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1. Introduction

Since Kodaira’s foundational work on the classification of compact complex
surfaces, non-kählerian surfaces have been a subject of interest for many
complex geometers. Beside the elliptic non-kählerian surfaces and the Hopf
surfaces which were studied by Kodaira, two further series of examples ap-
peared in the seventies: the Inoue surfaces [Ino74] and the Kato surfaces
[Kat77]. According to the Global Spherical Shell Conjecture [Nak84] these
classes should exhaust all non-kählerian compact complex surfaces up to
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bimeromorphic equivalence. Some recent progress towards a solution of this
conjecture was achieved by Andrei Teleman in [Tel05], [Tel10], [Tel18]. His
approach is to study a certain moduli space of stable rank two vector bun-
dles on a given surface X and deduce the existence of a compact analytic
curve on X.

In this paper we look at objects on X of a different nature, namely at
positive d-exact currents. It is known by [HL83] and [Lam99] that every non-
kählerian surface admits non-trivial such currents. Extending our approach
from [CT13] we introduce an invariant I(T ) of a positive d-exact current T
on a non-kählerian compact complex surface and investigate its behaviour
for the known classes of surfaces. This analysis leads us to a rough classi-
fication of non-kählerian surfaces into parabolic and hyperbolic surfaces, see
Definition 3.5. Note that the commonly used invariants such as the Kodaira
dimension, the algebraic dimension or the Kähler rank do not adapt well to
the historical partition of non-kählerian surfaces into elliptic, Hopf, Inoue
and Kato surfaces, or to Kodaira’s partition into classes. (An example is
Kodaira’s class V II which was given a slightly restricted area in the mono-
graph [BHPVdV04].) We show that the results of Marco Brunella’s papers
[Bru13b], [Bru13a], [Bru14] fit perfectly into our classification. These papers
were a source of motivation for our investigation and we therefore dedicate
this work to the memory of Marco Brunella.

We start by presenting some preliminary facts in Section 2 on positive
pluriharmonic currents and on Green functions on compact complex sur-
faces. In Section 3 we propose a classification and show how the known
classes of non-kählerian surfaces fit into it. This is followed by a short sec-
tion presenting three conjectures inspired by this classification and by our
previous work on the Kähler rank of surfaces [CT13]. The paper ends with
an appendix on nef (pluri)closed currents and on the corresponding positive
cones in Bott-Chern and in Aeppli cohomology.

2. Preparations

2.1. Positive pluriharmonic (1, 1)-currents on
non-kählerian surfaces

In this section X will always stand for a non-kählerian compact complex
surface. It is known that any compact complex surface admits some Gaudu-
chon metric, that is a hermitian metric whose associated Kähler form is
i∂∂̄-closed. We shall call such forms Gauduchon forms and we shall fix one
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Gauduchon form ω on X. We use the following definition following Lamari,
[Lam99].

Definition 2.1. A (1, 1)-current on X will be said to be nef pluriharmonic
if it is a weak limit of positive i∂∂̄-closed (1, 1)-forms on X (or equivalently
a weak limit of Gauduchon forms).

Nef pluriharmonic currents are clearly positive and i∂∂̄-closed. In the
case of surfaces, extending the characterization of compact non-Kähler man-
ifolds given by Harvey and Lawson in [HL83], Lamari shows that any non-
kählerian surface admits some non-trivial nef pluriharmonic current which is
d-exact, [Lam99, Theorem 7.1]. Since its evaluation on the Gauduchon form
ω is positive, it follows that its Bott-Chern cohomology class is non-zero.
Moreover, up to a positive multiplicative constant there is only one such class
in H1,1

BC(X,R). In the sequel we shall denote by τ a smooth representative
of such a class. We fix the class {τ} by requiring

∫

X
τ ∧ ω = 1.

Note also that the intersection form H1,1
BC(X,R) ×H1,1

BC(X,R) → R,
({α}, {β}) →

∫

X
α ∧ β is negative semi-definite with totally isotropic space

spanned by the class of τ , see Section 5. Therefore, since H1,1
BC(X,R) and

H1,1
A (X,R) are dual under the natural pairing, it follows that the kernel of

the morphism j : H1,1
BC(X,R) → H1,1

A (X,R) is of dimension 1 and is gener-
ated by τ , and the cokernel is also of dimension 1, the image of j consisting
of the classes that vanish on τ . Here we have denoted by H1,1

BC(X,R) and by

H1,1
A (X,R) the corresponding Bott-Chern and Aeppli cohomology groups;

see Section 5 for definitions and further facts on these topics.

Proposition 2.2. Let T be a positive, ∂∂̄-closed (1, 1)-current on X. Then
T has a decomposition

(1) T =
∑

j∈J

cj [Ej ] + T ′

where J is a countable set, cj ≥ 0 are non-negative real numbers, Ej are
irreducible compact curves on X and T ′ is a nef pluriharmonic current.

Proof. Given an irreducible compact curve E ⊂ X, Bassanelli in Theorem
4.10 in [Bas94] proved that χET is a current of the form f [E], where f is
a weakly plurisubharmonic function on E. Since E is compact, it follows
that f is a constant c, and, therefore, for a given irreducible compact curve
E ⊂ X, the current T can be written as c[E] + T ′, where T ′ is a positive
pluriharmonic current such that χET

′ = 0.
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If X is non-elliptic, then there are finitely many compact curves Ej on
X and from Bassanelli’s Theorem it follows that T can be written

(2) T =
∑

j

cj [Ej ] + T ′

where χEj
T ′ = 0, ∀j.

If X is elliptic, denote by C the set of all compact complex curves in
X. If ω is a fixed Gauduchon form on X, then there exists c > 0 such that
∫

E
ω ≥ c, ∀E ∈ C, see Remark 2.3. Now if n ∈ N, denote by

Cn =

{

E ∈ C
∣

∣χET ≥
1

n
[E]

}

and by En = ∪E∈Cn
E. We claim that Cn is finite. Indeed, we have

T ≥ χEn
T =

∑

E∈Cn

χET ≥
∑

E∈Cn

1

n
[E] and therefore

∫

X

ω ∧ T ≥
∑

E∈Cn

1

n

∫

E

ω ≥
1

n
· c · card Cn.

and this inequality proves the claim stated above. Here we used the fact that,
if A and B are analytic subsets of pure dimension 1, such that C := A ∩B
has zero dimension, then χA∪BT = χAT + χBT . Indeed, χA∪BT + χCT =
χAT + χBT , and, since C is a finite set of points, it follows that χCT = 0
[AB93] (see below for a more detailed proof of χCT = 0).

Denote by Tn the d-closed current
∑

E∈Cn

χET . It is d-closed because each

χET is of the form c[E], with c a non-negative constant. Clearly Cn ⊂ Cn+1,
and therefore Tn+1 ≥ Tn. Denote by C+ = ∪nCn = {E ∈ C|χET ̸= 0}. Since
Cn are finite sets, it follows that C+ is a countable set {Ej |j ∈ N}. Note that
∫

X

ω ∧
∑

j

χEj
T ≤

∫

X

ω ∧ T . Indeed, if

∫

X

ω ∧
N
∑

j=1

χEj
T >

∫

X

ω ∧ T , pick

n so that {Ej |1 ≤ j ≤ N} ⊂ Cn, and then
∑N

j=1 χEj
T ≤ Tn ≤ T , contradic-

tion. Therefore
∑

j χEj
T is a closed positive current of the form

∑

j cj [Ej ]
and

∑

j cj [Ej ] ≤ T .

The current T ′ := T −
∑

j

cj [Ej ] is a positive i∂∂̄-closed current. From

the construction of
∑

j

cj [Ej ], it follows that χET
′ = 0, ∀E ∈ C. Indeed, if
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χET
′ = c[E] with c > 0, then from T ′ ≤ T it follows that χET = d[E] with

some d > 0, therefore E is in C+ and there exists k ∈ N such that d = ck
but then χEk

T ′ = χEk
T − χEk

∑

j cj [Ej ] = ck[Ek] − χEk
ck[Ek] = ck[Ek] −

ck[Ek] = 0, contradiction.
Therefore, on any non-Kähler compact surface, the positive i∂∂̄-closed

(1, 1)-currents admit a Siu decomposition.
We have to prove that T ′ is a nef pluriharmonic current, i.e., that it

belongs to G, the weak closure of the cone of Gauduchon metrics G in
D′1,1(X,R) the space of (1, 1)-currents.

Suppose that T ′ /∈ G; then let K = {G ∈ G|⟨ω,G⟩ = 1} where ω is our
fixed Gauduchon form and L = RT ′ ⊂ D′1,1(X,R). Since L ∩K = ∅, K is
weakly compact and L is closed, they can be separated by a C∞ (1, 1)-
form θ such that ⟨θ,G⟩ ≥ ε0 > 0, ∀G ∈ K and ⟨θ,G⟩ ≤ 0, ∀G ∈ L. We obtain
⟨θ, T ′⟩ = 0 and further from Lemme 1.4 in [Lam99] applied to the form
θ − ε0ω that there exists φ a distribution such that

(3) θ + i∂∂̄φ ≥ ε0ω.

It follows that φ is actually quasi-plurisubhamonic, and from Proposition
3.7 in [De92], we can approximate φ by another quasi-plurisubharmonic
function φ′ which has logarithmic poles (in particular the set E+ = {x ∈
X|ν(φ′, x) > 0} is an analytic subset of X), and such that

(4) i∂∂̄φ′ ≥
ε0
2
ω − θ.

Note that χE+
T ′ = 0. Indeed, χCT

′ = 0 for any irreducible compact
curve in X, and, if Y is a finite set in X, then the fact that χY T

′ = 0
follows from [AB93]: denote by (T ′)◦ the simple extension of T ′|X\Y . Its
existence is guaranteed by Theorem 5.4 in [AB93]. It is a positive plurihar-
monic current (see also Remark 5.5 in [AB93]). Then χY T

′ = T ′ − (T ′)◦ is
positive, pluriharmonic and supported in Y . From Theorem 5.1 in [AB93] it
follows that χY T

′ = 0.
Apply Proposition 3.1 in [Lam99] with T = T ′, χ = φ′, α = 0, Y = E+,

η = 0 and

(5) γ =
ε0
2
ω − θ.

It follows that

(6) 0 = ⟨0, T ′⟩ ≥
ε0
2
⟨ω, T ′⟩ − ⟨θ, T ′⟩ =

ε0
2
⟨ω, T ′⟩
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hence T ′ = 0, contradiction. □

In the above proof we made use of the following

Remark 2.3. If (X,ω) is an n-dimensional compact complex manifold en-
dowed with a hermitian metric, then there is a constant c > 0 such that for
any positive (non-zero) k-cycle E on X we have

∫

E

ωk ≥ c.

Indeed, the void cycle, which we denote by 0, is an isolated point in the cycle
space Ck(X) of k-dimensional cycles on X, [BM14, Remarque after Lemme
IV.2.2.3], the volume function with respect to ω is continuous on the cycle
space, [BM14, Proposition IV.2.3.1], and the set of all cycles whose volume
is bounded from above by some constant M is compact, [BM14, Théorème
IV.2.7.20], which is a consequence of Bishop’s Theorem. Thus the minimum
of the volume function restricted to Ck(X) \ {0} is attained and is non-zero.

Proposition 2.4. Let T be a positive i∂∂̄-closed (1, 1)-current such that
∫

X
τ ∧ T = 0. Then T is closed. If, moreover, T is nef pluriharmonic, then

it is d-exact.

Proof. Since
∫

X
τ ∧ T = 0 and τ is d-exact, it follows that

∫

X
τ ∧ T ′ = 0,

where T ′ is the nef pluriharmonic current that appears in Proposition 2.2.
Thus T ′ is a weak limit of Gauduchon forms T ′ = limωn. We noted above
that the natural morphism H1,1

BC(X,R) → H1,1
A (X,R) has a 1-dimensional

kernel, therefore its image has codimension 1. So H1,1
A (X,R) is generated by

the class of ω and the image of H1,1
BC(X,R) and therefore each ωn can be

written

(7) ωn = εnω + αn + ∂σ̄n + ∂̄σn,

where

(8) εn =

∫

X

τ ∧ ωn →

∫

X

τ ∧ T ′ = 0,

αn are d-closed (1, 1)-forms, and σn are (1, 0)-forms. Indeed,

∫

X

(ωn − εnω) ∧ τ = 0
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and, as explained above, it follows that the class of ωn − εnω in H1,1
A (X,R)

is in the image of the natural morphism j : H1,1
BC(X,R) → H1,1

A (X,R), see
also the Appendix.

Then

0 ≥

∫

X

α2
n =

∫

X

(αn + d(σn + σ̄n))2(9)

=

∫

X

(ωn − εnω + ∂σn + ∂̄σ̄n)2

=

∫

X

(ωn − εnω)2 + 2

∫

X

∂σn ∧ ∂̄σ̄n

=

∫

X

ω2
n − 2εn

∫

X

ωn ∧ ω + ε2n

∫

X

ω2 + 2

∫

X

∂σn ∧ ∂̄σ̄n

≥ −2εn

∫

X

ωn ∧ ω + ε2n

∫

X

ω2 + 2

∫

X

∂σn ∧ ∂̄σ̄n.

Since
∫

X
ωn ∧ ω →

∫

X
T ′ ∧ ω and εn → 0, it follows that

(10)

∫

X

∂σn ∧ ∂̄σ̄n → 0

and therefore ∂σn → 0 strongly in L2, in particular as currents. So from (7)

(11) ∂T ′ = lim ∂ωn = lim(εn∂ω + ∂∂̄σn) = − lim ∂̄∂σn = 0,

therefore T ′ is closed and hence T is closed as well.
If T is nef pluriharmonic and d-closed, let α be a C∞ representative

of T in the Bott-Chern cohomology class of T , i.e., T = α+ i∂∂̄φ where
φ is a quasi-plurisubharmonic function on X. If T = limωn, where ωn are
Gauduchon forms, then

(12) 0 ≥

∫

X

α2 = lim

∫

X

α ∧ ωn = lim

∫

X

T ∧ ωn ≥ 0

so
∫

X
α2 = 0 and α is d-exact and therefore T is d-exact. We have used the

fact that the intersection form on H1,1
BC(X,R) is negative semi-definite with

totally isotropic space spanned by the class of τ . □
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2.2. Positive exact (1, 1)-currents in L2

−1
(X)

We shall denote by L2(X) and by L2
−1(X) spaces of currents with coefficients

in the corresponding spaces of functions without making their degrees pre-
cise. A closed positive current of bidegree (1, 1) is in L2

−1(X) if it admits
local ∂∂̄-potentials which are square integrable along with their gradients.

Bedford and Taylor defined in [BT78] the self intersection of a closed
positive (1, 1) current T in L2

−1(X) as follows: if T = i∂∂̄u on some open
subset U of X and if ψ is a test function on U , then

< T ∧ T, ψ >:=

∫

ψT ∧ T := −

∫

i∂∂̄ψ ∧ i∂u ∧ ∂̄u.

A direct computation shows that this definition does not depend on the
chosen i∂∂̄-potential u and the definition is extended by linearity to define
a current on X. By [BT78, Theorem 3.6] T ∧ T is a positive (2, 2)-current
on X. This may also be seen in the following way. Let Ω be an open subset
of C2. For a plurisubharmonic function u in L2

1(Ω) we define a distribution
MA(u) on Ω by setting

(13) MA(u)(ψ) := −

∫

i∂∂̄ψ ∧ i∂u ∧ ∂̄u.

We regularize u in the usual way by means of a sequence of regularizing
kernels (ρϵ)ϵ converging to the Dirac distribution. The sequence of func-
tions uϵ := u ⋆ ρϵ decreases towards u. The functions uϵ are in C∞(Ω) and
plurisubharmonic on the smaller open sets Ωϵ. By the Meyers-Serrin theo-
rem we also have limϵ→0 uϵ = u in L2

1(Ω). Thus if ψ is a test function on
Ω, then Supp(ψ) ⊂ Ωϵ for 0 < ϵ << 1 and limϵ→0MA(uϵ)(ψ) = MA(u)(ψ)
and on the other hand

MA(uϵ)(ψ) := −

∫

Ω
i∂∂̄ψ ∧ i∂uϵ ∧ ∂̄uϵ =

∫

Ω
ψ(i∂∂̄uϵ)

2

which will be positive if ψ is positive.
From the degeneration of the Frölicher spectral sequence at the E1-level

for compact complex surfaces [BHPVdV04, Theorem IV.2.8], it follows that
if T is an exact positive (1, 1) current, then there exists a bidegree (0, 1) cur-
rent S such that T = ∂S and ∂̄S = 0 (see Lemma 12.1 p.42 in [BHPVdV04]).
(In fact it is not difficult to check that any bidegree (0, 1) current S′ with
∂S′ = T has the property ∂̄S′ = 0.) We investigate the situation when T is
in L2

−1(X).
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Proposition 2.5. Let T be a positive d-exact current of bidegree (1, 1)
in L2

−1(X) and let T = ∂S for some bidegree (0, 1)-current S. Then S is
in L2(X), iS̄ ∧ S is i∂∂̄-closed, and χY iS̄ ∧ S = 0 for any compact proper
analytic subset Y of X. In particular, iS̄ ∧ S is a nef pluriharmonic current.

Moreover the value of the integral

∫

X

τ ∧ iS̄ ∧ S

depends only on T and not on the chosen potential S.

Proof. Note that if T is in L2
−1(X), then the ellipticity of ∂ on (0, 1) forms

implies that S is in L2(X), hence iS̄ ∧ S is well-defined and is a (1, 1)-current
with L1 coefficients.

Locally we may write T = i∂∂̄u and S = i∂̄u. It follows that:
∫

ψT ∧ T =
−
∫

i∂∂̄ψ ∧ iS̄ ∧ S for any C∞ function ψ on X and in particular estimating
on ψ = 1 one gets T ∧ T = 0 and i∂∂̄(iS̄ ∧ S) = 0.

If dimY = 0, the statement on the vanishing of χY iS̄ ∧ S follows from
[AB93] as in the proof of Proposition 2.2. If dimY = 1, the statement follows
from the fact that iS̄ ∧ S has L1 coefficients, and an L1-function cannot
dominate a Dirac measure. Indeed, if χY iS̄ ∧ S = c[Y ] with c > 0, then iS̄ ∧
S ≥ c[Y ] and if (φn)n is a sequence of positive functions that converges
pointwise to χY , then, from the dominated convergence theorem, it follows
that

∫

X

iS̄ ∧ S ∧ φnω → 0

while
∫

Y
φnω →

∫

Y
ω > 0. Therefore the inequality iS̄ ∧ S ≥ c[Y ] cannot be

true with c > 0.
If S1, S2 are two primitive currents for T as above, then η := S̄1 − S̄2 is a

holomorphic 1-form on X. If this form is non-zero then iη ∧ η̄ is a non-trivial
closed positive (1, 1)-form such that

∫

X
(iη ∧ η̄)2 = 0 hence as remarked in

Section 2.1 {τ} = c{iη ∧ η̄} ∈ H1,1
BC(X,R) for some positive constant c. Thus

∫

X

τ ∧ iS̄1 ∧ S1 = c

∫

X

iη ∧ η̄ ∧ i(S̄2 + η) ∧ (S2 + η̄) =

∫

X

τ ∧ iS̄2 ∧ S2.

□

Definition 2.6. Under the above assumptions, i.e. for a positive d-exact
current T = ∂S of bidegree (1, 1) in L2

−1(X), we define a linear form I(T )
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on Ker(H1,1
BC(X,R) → H1,1

A (X,R)) by setting

I(T )(α) :=

∫

X

α ∧ iS̄ ∧ S.

Note that the linear form I(T ) is determined by its value on τ , which is
exactly the integral appearing in Proposition 2.5.

2.3. Green functions

To our knowledge the notion of Green function for a non-kählerian surface
appears first in the paper [DO99]. It was further used in [Bru13a] and in
[Bru14].

Definition 2.7. We say that a compact complex surface X admits a Green
function if there exist a Z-covering π : X ′ → X, a divisor D ≥ 0 on X and
a negative plurisubharmonic function G : X ′ →] −∞, 0[ which is multiplica-
tively automorphic on X ′ and pluriharmonic on X ′ \ π−1(D). Being multi-
plicatively automorphic for G means that if g ∈ Aut(X ′) generates the deck
transformation group of π : X ′ → X, there exists a positive constant k such
that G ◦ g = kG. We will always implicitely assume that Green functions are
non-trivial in the sense that X ′ is connected and that k ̸= 1. By interchang-
ing g and g−1 we may further assume that k < 1.

Proposition 2.8. If (π,D,G) is a data system defining a Green function
on a compact complex surface X and if u := − log(−G), then the following
assertions hold:

1) u is plurisubharmonic and additively automorphic. The additive auto-
morphy for u means that u ◦ g = u+ p, where p := − log k.

2) i∂∂̄u has trivial automorphy and it defines a non-trivial exact positive
current on X. In particular X is non-kählerian.

3) X is non-elliptic.

4) i∂∂̄G =
∑

j aj [Dj ], where Dj are the irreducible components of π−1(D)
and aj are non-negative constants.

5) u is in L2
1,loc(X

′) and

i∂∂̄u = i∂u ∧ ∂̄u.

6) i∂∂̄u is in L2
−1(X) and I(i∂∂̄u) = 0.
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7) For any continuous p-periodic function h : R → R satisfying 1 + h′ +
h′′ ≥ 0 as distributions, the function v := u+ h ◦ u, understood as be-
ing −∞ on the polar locus of u, is plurisubharmonic, additively au-
tomorphic and defines an exact positive (1, 1)-current T := i∂∂̄v ∈
L2
−1(X) with I(T ) = 0. Moreover, such a function v satisfies i∂∂̄v =

i∂v ∧ ∂̄v if and only if it equals u up to an additive constant.

Proof. The function ψ :] −∞, 0[→ R, t 7→ − log(−t) is convex and increasing
hence u is plurisubharmonic. The assertions on the additive automorphic
behaviour and on the fact that i∂∂̄u descends to a non-trivial exact positive
current on X are clear. (Note for later use that ∂u and ∂̄u also descend to
X.)

Suppose now by contradiction that X is elliptic with elliptic fibration
f : X → B over a compact complex curve B. By Liouville’s theorem it fol-
lows that G is constant on the connected components of the general fibers
of f ◦ π : X ′ → B. Indeed, Liouville’s theorem says that any upper bounded
subharmonic function on C is constant. In our case the connected compo-
nents of the fibers of f ◦ π : X ′ → B are compact or else isomorphic to C
or to C∗. Note also that a negative subharmonic function on C∗ which has
non-trivial multiplicative automorphy has a pole at one of the ends of C∗

and extends to C as a subharmonic function. Thus, by the automorphic
behaviour of G, the connected components of these general fibers are el-
liptic curves and π factorizes through a Z-covering π′ : B′ → B of the base
and a proper elliptic fibration f ′ : X ′ → B′. Clearly G and u descend then
to plurisubharmonic functions on B′ with the corresponding automorphic
behaviour. But as above this contradicts the fact that B is Kähler.

Thus X is non-kählerian of algebraic dimension zero and the consider-
ations in [Bru14, pp. 252-253] apply to show that π−1(D) is a divisor with
simple normal crossings and that i∂∂̄G =

∑

j aj [Dj ].
We now look at u := ψ ◦G. From [B lo09, Theorem 1] it follows that u

is in L2
1,loc. We now show that i∂∂̄u = i∂u ∧ ∂̄u. Since i∂∂̄G =

∑

j aj [Dj ]

and π−1(D) has simple normal crossings, we can assume that locally around
of point of π−1(D), the Green function G can be written as G0(z1, z2) =
2a1 log |z1| + 2a2 log |z2|, where a1, a2 ≥ 0 and a1 + a2 > 0, where G0 is de-
fined on the polydisc {(z1, z2)||z1| < 1, |z2| < 1}. Indeed, if there is a differ-
ence, G−G0, between the two functions then it must be pluriharmonic and
thus of the form 2ℜf for some holomorphic function f . But then we may

change the coordinate function z1, say, to z1e
f

a1 and obtain the desired local
expression for G. We consider next the smooth plurisubharmonic functions
Gε(z1, z2) = a1 log(|z1|

2 + ε) + a2 log(|z2|
2 + ε), ε > 0. Clearly, (Gε)ε>0 is a
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family of functions that decreases to G. Denote by uε = − log(−Gε) on
{

(z1, z2)||z1| ≤
1

2
, |z2| ≤

1

2

}

. Since (uε)ε>0 decreases to u when ε→ 0, it

follows that (i∂∂̄uε)ε>0 converges to i∂∂̄u weakly. At this point one may
infer from [Ceg07] that ∂uε → ∂u in L2. However in our case one can see
this also by a local direct calculation as follows. Away from D one gets

∂uε = −
∂Gε

Gε
= −a1

z̄1dz1
(|z1|2 + ε)Gε

− a2
z̄2dz2

(|z2|2 + ε)Gε

and when a1 ̸= 0 it is therefore enough to check that the sequence
(

z̄1
(|z1|2 + ε)Gε

)

ε

converges towards
z̄1

|z1|2G0
in L2 locally around 0, the

other component being similar. We have
∣

∣

∣

∣

z̄1
(|z1|2 + ε)Gε

−
z̄1

|z1|2G0

∣

∣

∣

∣

≤
|z̄1|

|G0|

(

1

|z1|2
−

1

|z1|2 + ε

)

+
|z̄1|

|z1|2 + ε

(

1

−Gε
−

1

−G0

)

.

Now the first term squared gives

ε2

|z1|2(|z1|2 + ε)2G2
0

which is bounded by

ε2

a21|z1|
2(|z1|2 + ε)2 log2(|z1|2)

which in turn leads to an integral of the form

∫ b

0

ε2

t(t+ ε)2 log2 t
dt for some

fixed b ∈]0, 1[. The integrands are uniformly bounded by the function
1

t log2 t
which is integrable on ]0, b[ and we conclude by Lebesgue’s dominated con-
vergence theorem for this term. We now turn our attention to the second
term. We have

|z̄1|

|z1|2 + ε

(

1

−Gε
−

1

−G0

)

=
|z̄1|

|z1|2 + ε
·
Gε −G0

GεG0

=
|z̄1|

|z1|2 + ε
·
a1 log(1 + ε

|z1|2
) + a2 log(1 + ε

|z2|2
)

G0Gε

≤
1

|z1|(− log |z1|2)
+

1

|z1|(− log |z1|2)
· C log

(

1 +
ε

|z2|2

)
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for some constant C not depending on ε, where for the first term we used
the inequalities

|z̄1|a1 log
(

1 + ε
|z1|2

)

(|z1|2 + ε)G0Gε
≤

|z̄1|a1
ε

|z1|2

(|z1|2 + ε)(−a1 log |z1|2)(−a1 log(|z1|2 + ε))

≤
1

|z1|(− log |z1|2)

which hold for z and ε small. We may again apply Lebesgue’s dominated
convergence theorem since the bounding functions are square-integrable.

It follows that i∂uε ∧ ∂̄uε → i∂u ∧ ∂̄u in L1. It remains only to prove
that i∂∂̄uε − i∂uε ∧ ∂̄uε → 0 weakly.

Straight forward computations show that

i∂∂̄uε − i∂uε ∧ ∂̄uε = −
1

Gε
i∂∂̄Gε

= −
1

Gε

(

a1
ε

(|z1|2 + ε)2
idz1 ∧ dz̄1 + a2

ε

(|z2|2 + ε)2
idz2 ∧ dz̄2

)

and for ε <
1

2
, |z1| <

1

2
, |z2| <

1

2
we have Gε ≤ a1 log(|z1|

2 + ε) and Gε ≤

a2 log(|z2|
2 + ε), hence

0 ≤ i∂∂̄uε − i∂uε ∧ ∂̄uε

≤ −
1

log(|z1|2 + ε)
·

ε

(|z1|2 + ε)2
idz1 ∧ dz̄1

−
1

log(|z2|2 + ε)
·

ε

(|z2|2 + ε)2
idz2 ∧ dz̄2

therefore, in order to show that i∂∂̄uε − i∂uε ∧ ∂̄uε → 0 weakly, it

is enough to show that

∫

B(0, 1
2
)
−

ε

log(|z|2 + ε)(|z|2 + ε)2
dzdz̄ → 0 when

ε→ 0, ε > 0. A polar change of coordinates leads to the condition

lim
ε→0

∫ 1

2

0
−

εr

log(r2 + ε)(r2 + ε)2
dr = 0 and the substitution s = r2 + ε to

lim
ε→0

∫ 1

4
+ε

ε

−
ε

log s · s2
ds = 0. Since ε <

1

2
, it follows that

∫ 1

4
+ε

ε

−
ε

log s · s2
ds <

∫ 3

4

ε

−
ε

log s · s2
ds
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and if n is any positive integer and ε < e−n, we write

∫ 3

4

ε

−
ε

log s · s2
ds =

∫ 3

4

e−n

−
ε

log s · s2
ds+

∫ e−n

ε

−
ε

log s · s2
ds.

Now
∫ e−n

ε

−
ε

log s · s2
ds ≤

∫ e−n

ε

ε

n · s2
ds =

1

n
−
εen

n
<

1

n

and if we choose ε such that furthermore

∫ 3

4

e−n

−
ε

log s · s2
ds <

1

n
, we obtain

that

∫ 3

4

ε

−
ε

log s · s2
ds <

2

n
. Therefore

lim
ε→0

∫

B(0, 1
2
)
−

ε

log(|z|2 + ε)(|z|2 + ε)2
dzdz̄ = 0

and i∂∂̄u = i∂u ∧ ∂̄u. Thus i∂u ∧ ∂̄u is d-exact and hence I(i∂∂̄u) = 0.
Let finally h be a p-periodic function satisfying 1 + h′ + h′′ ≥ 0 as

distributions and let v := u+ h ◦ u. Away from the poles of u we have
i∂∂̄v = ((1 + h′ + h′′) ◦ u)i∂∂̄u and the plurisubharmonicity of v here is a
consequence of our assumption on h. By the mean value inequality v is
plurisubharmonic around the poles of u as well. Since h is continuous and pe-
riodic it will be bounded by some positive constant C and we get v ≥ u− C.
Thus the singularities of v are no worse than those of u, by [B lo04, The-
orem 3.3]. (Note that the negativity assumption present in [B lo04, The-
orem 3.3] may be achieved locally by substracting some positive constant
since plurisubharmonic functions are by definition upper semicontinuous and
hence are locally bounded from above.)

We now check that I(T ) = 0. For this, note first that the condition
1 + h′ + h′′ ≥ 0 is equivalent to (et + eth′)′ ≥ 0 and thus we may define
an increasing function f : [0,∞[→ R by f(x) := (et + eth′)′([0, x]), since
(et + eth′)′ is a positive measure. The function f is the (essentially unique)
primitive of the positive mass (et + eth′)′ on [0,∞[. Since f is increasing,
it is measurable and locally bounded. Taking into account periodicity one
obtains that the distribution h′ is represented by an L∞ function. Thus we
can write

(14) i∂v ∧ ∂̄v = (1 + h′ ◦ u)2i∂u ∧ ∂̄u.
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We shall exhibit a positive constant µ and a continuous p-periodic function
g on R such that

(15) (1 + h′ ◦ u)2i∂u ∧ ∂̄u = i∂∂̄(µu+ g ◦ u),

from which we immediately see that i∂v ∧ ∂̄v is d-closed and hence I(T ) =

0. Put H := (1 + h′)2, µ :=
1

p

∫ p

0
H(s)ds, C :=

1

ep − 1

∫ p

0
(esH(s) − esµ)ds

and g(t) :=

∫ t

0
(H(s) − µ)ds− e−t

∫ t

0
(esH(s) − esµ)ds+ C(1 − e−t). We

next check that µ and g fulfill the desired conditions.
Since H is in L∞ we get that µ, C and g are well defined and that g is

continuous. To see that g is p-periodic we compute

g(t+ p) − g(t) =

∫ t+p

t

(H(s) − µ)ds− e−t−p

∫ t+p

0
(esH(s) − esµ)ds

+ e−t

∫ t

0
(esH(s) − esµ)ds+ C(e−t − e−t−p)

=

∫ p

0
(H(s) − µ)ds− e−t−p

∫ p

0
(esH(s) − esµ)ds

− e−t−p

∫ t+p

p

(esH(s) − esµ)ds

+ e−t

∫ t

0
(esH(s) − esµ)ds+ Ce−t(1 − e−p)

= −e−t−p(ep − 1)C − e−t−p

∫ t

0
(es

′+pH(s′) − es
′+pµ)ds′

+ e−t

∫ t

0
(esH(s) − esµ)ds+ Ce−t(1 − e−p)

= 0.

Moreover, direct computation also shows that as distributions

g′(t) = e−t

∫ t

0
(esH(s) − esµ)ds+ Ce−t

= −g(t) +

∫ t

0
(H(s) − µ)ds+ C,

g′′(t) = g(t) −

∫ t

0
(H(s) − µ)ds+H(t) − C − µ
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and

g′′ + g′ + µ = H.

In particular g′ and g′′ are represented by continuous and L∞ functions,
respectively. The equation (15) is established now by developping its right-
hand member:

i∂∂̄(µu+ g ◦ u) = µi∂∂̄u+ i∂((g′ ◦ u)∂̄u)

= µi∂∂̄u+ (g′′ ◦ u)i∂u ∧ ∂̄u+ (g′ ◦ u)i∂∂̄u

= (H ◦ u)i∂u ∧ ∂̄u.

Let finally v = u+ h ◦ u be as above and such that i∂∂̄v = i∂v ∧ ∂̄v. We
shall show that in this case h must be constant. Put f̃ := et + eth′. We have
seen that it is an increasing function. Using the equation (14), the condition
i∂∂̄v = i∂v ∧ ∂̄v on v may be reformulated as

f̃ ′ = e−tf̃2,

which in particular implies that f̃ is differentiable and is either identically
zero or vanishes nowhere. But the first situation cannot occur by the peri-
odicity of h′, so we may find f̃ by integrating

f̃ ′

f̃2
= e−t.

We deduce

−
1

1 + h′
= −1 + cet

for some constant c which has to vanish by periodicity of h′ again. Thus
h′ = 0, proving that h is constant as stated. □

In fact it will follow from the work of Brunella in [Bru13a], [Bru14] and
from our Proposition 3.6 that if X admits a Green function then all exact
positive (1, 1)-currents on X are up to a multiplicative factor of the form
i∂∂̄v for an additively automorphic function v as above, see Corollary 3.9.
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3. Classification of non-kählerian surfaces from a dynamical

point of view

3.1. The known classes of non-kählerian surfaces

Recall that a compact complex surface is called minimal if it does not appear
as a blowing up of a point of another smooth complex surface. Any compact
complex surface X appears as the result of a finite sequence of blow-ups of
points on a minimal surface Y . In this case Y is called a minimal model
of X. Thus the classification of compact complex surfaces reduces itself to
the biholomorphic classification of minimal models. Moreover a surface is
kählerian if and only if it admits a kählerian minimal model. Note that
any non-kählerian surface admits a unique minimal model [BHPVdV04,
Theorem VI.1.1].

We also recall that the algebraic dimension a(X) of a non-kählerian
surface X can equal 0 or 1. It is 1 if and only if X is an elliptic surface.
When a(X) = 0 there exist only finitely many compact complex curves on
X. In this case we will denote by Dmax the maximal effective reduced divisor
on X. For these facts and more on compact complex surfaces we refer the
reader to the monograph [BHPVdV04].

The known minimal non-kählerian surfaces may be divided into the fol-
lowing classes:

1) minimal elliptic non-kählerian surfaces,

2) non-elliptic Hopf surfaces,

3) Inoue surfaces,

4) Kato surfaces.

We will say that a non-kählerian surface is unknown if its minimal model
does not belong to one of these classes.

Here we will give a short description of each class; see [Nak84] for a
detailed exposition.

3.1.1. Minimal elliptic non-kählerian surfaces. These are by defini-
tion minimal surfaces X with odd first Betti number, admitting a fibration
π : X → Y with elliptic general fibers onto a curve Y . It can be shown [Br̂ı96,
Proposition 3.17] that in this case the fibration π is a quasi-bundle, i.e. all its
smooth fibers are pairwise isomorphic and its singular fibers are multiples of
smooth elliptic curves. From loc. cit. it also follows that h1,0(X) = h1,0(Y ),



✐

✐

“4-Toma” — 2023/8/23 — 16:56 — page 392 — #18
✐

✐

✐

✐

✐

✐

392 I. Chiose and M. Toma

i.e. all holomorphic 1-forms on X are pull-backs of holomorphic 1-forms on
Y , see also the proof of the next proposition.

Proposition 3.1. If X is a minimal elliptic non-kählerian surface, then
the following assertions hold:

1) Every positive divisor D on X is a positive combination with ratio-
nal coefficients of fibers of π and is homologically trivial over Q. In
particular there exist exact positive (1, 1)-currents on X not in L2

−1.

2) All exact positive (1, 1)-currents T which are in L2
−1 necessarily have

I(T ) ̸= 0.

Proof. Let D be an irreducible curve on X and let F be a general fiber of
the elliptic fibration π : X → Y . If D is not contained in a fiber of π, then
the self-intersection number of the divisor D + nF will be positive for n
large, implying that X is projective, cf. [BHPVdV04, Theorem IV.6.2]. Thus
D must be contained in a fiber and, since π : X → Y is a quasi-bundle, a
multiple of D is homologically equivalent to F and thus D is homologically
trivial over Q.

Let now T = i∂S be an exact positive (1, 1)-current on X, with S a
(0, 1)-current with coefficients in L2(X). Let ωY a volume form on Y . Then
ωX := π∗ωY is positive non-trivial and such that ωX ∧ ωX = 0. Thus {ωX} =
c{τ} ∈ H1,1

BC(X,R) for some positive real number c. Suppose that

(16) 0 = I(T )(ωX) :=

∫

iS̄ ∧ S ∧ ωX .

We shall show that T = 0.
Let Y ◦ be the set of regular values of π and set X◦ := π−1(Y ◦). We

will begin by working on X◦. Since π : X → Y is a quasi-bundle it follows
that the fibration π◦ : X◦ → Y ◦ is locally trivial over Y ◦. For such a local
trivialization we choose local coordinates (z, w) on X◦ where z is a local
coordinate on Y ◦ and w is a coordinate for the fiber direction. The formula
(16) implies that S = fdz̄ where f is locally in L2 on X◦. Since T is real and
T = i∂S we also get ∂f

∂w
= 0 as distributions. Since ∂̄S = 0 we further get

∂f
∂w̄

= 0. Thus the distribution f is independent of the w coordinate and it
follows that f is a tensor product of the function 1 in the vertical direction
with an L2

loc-function f◦ on Y ◦, cf. [Sch66, IV.5.Exemple 1]. Setting R◦ =
f◦dz̄ on Y ◦ we may say that S ”comes from R◦ from the base”, meaning by
this that S is the tensor power of the function 1 in fiber direction with R◦

in horizontal direction. The form R◦ has coefficients in L2
loc(Y

◦). Moreover,
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T ”comes from i∂R◦ from the base”, in particular i∂R◦ is a positive (1, 1)-
current on Y ◦. We shall next show that it admits an extension to Y as a
positive exact (1, 1)-current. From this it will follow that i∂R◦ = 0.

We look at the situation around a singular fiber of π over some critical
value y0 ∈ Y . By [BHPVdV04, Proposition III.9.1 and p.207] we know that
over a small neighbourhood V of y0 in Y the restriction XV of X may be seen
as the quotient p : T× D → XV of T× D by the action of Z/nZ generated
by (w, z) 7→ (w + 1/n, ρz) where T is a one dimensional complex torus given
as C/Λ, Λ is the lattice generated by 1 and some α ∈ H, and ρ = exp(2iπ

n
).

Supposing that V is biholomorphic to D we thus get a commutative diagram

T× D
p

//

pr2

��

XV

π

��

D
ϕ

// V,

where ϕ(z) = zn. Note that p is an unramified covering map. Let ω be
a parallel volume form on T with

∫

T
ω = 1. Then Ω := p∗((pr1)

∗ω) is a
closed positive (1, 1)-form on XV such that over V ∗ := V \ {y0} one has
π∗(ΩXV ∗ ) = 1V ∗ . Since it can be considered on the whole Y , this extension
must be trivial. Then the currents π∗(S ∧ Ω) and π∗(T ∧ Ω) extend the cur-
rents R◦ and respectively i∂R◦ over y0 on V and π∗(T ∧ Ω) = i∂π∗(S ∧ Ω).
Thus the current i∂R◦ extends as a positive exact current on Y and is there-
fore trivial. Thus T itself is trivial on X◦. But then T is concentrated on a
finite number of fibers of π. Unless T = 0 this contradicts the assumption
T ∈ L2

−1(X) and the proof is finished. □

3.1.2. Non-elliptic Hopf surfaces. A compact complex surface X is
said to be a Hopf surface if its universal covering space is isomorphic to
C2 \ {0}. A Hopf surface is called primary if its fundamental group is infinite
cyclic, and secondary otherwise. The following facts on Hopf surfaces X and
much more were shown by Kodaira in [Kod66]:

1) If X is a primary Hopf surface, then its fundamental group is gener-
ated by a contraction g : C2 \ {0} → C2 \ {0} which for suitable global
holomorphic coordinates (z1, z2) on C2 has the following normal form

(17) g(z1, z2) = (α1z1 + λzm2 , α2z2),

where m ∈ Z>0, α1, α2, λ ∈ C and

(α1 − αm
2 )λ = 0, 0 < |α1| ≤ |α2| < 1.
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2) A primary Hopf surface X = (C2 \ {0})/⟨g⟩ with g as above is elliptic
if and only if λ = 0 and αk1

1 = αk2

2 for some positive integers k1, k2.

3) If X = (C2 \ {0})/π1(X) is a non-elliptic secondary Hopf surface then
its fundamental group π1(X) is isomorphic to Z× (Z/lZ) where the
direct factor Z is generated by a contraction g of the form (17) and the
finite cyclic group Z/lZ is generated by an automorphism of C2 \ {0}
of the form

(z1, z2) 7→ (ϵ1z1, ϵ2z2),

where ϵ1, ϵ2 are primitive l-th roots of unity satisfying.

(ϵ1 − ϵm2 )λ = 0.

In particular X admits a finite unramified cyclic covering by the pri-
mary Hopf surface (C2 \ {0})/⟨g⟩.

4) b1(X) = 1 and b2(X) = 0.

5) Non-elliptic Hopf surfaces contain one or at most two irreducible com-
pact curves according to whether λ ̸= 0 or λ = 0, for λ as in equation
(17). These curves are elliptic.

In their study of closed positive (1, 1)-currents on compact complex sur-
faces done in [HL83], Harvey and Lawson subdivide non-elliptic primary
Hopf surfaces into two classes. Their definitions are immediately extended
to secondary non-elliptic Hopf surfaces too as follows:

1) Class 1 contains those non-elliptic Hopf surfaces for which the co-
efficient λ in the above formulas vanishes. (Thus this class contains
exactly those Hopf surfaces admitting precisely two elliptic curves.)

2) Class 0 contains those non-elliptic Hopf surfaces for which λ ̸= 0.
(These are the Hopf surfaces containing only one elliptic curve.)

Proposition 3.2. 1) Up to a non-negative factor there exists exactly
one closed positive (1, 1)-current on a non-elliptic Hopf surface of class
0. This is the integration current along the elliptic curve of the surface.

2) Every non-elliptic Hopf surface X of class 1 admits non-trivial closed
positive (1, 1)-currents T in L2

−1(X) and for such currents one always
has I(T ) ̸= 0.

Note that on a Hopf surface X closed positive (1, 1)-currents are exact
since b2(X) = 0, so in the above statement I(T ) is well defined.
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Proof. The assertion on Hopf surface of class 0 was proved in [HL83, Theo-
rem 69] for primary Hopf surfaces. The case of the secondary Hopf surfaces
immediately follows from this by pull-back and push-forward through the
finite covering map (C2 \ {0})/⟨g⟩ → (C2 \ {0})/(Z× (Z/lZ)).

In the same way it will be enough to establish the second assertion only
for primary non-elliptic Hopf surfaces of class 1. Let X be such a surface
given by a contraction g of the form

g(z1, z2) = (α1z1, α2z2),

with 0 < |α1| ≤ |α2| < 1. The existence of non-trivial closed positive (1, 1)-
currents in L2

−1(X) follows from [HL83, Theorem 58], where it is even proved
that smooth such currents exist. More precisely in [HL83] Harvey and Law-
son consider the following objects on C2 \ {0} some of which obviously de-
scend to X. Set

r =
log |α1|

log |α2|
,

ϕ : C2 \ {0} → R, ϕ(z1, z2) := log(|z1|
2 + |z2|

2r),

η := z2dz1 − rz1dz2.

Ω := i∂∂̄ϕ =
|z2|

2(r−1)

(|z1|2 + |z2|2r)2
iη ∧ η̄,

V := rz1
∂

∂z1
− z2

∂

∂z2
,

π : X → [0, 1], π(z1, z2) :=
|z1|

2

|z1|2 + |z2|2r
.

It is said in [HL83] that the form Ω is smooth on X but this might not be
the case around the elliptic curve E1 := {z2 = 0} when r /∈ N. To remedy to
this one may consider

r′ =
1

r
,

ϕ′ : C2 \ {0} → R, ϕ′(z1, z2) := log(|z2|
2 + |z1|

2r′),

η′ := z1dz2 − r′z2dz1 = −r′η.

Ω′ := i∂∂̄ϕ′ =
|z1|

2(r′−1)

(|z2|2 + |z1|2r
′)2
iη′ ∧ η̄′,

π′ : X → [0, 1], π′(z1, z2) :=
|z2|

2

|z2|2 + |z1|2r
′
,
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and

Ω̃ := (ψ ◦ π)Ω + (ψ ◦ π′)Ω′,

where ψ : [0, 1] → [0, 1] is smooth and equals 1 in a neighbourhood of 0 and
0 in a neighbourhood of 1. Then Ω̃ is a smooth positive d-closed (1, 1)-form
on X without zeroes on X. The d-closedness of Ω̃ follows from the fact that
∂π and ∂π′ are proportional to η on X \ E1 and on X \ E2, respectively.

Note further that the holomorphic vector field V defines a holomorphic
foliation F on X, which coincides with the complex foliation defined by Ω̃
(i.e. the foliation whose leaves are tangent to ker(Ω̃)).

Let now T be a non-trivial closed positive (1, 1)-current in L2
−1(X).

By [Tom08, Proposition 4] there exists an additively automorphic i∂∂̄-
potential u of T in L2

1,loc(C
2 \ {0}). Supposing by contradiction that I(T ) =

0, we infer that i∂u ∧ ∂̄u ∧ Ω̃ = 0 on X. This implies that ∂u ∧ Ω̃ = 0
and ∂̄u ∧ Ω̃ = 0. Indeed, since at any point x ∈ X the (1, 1)-form Ω̃ has
rank one, it may be written locally as Ω̃ = iβ ∧ β̄ for some (1, 0)-form
β and thus 0 = i∂u ∧ ∂̄u ∧ iβ ∧ β̄ = ∂u ∧ β ∧ ∂̄u ∧ β = adz1 ∧ dz2 ∧ ādz̄1 ∧
dz̄2 = |a|2idz1 ∧ dz̄1 ∧ idz2 ∧ dz̄2, where adz1 ∧ dz2 is the expression of the
(2, 0)-form ∂u ∧ β in local coordinates around x. Hence ∂u ∧ β = 0 and thus
the L2-forms ∂u ∧ Ω̃ and ∂̄u ∧ Ω̃ vanish identically. In fact since the foliation
F is holomorphic, we may express Ω̃ as Ω̃ = if(ζ1, ζ2)dζ1 ∧ dζ̄1 for suitable
local holomorphic coordinates (ζ1, ζ2). It follows that ∂u

∂ζ2
= 0, ∂u

∂ζ̄2
= 0, so u is

a function depending locally only on the ζ1 variable. In particular the restric-
tion of u to those leaves of F not contained in the polar set of u is constant.
We now show that this implies that u has trivial additive automorphy and
hence that T = 0. For suppose by contradiction that u ◦ g = u− p with p > 0
and let z be a point in C∗ × C∗ with u(z) ̸= −∞. Then u(g(z)) = u(z) − p
and by the upper semi-continuity of u its values in a neighbourhood of g(z)
cannot be larger than u(z) − p

2 , say, on one hand. On the other hand it is

shown in [HL83, Lemma 54] and its proof that the leaves of the foliation F̃
pulled-back from F to C2 \ {0} are dense in the fibers of π ◦ g. Thus the leaf
of F̃ passing through z comes arbitrarily close to g(z). Since u is constant
equal to u(z) on this leaf we get a contradiction. □

3.1.3. Inoue surfaces. In this paper by an Inoue surface we mean a com-
pact complex surface X with b1(X) = 1, b2(X) = 0 and no compact complex
curves. The construction of Inoue surfaces appears in [Ino74] and their clas-
sification was completed in [Tel94] and in [LYZ94]. Their universal cover is
H× C and their fundamental group is generated by four affine transforma-
tions g0, g1, g2, g3 in such a way that π1(X) appears as a semidirect product
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Γ ⋊ ⟨g0⟩ of Γ by ⟨g0⟩, where Γ is the subgroup generated by g1, g2, g3, and
g0 acts on H× C by

g0(w, z) = (αw, βz + t),

for some positive real number α < 1 and suitable complex numbers β and t.
Moreover for i = 1, 2, 3 the elements gi act on H× C by

gi(w, z) = (w + ai, z + biw + ci),

for some real numbers ai bi and complex numbers ci, see [Ino74]. Here w
and z denote complex coordinates on H and on C respectively. Thus the
quotient group π1(X)/Γ is infinite cyclic generated by the class ĝ0 of g0,
defines a Z-covering π : X ′ → X of X and the function y := ℑm(w) defined
on H× C descends to a function ŷ : X ′ → R.

Proposition 3.3. If X is an Inoue surface, then under the above notations
putting G := −ŷ we get a Green function G : X ′ → R without poles on X ′.
Moreover if u := − log(−G) and p := − logα, then, up to a multiplicative
factor, any non-trivial closed positive (1, 1)-current T on X is of the form
T = i∂∂̄v, where v := u+ h ◦ u for some continuous p-periodic function h :
R → R satisfying 1 + h′ + h′′ ≥ 0 as distributions. All such currents are in
L2
−1(X) and have I(T ) = 0.

Proof. The fact that G is a Green function without poles is clear. By [HL83,
Theorem 82] every closed positive (1, 1)-current T on X is of the form T =
(ϕ ◦ u)i∂∂̄u, where ϕ is a positive p-periodic generalized function on R. We
may see ϕ as a p-periodic (positive) measure on R and we may assume that
ϕ(]0, p]) = p. In order to find the desired function h it suffices to solve the
equation

1 + h′ + h′′ = ϕ

on R. For this, remark first that 1 + h′ + h′′ = ϕ is equivalent to
(et + eth′)′ = etϕ. Integrating once gives us a right-continuous increas-
ing function f : R → R of bounded variation such that f(x) := (etϕ)(]0, x])
for all x ∈ R, [oMA20]. We will now obtain the desired function h by
integrating the equation et + eth′ = f + C for a suitable real constant
C. The continuity of the resulting function h being clear, we only
need to check that a constant C may be found so that the function
e−t(f + C) become p-periodic, from which the periodicity of h will
follow. The p-periodicity of e−t(f + C) means by definition that for
all x ∈ R we have e−x−p(f(x+ p) + C) − e−x(f(x) + C) = 0, which is
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equivalent to e−pf(x+ p) − f(x) = C(1 − e−p). But by periodicity of
ϕ we have e−pf(x+ p) − f(x) = e−p(etϕ)(]0, x+ p]) − (etϕ)(]0, x]) =
e−p(etϕ)(]0, p]) + e−p(etϕ)(]p, x+ p]) − (etϕ)(]0, x]) = e−p(etϕ)(]0, p]) =
e−pf(p) for all x ∈ R. By choosing now C such that e−pf(p) = C(1 − e−p)
we obtain the desired continuous p-periodic function h.

The assertion on the regularity of T and on I(T ) follows now from Propo-
sition 2.8. □

3.1.4. Kato surfaces. A Kato surface is a minimal surface X with
b1(X) = 1, b2(X) > 0 and admitting a global spherical shell, that is an open
neighbourhood Σ of the 3-dimensional sphere S3 in C2 \ {0} holomorphi-
cally embedded in X and such that X \ Σ is connected. Their construction
is due to Masahide Kato, [Kat77], and their properties have been studied
by many authors.

Any Kato surface X admits exactly b2(X) rational curves. Conversely,
if a minimal non-kählerian surface X admits b2(X) rational curves, then X
is a Kato surface.

The class of Kato surfaces contains subclasses of previously constructed
surfaces known as parabolic Inoue surfaces [Ino75] and Inoue-Hirzebruch
surfaces, also called hyperbolic Inoue surfaces [Ino77]. We will not use the
terminology ”‘parabolic Inoue”’ and ”‘hyperbolic Inoue”’in order not to cre-
ate confusion with the already described class of Inoue surfaces. The reader
may consult [Nak84] for an account of these surfaces. We prefer instead to
consider the following subclassification of Kato surfaces:

1) Enoki surfaces, which are non-kählerian compactifications of affine line
bunles over elliptic curves by cycles D of rational curves. Enoki shows
that these surfaces are Kato surfaces, that (D2) = 0, and that, con-
versely, any minimal surface with b1 = 1, b2 > 0 and with a non-trivial
divisor D with (D2) = 0 is in this subclass, [Eno81].

2) Inoue-Hirzebruch surfaces, which are Kato surfaces whose rational
curves are organized into one or two homologically non-trivial cycles.

3) Intermediate Kato surfaces, which are Kato surfaces whose divisor of
rational curves is a cycle with at least one branch attached.

Proposition 3.4. 1) On an Enoki surface there exists exactly one exact
positive (1, 1)-current up to a positive multiplicative factor. This is the
integration current along the reduced divisor of rational curves of the
surface.
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2) If X is an Inoue-Hirzebruch surface or an intermediate Kato surface,
then X admits a Green function G. Moreover if u := − log(−G) is
the associated additively automorphic plurisubharmonic function with
u ◦ g = u+ p and ⟨g⟩ = π1(X), then up to a multiplicative factor any
non-trivial exact positive (1, 1)-current T on X is of the form T =
i∂∂̄v, where v := u+ h ◦ u for some continuous p-periodic function h :
R → R satisfying 1 + h′ + h′′ ≥ 0 as distributions. All such currents
are in L2

−1(X) and have I(T ) = 0.

Proof. The first statement is part of [Tom08, Theorem 10]. The existence of
Green functions on intermediate Kato and on Inoue-Hirzebruch surfaces was
shown in [DO99]. A complete description of the exact positive (1, 1)-currents
on these surfaces was given in [Tom08, Theorem 11, Theorem 12]. □

3.2. Hyperbolic and parabolic non-kählerian surfaces

The next definition divides the known classes of non-kählerian surfaces into
two groups: parabolic surfaces and hyperbolic ones. We will then show that
members of each of these groups have many properties in common. One may
speculate as to which of these properties are better suited to approach the
Global Spherical Shell Conjecture.

Definition 3.5. A non-kählerian compact complex surface X will be said
to be parabolic if its minimal model belongs to one of the classes: Hopf
surfaces, Enoki surfaces, non-kählerian elliptic surfaces. It will be said to
be hyperbolic if its minimal model is either an Inoue surface, an Inoue-
Hirzebruch surface, or an intermediate Kato surface.

This terminology is first used by Inoue in the particular cases of the ex-
amples of non-kählerian surfaces that he constructs in [Ino75] and in [Ino77].
Note that non-kählerian surfaces that are hyperbolic in the above sense are
not hyperbolic according to the standard terminology used in complex ge-
ometry, as they have many entire curves.

Proposition 3.6. If X is a hyperbolic non-kählerian surface, then the fol-
lowing assertions hold:

1) X admits a Green function G such that the function u = ψ(G) :=
− log(−G) is in L2

1,loc and

i∂∂̄u = i∂u ∧ ∂̄u.
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2) All exact positive (1, 1)-currents T are of the form T = λi∂∂̄(u+ h ◦ u)
with λ ≥ 0, h : R → R a continuous p-periodic function satisfying 1 +
h′ + h′′ ≥ 0 and p the automorphy summand of u as in Proposition 2.8.
In particular all these currents are in L2

−1 and have I(T ) = 0.

3) The only homologically trivial divisor on X is 0.

4) X̃ \Dmax
∼= D× C.

Proof. The assertions on the Green functions and on the exact positive cur-
rents follow from Propositions 2.8, 3.3 and 3.4.

The assertion on the homologically trivial divisors follows from the
knowledge of the structure of the reduced divisor of curves on these sur-
faces, cf. [Nak84].

Finally the facts on the universal cover of X \Dmax are established in
[Ino74], [Ino77] and [DOT03, Theorem 3.7]. □

Proposition 3.7. If X is a parabolic non-kählerian surface, then the fol-
lowing assertions hold:

1) X admits no Green function.

2) All exact positive (1, 1)-currents T in L2
−1(X) necessarily have I(T ) ̸=

0.

3) There exist homologically trivial divisors D on X with D > 0, and in
particular there exist exact positive (1, 1)-currents on X not in L2

−1.

4) If the algebraic dimension of X is zero, then X̃ \Dmax
∼= C2 and in

particular there exists no divisor D on X such that X̃ \D ∼= D× C in
this case.

Proof. If a non-kählerian surface X admits a Green function then X is non-
elliptic by Proposition 2.8 and thus of algebraic dimension zero. In this
case it is shown by Brunella in [Bru13a] and [Bru14] that X is necessarily
hyperbolic. In particular, parabolic surfaces will not admit Green functions.

The assertions on the exact positive currents and on the homologically
trivial divisors follow from Propositions 3.1, 3.2 and 3.4.

Finally, for the two classes of parabolic surfaces of algebraic dimension
zero, namely for non-elliptic Hopf surfaces and for Enoki surfaces, it follows
almost from the definition that the universal cover of the complement of the
union of compact complex curves is isomorphic to C2. □

For a compact complex surface X we consider the following properties:
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• (P1) For every non-trivial divisor D on X one has D2 < 0.

• (P2) All exact positive (1, 1)-currents on X have L2
−1-coefficients.

• (P3) All exact positive currents T on X with L2
−1-coefficients have

I(T ) = 0

• (P4) X admits a Green function.

• (P5) a(X) = 0 and there exists an effective divisor D on X such that
the universal cover of X \D is biholomorphic to D× C.

Theorem 3.8. Let X be a non-kählerian compact complex surface. Then
the following hold:

1) If X has (P1), it is either a hyperbolic or an uknown non-kählerian
surface. If X does not have (P1), it is a parabolic surface.

2) If X has (P2), it is either a hyperbolic or an uknown non-kählerian
surface. If X does not have (P2), it is either a parabolic or an uknown
non-kählerian surface.

3) If X has (P3), it is either a hyperbolic or an uknown non-kählerian
surface. If X does not have (P3), it is either a parabolic or an uknown
non-kählerian surface.

4) If X has (P4), it is a hyperbolic surface. If X does not have (P4), it
is either a parabolic or an uknown non-kählerian surface.

5) If X has (P5), it is a hyperbolic surface. If X does not have (P5), it
is either a parabolic or an uknown non-kählerian surface.

The statement is summarized by the following table.

Criterion C X satisfying C X not satisfying C

(D2) < 0 ∀D ∈ Div(X) \ {0} hyperbolic, ? parabolic
all positive exact (1, 1)-currents on X are in L2

−1 hyperbolic, ? parabolic, ?
all positive exact currents T ∈ L2

−1(X) have I(T ) = 0 hyperbolic, ? parabolic, ?
X admits a Green function hyperbolic parabolic, ?

a(X) = 0 and ∃D with X̃ \D ∼= D× C hyperbolic parabolic, ?

The question marks signal that possibly not yet known surfaces may respond
to the corresponding criteria.

Proof. The presence of hyperbolic and parabolic surfaces at the indicated
places of the table is a consequence of the Propositions 3.6 and 3.7. We are
left only with the task of explaining the absence of question marks at three
places of the table.
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The fact that parabolic surfaces are the only compact complex sur-
faces admitting homologically trivial divisors D with D > 0 is due to Enoki,
[Eno81].

Non-kählerian non-elliptic surfaces admitting Green functions have been
shown to be hyperbolic by Brunella in [Bru13a] and [Bru14]. The case of
elliptic surfaces is settled by Proposition 2.8.

Finally, it is again Brunella who proved in [Bru13b] that hyperbolic
surfaces are the only non-kählerian non-elliptic surfaces whose complement
of the maximal divisor of curves is uniformized by D× C. □

Combining the Theorem and Proposition 3.6 one immediately gets the
following

Corollary 3.9. If X admits a Green function G and if u := − log(−G)
is the associated additively automorphic plurisubharmonic function with u ◦
g = u+ p and ⟨g⟩ = π1(X), then up to a multiplicative factor any non-trivial
exact positive (1, 1)-current T on X is of the form T = i∂∂̄v, where v :=
u+ h ◦ u for some continuous p-periodic function h : R → R satisfying 1 +
h′ + h′′ ≥ 0 as distributions.

4. Perspectives

In this section we wish to briefly discuss a number of conjectures and ques-
tions related to the degree of regularity of the d-closed positive (1, 1)-currents
on compact non-kählerian surfaces. The leading idea is the same which
guided our approach to the study of the Kähler rank of surfaces in [CT13].
In that paper we worked under the assumption that a non-trivial positive
smooth exact (1, 1)-current T exists on a compact complex surface X and
we aimed at a classification by distinguishing two cases according to whether
I(T ) vanishes or not. In the second case we showed that X was necessarily
elliptic or Hopf of class 1. In the first case we proved that X admitted a
Green function without poles. This case was afterwards completely settled
by Brunella in [Bru13a], who showed that such Green functions were only
supported by Inoue surfaces. Trying to extend this type of strategy and in
view of the striking similarities exhibited by Theorem 3.8 for the surfaces
which are hyperbolic or respectively parabolic we are led to the following
conjectures.

Conjecture 4.1. If X is a non-kählerian surface all of whose exact positive
(1, 1)-currents T are in L2

−1(X) and satisfy I(T ) = 0, then X admits a Green
function, and in particular X is hyperbolic.
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Conjecture 4.2. If X is a non-kählerian surface all of whose exact positive
(1, 1)-currents T are in L2

−1(X) but do not all satisfy I(T ) = 0, then X
admits a cycle of rational curves.

Conjecture 4.3. If X is a non-kählerian surface admitting an exact posi-
tive (1, 1)-current not in L2

−1(X), then there exists on X some exact positive
current T with a non-vanishing Lelong number at at least one point of X.

Note that in this case the surface X would be parabolic. Indeed, for such
a current the Lelong-Siu level sets Ec(T ) cannot all be zero-dimensional, by
[Tel08, Theorem A.1]. Thus supposing that X is non-elliptic, we would get
T = [C] +R with C a curve and R is residual, and R would be d-closed and
nef pluriharmonic by Proposition 2.2 and thus d-exact. Therefore [C] would
also be d-exact, which implies the parabolicity of X.

5. Appendix

Since the notion of nef pluriharmonic current is not used frequently in the
literature we present here some properties relating it to the more common
notion of nef class.

As before, also in this section we denote by X a compact non-kählerian
surface.

Let Ep,q and D′p,q be the sheaves of germs of smooth (p, q)-forms and
respectively of bidegree (p, q)-currents on X. We will write Ep,q

R
and D′p,q

R

for the subsheaves of real forms, and respectively real currents. We will be
interested in the real Bott-Chern and Aeppli cohomolgy groups of bidegree
(1, 1) on X. They may be defined using either global forms or global currents.
We recall their definition in terms of forms:

H1,1
BC(X,R) := {η ∈ E1,1

R
(X) | dη = 0}/i∂∂̄E0,0

R
(X),

H1,1
A (X,R) := {η ∈ E1,1

R
(X) | i∂∂̄η = 0}/{∂̄S + ∂S̄ | S ∈ E1,0(X)}.

The evaluation of currents on forms gives a duality between these two spaces.
We also get natural comparison morphisms to and from the second de Rham
cohomology group:

H1,1
BC(X,R) → H2

dR(X,R), H2
dR(X,R) → H1,1

A (X,R).

We denote the image of the first one by H1,1
dR (X,R). We clearly have

H1,1
dR (X,R) = {η ∈ E1,1

R
(X) | dη = 0}/{η ∈ E1,1

R
(X) | η = dϕ, ϕ ∈ E1

R
(X)}.
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It is known that Ker(H1,1
BC(X,R) → H1,1

dR (X,R)) is 1-dimensional, [Lam99,

Proof of Theorem 7.1]. By duality one gets that Coker(H1,1
dR (X,R) →

H1,1
A (X,R)) is also 1-dimensional. In fact it may be seen also more di-

rectly that the map H1,1
dR (X,R) → H1,1

A (X,R) is injective. Indeed if a

d-closed form η ∈ E1,1
R

(X) equals ∂̄S + ∂S̄ for some S ∈ E1,0(X), then
0 = d(d(S + S̄)) = d(η + ∂S + ∂̄S̄) = d(∂S + ∂̄S̄) = ∂̄(∂S) + ∂(∂̄S̄) and the
form ∂S is holomorphic and ∂-exact and thus must vanish, see [BHPVdV04,
Lemma IV(2.3)(ii)], hence η = d(S + S̄) and its class vanishes in H1,1

dR (X,R).

We clearly have that Ker(H1,1
BC(X,R) → H1,1

dR (X,R)) is generated by {τ}BC

and that Coker(H1,1
dR (X,R) → H1,1

A (X,R)) is generated by the image of
{ω}A.

It is also known that the intersection form on H1,1
dR (X,R) is negative

definite, [BHPVdV04, Theorem IV(2.14)]. It follows that the induced inter-
section form on H1,1

BC(X,R) by means of the map H1,1
BC(X,R) → H2

dR(X,R)
is negative semi-definite with totally isotropic space spanned by the class
of τ .

We next define “positive” convex cones in H1,1
BC(X,R) and in H1,1

A (X,R)
by

PsefBC(X) := {{T}BC | T ∈ D′1,1
R

(X), dT = 0, T ≥ 0},

PsefA(X) := {{T}A | T ∈ D′1,1
R

(X), i∂∂̄T = 0, T ≥ 0},

NefBC(X) := {{T}BC | T ∈ D′1,1
R

(X), dT = 0, T nef pluriharmonic},

NefA(X) := {{T}A | T ∈ D′1,1
R

(X), i∂∂̄T = 0, T nef pluriharmonic}.

We also denote by G the set of Aeppli cohomology classes of Gauduchon
forms on X.

Proposition 5.1.

1) PsefBC(X) and NefBC(X) are closed in H1,1
BC(X,R).

2) NefBC(X) = {α ∈ H1,1
BC(X,R) | ∀ϵ > 0 ∃ηϵ ∈ α ∩ E1,1

R
(X) ηϵ ≥ −ϵω}.

3) NefBC(X) = R≥0{τ}BC .

4) If the Bott-Chern cohomology class of a positive closed current T is in
NefBC(X), then T is nef pluriharmonic.

5) NefBC(X) = PsefA(X)∗ and PsefBC(X) \ {0} = {α ∈ H1,1
BC(X,R) |

⟨α, η⟩ > 0 ∀η ∈ G}. In particular PsefBC(X) = NefA(X)∗,
PsefA(X) = NefBC(X)∗ and NefA(X) = PsefBC(X)∗,
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6) G is open and NefA(X) = G.

7) If Ej are the irreducible curves of negative self-intersection on X, then

PsefBC(X) = NefBC(X) +
∑

j

{[Ej ]}BC

and

PsefA(X) = NefA(X) +
∑

j

{[Ej ]}A.

8) NefA(X) = {α ∈ H1,1
A (X,R) | ∀ϵ > 0 ∃ηϵ ∈ α ∩ E1,1

R
(X) ηϵ > −ϵω}.

Proof. 1) By arguing similarly to [HL83, Section 2] one gets the fol-
lowing facts: the operator i∂∂̄ : E1,1

R
(X) → E2,2

R
(X) has closed range

since its cokernel is finite dimensional, [Ser55, Lemme 2], its dual
i∂∂̄ : D′0

R
(X) → D′1,1

R
(X) has closed range by the closed range the-

orem, [Sch71, IV 7.7], and thus the quotient topology induced by the
projection π : {T ∈ D′1,1

R
(X) | dT = 0} → H1,1

BC(X,R) on H1,1
BC(X,R)

is separated. Now the cone of closed positive currents is generated
by the compact set K := {T ∈ D′1,1

R
(X) | dT = 0, ⟨T, ω⟩ = 1}, hence

PsefBC(X) is generated by its image π(K) in H1,1
BC(X,R). This im-

age is compact and does not contain 0. Thus PsefBC(X) is closed in
H1,1

BC(X,R). The same argument shows that NefBC(X) is closed as
well.

2) Let us denote the cone {α ∈ H1,1
BC(X,R) | ∀ϵ > 0 ∃ηϵ ∈ α ∩

E1,1
R

(X) ηϵ ≥ −ϵω} by Pnef (X). The inclusion NefBC(X) ⊃ Pnef (X)
is proved in [Lam99, Proposition 4.1]. We show the second assertion
by duality. Let T be a nef pluriharmonic current on X and which
is d-closed. By [Lam99, Théorème 1.2] the Bott-Chern cohomology
class {T}BC is in Pnef (X) if for all positive pluriharmonic currents T ′

one has ⟨{T}BC , {T
′}A⟩ ≥ 0, where {T ′}A is the Aeppli cohomology

class of T ′. By Proposition 2.2 the positive, i∂∂̄-closed (1, 1)-current
T ′ has a decomposition T ′ =

∑

j cj [Ej ] + T ′′, where cj ≥ 0 are posi-
tive real numbers, Ej are irreducible compact curves on X and T ′′

is a nef pluriharmonic current. The inequality ⟨{T}BC , {T
′′}A⟩ ≥ 0,

is a consequence of Lemma 5.3 below. Now if we write T as a limit
of Gauduchon forms, T = limn→∞ ωn, and choose a smooth represen-
tative η in the class {E} of the integration current along a curve
E, we get ⟨{T}BC , {E}A⟩ = ⟨{T}BC , {η}A⟩ = T (η) = limn→∞

∫

X
ωn ∧

η = limn→∞

∫

E
ωn ≥ 0.
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3) It is proved in [Lam99, Théorème 7.1] that Pnef (X) = R≥0{τ}BC , so
NefBC(X) = Pnef (X) = R≥0{τ}BC .

4) Let T be a positive closed current with nef class {T}BC . Then as before
T has a decomposition T =

∑

j cj [Ej ] + T ′, and this time T ′ is closed
and nef pluriharmonic. Both T and T ′ are thus d-exact. This implies
that

∑

j cj [Ej ] is d-exact as well. If X is elliptic the sum
∑

j cj [Ej ]
may be infinite but it is in any case nef pluriharmonic. If X is not
elliptic, the divisor

∑

j cjEj on X is homologically trivial and the
corresponding integration current is nef pluriharmonic.

5) This follows from [Lam99, Théorème 1.2].

6) As in (1) (see also [HL83, Lemma 6]) one can see that the operators
p1 ◦ d : E1

R
(X) → E1,1

R
(X) and p2 ◦ d : D′1(X) → D′1,1

R
(X) have closed

range, where p1 : E2
R
(X) → E1,1

R
(X) and p2 : D′1,1

R
(X) → D′1,1

R
(X) are

the natural projections. Thus the quotient topologies induced on
H1,1

A (X,R) both from the space of pluriharmonic forms and from the
space of pluriharmonic currents are separated. It follows that G is open
and that if T = limn→∞ ωn is a weak limit of Gauduchon forms, then
{T}A = limn→∞{ωn}A ∈ G hence NefA(X) = G.

7) This assertion is a consequence of [Lam99, Proposition 4.3]. Note how-
ever that in loc. cit. one needs to take the closure of PsefA(X), see also
Remark 5.2.

8) We denote the set {α ∈ H1,1
A (X,R) | ∀ϵ > 0 ∃ηϵ ∈ α ∩ E1,1

R
(X) ηϵ >

−ϵω} by Πnef (X). Let α ∈ Πnef (X) and let ηϵ ∈ α ∩ E1,1
R

(X) be
such that ηϵ > −ϵω. We set Ωϵ := ηϵ + ϵω. Then the classes {Ωϵ}A =
α+ ϵ{ω}A are in G and tend to α as ϵ tends to zero. Thus α ∈ G =
NefA(X) and Πnef (X) ⊂ NefA(X). Conversely, since we clearly have

G ⊂ Πnef (X), we get NefA(X) ⊂ Πnef (X) and the desired equality of
cones follows since Πnef (X) is closed, [CRŞ19, Lemma 2.3]. □

Remark 5.2. The above proof cannot be mimicked to show closedness for
PsefA(X) and NefA(X) since there exist non-trivial d-exact currents on X,
hence the projection to H1,1

A (X,R) of a corresponding generating compact
set of positive pluriharmonic currents will contain 0.

In fact, if X is an Enoki surface with just one irreducible curve C, one
can renormalize τ so that {τ}BC = {[C]}BC and one gets dimH1,1

BC(X,R) =



✐

✐

“4-Toma” — 2023/8/23 — 16:56 — page 407 — #33
✐

✐

✐

✐

✐

✐

Positive currents on non-kählerian surfaces 407

dimH1,1
A (X,R) = 2, PsefBC(X) = NefBC(X) = R≥0{τ}BC . By Proposi-

tion 2.2 it follows that any positive pluriharmonic current is nef plurihar-
monic. Moreover, if such a current vanishes on τ , then it must be d-exact
by Proposition 2.4. Hence we get

PsefA(X) = NefA(X) = {α ∈ H1,1
A (X,R) | ⟨α, {τ}BC⟩ > 0} ∪ {0}.

Lemma 5.3. Let T , T ′ be nef pluriharmonic (1, 1)-currents on X such that
T is d-closed. Then for any sequences (ωn)n, (ω′

n)n of Gauduchon forms
converging weakly to T and to T ′ respectively, we have:

lim
n,m→∞

⟨ωn, ω
′
m⟩ = ⟨{T}BC , {T

′}A⟩.

Proof. Let α1, ..., αn be closed (1, 1)-forms on X whose classes generate
H1,1

dR (X,R) and such that
∫

X
αi ∧ αj = −δij . Then in Aeppli cohomology T ′

is cohomologous to some form δω +A′, where A′ =
∑n

j=1 a
′
jαj , δ, aj ∈ R and

δ = ⟨T ′, τ⟩ ≥ 0. Similarly ω′
n are cohomologous to some (δ + ϵ′n)ω +A′

n, with
A′

n =
∑n

j=1 a
′
n,jαj . Evaluating on τ and on each αj one obtains limn→∞ ϵ′n =

0 and limn→∞ a′n,j = a′j . Thus

ω′
n = (δ + ϵ′n)ω +A′

n + ∂̄σ′n + ∂σ̄′n

for some (1, 0)-forms σ′n. We have

0 ≥

∫

X

(A′
n)2 =

∫

X

(A′
n + d(σ′n + σ̄′n))2

=

∫

X

(ω′
n − (δ + ϵ′n)ω + ∂σ′n + ∂̄σ̄′n)2

=

∫

X

(ω′
n − (δ + ϵ′n)ω)2 + 2

∫

X

∂σ′n ∧ ∂̄σ̄′n

=

∫

X

(ω′
n)2 − 2

∫

X

(δ + ϵ′n)ω ∧ ω′
n

+

∫

X

(δ + ϵ′n)2ω2 + 2 ∥ ∂σ′n ∥2L2 ,

hence ∥ ∂σ′n ∥2L2≤
∫

X
(δ + ϵ′n)ω ∧ ω′

n and the right hand term tends to
δ⟨T ′, ω⟩ when n tends to infinity. Thus the sequence (∥ ∂σ′n ∥L2)n is bounded.
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The same argument works for T and this time we get

ωn = ϵnω +An + ∂̄σn + ∂σ̄n,

with An =

n
∑

j=1

an,jαj , lim
n→∞

ϵn = 0, lim
n→∞

an,j = 0, and lim
n→∞

∥∂σ′n∥L2 = 0.

Thus

lim
n,m→∞

⟨ωn, ω
′
m⟩

= lim
n,m→∞

⟨ϵnω +An + ∂̄σn + ∂σ̄n, (δ + ϵ′m)ω +A′
m + ∂̄σ′m + ∂σ̄′m⟩

= lim
n,m→∞

⟨ϵnω + ∂̄σn + ∂σ̄n, (δ + ϵ′m)ω + ∂̄σ′m + ∂σ̄′m⟩

= lim
n,m→∞

⟨ϵnω + ∂̄σn + ∂σ̄n, (δ + ϵ′m)ω⟩

+ lim
n,m→∞

⟨ϵnω + ∂̄σn + ∂σ̄n, ∂̄σ
′
m + ∂σ̄′m⟩

= ⟨T, δω⟩ + lim
n,m→∞

⟨ϵnω, ∂̄σ
′
m + ∂σ̄′m⟩

= ⟨T, δω⟩ = ⟨{T}BC , {T
′}A⟩.

□
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B.P. 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France

E-mail address: Matei.Toma@univ-lorraine.fr

Received August 20, 2020

Accepted October 4, 2021


	Introduction
	Preparations
	Classification of non-kählerian surfaces from a dynamical point of view
	Perspectives
	Appendix
	Acknowledgements
	References

