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Counting quintic fields with

genus number one

Kevin J. McGown, Frank Thorne, and Amanda Tucker

We prove several results concerning genus numbers of quintic fields:
we compute the proportion of quintic fields with genus number one;
we prove that a positive proportion of quintic fields have arbitrarily
large genus number; and we compute the average genus number of
quintic fields. All of these results also hold when restricted to S5-
quintic fields only.

1. Introduction

The genus field of a number field K is defined to be the maximal extension
K∗ of K that is unramified at all finite primes and is a compositum of
the form Kk∗ where k∗ is absolutely abelian. The genus number is defined
as gK = [K∗ : K]. It follows immediately from class field theory that gK
divides the narrow class number h+K . See [12] for a slightly more detailed
introduction and [8] for a comprehensive account of genus fields.

One may consider the density of genus number one fields among all num-
ber fields of a fixed degree and signature, ordered by their discriminants. It
essentially follows from a classical theorem of Gauss on quadratic forms that
0% of quadratic fields have genus number one.1 On the other hand, McGown
and Tucker ([12]) proved that a positive proportion (roughly 96.23%) of cu-
bic fields have genus number one. Due to subtleties that arise in the quartic
case, we will temporarily put degree four fields aside and consider this prob-
lem in the quintic case.

Let F denote the collection of all quintic fields K, and G denote the
collection of all quintic fields with gK = 1. For i = 0, 1, 2, write F (i) and
G(i) to denote the subsets of F and G, respectively, consisting of fields

1Indeed, Gauss proves (in the language of quadratic forms) that when K is
quadratic, gK = 2t−1 where t is the number of prime divisors of Disc(K), and
moreover, that gK in fact equals the 2-part of h+

K
in that situation. It was Hasse

who first reproved Gauss’ result in the language of class field theory, by considering
the genus field in the quadratic setting.
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with precisely i pairs of complex embeddings. Define N (i)(X) = #{K ∈

F (i) : |Disc(K)| ≤ X} and N
(i)
g (X) = #{K ∈ G(i) : |Disc(K)| ≤ X}. Bhar-

gava proved (see Theorem 1 of [4], pg. 1559) that N (i)(X) ∼ C(i)X where

C(i) =
∏

p

(1 + p−2 − p−4 − p−5) ·











1
240 if r = 0
1
24 if r = 1
1
16 if r = 2 .

Our main result concerning counting genus number one fields is the
following:

Theorem 1.

N (i)
g (X) =



C(i) 506874

506875

∏

p≡1 (mod 5)

p4 + p3 + 2p2 + 2p

p4 + p3 + 2p2 + 2p+ 1



X

+O(X1− 1

400
+ε) .

Corollary 2. The proportion of quintic fields with i pairs of complex em-

beddings having genus number one equals

506874

506875

∏

p≡1 (mod 5)

p4 + p3 + 2p2 + 2p

p4 + p3 + 2p2 + 2p+ 1
.

Although the number above (which is independent of i and approx-
imately equal to 0.999935) is quite close to 1, this implies that a positive
proportion of quintic fields have class number divisible by 5. (Note that since
gK divides the narrow class number and gK is a power of 5, we also have
that gK divides the class number.) In fact, our methods yield the following
stronger result:

Theorem 3. Given any k ≥ 0, there is a positive proportion of quintic

fields with genus number equal to 5k, and hence with class number divisible

by 5k.

We also prove the following:
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Theorem 4. The average of the genus number taken over all quintic fields

of a given signature is finite. In particular, we have

lim
X→∞

∑

K∈G(i)

|Disc(K)|≤X

gK

∑

K∈G(i)

|Disc(K)|≤X

1
=

506879

506875

∏

p≡1 (mod 5)

p4 + p3 + 2p2 + 2p+ 5

p4 + p3 + 2p2 + 2p+ 1
.

Numerically, this constant is 1.00026 . . . , but the main point is that the
limit exists.

Late in the preparation of this paper, we became aware of the work
of Kim (see [10]) on statistical questions concerning the genus number in
cyclic and dihedral extensions of prime degree, in which he says “it seems
very difficult to compute genus numbers of [S5] fields”. All of the results
in this paper hold, with essentially identical proofs, when restricted to S5-
quintic fields only. As such, our results establish that a variety of statistics
can indeed be computed for genus numbers of such fields.

Finally, we also show the following:

Theorem 5. A positive proportion of quintic fields with genus number one

fail to be norm-Euclidean.

2. Counting quintic fields with specified local completions

Our proofs will apply two results on counting quintic fields. The first, essen-
tially due to Ellenberg, Pierce, and Wood [7, Theorem 5.1], and building on
Bhargava’s work [4], is a result counting quintic fields with a finite specified
set of local conditions.

By a local condition Σp at a prime p, we mean some fixed subset Σp of
the quintic étale algebras over Qp, and we say that a quintic (number) field
K satisfies Σp if K ⊗Qp ∈ Σp. For squarefree e, by a set of local conditions
Σ (mod e) = (Σp)p|e, we mean a choice of local condition Σp for each prime
p | e, and we say that K satisfies Σ if it satisfies each of the Σp.

To avoid a technical complication, we assume, for each p | e other than
p = 5, that Σp corresponds to a ‘splitting type’ – i.e., that Σp consists of those
algebras Kv1

× · · · ×Kvg
for which g, each e(Kvi

|Qp), and each f(Kvi
|Qp)

take a prescribed value. We consider such an algebra to be ramified if any
of the Kvi

is ramified, and we write e = e1e2 or e = 5e1e2, where e1 and e2
are the products of those primes p ̸= 5 for which Σp consists of unramified
or ramified algebras, respectively.
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Define the function

m(p) = 1 + p−1 + 2p−2 + 2p−3 + p−4 ,

which is the total mass of all quintic étale extensions of Qp. Indeed, Bhargava
(see Theorem 1.1 of [3]) proves a generalization of Serre’s mass formula
(Théorème 2 of [13]) which, specialized to the quintic case, yields

∑

[K:Qp]=5 étale

1

Discp(K)

1

#Aut(K)
= m(p) .

For the condition that p not totally ramify, i.e.,

Σp = {[F : Qp] = 5 étale | e(F/Qp) < 5} ,

we have

∑

F∈Σp

1

Discp(F )

1

#Aut(F )
= 1 + p−1 + 2p−2 + 2p−3 ,

whereas for the condition that p totally ramify the same sum is equal to
p−4, as originally proved by Serre.

The following theorem is adapted from a result of Ellenberg–Pierce–
Wood (see Theorem 2.4 of [7]).

Theorem 6. Let N (i)(X; Σ) be the number of quintic fields K with

|Disc(K)| < X having i pairs of complex embeddings, and satisfying a set

of local conditions Σ (mod e) with the restriction described above. Then, we

have

N (i)(X; Σ) = C(i)(Σ)X +O
(

e
1/2
1 e2X

79/80+ε +X199/200+ε
)

,

where

C(i)(Σ) = C(i)
∏

p

Cp(Σp),

Cp(Σp) = m(p)−1
∑

F∈Σp

1

Discp(F )

1

#Aut(F )
,

m(p) = 1 + p−1 + 2p−2 + 2p−3 + p−4 .
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Proof. The proof is essentially identical to that of [7, Theorem 5.1]. The
explanation given there is quite thorough, and we will indicate only what
needs to be changed.

As in [7], the proof applies an inclusion-exclusion argument to points in
the lattice VZ = Z40 studied in [4]. For each squarefree integer q coprime to
5e, let Wq,e ⊂ VZ denote the set of elements corresponding to quintic rings
that are: nonmaximal at each prime dividing q; maximal and which satisfy
the desired local conditions at primes dividing 5e.

Write e1 for the product of primes p | e, excluding 5, for which Σp consists
of unramified algebras, and write e2 for the analogous product where Σp

consists of ramified algebras.
Then, Wq,e is defined by congruence conditions modulo q2e1e

2
25

k, for
some positive integer k. This contrasts to the situation in [7], where no
special conditions modulo 5 were imposed, and where the conditions modulo
e were all unramified. In the ramified case, the splitting type (15) is defined
(mod e), as described in [4, Section 12], but the maximality condition is no
longer automatic and this is defined only (mod e2).

The remainder of the analysis remains essentially unchanged. The error
term of [7, (5.3)] includes an error term q2δP e, and e must be replaced by
e1e

2
2 as described above. (The 5k term contributes to the implied constant,

and we may ignore this contribution.) We now have δP ≪ e−1
2 , reflecting the

fact that the fields being counted are rare. Finally, in invoking [4, (27)], it
must be assumed that q2e1e

2
2 ≪ X1/40.

The ensuing analysis then remains valid, with identical or improved
bounds on the error terms E1, E2, E3, E4. The restriction that q2e1e

2
2 ≪

X1/40 proves to be the bottleneck, and choosing Q = X1/80e
−1/2
1 e−1

2 com-
pletes the proof. □

Remark 7. For a general set of local conditions Σ (mod e), analogous

results hold with an undetermined e-dependence in the error term. As the

proof shows, this dependence can be computed in terms of a modulus for

which Wq,e can be defined by congruence conditions.

We will also apply the following complementary ‘tail estimate’, which
will be contained in the forthcoming article [5] by Bhargava, Cojocaru, and
the second author:
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Theorem 8. For any Y > 1, define

N5(X,Y ) := #
{

K quintic : |Disc(K)| ≤ X,(1)

q2 | Disc(K) for some squarefree q > Y
}

.

Then

N5(X,Y ) ≪ε X
39

40
+ε +

X

Y 1−ε
.

3. The genus theory of quintic fields

Let K be a non-cyclic quintic field. For p ̸= 5, write k(p) to denote the
unique quintic subfield of Q(ζp) if such a field exists and Q otherwise. Ishida
proves that Kk(p)/K is a nontrivial unramified extension if and only if p is
totally ramified in K and p ≡ 1 (mod 5).

We now consider the case of p = 5. Write k(5) to denote the unique quin-
tic subfield of Q(ζ25). Ishida shows that Kk(5)/K is a nontrivial unramified
extension if and only if 5 is totally ramified and N(γ)4 ≡ 1 (mod 25) for all
γ ∈ OK coprime to 5. We will refer to this latter congruence condition as
condition (⋆). Ultimately, Ishida proves the following result (see Equation 5.9
of [8, Chapter 5], pg. 65).

Theorem 9 (Ishida). Let L be a quintic field. Let t denote the number of

primes p such that p is totally ramified in L and p ≡ 1 (mod 5), and add

+1 to t if 5 is totally ramified in L and N(γ)4 ≡ 1 (mod 25) for all γ ∈ OL

coprime to 5. Then we have:

gK =

{

5t−1 if L is cyclic

5t if L is not cyclic

We wish to reformulate condition (⋆) in a manner suitable for our cal-
culations. Suppose 5 is totally ramified in K. Let p be the unique prime in
K above 5. It is plain that the congruence condition above involving the
norm can be checked in the quintic extension Kp/Q5 of local fields. It is
equivalent to requiring that N(u)4 ≡ 1 (mod 25) for all u ∈ O×

p . Since ev-
ery element of O×

p is a 4-th root of unity times an element of the principal

units U (1) = 1 + p, it suffices to check the congruence for all u ∈ U (1).
Since 5 is totally ramified in Kp it is possible to choose a generating

polynomial f(x) = x5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0 that is Eisenstein at

the prime 5. A simple calculation (given on pages 57–59 of [8]) shows that
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the condition N(u)4 ≡ 1 (mod 25) for all u ∈ U (1) is equivalent to

a1 ≡ a2 ≡ a3 ≡ a4 + a0 ≡ 0 (mod 52) .

(In truth, Ishida gives one direction of this claim, but the argument is easily
reversible.) There are 25 quintic ramified extensions of Q5. See [1, 9]. For
each of these, we use the generating polynomial given in the Jones–Roberts
database (now incorporated into the LMFDB [11]) to check condition (⋆).
We find that precisely 5 of these 25 extensions satisfy the condition. Gener-
ating polynomials for these extensions are given by x5 − 5x4 + 5(1 + 5a) for
0 ≤ a ≤ 4. Moreover, these are precisely the Galois extensions. We mention
in passing that all of these extensions have discriminant 58. We have thus
proved the following two results.

Lemma 10. Suppose K is a non-cyclic quintic field where 5 is totally rami-

fied. Let k(5) be the unique quintic subfield of Q(ζ25). We have that Kk(5)/K
is unramified if and only if K ⊗Q5 is a Galois extension of Q5.

Lemma 11. The mass of all totally ramified quintic Galois extensions of

Q5 is equal to

∑

[K:Q5]=5 Galois,
totally ramified

1

Disc5(K)

1

#Aut(K)
=

1

58
.

4. Proofs of Theorems 1, 3, 4, 5.

Recall that F denotes the collection of all quintic fields K, and that G
denotes the collection of all quintic fields with gK = 1.

Proof of Theorem 1. Theorem 9 and Lemma 10 establish that G, the set of
non-cyclic quintic fields K with genus number gK = 1, consists precisely of
those K satisfying the following local conditions:

• No prime p ≡ 1 (mod 5) is totally ramified in K.

• Either 5 is not totally ramified in K, or K ⊗Q5 is not a Galois field
extension of Q5.

We count these fields (and hence prove Theorem 1) by means of an
inclusion-exclusion sieve, adapting the approach of Belabas, Bhargava, and
Pomerance in [2]. Throughout this section, we ignore the cyclic quintic fields;
by Theorem 1.1 of [6] there are ∼ cX1/4 of them with discriminant bounded
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by X, and hence they do not contribute to any of our asymptotics. Alter-
natively, one may exclude all of the non-S5 quintic fields, of which there are
≪ X39/40+ϵ by [5].

For each quintic field K, let f(K) denote the product of the primes
p ≡ 0, 1 (mod 5) that are totally ramified inK, with the additional condition
for p = 5 that K ⊗Q5 be a Galois field extension of Q5. Then G(i) is the

set of all K in F (i) for which f(K) = 1. Recall that N
(i)
g (X) denotes the

counting function for G(i).
Let T denote the collection of all positive squarefree f whose prime

divisors p all satisfy p ≡ 0, 1 (mod 5). For each f ∈ T , write Σf for the set

of local conditions specifying that f | f(K). Let A
(i)
f be the set of fields in

G(i) satisfying the conditions Σf , and observe that

G(i) = F (i) \
⋃

p≡0,1 (mod 5)

A(i)
p .

Applying inclusion-exclusion it follows, for an arbitrary parameter Y < X,
that

N (i)
g (X) =

∑

f∈T

µ(f)N (i)(X; Σf )(2)

=
∑

f∈T
f≤Y

µ(f)N (i)(X; Σf ) +
∑

f∈T
f>Y

µ(f)N (i)(X; Σf ).

As f4 | Disc(K) for each K satisfying Σf , the sum over f > Y is handled by
the tail estimate of Theorem 8. Each field K is counted with multiplicity at
most d(Disc(K)) = O(Xε) in this sum (where d(n) is the number of positive
divisors of n), so that we have

(3)
∑

f∈T
f>Y

µ(f)N (i)(X; Σf ) ≪ X39/40+ε +X1+ε/Y.

Define m∗(p) to be m(p) for p ̸= 5, with m∗(5) = 54m(5). For each f ≤
Y , upon applying Theorem 6 with Lemma 11 we obtain

N (i)(X; Σf ) =



C(i)
∏

p|f

m∗(p)−1p−4



 ·X +O(X199/200+ε) ,
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provided that Y ≤ X
199

200
− 79

80 = X
3

400 , so that

∑

f∈T
f≤Y

µ(f)N (i)(X; Σf ) = C(i)X
∑

f∈T
f≤Y





∏

p|f

−m∗(p)−1p−4



(4)

+O
(

Y X199/200+ε
)

.

In the main term we extend the sum over f ≤ Y to all f ∈ T , at the expense
of an error term ≪ XY −3, since each product over p | f has absolute value
≤ f−4. We thus have that

∑

f∈T
f≤Y

µ(f)N (i)(X; Σf ) = C(i)X
∑

f∈T





∏

p|f

−m∗(p)−1p−4





+O
(

Y X199/200+ε +XY −3
)

.

Choosing Y = X
1

400 , we see that the error terms above and in (3) are all
O(X1− 1

400
+ε). We therefore have that

N (i)
g (X) = C(i)X

∑

f∈T





∏

p|f

−m∗(p)−1p−4



+O
(

X1− 1

400
+ε

)

= C(i)X ·

(

1−
1

58m(5)

)

∏

p≡1 (mod 5)

(

1−m(p)−1p−4
)

+O
(

X1− 1

400
+ε

)

,

which is what we wanted to prove. □

Proof of Theorem 3. For a parameter Z, let U denote any set of k primes
p ≡ 0, 1 (mod 5) with p ≤ Z, and write T (U) for the set of squarefree f
whose prime factors p all satisfy p ≡ 0, 1 (mod 5) and p ̸∈ U .

We modify the proof of Theorem 1 by replacing T with T (U), and by
adding the condition throughout that each p ∈ U totally ramify and that
K ⊗Q5 be Galois if 5 ∈ U . All such fields have genus number gK = 5k, and
by an identical argument the number of such fields K with |Disc(K)| ≤ X
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is

C(i)





∏

p∈T (U)

(

1−m∗(p)−1p−4
)



 ·





∏

p∈U

m∗(p)−1p−4



X +OZ

(

X1− 1

400
+ε

)

.

Adding over all choices of U with each p ≤ Z, we obtain an expression of

the form C
(i)
k (Z)X +OZ

(

X1− 1

400
+ε

)

, for a sequence C
(i)
k (Z) which increases

with Z and is bounded above by C(i), and which therefore converges to a

fixed constant C
(i)
k .

This counts all quintic fields with |Disc(K)| < X, with the specified
signature, and with gK = 5k – with the exception of those for which any
prime p > Z is totally ramified. By Theorem 8, the number of such is ≪
X

39

40
+ε +X/Z1−ϵ. Therefore, letting Z → ∞, we see that the total number

of fields being counted is C
(i)
k X + o(X). □

Proof of Theorem 4. Let ω(n) denote the number of prime divisors of n, and
again let T denote the collection of all positive squarefree f whose prime
divisors p all satisfy p ≡ 0, 1 (mod 5).

By construction we have gK = 5ω(f(K)), with f(K) defined as before,
and hence also

gK =
∑

f |f(K)

4ω(f),

so that in analogy with (2) we have

∑

K∈G(i)

|Disc(K)|≤X

gK =
∑

f∈T

4ω(f)N (i)(X; Σf ).

This sum is evaluated exactly as in the proof of Theorem 1, with −m∗(p) re-
placed by 4m∗(p) at every occurrence. All of the error terms satisfy identical
bounds up to a factor of O(Xϵ) since 4ω(f) ≪ Xϵ for f ≤ X. We therefore
conclude that

∑

K∈G(i)

|Disc(K)|≤X

gK = C(i)

(

1 +
4

58m(5)

)

X
∏

p≡1 (mod 5)

(

1 + 4m(p)−1p−4
)

(5)

+O
(

X1− 1

400
+ε

)

,

as desired. □
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Proof of Theorem 5. Let Σ denote the local conditions that 2 is inert, 5 is
inert, 7 is totally ramified, and no prime p ≡ 1 (mod 5) is totally ramified.
Observe that any quintic field K satisfying the conditions Σ must have genus
number one. By way of contradiction, suppose K is norm-Euclidean and
satisfies the conditions Σ. Let p denote the unique prime lying over 7. Then
there exists α ∈ OK such that 4 ≡ α (mod p) with |N(α)| < |N(p)| = 7. It
follows that 2 ≡ 45 ≡ N(α) (mod 7) and therefore N(α) ∈ {2,−5}. We are
forced to conclude that either 2 or 5 is not inert, a contradiction. The result
now follows from techniques similar to the proof of Theorem 1. □
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