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some special Schubert classes in the quantum cohomology of any
homogeneous space. Although this formula is true in the non equiv-
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1. Introduction

In [CMP09] a general formula was given for the multiplication in the quan-
tum cohomology of any homogeneous space by some special Schubert classes
coming from cominuscule weights. Although this formula is true in the non
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equivariant setting, the stated equivariant version is wrong. We provide cor-
rection for the equivariant formula, thus giving a correct argument for the
non equivariant formula. We also provide new product formulas in the equiv-
ariant homology of the affine grassmannian.

Let G be a semisimple simply connected algebraic group and fix T ⊂ B
a maximal torus and a Borel subgroup containing it. Denote by P∨ and
Q∨ be the coweight and coroot lattices. A dominant coweight λ∨ ∈ P∨ is
minuscule if ⟨λ∨, α⟩ ∈ {0, 1} for any positive root α. A minuscule dominant
coweight is a fundamental coweight. Denote by Im the subset of the set I of
vertices of the Dynkin diagram of G parametrising minuscule coweights.

We consider a finite group Z which has several interpretation. Define Z
has

Z := P∨/Q∨.

Representatives for this quotient are for example the opposites of the mi-
nuscule fundamental coweights (−ϖ∨

i )i∈Im . The group Z is also the center
of G and if Gad the the adjoint group associated to G, then Z = π1(G

ad ).
The group Z can be realised as a subgroup of the Weyl group W of G as

follows. Let w0 be the longest element in W . For i ∈ Im define vi ∈W to be
the smallest element in W such that viϖi = w0ϖi. Then the family (vi)i∈Im
forms a finite subgroup ofW isomorphic to Z. Finally Z can be realised as a
subgroup of the extended affine Weyl groupWaff =W ⋉ P∨ (see Section 2.2
below) by i 7→ τi := vit−ϖi

.

For P ⊂ G a parabolic subgroup, let IP be the set of vertices in the
Dynkin diagram such that, for i ∈ I, the simple root αi is a root of P
if and only if i ∈ IP . For w ∈W , denote by σP (w) the Schubert class in
H2ℓ(w)(G/P,Z) defined by w. Denote by Q∨

P the coroot lattice of P and
consider ηP : Q∨ → Q∨/Q∨

P the quotient map. We define an action of the
Weyl group W of G on the equivariant cohomology H∗

T (G/P ) using, for
w ∈W , the pull-back in cohomology of the left multiplication by w (see
Subsection 6.1). We denote this action by w∗. This action is trivial in non-
equivariant cohomology and extends to an action on equivariant quantum
cohomology QH∗

T (G/P ). In this paper we obtain the following formula in
the quantum equivariant cohomology QH∗

T (G/P ) for any parabolic subgroup
P ⊂ G (see Theorem 6.9).

Theorem 1.1. Let i be a cominuscule node. In QH∗
T (G/P ) we have

σP (vi)× v∗i (σ
P (w)) = qηP (ϖ∨

i −w−1(ϖ∨
i ))
σP (viw).
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This result corrects our formula in [CMP09, Theorem 1] which was wrong
in the equivariant setting (the action v∗i on the second factor on the LHS was
missing). The error in [CMP09] comes from an incorrect description of the
ring structure of HT

∗ (ΩK
ad) the equivariant homology of the adjoint affine

grassmannian (see Section 5). If ΩK is the affine grassmannian for G, the
incorrect claim ([CMP09, Page 12]) was that HT

∗ (ΩK) should be isomorphic
to Z ⊗HT

∗ (ΩK). This is not true as explained in Section 5 (see Remark 5.6).
This is corrected in the present paper. Especially, in Proposition 5.2, we
prove the S-algebra isomorphism (here S = H∗

T (pt)):

HT
∗ (ΩK

ad) ≃ S[P∨]⊗S[Q∨] H
T
∗ (ΩK).

The incorrect product formula was then used only once in [CMP09, Propo-
sition 3.16]. We give a correct version of Proposition 3.16 in [CMP09] in
Proposition 5.14.

We tried to write this paper as independently from [CMP09] as possi-
ble and included many preliminary results on the algebra and the module
structure of the extended affine Hecke algebra Ãaff (see Section 3) and on its

module structure M̃ which is isomorphic to HT
∗ (ΩK

ad) the homology of the
adjoint affine grassmannian. We also added new results. Especially we pro-
vide a generalization of a formula in [Lam08, Proposition 5.4] to coweights
for the map jad : HT

∗ (ΩK
ad) → Z

Ãaff
(S) (see Proposition 7.1).

Proposition 1.2. Let µ∨ ∈ P∨ be antidominant. Set

Wµ∨ = ⟨sαi
| i ∈ [1, r] and ⟨αi, µ

∨⟩ = 0⟩ = {w ∈W | w(µ∨) = µ∨}.

Then

jad(ξtµ∨ ) =
∑

w∈W/Wµ∨

Ãtw(µ∨)
.

Finally, we use this formula to give an explicit formula for the image
of the map j : HT

∗ (ΩK) → Z
Ãaff

(S) for the special elements τi(vi) = τiviτ
−1
i

(see Proposition 7.4). Here W̃−
aff denotes the set of minimal representatives

of the quotient W̃aff/W .

Proposition 1.3. We have τi(vi) ∈ W̃−
aff and

j(ξτi(vi)) =
∑

w≤Lvi

∑

v≤v−1
I

τi(ξ
v(v−1

i ))Aτi(w)viw−1Av,

where ≤ is the Bruhat order and ≤L the weak left Bruhat order.
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We hope to use the above formula to prove Pieri type formulas in
HT

∗ (ΩK) in the spirit of what Lam, Lapointe, Morse and Shimozono
[LLMS10] did in type A.

2. Notations

In this section, we fix notation for affine Kac-Moody Lie algebras, we intro-
duce the finite group Z and define the extended affine Weyl group W̃aff .

2.1. Affine Lie algebras

We denote by g a simple finite-dimensional Lie algebra of rank r, and by
h a Cartan subalgebra. We denote by G the simply-connected group corre-
sponding to g and by Gad the adjoint group. The affine Kac-Moody group
corresponding to G will be denoted by G and P ⊂ G is the parabolic subgroup
such that G/P is the affine Grassmannian.

The corresponding affine Lie algebra will be denoted by gaff , with Cartan
subalgebra haff . The simple roots are denoted (αi)i∈[1,r] and the null-root,
orthogonal to all the simple coroots (α∨

i )i∈[1,r], will be denoted by ϵ. Recall
that we have the equality ϵ = Θ+ α0, where Θ is the highest root of g. As
in [Kac90, p.82] we will use the decompositions h∨aff = h∨ ⊕ CΛ0 ⊕ Cϵ and
haff = h⊕ CK ⊕ Cd. We denote by Raff the set of roots of gaff and by R
those of g.

We denote by Q,P,Q∨, P∨ the root, weight, coroot, coweight lattices
of g.

2.2. Affine Weyl groups

Let W be the Weyl group of g and let Waff = Q∨ ⋊W be the affine Weyl
group. For λ∨ ∈ Q∨, the corresponding element in Waff will be denoted by
tλ∨ . The reflection associated to a root α will be denoted by sα. The group
Waff is a Coxeter group with Coxeter generators si for 1 ≤ i ≤ r and s0 =
tΘ∨sΘ ([Kum02, Prop 13.1.7], see also Lemma 2.7).

Define the extended affine Weyl group W̃aff := P∨ ⋊W ⊃Waff . The
groupWaff acts on the affine weight lattice inside the dual of haff and restricts
to an action on the sublattice of weights of level 0, defined by ⟨λ,K⟩ = 0.
This lattice identifies with P ⊕ Zϵ. Explicitly we have [Kac90, 6.5.5]:

(1) wtλ∨ · (µ+ nϵ) = w(µ) + (n− ⟨µ, λ∨⟩)ϵ
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for λ∨ ∈ Q∨ and µ ∈ P . We may also define an action of W̃aff on Q⊕ Zϵ by
a similar formula:

(2) wtµ∨ · (λ+ nϵ) = w(λ) + (n− ⟨λ, µ∨⟩)ϵ

for µ∨ ∈ P∨ and λ ∈ Q. Note that in general W̃aff does not act on P ⊕ Zϵ
since ⟨P, P∨⟩ ̸⊂ Z.

The action of Waff on P ⊕ Zϵ stabilizes Zϵ, so that we may mod out
by Zϵ and obtain the action of Waff on P defined by wtλ∨(µ) = w(µ) for

w ∈W , λ∨ ∈ Q∨ and µ ∈ P , which readily extends to an action of W̃aff

(letting λ∨ ∈ P∨). Similarly, we may define an action of W̃aff on P∨ by
wtλ∨(µ∨) = w(µ∨) for w ∈W and λ∨, µ∨ ∈ P∨.

Notation 2.1. Since an element in Q∨ is also an element in Q∨ ⊕ Zϵ, we
will denote by w · λ∨ the result of the action (2) of w ∈ W̃aff on λ∨ as an
element in Q∨ ⊕ Zϵ, and by w(λ∨) the element in Q∨.

Recall the definition of the fundamental alcove

A◦ = {λ ∈ h∨R | ⟨λ, α∨
i ⟩ ≥ 0 for all i ∈ [1, r] and ⟨λ,Θ∨⟩ ≤ 1}.

The stabiliser of A◦ in W̃aff will be denoted by Z; it is a subgroup of W̃aff

isomorphic to P∨/Q∨ [LS10, §10.1]. In loc. cit., the authors also prove the
following result.

Lemma 2.2. Let τ ∈ Z. The conjugation by τ is an automorphism of the
Coxeter group Waff . In fact, there exists an automorphism fτ of the affine
Dynkin diagram such that

∀i ∈ I ∪ {0} , τsαi
τ−1 = sτ ·αi

= sαfτ (i)
.

In particular, we have τ · ϵ = ϵ.

Notation 2.3. For x̂ ∈Waff , set τ(x̂) := τ x̂τ−1 ∈Waff . We have ℓ(τ(x̂)) =
ℓ(x̂).

Lemma 2.4. An element τ in Z permutes the positive real roots.

Proof. According to Lemma 2.2, we have τ · (
∑
njαj + nδ) =

∑
njαfτ (j) +

nδ. Since a real root α+ nδ is positive if and only if n > 0 or n = 0 and
α > 0, τ indeed permutes positive roots. □
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As explained in [CMP09], W̃aff is not a Coxeter group, but we have a
well defined length function.

Definition 2.5. Every element x ∈ W̃aff can be uniquely written as τ x̂
with τ ∈ Z and x̂ ∈Waff

1) Define the length function by ℓ(x) := ℓ(x̂).

2) Define a partial order on W̃aff by τ x̂ ≤ σŷ ⇐⇒ τ = σ and x̂ ≤ ŷ.

Covering relations in W̃aff for the above partial order are defined by x⋖ y
if x ≤ y and ℓ(x) = ℓ(y)− 1.

Remark 2.6. The length of x ∈ W̃aff is also the number of inversions,
namely the cardinal of the set I(x) = {α ∈ Raff | α > 0, α is real and x(α) <
0}. Indeed, for x = τ x̂, by Lemma 2.4, we have I(x) = I(x̂).

2.3. Translations

We will need the following lemma.

Lemma 2.7. Let α ∈ R. We have tα∨ = sϵ−αsα.

Proof. Set K⊥ = {µ ∈ h∨aff | ⟨µ,K⟩ = 0}. By [Kac90, p.87], it is enough to
compute sϵ−αsα(µ) for µ ∈ K⊥. We have

sϵ−αsα(µ) = µ− ⟨µ, (ϵ− α)∨⟩(ϵ− α)− ⟨µ, α∨⟩α

+ ⟨µ, α∨⟩⟨α, (ϵ− α)∨⟩(ϵ− α).

Now, for any β ∈ Raff , we have by [Kac90, §2.3.5 and §6.2.3]:

⟨µ, (ϵ+ β)∨⟩ =
2(ϵ+ β, µ)

(ϵ+ β, ϵ+ β)
=

2(β, µ)

(β, β)
= ⟨µ, β∨⟩.

Therefore,

sϵ−αsα(µ) = µ+ ⟨µ, α∨⟩(ϵ− α)− ⟨µ, α∨⟩α− 2⟨µ, α∨⟩(ϵ− α)
= µ− ⟨µ, α∨⟩ϵ = tα∨(µ) ,

where the last equality follows from the definition of tα∨ in [Kac90, §6.5.5].
□

Corollary 2.8. For α ∈ R, k ∈ Z and µ∨ ∈ P∨, we have sα+kϵ(µ
∨) =

sα(µ
∨).
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Proof. We have sα+ϵ(µ
∨) = sα+ϵt−α(µ

∨) = sα+ϵsα+ϵs−α(µ
∨) = s−α(µ

∨) =
sα(µ

∨). The result follows by induction. □

3. extended nil-Hecke ring

The goal of this section is to extend the notion of the nil-Hecke ring defined
by Kostant and Kumar [KK86]. This ring was used in [LS10] to compare
the quantum cohomology of G/P and the homology of affine Grassmannians
ΩK. We need a refined version of this nil-Hecke ring that enables dealing
with ΩKad the adjoint affine Grassmannian (see Section 5).

3.1. Definition

We denote by S resp. S the symmetric algebra on P resp. P ⊕ Zϵ⊕ ZΛ0.
Moreover, we denote by Sloc resp. Sloc the localization of S resp. S where we
invert all the roots in R resp. all the real roots in Raff . Moreover, we consider
inside S the subalgebra S′ generated by P and ϵ, and its localization at real
affine roots S′

loc
⊂ Sloc. Note that moding out by ϵ yields isomorphisms

S′/(ϵ) ≃ S and S′

loc
/(ϵ) ≃ Sloc, since any real affine root in Raff can be

written as γ + nϵ with γ ∈ R and n ∈ Z. This is the reason why we are
using Sloc, where ϵ is not invertible, whereas Frac(S) in used in [Kum02].

We extend several classical objects, in particular the affine nil-Hecke
algebra, to the adjoint setting. Our reference for these classical objects is
Kumar’s book [Kum02]. However, there is a little subtlety, since as in [LS10],
we restrict the scalars from S to S. Thus, Kostant and Kumar’s objects
will be denoted with bold letters, whereas Lam and Shimozono’s restricted
objects will be denoted with usual letters.

Definition 3.1. Recall that the rings Qaff and Qaff are

(3) Qaff =
⊕

w∈Waff

Sloc δw and Qaff =
⊕

w∈Waff

Sloc δw

We define the following extended version:

(4) Q̃aff =
⊕

w∈W̃aff

Sloc δw and Q̃aff =
⊕

w∈W̃aff

Sloc δw

In both cases, the ring structure is defined by the equations δuδv = δuv,
δus = u(s)δu, and δus = (u · s)δu for u, v ∈Waff resp. u, v ∈ W̃aff , s ∈ S and
s ∈ S.
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Remark 3.2. A subring of Qaff is Q′
aff

:=
⊕

w∈Waff
S′

loc
δw, ϵ is central in

Qaff , and we have Q′
aff
/(ϵ) ≃ Qaff . We denote by π : Q′

aff
→ Q′

aff
/(ϵ) ≃ Qaff

the projection morphism. Applying π, any relation proved in [Kum02] for
Qaff , that involves only elements in Q′

aff
, is valid in Qaff .

Definition 3.3. As in [Kum02], we consider particular elements in Qaff

and Qaff :

1) For i ∈ I, set Ai = Ai =
1
αi
(δe − δsi). For i = 0, set A0 =

1
α0
(δe − δs0)

and A0 =
−1
Θ (δe − δs0) (note that this is coherent with the forthcoming

Definition 3.7).

2) For w ∈Waff and for w = si1 · · · siℓ a reduced expression, we set:

Aw = Ai1 · · ·Aiℓ ∈ Q′
aff and Aw = Ai1 · · ·Aiℓ ∈ Qaff .

By [Kum02, Theorem 11.1.2], the definition of Aw does not depend on the
chosen reduced expression. Since π(Ai) = Ai, the same holds for Aw and
π(Aw) = Aw.

Recall that for x ∈ W̃aff , there is a unique decomposition x = τ x̂ with
τ ∈ Z and x̂ ∈Waff .

Definition 3.4. Let x = τ x̂ ∈ W̃aff , we set Ãw = δτAx̂.

By [Kum02, 11.1.2(e)], the matrix expressing each Aw as a linear combi-
nation of elements δv is invertible in Sloc. Applying π, the matrix expressing
each Aw as a linear combination of elements δv is invertible in Sloc. In par-
ticular, the elements Aw in Qaff are linearly independent over Sloc, and the
following definition makes sense:

Definition 3.5. As in [KK86], the (extended) nil-Hecke ring is generated
over S by the elements Aw.

1) The nil-Hecke ring is

Aaff =
⊕

w∈Waff

S ·Aw ⊂ Qaff .

2) The extended nil-Hecke ring is

Ãaff =
⊕

w∈W̃aff

S · Ãw ⊂ Q̃aff .
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Remark 3.6. We will see below that both are indeed subrings of Q̃aff .

3.2. Definition and properties of Aα

It will be helpful to generalize the definition of Ai in the following way.

Definition 3.7. For a real root α = γ + kϵ with γ ∈ R, set Aα = 1
γ (δe −

δsα).

Recall [LS10, §6.1] that we have the equation

(5) Aiλ = si(λ) + ⟨λ, α∨
i ⟩1 .

We generalize this formula to the elements Aα as follows:

Proposition 3.8. Let w ∈ W̃aff , α ∈ Raff a real root and λ ∈ Q. Then we
have:

1) δwAαδw−1 = Aw(α).

2) Aαλ = sα(λ)Aα + ⟨λ, α∨⟩1.

Proof. Let w = utµ∨ , α = γ + kϵ, λ ∈ P be as in the proposition. Then,

δwAαδw−1 = δw
1

γ
(δe − δsα)δw−1 =

1

u(γ)
δw(δe − δsα)δw−1

=
1

u(γ)
(δe − δwsαw−1) =

1

u(γ)
(δe − δsw(α)

) = Aw(α) .

For the second point, we use the formula (5) and the above conjugation
relation. Let w ∈Waff and i ∈ I ∪ {0} be such that α = w(αi). We have

Aαλ = δwAiδw−1λ

= δwAiw
−1(λ)δw−1

= δw(siw
−1(λ)Ai + ⟨w−1(λ), α∨

i ⟩)δw−1

= wsiw
−1(λ)δwAiδw−1 + ⟨λ,w(αi)

∨⟩

= sα(λ)Aα + ⟨λ, α∨⟩ .

□

Corollary 3.9. For any real root α, we have Aα ∈ Aaff .
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Corollary 3.10. The (extended) nil Hecke rings Aaff and Ãaff are subrings
of Q̃aff .

Proof. The second formula above shows that for s, s′ ∈ S and u, v ∈Waff , the
product sAus

′Av lies in Aaff therefore Aaff is a ring. The first formula proves
that for τ, σ ∈ Z and for u, v ∈Waff , we have δτAuδσAv = δτδσAσ−1(u)Av ∈

Ãaff proving that Ãaff is a ring. □

4. Module and ring structures of Ãaff

In this section we present three different descriptions of Ãaff and describe
its S-module structure and its ring structure in each case.

4.1. S-module structure of Ãaff

Recall that we have an injection of Waff in the group of invertibles of Aaff ,
given by w 7→ δw: in fact δsi = 1− αiAi ∈ Aaff thus δw ∈ Aaff for all w ∈
Waff . Therefore the subgroup Q∨ ⊂Waff also injects in Aaff , and since Aaff

is a ring we have an injection of the Laurent polynomial algebra Z[Q∨]
inside Aaff . Thus Aaff is Z[Q∨]-module via left multiplication. The natural
Z-module basis of Z[Q∨] will be denoted by (hλ∨)λ∨∈Q∨ .

We now introduce two new algebraic models of Ãaff .

Definition 4.1. Let φ1, φ2 be the following morphisms of Z-modules:

φ1 : Z[P∨]⊗Z[Q∨] Aaff → Q̃aff

hλ∨ ⊗Aw 7→ δtλ∨Aw ,

φ2 : Z[Z]⊗Z Aaff → Q̃aff

τ ⊗Aw 7→ δτAw .

Note that Aaff has a structure of S-bimodule, thus also the two tensor prod-
ucts in this definition. Both maps φ1 and φ2 are S-linear on the right,
moreover φ1 is also S-linear on the left whereas φ2 is not.

Proposition 4.2. With the above notations, Im(φ1) = Im(φ2) = Ãaff .
Moreover, if J ⊂ Aaff is a left ideal, then

φ1(Z[P
∨]⊗Z[Q∨] J) = φ2(Z[Z]⊗Z J).
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Proof. Observe that φ1 is well-defined: φ1(hλ∨ ⊗ 1) = φ1(1⊗ δtλ∨ ) = δtλ∨

for λ∨ ∈ Q∨. We now prove that φ1(Z[P
∨]⊗ J) ⊂ φ2(Z[Z]⊗ J). Let λ∨ ∈

P∨: there exists τ ∈ Z and ŵ ∈Waff such that tλ∨ = τŵ. Then for a ∈ J ,
we have φ1(hλ∨ ⊗ a) = δtλ∨a = δτδŵa ∈ φ2(Z[Z]⊗ J) since δŵa ∈ J .

The reverse inclusion φ2(Z[Z]⊗ J) ⊂ φ1(Z[P
∨]⊗ J) follows similarly

from the fact that any element in Z can be written as a product tλ∨u for
some λ∨ ∈ P∨ and u ∈W . Finally, the equality Im(φ2) = Ãaff follows from
the definition of Ãaff (Definition 3.5). □

4.2. Ring structure of Ãaff

We give the description of the ring structure of Ãaff according to the given
three equivalent definitions of this module.

Proposition 4.3. Let x, y ∈ W̃aff , then we have

ÃxÃy =

{
Ãxy if ℓ(xy) = ℓ(x) + ℓ(y)
0 otherwise .

Proof. Write x = σx̂ and y = τ ŷ with σ, τ ∈ Z and x̂, ŷ ∈Waff . Recall that
for u, v ∈Waff , we have:

AuAv =

{
Auv if ℓ(uv) = ℓ(u) + ℓ(v)
0 otherwise .

By Lemma 2.2, we have

ÃxÃy = δσAx̂δτAŷ

= δσδτAτ−1(x̂)Aŷ

=

{
δστAτ−1(x̂)ŷ if ℓ(τ−1(x̂)ŷ) = ℓ(τ−1(x̂)) + ℓ(ŷ)
0 otherwise

But ℓ(τ−1(x̂)ŷ) = ℓ(xy) since xy = σx̂τ ŷ = σττ−1(x̂)ŷ, and ℓ(τ−1(x̂)) +
ℓ(ŷ) = ℓ(x̂) + ℓ(ŷ) = ℓ(x) + ℓ(y). The result follows. □

We now express the product in Ãaff = φ1(Z[P
∨]⊗Z[Q∨] Aaff). Note that

we need to compute the product (δtλ∨Au)(δtµ∨Av). We therefore need to
“move” δtµ∨ to the left of Au. The following proposition gives formulas for
this.

Proposition 4.4. Let λ∨ ∈ P∨ and let α = γ + kϵ ∈ Raff . Then:
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1) Aαδtλ∨ = δsα(tλ∨ )Aα + 1
γ (δtλ∨ − δtsα(λ∨)

).

2) δtλ∨ − δtsα(λ∨)
= δtλ∨ (1− δt−⟨α,λ∨⟩α∨ ),

3) 1− δtnα∨ = (1 + δtα∨ + · · ·+ δt(n−1)α∨ )(1− δtα∨ ) for n ∈ N,

4) 1− δt−α∨ = γ(Aα − γAαAϵ−α +Aϵ−α).

Proof. (1) From the equality sαtλ∨ = tsα(λ∨)sα, we get δsαδtλ∨ = δtsα(λ∨)
δsα

in Ãaff . By definition of Aα (Definition 3.7), this relation implies

(1− γAα)δtλ∨ = δtsα(λ∨)
(1− γAα) .

Thus we get γAαδtλ∨ = γδtsα(λ∨)
Aα + δtλ∨ − δtsα(λ∨)

.

(2) and (3) are easy consequences of the product formulas in Q̃aff .
(4) By Lemma 2.7, we have

1− δt−α∨ = 1− δsαsϵ−α

= 1− (1− γAα)(1 + γAϵ−α)

= γAα − γAϵ−α + γAαγAϵ−α

= γAα − γAϵ−α + γ
(
sα(γ)Aα + ⟨α∨, γ⟩

)
Aϵ−α

= γAα + γAϵ−α − γ2AαAϵ−α ,

where we used Proposition 3.8 on the fourth line. □

The ring structure in Ãaff = φ2(Z[Z]⊗Z Aaff) is easy to describe:

Proposition 4.5. Let σ, τ ∈ Z and let a, b ∈ Aaff . Then:

φ2(σ ⊗ a) · φ2(τ ⊗ b) = φ2(στ ⊗ τ−1(a)b) .

Proof. This follows from the fact that in Ãaff , we have

δσaδτ b = δσδττ
−1(a)b . □

In the next proposition, we give an explicit formula for the commuting re-
lation of the elements Ãx and λ ∈ P , generalizing [KK86, Proposition 4.3.b]:

Proposition 4.6. Let x ∈ W̃aff and let λ ∈ P . We have:

Ãxλ = x(λ)Ãx +
∑

α: xsα⋖x

⟨λ, α∨⟩Ãxsα ,

where the sum runs over positive real roots α such that xsα ⋖ x.
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Proof. Let x = τ x̂ ∈ W̃aff with τ ∈ Z and x̂ ∈Waff . Let λ ∈ P . According to
Definition 3.4, we have Ãx = δτAx̂. Using [KK86, Proposition 4.3.b], we get
(sums always run over positive real roots):

Ãxλ = δτAx̂λ = δτ x̂(λ)Ax̂ + δτ
∑

α: x̂sα⋖x̂

⟨λ, α∨⟩Ax̂sα

= τ x̂(λ)δτAx̂ +
∑

α: x̂sα⋖x̂

⟨λ, α∨⟩δτAx̂sα

= x(λ)Ãx +
∑

α: x̂sα⋖x̂

⟨λ, α∨⟩Ãxsα .

Since, by Definition 3.4, the relation x̂sα ⋖ x̂ holds if and only if the relation
xsα ⋖ x holds, we get the result. □

4.3. Module over Ãaff

We now define a natural module over Ãaff which will be identified in the
next section with the homology of the adjoint affine Grassmmannian ΩKad.

Definition 4.7. Let W−
aff resp. W̃−

aff be the set of minimal length repre-

sentatives of the quotient Waff/W resp. W̃aff/W . By [LS10, Lemma 3.3],
W−

aff is the set of elements w = utλ∨ such that ∀i ∈ I, ⟨λ∨, αi⟩ ≤ 0 and
⟨λ∨, αi⟩ = 0 =⇒ u(αi) > 0 .

We generalize the characterization of W−
aff as follows:

Lemma 4.8. We have utλ∨ ∈ W̃−
aff if and only if λ∨ ≤ 0 and for all i in I

it holds

⟨λ∨, αi⟩ = 0 =⇒ u(αi) > 0 .

Proof. Recall that we have a length formula in W̃aff similar to the one in
Waff :

ℓ(utλ∨) =
∑

α∈R+

∣∣⟨λ∨, α⟩+ χ(u(α) < 0)
∣∣ ,

where χ(P) = 1 if P is true and χ(P) = 0 if P is false. This is proved in
[CMP09, Corollary 3.13]. It follows that

ℓ(utλ∨si)− ℓ(utλ∨) = |⟨λ∨,−αi⟩+ χ(u(αi) > 0)| − |⟨λ∨, αi⟩+ χ(u(αi) < 0)| .

This is non-negative for all i in I if and only if for all i, ⟨λ∨, αi⟩ ≤ 0, and
⟨λ∨, αi⟩ = 0 implies u(αi) > 0. □
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Definition 4.9. For each w ∈W−
aff , we define a variable ξw and we set

M =
⊕

w∈W−
aff

S · ξw.

Recall [LS10, §6.2] that we may define a left Aaff -module structure on M
via:

Aw · ξu =

{
ξwu if ℓ(wu) = ℓ(w) + ℓ(u) and wu ∈W−

aff ,
0 otherwise .

As left Aaff -module, we have an isomorphism

M ≃ Aaff/J , where J =
⊕

w ̸∈W−
aff

S ·Aw

is a left ideal in Aaff .

Using Proposition 4.2, we define similarly a left ideal in Ãaff .

Definition 4.10. Let

J̃ = φ1(Z[P
∨]⊗Z[Q∨] J) = φ2(Z[Z]⊗Z J) =

⊕

w ̸∈W̃−
aff

S · Ãw .

Definition 4.11. We introduce the following three modules.

• Let M̃1 be the S-module Z[P∨]⊗Z[Q∨] M .

• Let M̃2 = Z[Z]⊗Z M . This is an Ãaff -module with the action given by
(σ ⊗ a) · (τ ⊗ ξ) = στ ⊗ τ−1(a) · ξ, for σ ⊗ a ∈ Z[Z]⊗Z Aaff = Ãaff .

• Let M̃3 =
⊕

w∈W̃−
aff

S · ξ̃w. This is an Ãaff -module with the action given

by

Ãw · ξ̃u =

{
ξ̃wu if ℓ(wu) = ℓ(w) + ℓ(u) and wu ∈ W̃−

aff ,
0 otherwise ,

for Ãw ∈ Ãaff =
⊕

w∈W̃aff

S · Ãw.

Proposition 4.12. With the above definitions,

1) Moding out by J̃ , the morphism φ1 induces an S-module isomorphism

M̃1 → Ãaff/J̃ .
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2) Moding out by J̃ , the morphism φ2 induces an Ãaff-module isomor-

phism M̃2 → Ãaff/J̃ (which is not S-linear if we give M̃2 the tensor
product S-module structure).

3) The left Ãaff-modules Ãaff/J̃ and M̃3 are isomorphic.

Proof. This proposition follows easily from Propositions 4.3 and 4.5. □

Remark 4.13. The Ãaff -module structure induced on M̃1 by the isomor-
phism in Proposition 4.12.(1) can also be described via Proposition 4.4.

Definition 4.14. The Ãaff -module defined by one of the above equivalent
definitions will be denoted by M̃ .

5. Homology of the adjoint affine Grassmannian ΩKad

In this section, we recall the adjoint affine Grassmannian ΩKad, we prove
that the Ãaff -module M̃ is isomorphic to the homology of ΩKad, we define
a ring structure on this module and study the compatibility of these two
structures.

5.1. Cohomology of the finite-dimensional flag manifold G/B

Recall, see for example [Kum02, Chapter 11], that H∗
T (G/B) has an S-basis

consisting of the elements ξw = σB(w) indexed by the Weyl group. The
pull-back along the map (G/B)T → G/B induces an inclusion

H∗
T (G/B) → H∗

T ((G/B)T ) = SW .

Viewing ξw as a function on W , Kumar [Kum02, 11.1.6.(3)] sets du,v =
ξu(v) = ⟨ξu, v⟩ and D = (du,v)u,v∈W . If (fw)w∈W is the basis of SW given
by ⟨fu, v⟩ = fu(v) = δu,v, then we have (ξu)u = D(fu)u. Given the identifi-
cation [Kum02, 11.1.4(2)], we also have ⟨fu, δv⟩ = δu,v.

The dual of H∗
T (G/B) is HT

∗ (G/B) and identifies as an S-module with
the S-subalgebra A of Aaff generated by (Aw)w∈W :

(6) HT
∗ (G/B) ≃

⊕

w∈W

S ·Aw

Note that (Aw)w∈W is the dual basis to (ξw)w∈W i.e. ⟨ξu, Av⟩ = ξu(Av) =
δu,v (see [Kum02, 11.1.5], were Au is denoted by xu). Over F = Frac(S) we
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also have the basis (δw)w∈W for HT
∗ (G/B). Kumar, in [Kum02, 11.1.2.(e)],

describes the base change:

Au =
∑

v

cu,vδv

with C = (cu,v)u,v∈W a matrix with coefficients in S, in particular, we have
(Av)v = C(δv)v. We have the following relation between the matrices C
and D.

Fact 5.1 (See [Kum02, 11.1.7.(a)]). We have D−1 = CT . Thus,

δv =
∑

w≤v

ξw(v)Aw .

Proof. In fact, from the identity (Av)v = C(δv)v, we deduce that (δv)v =
C−1(Av)v = DT (Av). Since D

T
v,w = ξw(v) and the matrix D is triangular,

we get the result. □

Note also that an explicit formula for the coefficients ξw(v) is known: see
[Kum02, Proposition 11.1.11].

5.2. Affine Grassmannian and the Pontryagin ring structure

Let G be the simply-connected almost simple group associated to g, and let
Gad be the adjoint quotient of this group. Let K resp. Kad be a maximal
compact subgroup in G resp. Gad. Let ΩK resp. ΩKad be the group of
loops l with values in K resp. Kad such that l(0) is the unit element in
K resp. Kad. By a loop we mean a map l : S1 → K(ad) that extends to a
meromorphic map D◦ → G(ad), where D◦ denotes the pointed disk. Modding
out a loop by the center of K yields an inclusion ΩK ⊂ ΩKad. The action
of T ∩K on ΩK resp. ΩKad is given by conjugation.

This implies that the equivariant homology of ΩK and ΩKad have a
natural structure of an algebra, given by the Pontryagin product which is
also (T ∩K)-equivariantly homotopy equivalent to the point-wise product of
loops. In this section, we will recall an algebraic model for HT∩K

∗ (ΩK) and
give one for HT∩K

∗ (ΩKad). In particular we will describe the ring structure
as well as an Ãaff -module structure on HT∩K

∗ (ΩKad) extending the ring
structure and the Aaff -module structure on HT∩K

∗ (ΩK).
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5.3. Geometry of fixed points in ΩKad

Since K → Kad is the universal cover of Kad , the connected components of
ΩKad are isomorphic to ΩK and are indexed by π1(G

ad ) = π1(K
ad ) = Z.

We now describe the T -fixed points in ΩKad. We have, in the loop space
picture

(ΩKad)T = {ψ̃tλ∨ : S1 → Kad | λ∨ ∈ P∨},

where ψ̃tλ∨ (t) = exp(2iπtλ∨) is the loop induced by the one-parameter sub-
group λ∨ of T ad (the maximal torus of Kad ). For λ∨ ∈ P∨, let [λ∨] be its
class in P∨/Q∨ = π1(K

ad ) and denote by ΩKad
[λ∨] be the connected compo-

nent of ΩKad containing ψ̃tλ∨ . We have

ΩKad =
∐

[λ∨]∈P∨/Q∨

ΩKad
[λ∨] .

Let mλ∨ : ΩK → ΩKad
[λ∨] be the left multiplication by ψ̃tλ∨ . Since T and

ψ̃tλ∨ commute, this is a T -equivariant isomorphism. Thus, HT
∗ (ΩK

ad
[λ∨] ) ≃

HT
∗ (ΩK).

5.4. Reminder on HT

∗
(ΩK)

Recall from [KK86] that ΩK has a cellular decomposition whose cells are
indexed by W−

aff . This implies that, as S-module, we have

HT
∗ (ΩK) =

⊕

w∈W−
aff

S · ξw ≃M.

Furthermore, according to [Lam08, (3.1) and (3.2)], Aaff acts on HT
∗ (G/P)

by

Av · ξw =

{
ξvw if ℓ(vw) = ℓ(v) + ℓ(w) and vw ∈W−

aff
0 otherwise

and Aaff acts on H∗
T (G/P) by

Av · ξ
w =

{
ξvw if ℓ(vw) = ℓ(w)− ℓ(w) and vw ∈W−

aff
0 otherwise
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5.5. S-algebra structure on HT

∗
(ΩKad)

We use the T ∩K-equivariant homology of the T ∩K-space ΩKad, where
T ∩K acts on ΩKad via T ∩K → (T ∩K)ad → Gad. The inclusion T ∩
K → T induces an isomorphism in equivariant cohomology H∗

T (pt) →
H∗

T∩K(pt). Note that we haveH∗
T∩K(ΩK) ≃ H∗

T∩K(G/P) ≃ H∗
T (G/P), where

G/P is the affine Grassmannian. Abusing notations slightly, we will denote in
the following H∗

T∩K(ΩK) simply by H∗
T (ΩK), and similarly for H∗

T (ΩK
ad).

The T -equivariant cohomology of the point is the symmetric algebra on
P , namely S, see [Br98, p.5], so that the homology HT

∗ (ΩK
ad) will be an

S-module and even an S-algebra. We are not considering T ad-equivariant
homology.

Proposition 5.2. As S-algebras, we have: HT
∗ (ΩK

ad) ≃ S[P∨]⊗S[Q∨]

HT
∗ (ΩK).

Proof. We have the following inclusions that are compatible with pointwise
multiplication and T -equivariant inducing S-algebra morphisms

ΩKT //

��

ΩK

��

(ΩKad)T // ΩKad,

HT
∗ (ΩK

T ) //

��

HT
∗ (ΩK)

��

HT
∗ ((ΩK

ad)T ) // HT
∗ (ΩK

ad).

Recall that we have bijections (ΩKad)T ≃ P∨ and ΩKT ≃ Q∨ that are group
homomorphisms since ψ̃tλ∨ ψ̃tµ∨ = ψ̃tλ∨+µ∨ . We thus have HT

∗ ((ΩK
ad)T ) ≃

S[P∨] and HT
∗ (ΩK

T ) ≃ S[Q∨]. In particular, the above diagram induces
an S-algebra morphism S[P∨]⊗S[Q∨] H

T
∗ (ΩK) → HT

∗ (ΩK
ad). The restric-

tion of this map to ψ̃tλ∨ ⊗HT
∗ (ΩK

T ) → HT
∗ ((ΩK

ad)T ) is the multiplication
mλ∨ . The above decomposition of ΩKad in connected components gives an
isomorphism of S-modules

HT
∗ (ΩK

ad) =
⊕

[λ∨]∈P∨/Q∨

HT
∗ (ΩK

ad
[λ∨] )

proving that the map S[P∨]⊗S[Q∨] H
T
∗ (ΩK) → HT

∗ (ΩK
ad) is surjective.

To prove injectivity, first note that, since HT
∗ (ΩK) is a free S-module

and S[P∨] is a free S[Q∨]-module, the S-module S[P∨]⊗S[Q∨] H
T
∗ (ΩK) is

free. We therefore only need to prove the injectivity of the map after base
extension to F = Frac(S) the field of fractions of S. Now recall the following



✐

✐

“3-Chaput” — 2023/9/2 — 2:09 — page 359 — #19
✐

✐

✐

✐

✐

✐

Affine symmetries in quantum cohomology 359

general result (see [Kum02, C.8 Theorem]: on the level of T -equivariant
cohomology we have isomorphisms H∗

T (ΩK)⊗S F ≃ H∗
T (ΩK

T )⊗S F and
H∗

T (ΩK
ad)⊗S F ≃ H∗

T ((ΩK
ad)T )⊗S F . This induces isomorphisms in T -

equivariant homology:

HT
∗ (ΩK

T )⊗S F ≃ HT
∗ (ΩK)⊗S F

and HT
∗ ((ΩK

ad)T )⊗S F ≃ HT
∗ (ΩK

ad)⊗S F.

After base change to F , since HT
∗ (ΩK

T ) ≃ F [Q∨] and HT
∗ ((ΩK

ad)T )⊗S

F ≃ F [P∨], our map is given by

F [P∨]⊗F [Q∨] F [Q
∨] → F [P∨]

and is therefore injective. □

Recall that, as S-module, we have an isomorphism HT
∗ (ΩK) =M . In

particular the above results identifies HT
∗ (ΩK

ad) with the S-module M̃ of
Definition 4.14:

Corollary 5.3. As S-modules, we have: HT
∗ (ΩK

ad) ≃ M̃ .

Corollary 5.4. The exists an Ãaff-module structure on HT
∗ (ΩK

ad) com-
patible with the Aaff-module structure on HT

∗ (ΩK). Furthermore, for this

structure, we have an isomorphism of Ãaff-modules HT
∗ (ΩK

ad) ≃ M̃.

Proof. We define the Ãaff -module structure on HT
∗ (ΩK

ad). Since we have

the isomorphism of S-modules HT
∗ (ΩK

ad) ≃ M̃1 = S[P∨]⊗S[Q∨] M , we may

extend the Aaff -module structure on M to the Ãaff−module structure M̃ . □

Remark 5.5. The above Ãaff -module structure on HT
∗ (ΩK

ad) also has a
geometric description, see [CMP09, Proposition 3.3].

Remark 5.6. The above result shows that our claim on [CMP09, Page 12]
that HT

∗ (ΩK
ad) is the tensor product ring Z[Z]⊗Z H

T
∗ (ΩK) is wrong: by

localization HT
∗ (ΩK

ad) is a subring of F [P∨] and this Laurent polynomial
algebra contains no roots of unity, whereas Z[Z]⊗Z H

T
∗ (ΩK) does.

Recall that W̃aff can be embedded in Ãaff via w 7→ δw. The induced
action is denoted by x · ξ̃ := δx · ξ̃ for x ∈ W̃aff and ξ̃ ∈ HT

∗ (ΩK
ad).

Corollary 5.7. Let w ∈W and λ∨, µ∨ ∈ P∨, we have

wtλ∨ · ψ̃tµ∨ := δwtλ∨ · ψ̃tµ∨ = ψ̃tw(λ∨+µ∨)
.
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Proof. As already explained in the proof of Proposition 5.2, we have
δtλ∨ · ψ̃tµ∨ = ψ̃tλ∨+µ∨ . We need to check that δw · ψ̃tµ∨ = ψ̃tw(µ∨)

. But our

identification of HT
∗ (ΩK

ad) with M̃ identifies ψ̃tµ∨ with hµ∨ ⊗ 1. Recall that

1 = [δe] ∈ Ãaff/J̃ (e being the neutral element ofW ), so that hµ∨ ⊗ 1 = [δtµ∨ ]

and δw · ψ̃tµ∨ = δw · [δtµ∨ ] = [δwδtµ∨ ] = [δwδtµ∨ δw−1] since δw−1 ∈ J̃ . We get

δw · ψ̃tµ∨ = [δwδtµ∨ δw−1] = [δtw(µ∨)] = ψ̃tw(µ∨)

proving the result. □

5.6. Compatibility between the ring and the Ãaff -module
structure

The above description ofHT
∗ (ΩK

ad) as ring and as Ãaff -module is not enough
for our purposes: we need to be able to multiply two classes of the form σ ⊗ ξx
and τ ⊗ ξy, see also Remark 5.6. To this end, we recall the definition and
properties of jad given in [CMP09, §3.3].

Proposition 5.8. There is an S-algebra isomorphism jad : HT
∗ (ΩK

ad) →
Z
Ãaff

(S). It satisfies:

1) jad(ξ) · ξ′ = ξξ′ for ξ, ξ′ ∈ HT
∗ (ΩK

ad) ;

2) jad(ψ̃tλ∨ ) = δtλ∨ for λ∨ ∈ P∨.

For w ∈ W̃−
aff , j

ad(ξ̃w) is characterized by the two following properties:

(a) jad(ξ̃w) is congruent to Aw modulo
∑

x∈W\{e} Ãaff ·Ax ;

(b) jad(ξ̃w) belongs to Z
Ãaff

(S).

The map jad has the following equivariance property:

Proposition 5.9. Let u ∈W,λ∨ ∈ P∨, ξ̃ ∈ HT
∗ (ΩK

ad). Then

1) jad(utλ∨ · ξ̃) = δtu(λ∨)
δuj

ad(ξ̃)δu−1 = δutλ∨ j
ad(ξ̃)δu−1;

2) δtλ∨ j
ad(ξ̃) = jad(ξ̃)δtλ∨ .

Proof. (1) Let s ∈ S be a scalar, we have:

• jad(utλ∨ · sξ̃) = jad(u(s)utλ∨ · ξ̃) = u(s)jad(utλ∨ · ξ̃) ;

• δtu(λ∨)
δuj

ad(sξ̃)δu−1 = δtu(λ∨)
δusj

ad(ξ̃)δu−1 = u(s)δtu(λ∨)
δuj

ad(ξ̃)δu−1 .
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Thus, by semi-linearity, it is enough to prove the result for ξ̃ = ψ̃tµ∨ . For

ξ̃ = ψ̃tµ∨ , we have jad(utλ∨ · ψ̃tµ∨ ) = jad(u · ψ̃tλ∨+µ∨ ) = jad(ψ̃tu(λ∨)+u(µ∨)
) =

δtu(λ∨)+u(µ∨)
. We also have δtu(λ∨)

δuj
ad(ψ̃tµ∨ )δu−1 = δtu(λ∨)

δuδtµ∨ δu−1 =
δtu(λ∨)+u(µ∨)

. Thus the result is proved.

(2) Both terms are S-linear so we only need to check this for ξ̃ = ψ̃tµ∨

but we have δtλ∨ j
ad(ψ̃tµ∨ ) = δtλ∨ δtµ∨ = δtµ∨ δtλ∨ = jad(ψ̃tµ∨ )δtλ∨ . □

In particular, the previous Proposition allows computing jad in terms of j:

Example 5.10. Let τi = vit−ϖi
∈ Z and let ξ ∈ HT

∗ (ΩK). Then

jad(τi · ξ) = δτi j(ξ) δv−1
i
.

We deduce a formula allowing reducing products in the homology of
ΩKad to products in the homology of ΩK:

Corollary 5.11. Let σ = utλ∨ , τ = vtµ∨ be elements in Z. Let ξ̃, ξ̃′ ∈
HT

∗ (ΩK
ad). Then

(σ · ξ̃)× (τ · ξ̃′) = στ · (ψσ,τ × (v−1
∗ ξ̃)× (u−1

∗ ξ̃′)) ,

where ψσ,τ = ψu−1(µ∨)−µ∨ = ψv−1(λ∨)−λ∨.

Proof. Since Z is abelian, στ = τσ. We have στ = utλ∨vtµ∨ = uvtv−1(λ∨)+µ∨

and τσ = vtµ∨utλ∨ = vutu−1(µ∨)+λ∨ . We get v−1(λ∨) + λ∨ = u−1(µ∨) + µ∨

so u−1(µ∨)− µ∨ = v−1(λ∨)− λ∨, so that ψσ,τ is well defined. We also get
uv = vu.

Using Proposition 5.9, we compute:

(σ · ξ̃)× (τ · ξ̃′) = jad(σ · ξ̃) · (τ · ξ̃′)

= δuδtλ∨ j
ad(ξ̃)δu−1δvδtµ∨ · ξ̃′

= δuδtλ∨ j
ad(ξ̃)δvδu−1δtµ∨ · ξ̃′

= δuδtλ∨ δvj
ad(v−1 · ξ̃)δtu−1(µ∨)

δu−1 · ξ̃′

= δuδtλ∨ δvδtu−1(µ∨)
jad(v−1 · ξ̃)δu−1 · ξ̃′

= δuδtλ∨ δvδtµ∨ δtu−1(µ∨)−µ∨ j
ad(v−1 · ξ̃)δu−1 · ξ̃′

= στ · (ψσ,τ × (v−1
∗ ξ̃)× (u−1

∗ ξ̃′)) .

□
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Remark 5.12. In [CMP09, p.12], it is claimed thatHT
∗ (ΩK

ad) is the tensor
product ring Z[Z]⊗Z H

T
∗ (ΩK). As explained in Remark 5.6, this is not true.

However as the next corollary shows, this is true in the non equivariant
homology.

Corollary 5.13. In non equivariant homology, let ξ̃, ξ̃′ ∈ H∗(ΩK
ad) and

σ, τ ∈ Z, then

(σ · ξ̃)× (τ · ξ̃′) = στ · (ξ̃ × ξ̃′) .

Proof. Indeed, push-forwards u−1
∗ and v−1

∗ are trivial in non equivariant
homology. Moreover, the equivariant classes ψ̃λ∨ restrict to the class of a
point in H∗(ΩK

ad), which is the unit in H∗(ΩK
ad). □

5.7. Translations modulo P

We use [LS10, Lemma 10.1] and [CMP09, Corollary 3.15] as a definition:

(7) (WP )aff =

{
utν∨ | ∀γ ∈ R+

P , ⟨ν
∨, γ⟩ =

{
0 if u(γ) > 0
−1 if u(γ) < 0

}

(8) (W̃P )aff =

{
utν∨ ∈ W̃aff

∣∣∣ ∀γ ∈ R+
P , ⟨ν

∨, γ⟩ =

{
0 if u(γ) > 0
−1 if u(γ) < 0

}
.

Following [LS10, §10.2 and 10.3], we also define (WP )aff = {wtλ∨ |w ∈

WP , λ
∨ ∈ Q∨

P }. Recall, from [CMP09, Section 3.4] that any element w ∈ W̃aff

can be uniquely factorized as w1w2 with w1 ∈ (W̃P )aff and w2 ∈ (WP )aff
and ℓ(w) = ℓ(w1) + ℓ(w2). We denote w1 = πP (w). Thus (W̃P )aff is a set

of representatives for the quotient W̃aff/(WP )aff which will be relevant for
Peterson’s isomorphism (9).

Following [LS10, Section 10.4] and [CMP09, Section 3.4], define the ideals

JP ⊂M and J̃P ⊂ M̃ as follows:

JP =
∑

x∈W−
aff\(W

P )aff

Sξx and J̃P =
∑

x∈W̃−
aff\(W̃

P )aff

Sξ̃x.

The following result corrects [CMP09, Proposition 3.16] which used the
wrong product structure, see Remark 5.6.
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Proposition 5.14. Let x ∈ W̃−
aff ∩ (W̃P )aff and let ν∨ ∈ P∨

− . Then

xπP (tν∨) ∈ W̃−
aff ∩ (W̃P )aff . Let us write as usual x = σx̂ and πP (tν∨) =

τ π̂P (tν∨) with σ = utλ∨ , τ = vtµ∨. Then

(v−1
∗ ξx̂)× (u−1

∗ ξ ̂πP (tν∨ )
) = ψ−1

σ,τξ ̂xπP (tν∨ )
modulo JP .

Proof. The proof follows the arguments in [CMP09]. In particular, we get

(σ · ξx̂)× (τ · ξ ̂πP (tν∨ )
) = στ · ξ ̂xπP (tν∨ )

modulo J̃P .

Using the correct product formula given in Corollary 5.11, the left hand side
is

στ · (ψσ,τ (v
−1
∗ ξx̂)× (u−1

∗ ξ ̂πP (tν∨ )
)) .

This proves the result since J̃P ∩M = JP (as σx̂ ∈ W̃−
aff ⇔ x̂ ∈W−

aff). □

In particular, the case P = B yields:

Corollary 5.15. Let x ∈ W̃−
aff and let ν∨ ∈ P∨

− . Then xtν∨ ∈ W̃−
aff . Let us

write as usual x = σx̂ and tν∨ = τ t̂ν∨ with σ = utλ∨ , τ = vtµ∨. Then

(v−1
∗ ξx̂)× (u−1

∗ ξt̂ν∨
) = ψ−1

σ,τξx̂tν∨
.

6. Affine symmetries

In this section, we correct [CMP09, Section 3.5], see Remark 5.6 using the
correct product formula given in Corollary 5.11 and Proposition 5.14. In
particular we prove that the formulas given in [CMP09] are correct in the
non equivariant setting.

6.1. Peterson’s isomorphism

Proposition 5.14 is our needed result in the equivariant homology of the
affine Grassmannian. Translating this formula in the quantum cohomology
of G/P , we prove our main theorem. We use Peterson’s isomorphism [Pet98]
proved in [LS10] to relate HT

∗ (ΩK) and QH∗
T (G/P ).
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Let ηP : Q∨ → Q∨
P be the projection on the coroot subspace generated

by simple roots αi with αi ̸∈ RP . Peterson’s isomorphism is the map

(9) ψP : HT
∗ (ΩK)P → Z[Q∨

P ]⊗Z H
∗
T (G/P )

ξwπP (tλ∨ )ξ
−1
πP (tµ∨ ) 7→ qηP (λ∨−µ∨)σ

P (w)

where w ∈WP and λ∨, µ∨ ∈ Q∨
− with Q∨

− the set of antidominant elements
in Q∨.

Remark 6.1. In the above statement we have:

1) The space HT
∗ (ΩK)P is a quotient and a localization of HT

∗ (ΩK) de-
fined in [CMP09, §2.2]. The family {σP (w), w ∈W/WP } is the Schu-
bert base of H∗

T (G/P ), and the element in Z[Q∨
P ] corresponding to

ν∨ ∈ Q∨
P is denoted by qν∨ . We have for ν∨ ∈ Q∨

− the formula

deg(qν∨) =
∑

α∈R+\R+
P

⟨ν∨, α⟩ = −ℓ(tν∨).

2) This isomorphism is graded. In fact, for very negative coweights λ∨, µ∨,
the element ξwπP (tλ∨ )ξ

−1
πP (tµ∨ ) has homological degree ℓ(πP (tλ∨))−

ℓ(w)− ℓ(πP (tµ∨)), by [LS10, Lemma 3.3]. On the other hand,
in quantum cohomology, the element qηP (λ∨−µ∨)σ

P (w) has degree
−ℓ(πP (tλ∨)) + ℓ(πP (tµ∨)) + ℓ(w).

6.2. A Weyl group action on QH∗

T
(G/P ).

In this subsection, we recall that left multiplication in the group G induces
an action of the Weyl group on H∗

T (G/P ) and on QH∗
T (G/P ). This action

is very natural and appears eg in [MNS21, Section 3.1]. We will prove the
compatibility of this action with Peterson’s isomorphism in the next subsec-
tion. Since this action is different from the action defined in Kumar [Kum02,
11.3.4] we define it carefully. We start with the action on G/B and then deal
with the general situation for G/P .

We define an algebraic and a geometric action of the Weyl group W on
H∗

T (G/B). We then prove that these actions coincide.
Let n ∈ G be in the normalizer of T and let w be the corresponding

element of the Weyl group. Define the left action Ln : G/B → G/B by left
multiplication: Ln · [x] = [n−1x]. This action is T -equivariant if we consider
the w-twisted action of T on G/B given by t · [x] = [w(t)x]. It therefore
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induces a w-semilinear map H∗
T (G/B) → H∗

T (G/B), denoted L∗
n: L

∗
n(sξ) =

w(s)L∗
n(ξ) for s ∈ S and ξ ∈ H∗

T (G/B).

Fact 6.2. The above action L∗
n satisfies the following properties:

1) L∗
n depends on w and not on n itself; it will be denoted by w∗ in the

sequel.

2) Via the inclusion H∗
T (G/P ) ⊂ H∗

T (G/B) given by pulling back the pro-
jection G/B → G/P , we have w∗H∗

T (G/P ) ⊂ H∗
T (G/P ).

3) The induced action of w∗ on the non equivariant cohomology H∗(G/B)
is trivial.

Proof. (1) Let N denote the normalizer of T . The map N ×G/B →
G/B, (n, [x]) 7→ Ln · [x] is continuous and therefore for ξ ∈ H∗

T (G/B), the
map N 7→ L∗

nξ is locally constant.
(2) For n in the normalizer of T , we have a commutative diagram:

G/B G/B

G/P G/P

LB
n

LP
n

Here we made a difference between the action of n on G/B and G/P us-
ing superscripts. It follows that for ξ ∈ H∗

T (G/P ), we have w∗ξ = (LB
n )

∗ξ =
(LP

n )
∗ξ ∈ H∗

T (G/P ).
(3) For g ∈ G, we can consider the action of left translation L∗

g on non
equivariant cohomology H∗(G/B). By the same argument as in (1), this
action is trivial. In particular, for g = n in N , we obtain that the action L∗

n

on non equivariant cohomology is trivial. □

Recall that W can be embedded in Aaff via v 7→ δv.

Definition 6.3. Let w ∈W . Consider H∗
T (G/B) as the dual of

HT
∗ (G/B) ⊂ Aaff and set

(w • f)(x) = f(δw−1x) for x ∈ HT
∗ (G/B) = A.

Proposition 6.4. For f ∈ H∗
T (G/B) and w ∈W , we have w • f = w∗f .

Proof. Using Frac(S)-linearity, we only need to compare these actions on
the elements ξv. We have (w • ξv)(δu) = ξv(δw−1δu) = ξv(δw−1u) = δv,w−1u =
ξv(w−1u) = (w∗ξv)(u), proving the result. □
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Corollary 6.5. Let α be a simple root and w ∈WP . We have

(sα)
∗σP (w) =

{
σP (w) if sαw > w;
σP (w)− ασP (sαw) if sαw < w.

Proof. We compute ((sα)
∗σP (w))(Au) = σP (w)(δsαAu) = σP (w)((1−

αAα)Au) = σP (w)(Au)− ασP (w)(AαAu). Now we have

AαAu =

{
0 if sαu < u
Asαu if sαu > u.

Since σP (w)(Av) = δv,w, we get

((sα)
∗σP (w))(Au) =

{
δu,w if sαu < u
δu,w − αδsαu,w if sαu > u.

This in turn gives the result. □

Remark 6.6. 1) Note that, for α simple, the two conditions w ∈WP

and sαw < w imply the inclusion sαw ∈WP since the inversion set of
sαw is contained in the inversion set of w. In particular, in the second
case of the above formula, the class σP (sαw) is well defined.

2) This formula also shows that the action w∗ is trivial in the non equiv-
ariant setting (indeed, in that case we set α = 0).

The action w∗ is extended to QH∗
T (G/P ) by linearity on quantum pa-

rameters.

6.3. Compatibility of Peterson’s isomorphism

In this subsection we prove that Peterson’s isomorphism is compatible with
the actions u∗ in homology and u∗ in cohomology. We start with a useful
lemma.

Lemma 6.7. Let w ∈WP and let λ∨ ∈ Q∨
− be such that x = wπP (tλ∨) ∈

(WP )aff . Write x = wπP (tλ∨) = vtµ∨ with v ∈W and µ∨ ∈ Q∨.
Let α be a simple root and let β = w−1(α), β′ = v−1(α).

1) We have w−1v ∈WP and µ∨ ∈ Q∨
−.

2) We have β ∈ RP ⇐⇒ β′ ∈ RP .

3) We have sαx ∈W−
aff ⇐⇒ ⟨µ∨, β⟩ ≠ 0.
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4) We have sαx ∈ (WP )aff ⇐⇒ β ̸∈ RP ⇐⇒ sαw ∈WP .

5) We have the equivalence:

(
sαx ∈W−

aff ∩ (WP )aff and ℓ(sαx) > ℓ(x)
)

⇐⇒
(
sαw ∈WP and ℓ(sαw) < ℓ(w)

)
.

Proof. (1) By [LS10, Lemma 10.7], we have πP (tλ∨) = utµ∨ with u ∈WP .
This give w−1v = u ∈WP . Since vtµ∨ ∈W−

aff we have µ∨ ∈ Q∨
−.

(2) Since u = w−1v ∈WP and β = u(β′), we have β ∈ RP ⇔ β′ ∈ RP .
(3) We have vtµ∨ ∈W−

aff therefore µ∨ ∈ Q∨
− and for γ > 0, we have the

implication (⟨µ∨, γ⟩ = 0 ⇒ v(γ) > 0). The condition sαvtµ ∈W−
aff is thus

equivalent to (⟨µ∨, γ⟩ = 0 ⇒ sαv(γ) > 0) for γ > 0. But since for γ = β′,
the roots v(γ) and sαv(γ) have opposite signs, the condition sαvtµ∨ ∈W−

aff
is equivalent to ⟨µ∨, β′⟩ = 0.

(4) We have vtµ∨ ∈ (WP )aff therefore, for γ ∈ R+
P , we have the equiva-

lences (⟨µ∨, γ⟩ = 0 ⇔ v(γ) > 0) and (⟨µ∨, γ⟩ = −1 ⇔ v(γ) < 0). The condi-
tion sαvtµ ∈ (WP )aff is equivalent to having the equivalences (⟨µ∨, γ⟩ = 0 ⇔
sαv(γ) > 0) and (⟨µ∨, γ⟩ = −1 ⇔ sαv(γ) < 0). Since for γ = β′, the roots
v(γ) and sαv(γ) have opposite signs, the last equivalences occur if and only
if β′ ̸∈ RP . This in turn is equivalent to β ̸∈ RP by (2).

For the last equivalence, note that by definition, the conditions sαw ∈
WP and sαw(R

+
P ) ⊂ R+ are equivalent. Since w ∈WP , we have w(R+

P ) ⊂
R+. Since the inversion sets of w and sαw only differ by β (or its opposite,
depending on the sign of β) we get the last equivalence.

(5) Note that we have the equivalence (ℓ(sαw) < ℓ(w) ⇔ β < 0). We
therefore need to prove that the left hand side of the equivalence is equivalent
to β ̸∈ RP and β < 0. Note that since w ∈WP , this is equivalent to β < 0.

First assume that sαx ∈W−
aff ∩ (WP )aff and ℓ(sαx) > ℓ(x). By [LS10,

Lemma 3.3], since vtµ∨ , sαvtµ∨ ∈Waffm, we have ℓ(sαx) = ℓ(tµ∨)− ℓ(sαv)
and ℓ(x) = ℓ(tµ∨)− ℓ(v). In particular, we have ℓ(sαv) < ℓ(v), thus β′ < 0.
Since sαx ∈ (WP )aff , we also have β ̸∈ RP thus β′ ̸∈ RP . Now, since u ∈WP ,
this implies β < 0.

Conversely, assume β < 0. By the above arguments, this implies β ̸∈ RP

and thus sαx ∈ (WP )aff . This also implies β′ ̸∈ RP and since u ∈WP and
β′ = u−1(β), we get β′ < 0. Since vtµ ∈W−

aff , −β
′ > 0 and v(−β′) = −α < 0,

we must have ⟨µ∨, β′⟩ ≠ 0 and by (3), this implies sαx ∈W−
aff . □

We have the following equivariance property of ψP .

Proposition 6.8. For ξ ∈ HT
∗ (ΩK)P , we have ψP (u∗ξ) = u∗ξ.
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Proof. Peterson [Pet98] proved that ψP is an isomorphism of nilHecke mod-
ules, which implies this Proposition. Since [Pet98] is not published, we in-
clude details.

We may assume that u = si, with αi a simple root. Then u∗ξwπP (tλ∨ ) =
δu · ξwπP (tλ∨ ) = (1− αiAi) · ξwπP (tλ∨ ). If ℓ(siwπP (tλ∨)) > ℓ(wπP (tλ∨)) and
siwπP (tλ∨) ∈ (WP )aff ∩W−

aff , then this is equal to ξwπP (tλ∨ ) − αiξsiwπP (tλ∨ ).
Otherwise, this is equal to ξwπP (tλ∨ ).

The action si
∗σP (w) is computed in Corollary 6.5. If ℓ(siw) < ℓ(w) and

siw ∈WP , then this is equal to σP (w)− αiσ
P (siw). Otherwise, this is equal

to σP (w).
Let β = w−1(αi). The condition siw ∈WP and ℓ(siw) < ℓ(w) is equiv-

alent to the condition ℓ(siwπP (tλ∨)) > ℓ(wπP (tλ∨)) and siwπP (tλ∨) ∈
(WP )aff ∩W−

aff by Lemma 6.7.(5). This proves the result. □

6.4. The result

We now prove our main result. For i a cominuscule node, i.e. such that ϖ∨
i

is a minuscule coweight, we let vi be the smallest element in W such that
vi(ϖ

∨
i ) = w0(ϖ

∨
i ) (w0 is the longest element in W ). The coweight vi(ϖ

∨
i ) =

w0(ϖ
∨
i ) is the opposite of a fundamental coweight: there exists f(i) ∈ I such

that vi(ϖ
∨
i ) = −ϖ∨

f(i). Actually we have αf(i) = −w0(αi) and vf(i) = v−1
i .

Theorem 6.9. Let i be a cominuscule node. In QH∗
T (G/P ) we have

σP (vi)× v∗i (σ
P (w)) = qηP (ϖ∨

i −w−1(ϖ∨
i ))
σP (viw) .

Proof. Let w ∈WP , we have πP (w) = w. Let ϖ∨
i be the minuscule coweight

associated to i and let µ∨ and ν∨ be in Q∨ and dominant enough. As in
[CMP09, §3.5], we get

πP (t−ϖ∨
i −µ) = τiπP (vf(i))πP (t−(ϖ∨

i +ϖ∨
f(i)+µ) and

πP (wt−νt−ϖ∨
i −µ) = τiπP (vf(i)w)πP (t−(ϖ∨

i +w−1(ϖ∨
f(i))+µ+ν).

For µ and ν dominant enough, the elements wt−ν , t−ϖ∨
i −µ and wt−νt−ϖ∨

i −µ

are in W̃−
aff and their image by πP are in (W̃P )aff ∩ W̃−

aff . We may therefore
apply Proposition 5.14 to the elements wt−ν and t−ϖ∨

i −µ to get:

(vf(i))∗ξwπP (t−ν∨ ) × ξπP (vf(i))πP (t−(ϖ∨
i

+ϖ∨
f(i)

+µ∨))

≡ ξπP (vf(i)w)πP (t−(ϖ∨
i

+w−1(ϖ∨
f(i)

+µ∨+ν∨)))
,
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where ≡ means equality in HT
∗ (ΩK)P or equivalently equality modulo JP .

Applying Peterson’s map (9), we get thanks to Proposition 6.8 the corre-
sponding formula in the quantum cohomology ring:

v∗f(i)σ
P (w)q−ηP (ν∨) ∗ ×σ

P (vf(i))q−ηP ((ϖ∨
i +ϖ∨

f(i)+µ∨))

= σP (vf(i)w)q−ηP ((ϖ∨
i +w−1(ϖ∨

f(i))+µ∨+ν∨)) ,

hence finally:

v∗f(i)σ
P (w) ∗ σP (vf(i)) = qηP (ϖ∨

f(i)−w−1(ϖ∨
f(i)))

σP (vf(i)w).

This concludes the proof of the theorem. □

Corollary 6.10. Let i be such that ϖ∨
i is a minuscule coweight. In

QH∗(G/P ), we have

σP (vi)× σP (w) = qηP (ϖ∨
i −w−1(ϖ∨

i ))
σP (viw) .

Example 6.11. Let G be of type A1, so that G/B = P1. Let s be the non
trivial element of W and α the simple root. We have

σB(s) ∗ (σB(s)− α) = q .

Proof. Let i be the unique node of the Dynkin diagram of G. Then vi = s.
To apply Theorem 6.9, we also set w = s. Let x resp. y be the B-stable
resp. B−-stable point in P1. The class σB(s) is the T -equivariant class
of x, and v∗i σ

B(s) is the T -equivariant class of y. Since [x]− [y] = α,
we have v∗i σ

B(s) = σB(s)− α. Denoting h = σB(s), the theorem yields
h× (h− α) = q, as claimed. Note that h2 = q + αh is also predicted eg by
[Mi07, Theorem 1]. □

7. Pieri formulas

We now give another application of Proposition 5.8 to prove a formula for
j(ξτi(vi)), see Proposition 7.4. This gives the multiplication in HT

∗ (ΩK) by
the class ξτi(vi). We hope in subsequent work to deduce Pieri formulas for the
non-equivariant multiplication by classes generating H∗(ΩK) in all classical
types.

We first provide a generalization of [Lam08, Proposition 5.4] to
coweights. For µ∨ ∈ P∨, setWµ∨ = ⟨sαi

| i ∈ [1, r] and ⟨αi, µ
∨⟩ = 0⟩ = {w ∈

W | w(µ∨) = µ∨}.



✐

✐

“3-Chaput” — 2023/9/2 — 2:09 — page 370 — #30
✐

✐

✐

✐

✐

✐

370 P.–E. Chaput and N. Perrin

Proposition 7.1. Let µ∨ ∈ P∨ be antidominant. Then

jad(ξtµ∨ ) =
∑

w∈W/Wµ∨

Ãtw(µ∨)
.

Proof. We follow the idea of proof given in [Lam08, Proposition 5.4]. Using

Lemma 4.8, we see that for w ∈W/Wµ∨ non trivial, tw(µ∨) ̸∈ W̃−
aff , so that

Atw(µ∨)
belongs to the ideal

∑
x∈W\{e} Ãaff ·Ax of Proposition 5.8. Thus,

using Proposition 5.8, we only need to prove that
∑

w∈W/Wµ∨
Atw(µ∨)

∈

Z
Ãaff

(S).

To prove that c :=
∑

w∈W/Wµ∨
Ãtw(µ∨)

centralizes S, or equivalently com-

mutes with any λ in Q, we use Proposition 4.6 to compute Ãtν∨λ. In this
formula, the term tν∨(λ) is equal to λ by (2) in §2.2. Let P be the set of
pairs (ν∨, β) where ν∨ ∈W · µ∨, β is a positive real root, and tν∨sβ ⋖ tν∨ .
We have:

(10) cλ− λc =
∑

(ν∨,β)∈P

⟨λ, β∨⟩Ãtν∨sβ ,

so our concern now is to prove that this sum vanishes.
We consider the map ι : P → P defined by ι(ν∨, β) = (sβ(ν

∨),−tν∨(β)).
Let (ν∨, β) ∈ P. We have

tν∨sβ = tν∨sβt−ν∨tν∨ = stν∨ (β)tν∨

= tst
ν∨ (β)(ν∨)stν∨ (β) = tsβ(ν∨)s−tν∨ (β) ,

where the last equality follows from (2) and Lemma 2.8. By the length for-
mula in [CMP09, Corollary 3.13], ℓ(tsβ(ν∨)) = ℓ(tν∨) and by definition of P,
ℓ(tν∨sβ) = ℓ(tβ∨)− 1. Thus, ℓ(tsβ(ν∨)s−tν∨ (β)) = ℓ(tsβ(ν∨))− 1. Moreover, by
[BB05, Proposition 4.4.6], tν∨(β) < 0, which implies tsβ(ν∨)s−tν∨ (β) ⋖ tsβ(ν∨)

and −tν∨(β) > 0, so (sβ(ν
∨),−tν∨(β)) ∈ P as claimed.

We also observe that ⟨λ,−tν∨(β)∨⟩ = ⟨λ,−β∨⟩ = −⟨λ, β∨⟩. Finally,

−tsβ(ν∨)(−tν∨(β)) = tsβ(ν∨)tν∨(β) = sβtν∨sβtν∨(β) .

One can check that this root is equal to β, so that ι is an involution and the
terms in (10) cancel pairwise. □

We now prove some preliminary lemmas.

Lemma 7.2. Let i ∈ Iaff . We have jad(ξ̃w0(ϖ∨
i )
) = δτ−1

i

∑

w≤Lvi

Aτi(w)viw−1 .
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Proof. Since w0(ϖ
∨
i ) ≤ 0 we may apply Proposition 7.1 and get

jad(ξw0(ϖ∨
i )
) =

∑

µ∨∈W ·w0(ϖ∨
i )

Atµ∨ .

Thus,

jad(ξw0(ϖ∨
i )
) =

∑

µ∨∈W ·ϖ∨
i

Atµ∨ =
∑

w≤Lvi

Awtϖ∨
i
w−1

=
∑

w≤Lvi

Awτ−1
i viw−1 =

∑

w≤Lvi

Aτ−1
i τi(w)viw−1

= δτ−1
i

∑

w≤Lvi

Aτi(w)viw−1 .

□

Lemma 7.3. Let s ∈ S and i ∈ Iaff . We have


 ∑

w≤Lvi

Aτi(w)viw−1


 s = τi(s)


 ∑

w≤Lvi

Aτi(w)viw−1


 .

Proof. Let i ∈ Iaff . Since j
ad(ξw0(ϖ∨

i )
) = δτ−1

i

∑
w≤Lvi

Aτi(w)viw−1 , we deduce
that

δτ−1
i

∑

w≤Lvi

Aτi(w)viw−1 ∈ ZAaff
(S) .

Let s ∈ S, we have:

δτ−1
i
(
∑

w≤Lvi

Aτi(w)viw−1)s = sδτ−1
i

∑

w≤Lvi

Aτi(w)viw−1

= δτ−1
i
τi(s)

∑

w≤Lvi

Aτi(w)viw−1 ,

which proves the lemma. □

Proposition 7.4. Let i ∈ Iaff , let as above vi the maximal element in WPi

and τi the automorphism of the affine Dynkin diagram defined by i. Then
τi(vi) ∈W−

aff and we have:

j(ξτi(vi)) =
∑

w≤Lvi

∑

v≤v−1
i

τi(ξ
v(v−1

i ))Aτi(w)viw−1Av .
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Proof. We first prove that τi(vi) ∈W−
aff . We know that τi(αi) = α0. Since

vi ∈WPi , we have for 1 ≤ j ≤ n with j ̸= i, ℓ(visj) > ℓ(vi). Since vi ∈W ,
ℓ(vis0) > ℓ(vi). Applying τi, we deduce that for all k > 0, ℓ(τi(vi)sk) >
ℓ(τi(vi)). Thus, τi(vi) ∈W−

aff .
Moreover, we know that τi = vit−ϖ∨

i
. Therefore, vi = τitϖ∨

i
= tw0(ϖ∨

i )
τi,

so that tw0(ϖ∨
i )

= viτ
−1
i = τ−1

i τi(vi). By Proposition 5.9, we deduce that

jad(ξtw0(ϖ∨
i

)
) = δτ−1

i
j(ξτi(vi))δvi

.
By Lemma 7.2, we deduce that

δτ−1
i
j(ξτi(vi))δvi

= δτ−1
i

∑

w≤Lvi

Aτi(w)viw−1 .

Therefore, using Fact 5.1 and then Lemma 7.3, we find

j(ξτi(vi)) =
∑

w≤Lvi

Aτi(w)viw−1δv−1
i

=
∑

w≤Lvi

Aτi(w)viw−1

∑

v≤v−1
i

ξv(v−1
i )Av

=
∑

w≤Lvi

∑

v≤v−1
i

τi(ξ
v(v−1

i ))Aτi(w)viw−1Av .

□

Remark 7.5. Let x ∈W−
aff . In the non equivariant homology, we thus have

ξτi(vi) · ξx =
∑

ξτi(w)viw−1x ,

where the sum is over w ≤L vi such that we have ℓ(τi(w)viw
−1x) = ℓ(vi) +

ℓ(x) and τi(w)viw
−1x ∈W−

aff .
By Corollary 5.15, we know that there is only one Schubert class in the

product ξτi(vi) · ξx, from which we deduce that there is exactly one w ≤L vi
such that ℓ(τi(w)viw

−1x) = ℓ(vi) + ℓ(x) and τi(w)viw
−1x ∈W−

aff .

Example 7.6. Let us assume we are in type Ã3 and let us write for short
A210 instead of As2s1s0 and similarly for ξ210 and δ210. Let i = 1 so that
vi = s3s2s1 and τi(vi) = s2s1s0. First we observe that

δτ−1
i

= δ123 = (1− α1A1)(1− α2A2)(1− α3A3)

= 1− α1A1 − (α1 + α2)A2 − (α1 + α2 + α3)A3

+ α1(α1 + α2)A12 + α1(α1 + α2 + α3)A13

+ (α1 + α2)(α1 + α2 + α3)A23

− α1(α1 + α2)(α1 + α2 + α3)A123 .
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Since τi(α1) = −θ = −(α1 + α2 + α3), τi(α2) = α1 and τi(α3) = α2, we get:

j(ξ210) = A210 +A321 +A032 +A103

+ α3(A2103 +A3213 +A0323)

+ (α2 + α3)(A2102 +A3212A1032)

+ (α1 + α2 + α3)(A2101 +A0321 +A1031)

+ α3(α2 + α3)(A21023 +A32123 +A10323)

+ α3(α1 + α2 + α3)(A21031 +A03231)

+ (α2 + α3)(α1 + α2 + α3)(A21012 +A03212 +A10312)

+ α3(α2 + α3)(α1 + α2 + α3)(A210123 +A032123 +A103123) .

Acknowledgements
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