
homology.

Corollary 5.13. In non equivariant homology, let E,E’ € H.(QK*) and
o, T € Z, then

(0 & x(r-&)=07({£xE).

Proof. Indeed, push-forwards u; ! and v;! are trivial in non equivariant
homology. Moreover, the equivariant classes v restrict to the class of a
point in H,(QK?), which is the unit in H,(QK?d). O

5.7. Translations modulo P

We use [LS10, Lemma 10.1] and [CMPQ9, Corollary 3.15] as a definition:

(1 (W = {utqu'y € Rp, (v',7) = { _01 iiZEli 28 }

®) (77 = {uter € W [y € R0 = 0 =00 L

Following [LS10, §10.2 and 10.3], we also define (Wp).g = {wtyv|w €
Wp, AV € Q}}. Recall, from [CMP09, Section 3.4] that any element w € Wag
can be uniquely factorized as wiws with wy € (Wp)aff anfdv wo € (Wp)ag
and £(w) = {(w1) + (w2). We denote wy = 7p(w). Thus (WF).q is a set
of representatives for the quotient W,g/(Wp)ag which will be relevant for
Peterson’s isomorphism @D

Following [LS10, Section 10.4] and [CMPQ9, Section 3.4], define the ideals
Jp C M and jp C M as follows:

Jp = > S&oand Jp= > oSG

TEW i \(WF ) ase xewa_ff\(wp)aff

The following result corrects [CMPQ09, Proposition 3.16] which used the
wrong product structure, see Remark
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Proposition 5.14. Let = € Wa}fm(wp)aff and let v¥ € PY. Then
xrp(ty) € Wi N (WP)ag. Let us write as usual x = 0% and mp(t,v) =
Trp(tyv) with o = utyv, T = vt,v. Then

(U;léi) X (Uj@rp/(t’j)) = r¢ —  modulo Jp.

T 3xmp (t,v)
Proof. The proof follows the arguments in [CMPQ9]. In particular, we get

(0 &)X (1§ —)=07-§ —F— modulojp.

Wp(tuv) .Tﬂ'p(tl,v)

Using the correct product formula given in Corollary the left hand side
is

oT - (7!}0,7'(1)*_159?) X (u*_1€ T ))

TP (tu\/)

This proves the result since Jp N M = Jp (as 0% € ng SreWy). 0O
In particular, the case P = B yields:

Corollary 5.15. Let x € ng and let v¥ € PY. Then zt,v € Wa}f Let us

o~

write as usual v = o and t,v = Tt,v with 0 = ut)\v,T = vty,v. Then
-1 —1 -1
(vi &a) X (uy §5) = Yorla -
6. Affine symmetries

In this section, we correct [CMP09, Section 3.5], see Remark using the
correct product formula given in Corollary and Proposition In
particular we prove that the formulas given in [CMPQ9] are correct in the
non equivariant setting.

6.1. Peterson’s isomorphism

Proposition is our needed result in the equivariant homology of the
affine Grassmannian. Translating this formula in the quantum cohomology
of G/ P, we prove our main theorem. We use Peterson’s isomorphism [Pet98]
proved in [LSI0] to relate HI' (QK) and QH4(G/P).
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Let np : Q¥ — Q) be the projection on the coroot subspace generated
by simple roots «; with a; € Rp. Peterson’s isomorphism is the map

9) vp :  HY @K)p = Z[QY) @z H:(G/P)
Swﬂ-p(tw)f;P(t“v) — qnp(/\v_uv)gp(w)

where w € WP and AV, 1V € QY with QY the set of antidominant elements

in QV.
Remark 6.1. In the above statement we have:

1) The space HI' (QK)p is a quotient and a localization of HI' (QK) de-
fined in [CMP09, §2.2]. The family {0 (w),w € W/Wp} is the Schu-
bert base of H;(G/P), and the element in Z[QY)] corresponding to
vV € QY is denoted by g,v. We have for ¥ € QY the formula

deg(qv) = Y (WW,a) = —L(t,).

aE€RT\R}

2) This isomorphism is graded. In fact, for very negative coweights AV, u",
the element §w7rp(tw)§;:(tuv) has homological degree ¢(mp(tyv)) —
l(w) —(mp(ty)), by [LS10, Lemma 3.3]. On the other hand,
in quantum cohomology, the element an(AV_Hv)aP (w) has degree

—U(mp(tav)) + l(mp(tu)) + L(w).
6.2. A Weyl group action on QHZ(G/P).

In this subsection, we recall that left multiplication in the group G induces
an action of the Weyl group on H}.(G/P) and on QH%(G/P). This action
is very natural and appears eg in [MNS21l, Section 3.1]. We will prove the
compatibility of this action with Peterson’s isomorphism in the next subsec-
tion. Since this action is different from the action defined in Kumar [Kum02),
11.3.4] we define it carefully. We start with the action on G/B and then deal
with the general situation for G/P.

We define an algebraic and a geometric action of the Weyl group W on
H7(G/B). We then prove that these actions coincide.

Let n € G be in the normalizer of T" and let w be the corresponding
element of the Weyl group. Define the left action L,, : G/B — G/B by left
multiplication: L, - [x] = [n~!z]. This action is T-equivariant if we consider
the w-twisted action of T on G/B given by t - [z] = [w(t)z]. It therefore
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induces a w-semilinear map H}.(G/B) — H}(G/B), denoted Lj: L (s§) =
w(s)Ly (&) for s € S and ¢ € H(G/B).

Fact 6.2. The above action L} satisfies the following properties:

1) L} depends on w and not on n itself; it will be denoted by w* in the
sequel.

2) Via the inclusion H}.(G/P) C Hy(G/B) given by pulling back the pro-
jection G/B — G/ P, we have w*H}(G/P) C H}.(G/P).

3) The induced action of w* on the non equivariant cohomology H*(G/B)
is trivial.

Proof. (1) Let N denote the normalizer of 7. The map N x G/B —
G/B, (n,[x]) — Ly, - [x] is continuous and therefore for £ € H}(G/B), the
map N — L} ¢ is locally constant.

(2) For n in the normalizer of T', we have a commutative diagram:

a/B - G/B

| l

a/p 2 q/p

Here we made a difference between the action of n on G/B and G/P us-
ing superscripts. It follows that for £ € HA(G/P), we have w*¢ = (LB)*¢ =
(LD)*¢ € HA(G/P).

(3) For g € G, we can consider the action of left translation L} on non
equivariant cohomology H*(G/B). By the same argument as in (1), this
action is trivial. In particular, for ¢ = n in N, we obtain that the action L,
on non equivariant cohomology is trivial. 0

Recall that W can be embedded in A,g via v — §,,.

Definition 6.3. Let w e W. Consider H;(G/B) as the dual of
HI'(G/B) C A,z and set

(we f)(x) = f(8y-1z) for z € HI (G/B) = A.
Proposition 6.4. For f € H;(G/B) and w € W, we have we f = w*f.

Proof. Using Frac(S)-linearity, we only need to compare these actions on
the elements . We have (w @ £¥)(y) = £"(0w-10u) = &’ (Ow-14) = Opw-1u =
€ (w™tu) = (w*¢?)(u), proving the result. O
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Corollary 6.5. Let o be a simple root and w € WF. We have

. | oP(w) if sqw > w;
o0 @)= 25(0) P (s) oo <

Proof. We  compute  ((s4)*0" (w))(Ay) = oF (w)(d,, Ay) = o (w)((1 —
@A) Ay) = of (w)(A,) — aoc® (w)(AxAy). Now we have

if spu <u

0
Aadu = { Ag u if squ > u.

Since of (w)(Ay) = 6y, We get

((Sa)*ap(w))(Au) = { 5“3 if St < U

— als uuw if Squ > u.

)

This in turn gives the result. U

Remark 6.6. 1) Note that, for a simple, the two conditions w € wr
and s,w < w imply the inclusion s,w € W since the inversion set of
Sqw is contained in the inversion set of w. In particular, in the second
case of the above formula, the class o (sqw) is well defined.

2) This formula also shows that the action w* is trivial in the non equiv-

ariant setting (indeed, in that case we set o = 0).

The action w* is extended to QH}(G/P) by linearity on quantum pa-
rameters.

6.3. Compatibility of Peterson’s isomorphism

In this subsection we prove that Peterson’s isomorphism is compatible with
the actions u, in homology and u* in cohomology. We start with a useful
lemma.

Lemma 6.7. Let w € WF and let \Y € QY be such that x = wrp(tyv) €
(WE)ag. Write z = wrp(tyv) = vt withv € W and p¥ € QV.
Let a be a simple oot and let f = w1 (a), B = v (a).

1) We have w™lv € Wp and " € QY.
2) We have 8 € Rp <= 8’ € Rp.
3) We have sqx € W_g <= (1", 8) #0.
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4) We have saxe(WP)ag<:>,8¢Rp<:>saw€WP.

5) We have the equivalence:

(saz € WN (WH)ag and ((sqz) > U(z))
= (sqw € W and ((sqw) < ((w)) .

Proof. (1) By [LS10, Lemma 10.7], we have wp(tyv) = ut,v with u € Wp.
This give w™'v = u € Wp. Since vt € Wz we have n’ eQy.

(2) Since u = w v € Wp and B = u(8'), we have 8 € Rp < ' € Rp.

(3) We have vt,v € Wy therefore ¥ € QY and for v > 0, we have the
implication ((u¥,v) = 0= v(y) >0). The condition s,vt, € W is thus
equivalent to ((uY,7) =0 = sqv(y) > 0) for v > 0. But since for v = 3,
the roots v(y) and s,v(7y) have opposite signs, the condition sqvt,v € W g
is equivalent to (1", ') = 0.

(4) We have vt,v € (WF),g therefore, for v € R}, we have the equiva-
lences ({",v) =0 < v(y) > 0) and ((¢V,v) = —1 & v(y) < 0). The condi-
tion squt, € (WT),g is equivalent to having the equivalences ((u¥,v) =0 <
sav(7) > 0) and ((1¥,7) = =1 & sqv(y) < 0). Since for v = ', the roots
v(7y) and s,v(7) have opposite signs, the last equivalences occur if and only
if 8/ ¢ Rp. This in turn is equivalent to 5 € Rp by (2).

For the last equivalence, note that by definition, the conditions s,w €
WT and s,w(RE) C R are equivalent. Since w € W we have w(R}) C
R*. Since the inversion sets of w and s,w only differ by 3 (or its opposite,
depending on the sign of 3) we get the last equivalence.

(5) Note that we have the equivalence (¢(sqw) < ¢(w) < 5 < 0). We
therefore need to prove that the left hand side of the equivalence is equivalent
to 8 & Rp and 8 < 0. Note that since w € W, this is equivalent to 8 < 0.

First assume that s,z € Wz N (WP)ag and £(sax) > £(z). By [LS10]
Lemma 3.3], since vt v, squt,v € Waf fm, we have {(sqx) = ((t,v) — £(Sqv)
and £(z) = £(t,v) — £(v). In particular, we have {(sqv) < {(v), thus 5 < 0.
Since sqx € (WF)ag, we also have 8 € Rp thus 8/ € Rp. Now, since u € Wp,
this implies 8 < 0.

Conversely, assume 5 < 0. By the above arguments, this implies 5 € Rp
and thus s,z € (WF).g. This also implies ' ¢ Rp and since v € Wp and
B =u"(B), we get 3’ < 0. Since vt,, € W =8 > 0and v(—p') = —a <0,
we must have (1", 8') # 0 and by (3), this implies sqx € Wg. O

We have the following equivariance property of ¥p.

Proposition 6.8. For ¢ € HI (QK)p, we have ¥p(u.f) = u*€.
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Proof. Peterson [Pet98] proved that ¢p is an isomorphism of nilHecke mod-
ules, which implies this Proposition. Since [Pet98] is not published, we in-
clude details.

We may assume that u = s;, with «; a simple root. Then w.yrp(1,v) =
Ou - Ewmp(tyn) = (1 — i Ai) - Sump(tyv)- I L(siwmp(tav)) > L(wmp(trv)) and
siwmp(ty) € (WP)ag N W5, then this is equal to Ewmp(tav) — Qisiwmp(tyy)-
Otherwise, this is equal t0 §yrp(r,0)-

The action s;*o (w) is computed in Corollary . 6.5 If /(s;w) < £(w) and
s;w € WP then this is equal to o (w) — a;of (s;w). Otherwise, this is equal
to o (w).

Let B =w™!(;). The condition s;w € W and £(s;w) < £(w) is equiv-
alent to the condition £(s;wrp(tyv)) > l(wrp(tyv)) and s;wrp(tyv) €
(WP N W5 by Lemma (5) This proves the result. O

6.4. The result

We now prove our main result. For ¢ a cominuscule node, i.e. such that w,’
is a minuscule coweight, we let v; be the smallest element in W such that
vi(w;) = wo(w,’) (wp is the longest element in W). The coweight v;(w)) =
wo(ew;”) is the Opp051te of a fundamental coweight: there exists f(i) € I such
that Uz( w)) = —wf(l.). Actually we have a ;) = —wo(a;) and vy = v; !

Theorem 6.9. Let i be a cominuscule node. In QH}(G/P) we have

O'P(Ui) X U:(O'P(w)) = qnp(wiv,w_l(wiv))ap(viw) .

Proof. Let w € WP, we have 7mp(w) = w. Let w,” be the minuscule coweight
associated to i and let pV and vV be in QY and dominant enough. As in
[CMPQ9, §3.5], we get

TPty —u) = TP (V) TPty 4y 4y and

Tp(Wyt—wy ) = TP (V)W) TP (L (4w (), )+u+v)-

For ;4 and v dominant enough, the elements wt_,,, by —p and wt_,t vy
are in W7, . and their image by 7p are in (WE)ag N Waﬁ We may therefore
apply Proposition [5.14] to the elements wt_, and t_5v_, to get:

(Uf(i) )+wnp (to,v) X Ernp (s)mp(t-(wy + Yy uY )

= pr (Uf(i)w)“P(tf(wiv+w—1(w¥(i)+uv+uv))) )
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where = means equality in H! (QK)p or equivalently equality modulo Jp.
Applying Peterson’s map @D, we get thanks to Proposition the corre-
sponding formula in the quantum cohomology ring:

*

P P
Vi@ (W) * X0 (Vf0) )i (@) +5Y, 1))
P

hence finally:

x P P P
Vi (W) * 0 (Vf(0) = dnp(y i (@, )0 (Oi@0)-
This concludes the proof of the theorem. (]

Corollary 6.10. Let i be such that w; is a minuscule coweight. In
QH*(G/P), we have

ot (vy) x of (w) = qnp(wiv_wfl(wiv))ap(viw).

Example 6.11. Let G be of type A1, so that G/B = PL. Let s be the non
trivial element of W and « the simple root. We have

P (s) x (0P(s) —a) = q.

Proof. Let ¢ be the unique node of the Dynkin diagram of G. Then v; = s.
To apply Theorem we also set w =s. Let x resp. y be the B-stable
resp. B~ -stable point in P'. The class o®(s) is the T-equivariant class
of z, and vfoP(s) is the T-equivariant class of y. Since [z] —[y] = a,
we have vioP(s) = o8 (s) — a. Denoting h = o5(s), the theorem yields
h x (h — a) = q, as claimed. Note that h? = ¢ + ah is also predicted eg by
[Mi07, Theorem 1]. O

7. Pieri formulas

We now give another application of Proposition to prove a formula for
3(&7,(v;)), see Proposition This gives the multiplication in H! (QK) by
the class &, (,,)- We hope in subsequent work to deduce Pieri formulas for the
non-equivariant multiplication by classes generating H,(Q2K) in all classical

types.

We first provide a generalization of [Lam08, Proposition 5.4] to
coweights. For ¥ € PV, set W,v = (sq, | 7 € [1,7] and (a;, u") = 0) = {w €
W | w(p’) = p'}.
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Proposition 7.1. Let ¥ € PV be antidominant. Then

M) = D A

weW/W,v

Proof. We follow the idea of proof given in [Lam08, Proposition 5.4]. Using
Lemma we see that for w € W/W,,v non trivial, t,,,v) € W_g, so that
Aty belongs to the ideal Y. cyn (e Aqg - A, of Proposition Thus,
using Proposition we only need to prove that ZwGW/WH\/ At vy €

Zz ().

To prove that ¢ := > o/ W At w(uvy Centralizes S, or equivalently com-
mutes with any A in @), we use Proposition 4.6 to compute At vA. In this
formula, the term ¢,v () is equal to A by . in §2.2| Let P be the set of
pairs (VV,B) where vV € W - 1V, B is a positive real root, and t,vsg < tyv.
We have:

(10) AA=de= D (ABVAL.s,,
(wv,B)eP

so our concern now is to prove that this sum vanishes.
We consider the map ¢ : P — P defined by (v, 8) = (sg(v"), —t,v (8)).
Let (vY,8) € P. We have

tljvsﬁ = tu\/sﬂt—l/vtuv = Stu\/ (B)tyv

bs, s @)Stv(B) = tsa(wv)S—t,v(8) s

where the last equality follows from and Lemma By the length for-
mula in [CMP09, Corollary 3.13], £(t,(,v)) = £(t,v) and by definition of P,
U(tyvsg) = L(tgv) — 1. Thus, £(ts,v)5—t,. (8)) = (ts,v)) — 1. Moreover, by
[BBO5, Proposition 4.4.6], t,v(8) < 0, which implies t,,,v)5_s . (8) < ts,(v)
and —t,v(8) > 0, so (sg(v¥), —t,v(B)) € P as claimed.

We also observe that (A, —t,v(8)Y) = (\,—8Y) = —()\, 8Y). Finally,

_tsti‘(Vv)(_tVv (B) = bss(wv)luv (B) = sgtyv sty (8).

One can check that this root is equal to 3, so that ¢ is an involution and the
terms in ((10) cancel pairwise. O

We now prove some preliminary lemmas.

Lemma 7.2. Leti € I,g. We have jad(gwo(wiv)) = 57{1 Z Az (wyvsw -

w<rLv;
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Proof. Since wy(w,’) < 0 we may apply Proposition and get
ad(éum(wQ’)) = Z Atuv .
wY EW wo(wy)
Thus,

ad(&m(w}’)) = Z Atuv = Z Awtwivwfl

weWw.wy w<pv;

= Z AwTi_lviw*1 = Z ATi_lTi(w)in*1

wLLv; w<Lv;

= 57-;1 Z Aﬂ-(w)viwfl :

w<Lv;

Lemma 7.3. Let s € S andi € I,g. We have

Z ATi(w)viw*1 8= Ti(s) Z Aﬂ'i(w)viur1

w< Lv; w<L,v;

Proof. Let i € L. Since jad(éwo(wiy)) = 0,12 <, v, Ari(w)vsw—1, We deduce
that ’ -

6Tfl Z Aﬂ-(w)viw—l (S ZAaff(S> .

w<Lv;

Let s € S, we have:

Tt Z AT, (w)viw—1 5 = 55 Tt Z An (w)v;w—1

w<pv; w<rv;

= 57i’17-i(3) Z Aﬂ-(w)viw—17

w<Lv;

which proves the lemma. O

Proposition 7.4. Leti € g, let as above v; the mazimal element in W
and T; the automorphism of the affine Dynkin diagram defined by i. Then
7i(vi) € Wog and we have:

gfr,(v, Z Z T’L gv 71 Tl(w w*lA’U'

w< Lv; Ugvfl
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Proof. We first prove that 7;(v;) € W4 We know that 7;(c;) = . Since
v; € WE | we have for 1 < j <n with j # i, £(visj) > £(v;). Since v; € W,
l(viso) > (v;). Applying 7;, we deduce that for all k>0, (7;(vi)sg) >
U(7i(vs)). Thus, 73(v;) € Wog

Moreover, we know that 7; = v;t_v. Therefore, v; = Tit5v = buwo(wy) Tis
so that t,(w V) vnfl 7'*17'1(1)1-). By Proposition we deduce that

ad(gtwo(w ) = 1](67 (vi) )
By Lemma we deduce that

*1.7(&'11 U,_(S*l Z AT(wvw—l'

’LU<L’U1

Therefore, using Fact [5.1] and then Lemma we find

](67'1(’01)) = Z ATi(w)in716U;1

w<Lv;
- Z Aﬂ-(w)viw—l Z fv(vi_l)Av
w< v, v<o; !

= Z Z Tl gv T, (w)v;w— 1A

w<pv; vgv,

0

Remark 7.5. Let x € W_g. In the non equivariant homology, we thus have

g‘ri('ui) & = Z fn(w)viw“m )

where the sum is over w <y, v; such that we have £(7;(w)v;w™'z) = £(v;) +
{(z) and 7;(w)viw 'z € Wi

By Corollary we know that there is only one Schubert class in the
product &, () - &z, from which we deduce that there is exactly one w <p, v;
such that £(7;(w)vsw'z) = £(v;) + {(z) and 7;(w)vw 'z € Wy

Example 7.6. Let us assume we are in type As and let us write for short
Asjo instead of Ag,s,s, and similarly for €10 and d210. Let i =1 so that
v; = 838281 and 7;(v;) = s28180. First we observe that

571:_1 = 0123 = (1 — a1 A1) (1 — ag A2)(1 — a3 A3)
=1—a14;) — (1 + a9)As — (a1 + a2 + a3) As

+ aq(ag + a2)A1a + ar(ar + ag + ag)Ags

+ (a1 + a2) (a1 + a2 + a3) Aas

—ai(ar + az)(ar + oz + az)Ajas.
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Since 7i(a1) = =0 = —(a1 + a2 + a3), Ti(a2) = a1 and 7;(a3) = ag, we get:

J(&210) = A210 + Asz21 + Aoz2 + A103
+ a3(Az2103 + As213 + Aos23)
+ (a2 + a3)(A2102 + A321241032)
+ (a1 + ag + a3z)(A2101 + Aoz21 + A10s1)
+ az(az + a3)(A21023 + Az2123 + A10323)
+az(ar + ag + a3)(A21031 + Aos231)
+ (a2 + a3)(a1 + ag + a3)(A21012 + Aoz212 + A10312)
+az(az + as)(ar + ag + a3)(A210123 + Aoz2123 + A103123) -
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