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Existence of an exotic plane in an

acylindrical 3-manifold

Yongquan Zhang

Let P be a geodesic plane in a convex cocompact, acylindrical hy-
perbolic 3-manifold M . Assume that P ∗ = M∗ ∩ P is nonempty,
where M∗ is the interior of the convex core of M . Does this condi-
tion imply that P is either closed or dense in M? A positive answer
would furnish an analogue of Ratner’s theorem in the infinite vol-
ume setting.

In [9] it is shown that P ∗ is either closed or dense in M∗. More-
over, there are at most countably many planes with P ∗ closed, and
in all previously known examples, P was also closed in M .

In this note we show more exotic behavior can occur: namely,
we give an explicit example of a pair (M,P ) such that P ∗ is closed
in M∗ but P is not closed in M . In particular, the answer to the
question above is no. Thus Ratner’s theorem fails to generalize to
planes in acylindrical 3-manifolds, without additional restrictions.

1. Introduction

This paper is a contribution to the study of topological behavior of geodesic
planes in hyperbolic 3-manifolds of infinite volume.

Geodesic planes in hyperbolic 3-manifolds. Let M ∼= Γ\H3 be an
oriented, complete hyperbolic 3-manifold, presented as the quotient of hy-
perbolic space by a Kleinian group

Γ ⊂ Isom+(H3) ∼= PSL(2,C).

Let Λ ⊂ S2 be the limit set of Γ, and Ω = S2 − Λ the domain of discontinuity.
The convex core of M is defined as

core(M) := Γ\ hull(Λ);

Equivalently, it is the smallest closed convex subset of M containing all
closed geodesics. Let M∗ be the interior of core(M). We say M is convex
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cocompact if M := Γ\(H3 ∪ Ω) is compact, or equivalently core(M) is com-
pact.

A geodesic plane in M is a totally geodesic isometric immersion f :
H2 → M . We often identify f with its image P := f(H2) and call the latter
a geodesic plane as well. Given a geodesic plane P , write P ∗ = M∗ ∩ P .

Planes in acylindrical manifolds. In this paper, we study the topolog-
ical behavior of geodesic planes in a convex cocompact, acylindrical hyper-
bolic 3-manifold M . The topological condition of being acylindrical means
that the compact Kleinian manifold M has incompressible boundary and
every essential cylinder in M is boundary parallel [14]. When M has infinite
volume, the property of being acylindrical is visible on the sphere at infinity:
M is acylindrical if and only if Λ is a Sierpieński curve1.

When M has finite volume, a geodesic plane P in M is either closed or
dense [11, 13]. In the infinite volume case, if we assume furthermore core(M)
has totally geodesic boundary, it is shown in [8] that any geodesic plane P
in M is either closed, dense in M , or dense in an end of M . In other words,
geodesic planes in such an M do satisfy strong rigidity properties. In [9], this
is generalized to all convex cocompact acylindrical 3-manifolds if we restrict
to the interior of the convex core M∗:

Theorem 1.1 ([9]). Let M be a convex cocompact, acylindrical, hyperbolic
3-manifold. Then any geodesic plane P intersecting M∗ is either closed or
dense in M∗.

As a matter of fact, when P ∗ is dense in M∗, a stronger statement holds:
P is actually dense in M . As a complement, it is also shown in [9] that there
are only countably many geodesic planes P so that P ∗ is nonempty and
closed in M∗. It is natural to ask, à la Ratner, if these countably many
planes are well-behaved topologically in the whole manifold. For example,
we have the following question in [9]: if P ∗ is closed in M∗, is P always
closed in M? Our main theorem answers this question:

Theorem 1.2. There exists a convex cocompact, acylindrical, hyperbolic
3-manifold M = Γ\H3 and a geodesic plane P in M so that P ∗ is nonempty
and closed in M∗ but P is not closed in M .

1A Sierpiński curve is a compact subset Λ of the 2-sphere S2 such that S2 − Λ =
∪iDi is a dense union of Jordan disks with diam(Di) → 0 and Di ∩Dj = ∅ for all
i ̸= j. See Figure 1a for an example.
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Therefore, for this concrete acylindrical manifold M , at least one of the
closed geodesic planes in M∗ is not well-behaved topologically in the whole
manifold. This supports the idea that the proper setting for generalizations
of Ratner’s theorem may be M∗ rather than M , as suggested in [9].
Exotic planes and circles. For simplicity, we call P an exotic plane
of M if P ∗ is nonempty and closed in M∗ but P is not closed in M . We
now proceed to describe and visualize the example in Theorem 1.2 from the
perspective of the sphere at infinity.

Fix a presentation M ∼= Γ\H3. Any circle C on the sphere at infinity S2

determines a unique geodesic plane in H3, and in turn gives a geodesic plane
P in M . Conversely, given a geodesic plane P in M , let P̃ be any lift to H3;
its boundary at infinity is a circle C ⊂ S2. We call C a boundary circle of
P . Note that Γ · C gives all the boundary circles of P . An exotic circle of Γ
is a boundary circle of an exotic plane in M .

C’ C

(a) The limit set Λ and an exotic circle C (b) The orbit Γ · C

Figure 1. The example in Theorem 1.2 from the perspective
of the sphere at infinity. Note that the orbit Γ · C of the exotic
circle C limits on C ′ /∈ Γ · C.

Figure 1 gives some visualizations of the example in Theorem 1.2: Fig-
ure 1a depicts the limit set of Γ with an exotic circle C marked, and Figure 1b
shows the orbit of C under Γ. Note that C ′ (also marked in Figure 1a) is
not a circle in Γ · C, but there exists a sequence γi ∈ Γ so that γiC → C ′.
This is reflected in our discussion of the geometry of P (see below), and is
quite visible from Figure 1b.
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Geometry of the exotic plane. The exotic plane in Theorem 1.2 comes
from a particular orbifold O = O(t0) in the one-parameter family of acylin-
drical orbifolds O(t) constructed in [16]. We will actually construct an exotic
plane P in the orbifold O; this orbifold has a finite manifold cover M by
Selberg’s lemma, and any lift of P to M is then exotic. For simplicity, we
will mostly focus on describing the exotic plane in O; properties of its lift
to the manifold cover then follow.

Note that an exotic plane must accumulate on the convex core boundary.
In our example, the plane P is a nonelementary, convex cocompact surface
with one infinite end; its restriction to core(O) cuts the infinite end into
a crown with two tips. In particular P ∗ = P ∩ Int(core(O)) has finite area.
The two tips of the crown wrap around and tends to the bending geodesic
on the boundary of core(O). Finally, the closure P = P ∪ P ′, where P ′ is a
closed geodesic plane contained in the infinite end of M . As a matter of fact,
P ′ is a cylinder whose core curve is precisely the bending geodesic. Note that
P is not a closed suborbifold of O, as it is not locally connected near P ′.

Figure 2 is a picture of P near the convex core boundary in the quotient
of O by a reflection symmetry. We remark that the behavior of P near the
convex core boundary only depends on the geometry of the corresponding
quasifuchsian orbifold; see Theorems 2.2 and 3.3, and Figure 5 for details.

η

P

P ′

Figure 2. A cross section near the convex core
boundary, in a plane orthogonal to P and con-
taining η, the bending geodesic.

Planes in cylindrical manifolds. We remark that for cylindrical mani-
folds, there is no analogue of Theorem 1.1 in general. For example, geodesic
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planes intersecting the convex core of a quasifuchsian manifold may have
non-manifold, even fractal closures, as explained in [8, Appx. A]. Never-
theless, we can still consider exotic planes in a general convex cocompact
hyperbolic 3-manifold M . In fact, we give examples of exotic planes in a
concrete family of quasifuchsian manifolds in §2.

In a general convex cocompact manifold M with incompressible bound-
ary, there may be uncountably many geodesic planes closed in M∗. For
example, in [9, §2], the authors described a continuous family of hyperbolic
cylinders closed in M∗ for a quasifuchsian manifold M . Nevertheless, we
show in the appendix:

Theorem 1.3. Let M be a convex cocompact hyperbolic 3-manifold with in-
compressible boundary. Then there are at most countably many exotic planes
in M .

In particular, the union of all exotic planes in M∗ has measure zero.

Exotic horocycles. A horocycle in a complete hyperbolic 3-manifoldM is
an isometrically immersed copy of R with zero torsion and geodesic curvature
1. Here zero torsion means that it is contained in a geodesic plane. When
M has finite volume, the closure of any horocycle is a properly immersed
submanifold, also a consequence of the general Ratner’s theorem [11]. This
is extended to convex cocompact and acylindrical M whose convex core has
totally geodesic boundary [7], using the complete classification of geodesic
planes in [8] mentioned above.

Our example in Theorem 1.2 similarly shows that such rigidity does not
hold in general for acylindrical manifolds. Indeed, the closure of a horocycle
that is dense in the exotic plane is not a submanifold. Such a horocycle
exists by e.g. [2].

Questions. We conclude the discussion by mentioning the following open
questions.

1) The example in Theorem 1.2 is fairly tame, but wilder examples may
exist when the bending lamination is nonatomic. For example, is there
an exotic plane P so that P ∗ has infinite area?

2) In both quasifuchsian and acylindrical cases, we give examples con-
taining one exotic plane. In view of Theorem 1.3, a natural question is
if the result is “sharp”. That is, does there exist a convex cocompact
hyperbolic 3-manifold with infinitely many exotic planes?
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Notes and references. The rigidity results of [8, 9] have recently been
extended to certain geometrically finite acylindrical manifolds in [1].

This paper is organized as follows. Section 2 is devoted to examples
of exotic planes in a concrete family of quasifuchsian orbifolds. We then
leverage the quasifuchsian examples to construct an acylindrical example,
giving a proof of Theorem 1.2 in Section 3. Finally, we calculate explicitly
the parameters for our example in Section 4; they are needed to produce
Figure 1.

2. Quasifuchsian examples

In this section, we give examples of exotic planes in a concrete family of
quasifuchsian orbifolds.

Fix an integer n ≥ 3. Let R be a quadrilateral in the extended complex
plane whose sides are either line segments or circular arcs, and whose interior
angles are all π/n. Reflections in the sides of R generate a discrete subgroup
of PSL(2,C), and let ΓR be its index 2 subgroup of orientation preserving
elements. We note that ΓR is a quasifuchsian group, and the corresponding
quasifuchsian orbifold NR := ΓR\H3 is homotopic to a sphere with 4 cone
points of order n.

Denote by Ci, 1 ≤ i ≤ 4 the circles on which the four sides of R lie, so
that C1 and C3 contain opposite sides. The corresponding hyperbolic planes
in H3 are also denoted by Ci. To construct NR, one can take two copies of
the infinite “tube” bounded by these four planes and identify corresponding
faces. A fundamental domain for ΠR is thus two copies of the tube, although
for most discussions we consider the full reflection group with a fundamental
domain simply being the tube.

Two copies of the geodesic segment perpendicular to both C1 and C3

glue up to a closed geodesic ξ in NR, and similarly the other two planes give
a closed geodesic η. Let 2 cosh−1(s) and 2 cosh−1(t) be the lengths of ξ and
η respectively. Then

Proposition 2.1. For any quadrilateral R, we have (s− 1)(t− 1) ≤
4 cos2(π/n), with equality if and only if ΓR is Fuchsian. When the inequality
is strict, the convex core of NR is bent along ξ on one side and η on the
other.

This proposition is a combination of Proposition 4.1 and Lemma 4.3 in
[16]. See Figure 3 for some visualizations with n = 3. Note that Figure 3a
is drawn so that R is centered at the origin, and symmetric across real and
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C1
C2

C3

C4

p

p’

q’ q

(a) Quadrilateral R in gray and limit set of
ΓR.

ξ

η

(b) A combinatorial picture of core(NR)

Figure 3. An example of the main construction of a quasi-
Fuchsian group ΓR from a quadrilateral R, for which we de-
termine the bending lamination η, ξ facing toward and away
from R, respectively. A lift of η has end points p, p′, and a
lift of ξ has end points q, q′.

imaginary axes. The end points p, p′ of a lift η̃ of η then lie on the imaginary
axis; the corresponding hyperbolic element, also denoted by η̃, is given by
reflection across C2 followed by refection across C4. Similarly, the end points
q, q′ of a lift ξ̃ of ξ lie on the real axis, see Figure 3a.

C
C’

q’ q

p

(a) Axes of bending geodesics and an exotic
circle

(b) Orbit of the exotic circle

Figure 4. An exotic circle for quasifuchsian group ΓR

Let Λ be the limit set of ΓR. Take the circle C passing through the end
points q, q′ of ξ̃ and the repelling fixed point p of η̃; see Figure 4a. It is easy
to see that p is an isolated point in C ∩ Λ. As C is stabilized by reflections in
C1 and C3, it also passes through the orbit of p under the group generated
by these reflections. It is clear that C ∩ Λ consists of points in this orbit
together with the end points q, q′ of ξ̃. We have
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Theorem 2.2. For any quadrilateral R, the circle C is exotic. That is, the
corresponding geodesic plane P is closed in N∗

R but not in NR.

Proof. For simplicity, we will suppress the subscript R. Since C passes
through the repelling fixed point of η̃, the sequence η̃n · C tends to a circle
C ′ passing through both end points of η̃; in particular, the geodesic plane
P determined by C is not closed in N , and accumulates on the plane P ′

determined by C ′. This is clearly visible in Figure 4b, where the orbit of C
under Γ is drawn.

ξ̃
C3 C1

C2

C4

Π0

Π1

p p1p3

The slice in (b) →

(a) A fundamental domain inside P̃ . The red
circles mark where it meets C2, C4 and their
orbits

η̃

C4C2
ξ̃

P̃

(b) A perpendicular slice of P̃

Figure 5. Some visualizations for the proof of Thm. 2.2

It remains to show P ∗ is closed in N∗. The hyperbolic plane P̃ in H3

determined by C is divided into two half planes by ξ̃. One half descends to
a half cylinder contained in an end of N ; indeed, this half plane is stabilized
by ξ̃ and a fundamental domain for the action of this hyperbolic element is
compact in H3 ∪ Ω, where Ω is the domain of discontinuity of Γ, and thus
our assertion follows from proper discontinuity of the action.
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For the other half, again since it is stabilized by ξ̃, it suffices to con-
sider a fundamental domain under the action of this hyperbolic element.
As a matter of fact, we may even consider a fundamental domain under
the full reflection group. One choice of this is the portion of the half plane
sandwiched between C1 and C3. Let p1 and p3 be the images of p under re-
flections across C1 and C3 respectively. The geodesic with end points p and
p1 descends to a complete geodesic contained in the convex core boundary,
and same for the geodesic with end points p and p3. Hence to understand
P ∗ we only need to consider the part of the fundamental domain mentioned
above that lies between the geodesics pp1 and pp3; see the gray region in
Figure 5a. We denote this part of P̃ by Π.

This portion is divided by orbits of C2 and C4 into countably many
pieces Π0,Π1, . . . (see Figure 5a). Each piece is relatively compact (since its
closure is disjoint from the boundary at infinity) and descends to a piece
contained entirely in core(N).

Let l be the intersection of Π and the hyperbolic plane whose boundary
at infinity is iR (in Figure 5a, this is part of the dotted blue line starting at
its intersection with ξ̃ and ending at p). Let li be the segment of l contained
in each piece Πi. Since l and η̃ shares an end point, the distance2 between
each segment li and η̃ goes to 0. In N , we conclude that the distance between
the projection of li and η goes to zero; see Figure 5b.

Finally, the distance between Πi and η̃ goes to 0. Indeed, since Πi is
bounded by p1p and p3p (at least when i is large enough), the distance of a
point in Πi to the segment li goes to zero. Together with the discussion in
the last paragraph, this gives the desired claim. We conclude that in N , the
distance between the projection of each Πi and η goes to zero.

This implies that P ∗ only accumulates on η, so it is closed in N∗. □

The proof above gives a clear picture of the topology of P ∗. Indeed, we
described a fundamental domain under the action of the full reflection group
(the gray region in Figure 5a). Two pieces of this gives a crown with two
tips, and P ∗ is precisely the interior of this crown properly immersed in N∗

R.
It is also easy to understand the behavior of P in NR. Recall that P

′ is
the geodesic plane in NR determined by C ′, as described in the proof above.
We have:

2That is, the maximal distance between two points from each set.
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Theorem 2.3. The geodesic plane P only accumulates on P ′ (i.e. P =
P ∪ P ′), where P ′ is a properly immersed hyperbolic cylinder whose inter-
section with core(NR) is the bending geodesic η. Moreover, P is not locally
connected, and thus not a suborbifold of NR.

Proof. Again we will suppress the subscript R for simplicity. First note that
P ′ is closed in N . This similarly follows from proper discontinuity: the plane
P̃ ′ determined by C ′ is stabilized by η̃, and a fundamental domain for its
action is compact in H3 ∪ Ω. Since P̃ ′ intersects the convex hull of the limit
set Λ at η̃, we have P ′ ∩ core(N) = η as desired.

To understand the topology of P , we again look at Figure 5. Instead
of the portion of P̃ lying between the geodesics pp1 and pp3, we need to
consider the whole fundamental region Σ sandwiched between C1 and C3.
Similarly, it is divided by orbits of C2 and C4 into countably many pieces
Σ0,Σ1, . . ., and each piece is relatively compact in H3 ∪ Ω. Thus a sequence
of points in P limit to a point not in P only when it meets the projection
of infinitely many of these pieces.

Let τ2, τ4 be reflections across C2, C4 respectively. It is clear from Fig-
ure 5b that τ2Σ1 is sandwiched between C2 and C4; similarly, τ4τ2Σ2 = η̃Σ2

is sandwiched between C2 and C4. Inductively, η̃
−kτ2Σ2k+1 and η̃kΣ2k are

sandwiched between C2 and C4. Since Σi is contained in P̃ , and both η̃kP̃
and η̃−kτ2P̃ converge to P̃ ′ as k → ∞, these pieces limit on the portion of
P̃ ′ sandwiched between C2 and C4.

This implies that P only accumulates on P ′. Moreover, any neighborhood
of a point on P ′ intersects P in infinitely many pieces coming from each Σi,
so P = P ∪ P ′ is not locally connected. □

Note that Theorem 2.3 implies Theorem 2.2, since P ∗ ⊂ P and P ′ is disjoint
from the interior of core(N). Nevertheless, we keep the proof of Theorem 2.2
to give a thorough description of the geometry of P ∗ as well.

3. An acylindrical example

In this section, we briefly review the acylindrical orbifolds constructed in [16],
which are covered by the quasifuchsian orbifolds described in the last section.
We then construct an exotic plane in one of these acylindrical orbifolds by
projecting down the corresponding quasifuchsian example.
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The example manifold and its deformations. One way to construct
explicit examples of hyperbolic 3-manifolds is gluing faces of hyperbolic poly-
hedra (with desired properties) via hyperbolic isometries. See [15, §3.3], [10],
[3] and [4] for some acylindrical examples.

Along the same idea, we construct a hyperbolic polyhedron given by the
combinatorial data encoded in the Coxeter diagram shown in Figure 6a. Let
Q̃ be the hyperbolic polyhedron with an infinite end obtained by extending
across Face 1 to infinity. In other words, it is the hyperbolic polyhedron with
one infinite end bounded by the hyperbolic planes containing Faces 2–10;
see Figure 6c. Reflections in all faces of Q̃ generate a discrete subgroup of
hyperbolic isometries; a subgroup of index 2 gives an acylindrical hyperbolic
3-orbifold with Fuchsian end. We can deform Q̃ by pushing closer or pulling
apart Faces 3 and 5, fixing the dihedral angles, and obtain deformations of
the orbifold. This gives [16, Thm. 1.2]:

6

2

3

4

5

1

7

8

9

10

(a) The Coxeter diagram

1

5

23
4

6

10

7 8
9

(b) The corresponding polyhedron

(c) The hyperbolic polyhedron in
the unit ball model

Figure 6. Combinatorial data and visualization of the polyhedron.
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Theorem 3.1. For each t ∈
(

1,
5 +

√
39

3

)

, there exists a unique hyperbolic

polyhedron Q̃(t) so that the hyperbolic distance between Faces 3 and 5 is
cosh−1(t). The corresponding hyperbolic orbifold O(t) is acylindrical convex
cocompact, whose convex core boundary is totally geodesic if and only if
t = 2.

See [16, Figure 3] for some samples of the deformation. One way to explic-
itly construct O(t) is to take two copies of Q̃(t) and identify corresponding
faces. A fundamental domain for the corresponding Kleinian group is thus
two copies of Q̃(t), although for most discussions we often consider the full
reflection group with a fundamental domain simply being Q̃(t).

It is clear from construction that the quasifuchsian orbifold N(t) cor-
responding to the boundary of O(t) is an example of those described in
Section 2. Consistent with the notations there, let η be the simple closed
geodesic in O(t) coming from two copies of the geodesic segment orthogonal
to both Faces 3 and 5, and ξ be that from Faces 2 and 4. To distinguish
the two ends of N(t), we call the end shared with O(t) the top end, and the
other bottom end. We have [16, Thm. 1.3]:

Theorem 3.2. The convex core boundary of O(t) is bent along η for
t ∈ (1, 2), and ξ for t ∈ (2, (5 +

√
39)/3), with hyperbolic lengths lη(t) =

2 cosh−1(t) and lξ(t) = 2 cosh−1(s), where s = ϕ(t) is an explicit monotonic
function. Bending angles λη(t) and λξ(t) can also be explicitly calculated.
On the bottom end of N(t), the convex core boundary is bent along ξ for
t ∈ (1, 2) and η for t ∈ (2, (5 +

√
39)/3), and lengths and angles can also be

similarly calculated.

We refer to [16] for proofs of these statements and explicit calculations.
Existence of an exotic plane. We wish to make use of the quasifuchsian
examples in Section 2 to construct an acylindrical example. In particular, if
we take the same plane P (t) in N(t) and project it down to O(t) via the
covering map N(t) → O(t) of infinite degree, we have to make sure that the
cylinder contained in the bottom end of N(t) projects to a closed surface in
O(t). For this, we have

Theorem 3.3. There exists t = t0 ∈ (1, 2) so that the image of P (t0) under
the projection N(t0) → O(t0) is an exotic plane. Moreover, the closure of the
plane in O(t0) is not locally connected, and hence not a suborbifold.
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ξ

η

Figure 7. A combinatorial picture of core(O(t)) for t ∈ (1, 2).
Note that a copy of core(N(t)) is embedded in the polyhe-
dron.

Proof. For this, we look at how the plane intersects a fixed fundamental
domain, the polyhedron Q̃(t). A lift P̃ (t) of the plane P (t) passes through
the geodesic segment orthogonal to Faces 2 and 4, so it is orthogonal to
both faces as well. When t → 2, P̃ (t) tends to Face 1; when t → 1, P̃ (t)
tends to a plane orthogonal to Face 6, dividing the polyhedron P̃ (1) into two
equal parts. By continuity, for some subinterval of (1, 2), P̃ (t) intersects the
edge shared by Faces 7 and 8. Another continuity argument guarantees the
existence of a t = t0 ∈ (1, 2) so that P̃ (t0) intersects this edge orthogonally.
This implies that P̃ (t0) intersects both Faces 7 and 8 orthogonally, and
disjoint from Face 5. See Figure 8 for a picture of P̃ (t0) ∩ Q̃(t0).

24

7 8

Figure 8. A piece of the exotic plane P inside the fundamental domain.

Clearly, as P̃ (t0) is orthogonal to Faces 2, 4, 7 and 8, the half plane
that projects to a cylinder in the bottom end in N(t0) further projects
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down to a orbifold surface in O(t0), with one geodesic boundary component,
two cone points of order 2 and one cone point of order 3. The other half
behaves exactly as that in the quasifuchsian example (recall that a copy of
core(N(t0)) is embedded in core(O(t0)), see Figure 7), so it is indeed an
exotic plane in O(t0). Following Theorem 2.3, the closure of this plane is
not locally connected. □

Theorem 1.2 is then a direct consequence of Theorem 3.3, after taking a
finite manifold cover of O(t0).

4. Computations

In this section, we calculate the explicit value of t0 predicted in the previous
section. We refer to the calculations in [16, §6] freely.

It is convenient to work with the hyperboloid model of H3. Let E3,1

be R4 equipped with the indefinite inner product ⟨x, y⟩ = −x0y0 + x1y1 +
x2y2 + x3y3, and set

V+ := {x ∈ E3,1 : ⟨x, x⟩ = −1, x0 > 0}.

Together with the metric induced from the inner product, V+ is isometric to
H3. We can uniquely determine a geodesic plane in H3 using its unit normal
in the hyperboloid model: given e ∈ E3,1 with ⟨e, e⟩ = 1, V+ ∩ (Re)⊥ is a
geodesic plane. For correspondence between this model and the upper half
space/unit ball model, especially for geodesic planes, we refer to [16, 17].

Set u =
√

(t+ 1)/2. One choice of normals for Faces 2 and 4 of the
polyhedron Q̃(t) may be

(

u−
√
4u2 + 4v2 − 3− 4u2v2

2u2 − 2
,±v, 0,

−1 + u
√
4u2 + 4v2 − 3− 4u2v2

2u2 − 2

)

where v =
3u+

√
(u2+2)(16u2−3)

8u2−2 . Correspondingly, the normals for Faces 7 and
8 are

(

u2
√
3−

√
u2 + 2

2u2 − 2
,∓

√
3

2
,

√
3

2
,
u
√
u2 + 2− u

√
3

2u2 − 2

)

.
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Suppose the unit normal to the plane P̃ is (x0, x1, x2, x3). Then this vector
is orthogonal to the normals listed above. Therefore x1 = 0 and

x2 =

√
u2 + 2− u

√
3
√
4u2 + 4v2 − 3− 4u2v2√

3(−1 + u
√
4u2 + 4v2 − 3− 4u2v2)

x0,

x3 =
u−

√
4u2 + 4v2 − 3− 4u2v2

−1 + u
√
4u2 + 4v2 − 3− 4u2v2

x0.

On the other hand, the sequence of planes η̃n · P̃ converges to P̃ ′, where P̃ ′

has unit normal
(

1√
u2 − 1

, 0, 0,− u√
u2 − 1

)

.

This can be calculated using the formula in [16, §6.2] for the hyperbolic
element η̃, and the fact that the circle C ′ corresponding to P̃ ′ passes through
the fixed points of η̃ and is symmetric across the imaginary axis. Since P̃ is
tangent to P̃ ′ at infinity, the inner product of their unit norms is 1 (or −1,
but we can always change the orientation of P̃ ), so

−x0
1√

u2 − 1
− x3

u√
u2 − 1

= 1.

Hence we have

x0 =
1− u

√
4u2 + 4v2 − 3− 4u2v2√

u2 − 1
,

x2 =
−
√
u2 + 2 + u

√
3
√
4u2 + 4v2 − 3− 4u2v2√

3
√
u2 − 1

,

x3 =

√
4u2 + 4v2 − 3− 4u2v2 − u√

u2 − 1
.

Since −x20 + x22 + x23 = 1, we have

4u2 + 4v2 − 3− 4u2v2

− 2
√
3

3
u
√

u2 + 2
√

4u2 + 4v2 − 3− 4u2v2 +
u2 + 2

3
= 0,

and thus

9(4u2 + 4v2 − 3− 4u2v2)2 + (u2 + 2)2 + 6(4u2 + 4v2 − 3− 4u2v2)(u2 + 2)

− 12u2(u2 + 2)(4u2 + 4v2 − 3− 4u2v2) = 0.
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Plugging in the expression of v in terms of u, the left hand side gives

u2 − 1

(4u2 − 1)4

(

f(u) + g(u)
√

16u4 + 29u2 − 6
)

where

f(u) = −625 + 11153u2 − 53284u4 + 65632u6 − 38720u8

+ 22144u10 − 9216u12,

g(u) = 900u− 7092u3 + 9072u5 − 4032u7 + 1152u9.

Thus we have

0 = f(u)2 − g(u)2(16u4 − 29u2 − 6)

= (4u2 − 1)4(−625 + 944u2 − 976u4 + 576u6)

× (−625 + 3586u2 − 6585u4 + 3112u6 − 1360u8 + 576u10)

=
1

4
(1 + 2t)4(−325 + 200t− 28t2 + 72t3)

× (−625− 2330t− 3237t2 + 916t3 + 20t4 + 72t5)

Set h(t) := −625− 2330t− 3237t2 + 916t3 + 20t4 + 72t5. Then h′′(t) =
−6474 + 5496t+ 240t2 + 1440t3 > 0 when t ∈ (1, 2). So h(t) attains maxi-
mum at t = 1 or t = 2. But h(1) = −5184 < 0 and h(2) = −8281 < 0, so
h(t) < 0 for t ∈ (1, 2). To find t ∈ (1, 2) satisfying the equation above, we
must thus solve

−325 + 200t− 28t2 + 72t3 = 0.

This polynomial has a unique real root

t = t0 =
1

54

(

7−
(

25515
√
773− 654761

2

)1/3

+

(

25515
√
773 + 654761

2

)1/3
)

≈ 1.202,

in (1, 2) as desired.

Appendix A. Countably many exotic planes

In this appendix, we give a proof of Theorem 1.3; that is, there are at most
countably many exotic planes in a convex cocompact hyperbolic 3-manifold
M = Γ\H3 with incompressible boundary.

We start by recalling the following theorem in [9]:
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Theorem A.1 ([9]). If M is convex cocompact with incompressible bound-
ary, then the fundamental group of any plane P with P ∗ nonempty and closed
in M∗ is nontrivial.

In particular, either P ∗ is a cylinder, or P ∗ is a nonelementary surface.
For the latter case, the fundamental group of P ∗ contains a free group on
two generators. Following the same arguments of the proof of [9, Cor. 2.3],
we conclude that there are only countably many nonelementary P ∗.

For the former case, P ∗ contains a closed geodesic γ of M . Let γ̃ be any
lift, with end points p, q on the sphere at infinity. Let C be the boundary
circle of P passing through p, q. We have

Lemma A.2. Each component of C − {p, q} is contained in the closure of
a connected component of the domain of discontinuity Ω.

Proof. We follow many of the arguments in [9, §2]. The plane P is the
image of hull(C) ∼= H2 under an isometric immersion, which descends to
a map f : S → M where S = StabΓ(C)\ hull(C) is a hyperbolic cylinder.
Let S∗ = f−1(M∗). Then S∗ is a convex subsurface of S, also a topological
cylinder, and the restriction f : S∗ → P ∗ ⊂ M∗ is proper.

Since core(M) is homeomorphic to M , M∗ deformation retracts to a
compact submanifold K ⊂ M∗. One can also arrange that K is transverse
to f , and so S0 := f−1(K) ⊂ S∗ is a compact, smoothly bounded region in
S∗, although not necessarily connected.

As in the proof of Theorem 2.1 in [9], after changing f by a compact
deformation, we may assume that the inclusion of S0 into S∗ is injective on
π1. So the components of S0 are either cylinders, or disks; see Figure A1.

S
0

{ S’

Figure A1. The hyperbolic cylinder S, the convex subsurface S∗ bounded
by red, and S0.
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Boundaries of the cylinder components of S0 are essential curves of S∗,
all homotopic; let S′ be the region of S∗ bounded by the two of these bound-
ary curves farthest into either end of S. In particular S′ is also a cylinder,
and include all cylinder components of S0. For each component of S0 not
contained in S′, since it is a disk with boundary in ∂K, we may homotope
it rel boundary into ∂K, as K ∼= M has incompressible boundary.

Therefore after changing f further by a compact deformation, we may
divide S into S′ and two ends S1, S2 so that f(S′) is a cylinder with both
boundary components on ∂K, and f(S1) and f(S2) are contained completely
in M −K.

Let E1, E2 be the two components ofM −K containing f(S1) and f(S2).
Note that the closed geodesic γ contained in P is homotopic to an essential
curve γi on ∂Ei for i = 1, 2. Moreover, Ei differs from an actual end of M by
a compact set, so any lift of Ei is bounded at infinity by a connected com-
ponent of Ω. If we take the lift corresponding to γ̃, let Ωi be the connected
component bounding the lift of Ei at infinity. Since p, q are the end points
of γ̃i, we must have p, q ∈ ∂Ωi. Finally, since f differs from an isometric im-
mersion by compact deformation, the lift of f(Si) is a half plane bounded
by γ̃i and a component of C − {p, q} at infinity; this half plane is totally
geodesic except in a band of bounded width near γ̃i. This lift is contained
completely in the lift of Ei, so the corresponding component of C − {p, q}
is contained in Ωi. □

Given a closed geodesic γ ⊂ M , there is an S1-family of planes passing
through γ. Fix any continuous parametrization Pt of this family by t ∈ R

invariant under translation by an integer. Consider the set

L := {t ∈ R : P ∗

t is a properly immersed cylinder in M∗}.

We claim

Proposition A.3. Suppose a sequence {ti} ⊂ L satisfies ti > t and ti → t
for some t ∈ L. Then there exists ϵ > 0 so that [t, t+ ϵ] ⊂ L and Ps is not
exotic for any s ∈ (t, t+ ϵ).

Proof. Choose any lift γ̃ of the closed geodesic γ, and a boundary circle C of
Pt passing through the end points p, q of Γ. By the previous lemma, each of
the two components of C − {p, q} is contained in the closure of a connected
component of the domain of discontinuity Ω, say Ω1 and Ω2.

For each i, a boundary circle Ci of Pti also passes through p, q. Since
Ci → C as i → ∞, when i is large enough, the two components of Ci −
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{p, q} intersect Ω1 and Ω2 respectively. As P ∗
ti is also a cylinder, those two

components must be contained in Ω1 and Ω2 respectively.
Finally, sinceM has incompressible boundary, Ω1 and Ω2 are both simply

connected. In particular, for any s ∈ (t, ti), a boundary circle Cs of Ps is
sandwiched between C and Ci, and Cs intersects the limit set at exactly p
and q. It is easy to see Ps itself is closed in M . □

Similarly, a sequence {ti} ⊂ L tending to t ∈ L from below gives a corre-
sponding interval with t as the right end point. We have

Corollary A.4. Every point in the set {t ∈ L : Pt is exotic} is isolated,
and therefore this set is countable.

Since M contains countably many closed geodesics, we conclude that
there are only countably many exotic cylinders. This, together with the fact
that there are only countably many nonelementary P ∗, gives Theorem 1.3.
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