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Equivariant sheaves on loop spaces

Sergey Arkhipov and Sebastian Ørsted

Let X be an affine, smooth, and Noetherian scheme over C acted on
by an affine algebraic group G. Applying the technique developed in
[3, 4], we define a dg-model for the derived category of dg-modules
over the dg-algebra of differential forms ΩX on X equivariant
with respect to the action of a derived group scheme (G,ΩG). We
compare the obtained dg-category with the one considered in [2]
given by coherent sheaves on the derived Hamiltonian reduction
of T ∗X.

1. Introduction

Let G be an affine algebraic group acting on an affine, smooth, and Noetherian
scheme X over C. In the recent paper [2], the first author jointly studied
the category of quasi-coherent sheaves on the derived Hamiltonian reduction
of T ∗X with respect to G. As stated in the introduction to that paper, this
category is supposed to play the role of a category of equivariant sheaves on
the derived loop space of the scheme X. The present paper is a step towards
making this intuition into a precise construction.

Omitting equivariance, the picture is well understood. Namely, in homo-
topy theory, the free loop space of an object X (say, in a model category) is
the homotopy fibre product of X with itself over X ×X. Thus, for regular
schemes, the derived loop space of a scheme X is given by the sheafified
Hochschild homology dg-algebra for OX .

The famous Hochschild–Kostant–Rosenberg theorem states that the
latter is formal: it is quasi-isomorphic to its cohomology given by the sheaf
of dg-algebras of differential forms on X with zero differential. Denote it
by ΩX . It follows that talking about sheaves on the derived loop space of X
is essentially considering quasi-coherent sheaves of dg-modules over ΩX . One
of the goals of the present paper is to make precise sense of the derived
category of ΩX -dg-modules equivariant with respect to the action of the
derived group scheme (G,ΩG).

Our strategy is as follows. We consider the simplicial derived scheme
given by the nerve of the action groupoid for (G,ΩG) acting on (X,ΩX).
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This way, we obtain a cosimplicial diagram of dg-derived categories. We
consider the homotopy totalization of this diagram. More precisely, we follow
the strategy of [5] generalized and extended in our previous papers [3, 4].
We obtain a category of A∞-comodules over a certain dg-coalgebra in the
category of ΩX -dg-modules. This category becomes our model for the derived
category of ΩX -dg-modules equivariant with respect to ΩG.

Applying linear Koszul duality in the spirit of the papers of Mirkovic
and Riche, we pass from ΩX -dg-modules to the “even” side of the duality.
We consider the sheaf of dg-algebras on X given by SymOX

(TX [−2]) and
quasi-coherent dg-modules over it. We call the obtained category the derived
category of quasi-coherent sheaves on the homologically shifted cotangent
bundle of X.

After applying Koszul duality, the (G,ΩG)-equivariance becomes a more
subtle structure. Notice that (G,ΩG) contains (G,OG) both as a subgroup and
as a quotient group. The Koszul duality construction respects the (G,OG)-
action. The remaining coaction of the Hopf dg-algebra of left invariant
differential forms on G becomes the following structure. Denote the Lie
algebra of G by g. The moment map for the G-action on T ∗X provides a
G-equivariant map g⊗OX [−1] → TX . Consider the free graded commutative
algebra generated by the two term complex

SymOX
(g⊗OX [−1] → TX [−2]).

Notice that up to the homological shift, this dg-algebra is a model for
functions on the derived preimage of 0 under the moment map µ : T ∗X → g

∗.
We come to the central statement of the present paper:

5.0.2. Theorem. Let X ba an affine, smooth, and Noetherian scheme
over C acted on by an affine group scheme G. The derived category of (G,ΩG)-
equivariant ΩX-dg-modules is equivalent to the triangulated subcategory

⟨OX⟩ ⊂ D
(

SymOX
(g⊗OX [−1] → TX [−2])-dgmod

)G

of the derived category of G-equivariant dg-modules generated by OX and
closed under small coproducts.

Notice that the case of X equal to a point is of interest. In this case,
the statement, combined with the usual Koszul duality between Sym(g[−1])
and Sym(g∗), reads as follows:
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Corollary. The derived category of representations for the group (G,ΩG)
is equivalent to the derived category of G-equivariant quasicoherent sheaves
on g topologically supported at 0.

2. Derived categories and A∞-modules

In this chapter, we discuss and compare different candidates for derived
categories of dg-modules over a dg-algebra A.

2.1. The dg-derived category

Let k be a field of characteristic zero. If A is a dg-algebra over k, re-
call that its derived dg-category is defined to be the Drinfeld localiza-
tion D(A-dgmod) ∼= A-dgmod[W−1] at the class W of quasi-isomorphisms
(see [6]). Its associated homotopy category H0D(A-dgmod) recovers the
conventional derived category obtained via the machinery of triangulated
categories.

Let M be a dg-module over the dg-algebra A. We say that it is
graded projective if it is projective as a graded module over the graded
k-algebra A. The full dg-subcategory of graded projective modules is
denoted Proj(A) ⊂ A-dgmod. The dg-module M is called homotopy-
projective (or simply h-projective) if for any exact dg-module X over A,
the k-complex Hom·A(M,X) is exact. The full dg-subcategory of such is
denoted H-Proj(A) ⊂ A-dgmod. A dg-module M is called semifree if it ad-
mits an ascending, bounded below, exhaustive filtration 0 = F 0M ⊂ F 1M ⊂
F 2M ⊂ · · · ⊂ M such that each graded piece grnM is the direct sum of shifts
of copies of A. We denote the full subcategory of such by SF(A) ⊂ A-dgmod.
The dg-subcategory of quasi-free dg-modules is defined to be the dg-
subcategory QF(A) = Proj(A) ∩H-Proj(A) of dg-modules which are simul-
taneously graded projective and h-projective. Note that any semifree dg-
modules is quasi-free, so SF(A) ⊂ QF(A).

2.1.1. Proposition. Each map in the composition

SF(A) ⊂ QF(A) ⊂ H-Proj(A) → D(A-dgmod)

is a quasi-equivalence of dg-categories. In particular, the first three all present
the dg-derived category of A-dgmod.
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Proof. The fact that SF(A) and H-Proj(A) present the derived category is
classical, see e.g. [6]. Since QF(A) sits between them as a full dg-subcategory,
this implies that it, too, presents D(A-dgmod). □

Suppose that R is another dg-algebra over k. A dg-algebra over R is
a dg-algebra A over k together with a map of k-dg-algebras R → A (note
that we do not assume that its image is contained in the centre in any
way). Note that this is equivalent to A being a unital algebra object in the
monoidal dg-category (R-mod-R,⊗R). A map of dg-algebras over R is a map
preserving this structure.

2.1.2. Lemma. Let A be a dg-algebra over the dg-algebra R which is projec-
tive (resp. h-projective resp. quasi-free) as a left R-dg-module. Then restriction

A-dgmod → R-dgmod

takes projective (resp. h-projective resp. quasi-free) A-dg-modules to projective
(resp. h-projective resp. quasi-free) R-dg-modules.

Proof. For M ∈ A-dgmod, this follows from the observation that

HomR(M |R,−) ∼= HomA(M,HomR(A,−)).

□

2.1.3. Lemma. If A is a dg-algebra, then tensor products of projective
(resp. h-projective resp. quasi-free) modules are projective (resp. h-projective
resp. quasi-free).

Proof. Apply the adjunction statement

HomA(M ⊗A N,−) ∼= HomA(M,HomA(N,−)).

□

2.1.4. Lemma. If A → B is a map of dg-algebras, then scalar extension of
projective (resp. h-projective resp. quasi-free) B-dg-modules produces projec-
tive (resp. h-projective resp. quasi-free) A-dg-modules.

Proof. Follows from HomA(A⊗B M,N) ∼= HomB(M,N |B). □

Our main tool will be the dg-category QF(A). The convenience of working
with this comes from the following observation:
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2.1.5. Proposition. The dg-category QF(A) of quasi-free dg-modules is
closed under filtered extensions. This means that if M ∈ A-dgmod admits
a bounded below and exhaustive filtration 0 = F 0M ⊂ F 1M ⊂ F 2M ⊂ · · · ⊂
M = lim

−−→
FnM such that each graded piece grnM ∈ QF(A), then M ∈ QF(A)

as well.

Proof. Each FnM is graded projective, so the inclusions Fn−1M →֒ FnM
split as maps of graded modules. This means that M ∼= gr·M as graded
modules, so as a graded module, M is the direct sum of projectives and is
hence graded projecitve. To prove that it is also h-projective, we let X be an
exact dg-modules over A. The short exact sequence 0 → Fn−1M → FnM →
grnM → 0 splits as a short exact sequence of graded modules. Applying the
graded hom, we obtain that the sequence

0 −→ Hom·A(gr
nM,X) −→ Hom·A(F

nM,X) −→ Hom·A(F
n−1M,X) −→ 0

is also exact. Now the first term of the sequence is exact by as-
sumption, while the last term is exact by induction. Therefore, the
complex Hom·A(F

nM,X) is exact. The sequence also shows that the
map Hom·A(F

nM,X) → Hom·A(F
n−1M,X) is surjective, hence the inverse

system Hom·A(F
nM,X) satisfies Mittag–Leffler. In conclusion, the com-

plex Hom·A(M,X) = lim
←−−

Hom·A(F
nM,X) is exact, so M is h-projective. (Al-

ternatively, if one wants to avoid Mittag–Leffler, one may write M as the
the last term of a short exact sequence 0 −→

⊕

FnM id−s−−→
⊕

FnM −→
M −→ 0 where s is the sum of the embeddings FnM →֒ Fn+1M . By
graded projectivity, this sequence splits as a short exact sequence of graded
modules, so as before, we obtain that the sequence 0 → Hom·A(M,X) →
Hom·A(

⊕

FnM,X) → Hom·A(
⊕

FnM,X) → 0 is exact. As the last two
terms are exact complexes, so is the first.) □

2.2. The dg-category of A∞-modules

We continue to work over a base which is a dg-algebra R over a field k. Let

Bar(A) =
⊕

n≥0

A[1]⊗n =
⊕

n≥0

A⊗R A⊗R · · · ⊗R A[n]

be the bar construction of A, the coalgebra with cofree comultiplication

∆(a1 ⊗ a2 ⊗ · · · ⊗ an) =

n−1
∑

i=1

(a1 ⊗ · · · ⊗ ai)⊗ (ai+1 ⊗ · · · ⊗ an).
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There is another natural candidate for a derived category of A-dgmod,
obtained using the notion of an A∞-module. An A∞-module over a dg-
algebra A is a dg-comodule over Bar(A) whose underlying graded comodule
is cofree. In other words, it has the form BarA(M) = Bar(A)⊗R M for
some graded R-module M . By cofreeness, the differential d : BarA(M) →
BarA(M)[1] is given by a collection of maps acn : A

⊗(n−1) ⊗R M → M [2− n]
for n ≥ 1. each of which we shall refer to as the nth action map. A
map f : M → N of A∞-modules is a map of the corresponding dg-comodules,
and it boils down to a collection of maps fn : A

⊗n−1 ⊗R M → N [1− n] for
all n ≥ 1 satisfying a technical condition corresponding to f commuting
with d. We write A-modnu∞ for the dg-category of (non-uniltal) A∞-modules
over A. This is a full dg-subcategory of the dg-category of dg-comodules over
the bar construction. We may write A-modnu∞(R-dgmod) if we want to stress
that the A∞-modules are R-linear.

The cohomology H·(M) with respect to the differential d = ac1 is a
graded module over the graded ring H·(A). The A∞-module M is called
homotopy-unital if H·(M) is unital over H·(A). The full subcategory
consisting of A-modnu∞ of homotopy-unital A∞-modules is denoted A-modhu∞ .

An A∞-module M is called strictly unital if we have
ac ◦ (η ⊗ idM ) = idM as well as acn ◦ (id⊗iA ⊗ η ⊗ id⊗jA ⊗ idM ) = 0 for
all n ≠ 2 and all i, j with i+ j + 2 = n (here, η : R → A is the unit map).
If A is augmented, this is the same as a dg-comodule over the augmented
bar construction Bar+R(A) = BarR(A) whose underlying graded comodule
is cofree. We write the corresponding dg-comodule as Bar+R(M). A strictly
unital A∞-module is in particular homotopy-unital. A dg-module M is a
strictly unital A∞-module with ac2 = ac and ac1 = dM . A map f : M → N of
strictly unital A∞-modules is a map of A∞-modules such that f1 commutes
with the unit, and such that fn ◦ (id⊗i ⊗ η ⊗ id⊗j ⊗ idM ) = 0 for n > 1
and i+ j + 2 = n. The non-full dg-subcategory of A-modnu∞ consisting of
strictly unital A∞-modules is denoted A-mod∞.

An A∞-quasi-isomorphism is a morphism f : M → N with the prop-
erty that f1 : M → N is a quasi-isomorphism of R-dg-modules, where M
and N are equipped with the differential d = ac1. Denote by

A-mod∞(QF(R)) ⊂ A-mod∞(R-dgmod)

the full subcategory of A∞-modules M such that (M, ac1) is quasi-free as an
R-dg-module (we use analogous notation for non-unital and homotopy-unital
A∞-modules).
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We shall need adjunction statements for modules and comodules. If R is
a dg-algebra over k, A a dg-algebra over R, and C a dg-coalgebra over R,
then a twisting cochain is a closed map of R-dg-bimodules τ : C → A of
degree 1 such that

dAτ + τdC +m(τ ⊗ τ)∆ = 0.

If M ∈ C-dgcomod, we denote by A⊗τ
R M ∈ A-dgmod the dg-module whose

underlying graded module is A⊗R M , but whose differential is given by

dA⊗τ
RM = dA⊗RM + dτA⊗RM

where dτA⊗RM is the composition

dτA⊗RM : A⊗R M
idA⊗ca−−−−→ A⊗ C ⊗M

idA⊗τ⊗idM−−−−−−−→ A⊗A⊗M
mA⊗idM−−−−−→ A⊗M.

Similarly, if N ∈ A-dgmod, then we denote by C ⊗τ
R N ∈ C-dgcomod the co-

module whose underlying graded comodule is C ⊗R N , but whose differential
is given by

dC⊗τ
RN = dC⊗RN + dτC⊗RN

where

dτC⊗RM : C ⊗R N
∆⊗RidN−−−−−→ C ⊗R C ⊗R N

idC⊗Rτ⊗RidN−−−−−−−−−→ C ⊗R A⊗R N
idC⊗Rac
−−−−−→ C ⊗R N.

Finally, if M ∈ C-dgcomod and N ∈ A-dgmod, then we denote
by Homτ

R(M,N) the k-complex whose underlying graded k-module
is Hom·R(M,N) and whose differential is

dHomτ
R(M,N) = d

Hom·R(M,N)
+ dτ

Hom·R(M,N)

where dτ
Hom·R(M,N)

takes g ∈ Hom·R(M,N) to

dτ
Hom·R(M,N)

(g) : M
ca
−→ C ⊗R M

τ⊗g
−−→ A⊗R N

ac
−→ N.

One easily checks using the condition on τ that the obvious maps are in fact
isomorphisms of complexes

Hom·A(A⊗τ
R M,N) ∼= Homτ

R(M,N) ∼= Hom·C(M,C ⊗τ
R N).
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In particular,

A⊗τ
R − : C-dgcomod −→ A-dgmod

is left adjoint to

C ⊗τ
R − : A-dgmod −→ C-dgcomod.

One may show that for C = Bar(A), the natural map τ : C → A that kills
everything except the A⊗1[1]-component is a twisting cochain. If A is aug-
mented, we also get a twisting cochain on C = Bar+(A) by map τ : C → A
that takes A

⊗1
[1] into A. Analogous results hold for A being the augmented

or non-augmented cobar construction of a coalgebra C.
The following proposition is well-known and classical over a field (and

probably also over a ring, to the right people, but we found no reference):

2.2.1. Proposition. If the dg-algebra A is quasi-free as an R-dg-module,
and if M,N ∈ A-mod∞(QF(R)), then an A∞-quasi-isomorphism M → N is
a homotopy equivalence.

This shows that the category A-mod∞(QF(R)) is already derived.

Proof. Let f : M → N be an A∞-quasi-isomorphism. Then f1 : M → N is
a quasi-isomorphism of h-projective R-modules and hence a homotopy
equivalence. Consider the map of C-comodules f : C ⊗τ

R M → C ⊗τ
R N . We

filter the coalgebra C = BarR(A) as an R-dg-module by letting FnC =
⊕

i≤nA
⊗i[i]. This allows us to also filter C ⊗τ

R M and C ⊗τ
R N as R-

dg-modules by letting Fn(C ⊗τ
R M) = (FnC)⊗τ

R M and Fn(C ⊗τ
R N) =

(FnC)⊗τ
R N . In both cases, taking associated graded kills the differential dτ .

Since A is h-projective, grnφ : A⊗n[n]⊗R M → A⊗n[n]⊗R N is a homotopy
equivalence of R-dg-modules. Thus taking the cone

C ⊗τ
R M C ⊗τ

R N C(f),
f

we obtain a filtration on C(f) such that each graded piece is contractible
over R. The exact sequence of dg-comodules

C ⊗τ
R N −→ C(f) −→ C ⊗τ

R M [1]



✐

✐

“2-Orsted” — 2023/11/29 — 17:34 — page 671 — #9
✐

✐

✐

✐

✐

✐

Equivariant sheaves on loop spaces 671

splits as a short exact sequence of graded C-comodules. Therefore, taking
the graded hom, we get a short exact sequence of complexes of vector spaces

Hom·C(C ⊗τ
R M [1], C ⊗τ

R M)

→ Hom·C(C(f), C ⊗τ
R M) → Hom·C(C ⊗τ

R N,C ⊗τ
R M).

This therefore leads to a long exact sequence of the cohomologies. If we can
prove that the middle term Hom·C(C(f), C ⊗τ

R M) is exact, we will get that
precomposition

f∗ : Hom·C(C ⊗τ
R N,C ⊗τ

R M) −→ Hom·C(C ⊗τ
R M,C ⊗τ

R M)

is a quasi-isormophism. The class [id] ∈ H0Hom·C(C ⊗τ
R M,C ⊗τ

R M) will
then determine an element in H0Hom·C(C ⊗τ

R N,C ⊗τ
R M) which will be a

homotopy inverse to f .
In proving the claim that Hom·C(C(f), C ⊗τ

R M) = Homτ
R(C(f),M) is

exact, we use the previously mentioned exhaustive C-dg-comodule fil-
tration FnC(f) for which the graded pieces grnC(f) are contractible
over R, F−1C(f) = 0, and where each filtered and graded piece is projective
as a graded R-module. Therefore, the exact sequence of C-comodules

0 → Fn−1C(f) → FnC(f) → grnC(f) → 0

splits as an exact sequence of graded R-modules. Since homs commute with
direct sums, this yields an exact sequence

0 → Homτ
R(gr

nC(f),M)

→ Homτ
R(F

nC(f),M) → Homτ
R(F

n−1C(f),M) → 0.

Taking the long exact sequence of cohomologies, we obtain by induction that
the complex Homτ

R(F
nC(f),M) is exact for all n. Now we obtain the C(f)

as the right term in the exact sequence

0 −→
⊕

n≥0

FnC(f)
id−s
−−−→

⊕

n≥0

FnC(f) −→ C(f) −→ 0

where s is the sum of the inclusions FnC(f) →֒ Fn+1C(f). As before, this
sequence consists of complexes which are projective as graded modules, so
the sequence splits as a short exact sequence of graded modules. As above,
we get that Homτ

R(C(f),M) is exact, as claimed.
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We provide an alternative argument using Mittag–Leffler: As before,
we argue that the complex Homτ

R(F
nC(f),M) is exact for all n. As the

maps Homτ
R(F

nC(f),M) → Homτ
R(F

n−1C(f),M) are surjective, the inverse
system Homτ

R(F
nC(f),M) satisfies Mittag–Leffler. Therefore,

Homτ
R(C(f),M) = Homτ

R(lim−−→FnC(f),M) = lim
←−−

Homτ
R(F

nC(f),M)

is exact (both limits being unenriched limits evaluated in the category of
graded modules). □

2.2.2. Lemma. If A is a dg-algebra over R and M ∈ A-dgmod, then the
counit of adjunction

A⊗τ
R Bar(A)⊗τ

R M → M

is a quasi-isomorphism of A-dg-modules.

Proof. This is exactly the bar resolution of M . □

2.2.3. Lemma. If A is an augmented, flat dg-algebra over dg-algebra R
over k, and M is a strictly unital A∞-module over A which is flat over R,
then the unit of adjunction M → A⊗τ

R Bar+(M) is a quasi-isormophism of
A∞-modules.

Proof. We claim in fact that (M, ac1) → (A⊗τ
R Bar+(M), ac1) is a filtered

quasi-isomorphism. On both sides, filter M by the trivial filtration F iM = M
for all i ≥ 0. Filter C = Bar+(A) =

⊕

nA
⊗n[n] by F iC =

⊕

n≤iA
⊗n[n], and

filter A by F 0A = R and F iA = A for i > 0. Since all the tensor factors are
flat, this induces a filtration on A⊗τ

R Bar+(M) with gr0(A⊗τ
R Bar+(M)) =

M and

gri(A⊗τ
R Bar+(M)) = (A⊗R gri−1C ⊗R M)⊕ (griC ⊗R M) for i > 0.

We claim that gri(A⊗τ
R Bar+(M)) is contractible for i > 0. Indeed, the

differential is given by

dgri(A⊗τ
RBar+(M)) =

(

dA⊗Rgri−1C⊗RM p

0 dgriC⊗RM

)

where p : griC ⊗R M → A⊗R gri−1C ⊗R M comes from the isomor-
phism griC ∼= A[1]⊗R gri−1C. Clearly, letting

s =

(

0 0
id 0

)

,
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we get id = ds+ sd. □

2.2.4. Lemma. Let A be a dg-algebra over a dg-algebra R over k and let M ∈
QF(A). If A ∈ QF(R), then A⊗τ

R Bar(A)⊗τ
R M ∈ QF(A). Similarly, if A is

augmented and A ∈ QF(R), then A⊗τ
R Bar+(A)⊗τ

R M ∈ QF(A).

Proof. Filter the bar constructions by the number of tensor factors to kill the
bar differential and the τ -differential. Then apply Theorems 2.1.3 and 2.1.4.

□

2.2.5. Proposition. Let A be an augmented dg-algebra over a dg-algebra R
over k such that A is quasi-free as an R-dg-module. Then we have a quasi-
equivalence of dg-categories

D(A-dgmod) ∼= A-mod∞(QF(R)).

Proof. We use the presentation D(A-dgmod) ∼= QF(A). Since M is quasi-
free over A and A is quasi-free over R, we obtain from Theorem 2.1.2
that M |R ∈ QF(R). Thus we obtain a dg-functor

QF(A) −→ A-mod∞(QF(R)).

To see that it is fully faithful, we notice that if M,N ∈ A-mod∞(QF(R)),
then

HomA-mod∞(QF(R))(M,N) = HomBar+(A)(Bar
+(A)⊗τ

R M,Bar+(A)⊗τ
R N)

= HomA(A⊗τ
R Bar+(A)⊗τ

R M,N) ∼= HomD(A-dgmod)(M,N)

where the last equivalence is by Theorems 2.2.3 and 2.2.4. Quasi-essential
surjectivity also follows from Theorem 2.2.3. □

2.2.6. Proposition. For any augmented dg-algebra A which is quasi-
free over R, the inclusion A-mod∞(QF(R)) ⊂ A-modhu∞(QF(R)) is a quasi-
equivalence of dg-categories.

We believe this also holds for non-augmented dg-algebras, following a
proof like [1], but the proof is simpler in this special case.

Proof. We need to prove that the embedding is quasi-essentially surjective,
that is, that any homotopy-unital module can be resolved by a strictly
unital one. Given a module M ∈ A-modhu∞(QF(R)), we may regard M as
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a strictly unital A⊕R-module. Using Theorem 2.2.3, we obtain a quasi-
isomorphism M → (A⊕R)⊗τ

R Bar+A⊕R(M) over A⊕R. Restricting by the
unital dg-algebra map A = A⊕R →֒ A⊕R, we obtain that it is also a quasi-
equivalence over A. Since (A⊕R)⊗τ

R Bar+A⊕R(M) is strictly unital over A,
we have proved essential surjectivity. It is also quasi-free over R, as we can
filter the bar construction to kill the bar differential until we are left with a
tensor product of quasi-free R-modules. To prove quasi-fully faithfulness, we
note that the calculation of the hom space in D(A-dgmod) in the previous
proof works no matter if we are using the augmented or non-augmented bar
construction (one then applies Theorem 2.2.2 in place of Theorem 2.2.3).
Therefore, hom spaces agree on H0. By shifting, they also agree on H i for
all i. □

3. Koszul duality

The material below is a cross between three approaches to Koszul duality
for triangulated categories of modules. Firstly, there is a general approach
of [11]: the author considers a pair of a dg-algebra A over a ring K and a
dg-coalgebra C given by its bar construction. The duality couples certain
exotic derived categories of dg-modules (resp., dg-comodules).

Secondly, there is a similar approach due to [8] with one difference: we
stay in the world of usual derived categories all the way. Keller’s Koszul
duality is a special case of a general theorem describing a subcategory in a
dg-category C generated by a compact object M ∈ C.

Lastly, there is an approach of [10]. Its advantage is that the authors
work over a possibly non-affine base. Its drawback is that the authors work in
categories of graded dg-modules over dg-algebras equipped with the second
(inner) grading. We mostly retell linear Koszul duality below replacing the
use of the inner grading by Keller’s considerations.

3.1. Koszul complex

In what follows we develop a story in the spirit of quadratic-linear-scalar
duality due to Positselski.

Recall the most classical setting for it. Let K be a field of characteristic
zero, and fix a commutative K-algeba S and a finite rank free complex of S-
modules M . Denote M∗ = HomS(M,S). Consider the pair of quadratic dual
dg-algebras A = SymS(M [1]) and A! = SymS(M

∗[−2]), with differentials
obtained from the one inM by the Leibniz rule. Notice that symmetric algebra
in the definition is understood in the graded sense. Letting τ : A∗ → A![1]
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be the twisting cochain given by the identity on M∗, it is known that
K = (A∗ ⊗τ

S A!, dA∗⊗τ
SA

!) has a structure of an A–A!-dg-bimodule quasi-
isomorphic to the trivial module S both as an A- and as an A!-module. The
bimodule K is called the Koszul complex.

3.1.1. Remark. One way to find cohomology of K is as follows. Consider
the complex of S-modules CM = C(idM )[1]. The Koszul complex K can be
realized as SymS(CM ) as a graded S-module. Evidently, it is quasi-isomorphic
to S. The commuting actions of A and A! are recovered in the following way.
Consider the complex of S-modules CM ⊕ C∗M equipped with the canonical
non-degenerate, graded skew-symmetric bilinear form. This allows us to define
the Heisenberg algebra HeisS(CM ⊕ C∗M ) associated to CM ⊕ C∗M as the
free algebra with generators CM ⊕ C∗M and relations ab− (−1)|a||b|ba = ⟨a, b⟩.
It can be rewritten as

HeisS(CM ⊕ C∗M ) = HeisS(M [2]⊕M∗[−1])⊗S HeisS(M [1]⊕M∗[−2])

and maps naturally into the endomorphism algebra of the S-moduleK. It con-
tains the commuting subalgebras A = SymS(M [1]) and A! = SymS(M

∗[−2]).
One checks directly that HeisS(CM ⊕ C∗M ) is a dg-subalgebra in EndS(K)
and both subalgebras A and A! are dg-subalgebras in HeisS(CM ⊕ C∗M ).

3.2. Twisted case

Next we replace the ring S with a graded algebra and make its interaction
with A and A! more complicated. Fix a commutative ring K of characteristic
zero. Take two free K-modules of finite rank M and N . Let φ : M → N∗ be
a K-linear map. We consider the dg-algebras over K given by

A = HeisK(M [1]⊕N [−1]),

A! = SymK(N [−1] ϕ∗

−→ M∗[−2]).

The first algebra is the Heisenberg algebra on M [1]⊕N [−1] with respect to
the canonical, graded skew-symmetric bilinear form induced by φ.

3.2.1. Remark. Clearly this form restricts trivially both to M [1] and
to N [−1]. It follows that S = SymK(N [−1]) is a subalgebra in both A and A!.
However, S is not a dg-subalgebra in A!. Also, A is not a free graded skew-
commutative algebra over S (in fact, S is not even central in A). In this
sense, the previous case is a toy example for the present one.
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We generalize the construction of the Koszul complex. Consider the
complex of K-modules:

L =
(

(M∗ ⊕N)[−1]
(−idM∗ ,ϕ∗)
−−−−−−−→ M∗[−2]

)

.

Clearly it is quasi-isomoprhic to N [−1]. Consider K = SymK(L) with the
differential extended to symmetric powers by the Leibniz rule. It is quasi-
isomorphic to SymK(N [−1]) as a complex of K-modules. Generalizing the toy
example, we construct two commuting actions of the dg-algebras A and A!

on K explicitly.
Consider the Heisenberg algebra of the complex L⊕ L∗, where we

write L∗ = HomS(L, S):

HeisK(L⊕ L∗) = HeisK
(

M [2]⊕N [1]⊕M [1]⊕M∗[−1]⊕N [−1]⊕M∗[−2]
)

.

It embeds into the dg-algebra of endomorphisms of SymK(L) and acts natu-
rally on K.

Notice that the graded algebra A = HeisK(M [1]⊕N [−1]) embeds
into HeisK(L⊕ L∗) in the following way: While the embedding of M [1]
is the obvious one, N [−1] maps to M∗[−1]⊕N [−1] via (φ∗, id). One checks
directly that both the relations and the differentials match.

Notice that the dg-algebra A! = SymK(N [−1] → M∗[−2]) also embeds
naturally into HeisK(L⊕ L∗). Moreover its image belongs to the centralizer
of the image of A. We proved the following statement.

3.2.2. Lemma. The complex K has a natural structure of an A–A!-dg-
bimodule quasi-isomorphic to S = SymK(N [−1]) both as an A-module and
as an A!-module.

3.2.3. Remark. In fact, it is not hard to see that K ∼= A! ⊗τ A∗, where
the twisting cochain τ : A∗ → A![1] is given by the identity on M∗[−1]. Note
that by filtering A∗ by the number of tensor factors, we kill the twisted
differential, and hence we obtain a filtration of K by a finite number of free,
finitely generated A!-modules. Therefore, K is semifree over S (and hence
quasi-free). Also, K is free of finite sank as a graded A!-module and therefore
compact and h-projective in A!-dgmod.

3.3. Compact generators

Recall that an object M in a pretriangulated dg-category C is called compact
if the functor HomC(M,−) commutes with direct sums. We callM a compact
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generator if its right orthogonal M⊥ in the homotopy category, i.e. the
full subcategory of objects annihilated by H0(HomC(M,−)), is 0.

3.3.1. Theorem ([8, section 7.3]). Consider a dg-algebra S over a commu-
tative ring K. Let A be a dg-algebra in the category of dg-bimodules over S.
For M ∈ A-dgmod a compact generator, we have a quasi-equivalence of
dg-categories

D(A-dgmod) ∼−−→ D(E-dgmod)

given by N 7→ RHomA(M,N). Here, E denotes the dg-algebra E =
RHomA(M,M)op.

The generator condition can be omitted in the following way. Slightly
abusing notation we denote the full subcategory in D(A-dgmod) consisting
of objects whose images belong to the right orthogonal to M ∈ A-dgmod
by M⊥. Take the Drinfeld quotient dg-category D(A-dgmod)/M⊥.

3.3.2. Corollary. For a compact object M ∈ A-dgmod we have a quasi-
equivalence of dg-categories

D(A-dgmod)/M⊥ ∼−−→ D(E-dgmod)

given by the same functor as in the previous theorem.

3.3.3. Remark. It is convenient to identify the quotient dg-category

D(A-dgmod)/M⊥

with the subcategory in D(A-dgmod) generated by M , i.e. with the minimal
pretriangulated subcategory in D(A-dgmod) containing M that has arbitrary
small coproducts. Denote the latter by ⟨M⟩. The previous corollary means
that

⟨M⟩ ∼−−→ D(E-dgmod)

for E = RHomA(M,M)op.

3.4. Geometric setting

We pass to our case of interest. Let X be a regular Noetherian affine scheme
over a field of characeristic zero, and let K = OX be its ring of regular
functions. Consider two finite rank vector bundles M and N on X and
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a vector bundle map φ : M → N∗ like in section 3.2. We obtain a pair of
dg-algebras A! and A and their Koszul complex K which is a resolution of S.
In other words,

A = HeisOX
(M [1]⊕N [−1]),

A! = SymOX
(N [−1] → M∗[−2]),

S = SymOX
(N [−1]).

We work in the dg-category C = A!-dgmod. Recall from Theorem 3.2.3 that
K is an h-projective and quasi-free resolution of S in C.

Denote the dg-algebra HomA!(K,K)op by E.

3.4.1. Corollary. We have a quasi-equivalence of dg-categories

D(A!-dgmod)/S⊥ ∼−−→ D(E-dgmod).

3.4.2. Remark. Following the usual geometric intuition, we denote the trian-
gualted subcategory ⟨S⟩ by D(A!-dgmod)tors. This way, using Theorem 3.3.3,
the quasi-equivalence from Theorem 3.3.2 reads as follows:

D(A!-dgmod)tors ∼−−→ D(E-dgmod).

3.4.3. Lemma. We have a quasi-isomorphism of dg-algebras A ∼−−→
HomA!(K,K)op.

Proof. We have a map

A −→ HomS(A
∗, A∗)op −→ HomA!(A! ⊗τ

S A∗, A! ⊗τ
S A∗)op,

which also shows that HomS(K,K)op is a dg-algebra over S. To see that this
map is a quasi-isomorphism, we observe that the fact thatK is a quasi-free res-
olution of S (see Theorems 3.2.2 and 3.2.3) implies that Hom·

A!(K,K)op cal-
culates RHomA!(S, S)op. Therefore, the augmentation A! → S induces a
quasi-isomorphism

Hom·
A!(K,K)op ∼−−→ Hom·

A!(K,S) = Homτ
S(A

∗, S) = A.

One checks directly that the composition A → Hom·
A!(K,K)op → A is

the identity. By the two-out-of-three property, the first map is a quasi-
isomorphism. Therefore, as an algebra, Hom·

A!(K,K)op is quasi-isomorphic
to A. □
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We proved the following statement:

3.4.4. Proposition. We have a quasi-equivalence of dg-categories

D(A!-dgmod)tors ∼−−→ D(A-dgmod).

4. Homotopy limits

For a general introduction to the homotopy limit machinery we shall use, we
refer the reader to [3]. To us, a homotopy limit will be always understood as
the derived functor of the limit functor in the model category-theoretic sense,
and it serves as a concrete realization of the ∞-categorical limit functor. In
particular, the homotopy limit preserves weak equivalences.

4.1. General lemmata on homotopy limits

The following section adds a few technical lemmata to [3] which we shall
need.

4.1.1. Lemma. Let C be a combinatorial model category and Γ1,Γ2 two cat-
egories. The homotopy limit holim

←−−−−Γ1×Γ2
F may be calculated componentwise,

i.e.

holim
←−−−−

(γ1,γ2)∈Γ1×Γ2

F (γ1, γ2) = holim
←−−−−
γ1∈Γ1

(

holim
←−−−−
γ2∈Γ2

F (γ1, γ2)
)

where both homotopy limits on the right-hand side are derived functors of
the pointwise limit lim

←−−Γi
: CΓi → C.

Proof. Recall from [3] that the limit functor

lim
←−−

Γ1×Γ2

: CΓ1×Γ2

inj → C

is right Quillen, where CΓ1×Γ2

inj is the category of diagrams Γ1 × Γ2 → C
equipped with the injective model structure. Hence we have

holim
←−−−−
Γ1×Γ2

F = lim
←−−

Γ1×Γ2

R(F ) = lim
←−−
γ1∈Γ1

(

lim
←−−
γ2∈Γ2

R(F )(γ1, γ2)
)

where R(F ) is a fibrant replacement of F in CΓ1×Γ2

inj . Now CΓ1×Γ2

inj = (CΓ2

inj)
Γ1

inj

(since they clearly have the same cofibrations and trivial cofibrations),
so R(F )(γ1,−) is fibrant in CΓ2

inj for all γ1 ∈ Γ1. This shows that the
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limit lim
←−−γ2∈Γ2

R(F )(γ1, γ2) calculates holim
←−−−−γ2∈Γ2

F (γ1, γ2) for all γ1 ∈ Γ1.
Furthermore, the limit functor

lim
←−−
Γ2

: (CΓ2

inj)
Γ1

inj → CΓ1

inj

is right Quillen by [9, Remark A.2.8.6]. Thus lim
←−−γ2∈Γ2

R(F )(−, γ2) is in fact
a fibrant realization of the object holim

←−−−−γ2∈Γ2
F (−, γ2) in CΓ1

inj. Therefore,

lim
←−−
γ1∈Γ1

(

lim
←−−
γ2∈Γ2

R(F )(γ1, γ2)
)

= holim
←−−−−
γ1∈Γ1

(

holim
←−−−−
γ2∈Γ2

F (γ1, γ2)
)

as claimed. □

4.1.2. Lemma. The category ∆ is sifted, i.e. the diagonal embedding ∆ →
∆×∆ is homotopy-initial. In other words,

holim
←−−−−
[n]∈∆

F ([n], [n]) = holim
←−−−−

([n],[m])∈∆×∆

F ([n], [m]).

Proof. The statement that ∆ is sifted is proved in [7, Example 21.5]. For a
proof that homotopy-initial functors preserve homotopy limits, see e.g. [3,
Theorem 6.1]. □

4.1.3. Example. Let G be a group scheme which is the semidirect prod-
uct G = N ⋊H of a normal subgroup N and a subgroup H, and let it act
on a scheme X. We claim that there is an isomorphism of stack quotients

[[X/N ]/H] ∼= [X/G].

To see this, write φg : N → N for the action of g ∈ G on N . Now notice that
we have an isomorphism

[[X/N ]n/H]n ∼−→ [X/G]n

given by

(

h1, . . . , hn, (n1, . . . , nn, x)
)

7−→
(

φh1···hn
(n1)h1, φh2···hn

(n2)h2, . . . , φhn
(nn)hn, x

)

.

Taking colimits on both sides and applying the two lemmas yields the desired
result.
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4.2. Homotopy limits in dg-categories

We denote by dgSch(k) the category of dg-schemes over a field k, which for
us means the opposite category of the category dgAlg≤0(k) of graded commu-
tative dg-algebras over k sitting in non-positive degree. Given X ∈ dgSch(k),
we denote by AX ∈ dgAlg≤0(k) the associated dg-algebra and call X◦ =
Spec(H0AX) the underlying scheme of X. We shall often write X =
(X◦, AX) and think of AX as a dg-algebra over OX◦ . Note that a mor-
phism f : (X◦, AX) → (Y ◦, AY ) of affine dg-schemes is equivalent to the data
of a morphism of schemes f : X◦ → Y ◦ and a comorphism f# : AY → AX of
OY ◦-dg-algebras. The dg-category of quasi-coherent sheaves on the dg-
scheme (X◦, AX) is just QCoh(X) = AX -dgmod, the category of dg-modules
over AX .

An (affine) group dg-scheme is a group object G = (G◦, AG) in the
category of affine dg-schemes. This means that the underlying scheme G◦

is an affine group scheme, and that the comorphism AG → AG ⊗OG
AG of

the composition map equips AG with the structure of a Hopf dg-algebra
over OG◦ .

Suppose that G is a group dg-scheme acting on a dg-scheme X. Then the
category of G-equivariant sheaves on X is defined to be the homotopy limit

QCoh(X)G = holim
←−−−−
[n]∈∆

QCoh(Xn)

taken in the category dgCat(k) of dg-categories over k equipped with
Tabuada’s model structure (see [12]), and where X· is the classifying space
of the action groupoid G×X ⇒ X. Similarly, define

(

DQCoh(X)
)

G = holim
←−−−−
[n]∈∆

DQCoh(Xn).

Suppose that N and H are group dg-schemes such that N acts on H
by means of automorphisms. Then we can form the external semidirect
product N ⋊H whose underlying dg-scheme is N ×H, and with group
structure defined by the usual formula. We also call a group dg-scheme G a
semidirect product of group dg-subschemes N and H if it is isomorphic to
the external semidirect product, and we write G = N ⋊H . This is equivalent
to having a short exact sequence of group dg-schemes 1 → N → G → H → 1
such that there exists a monomorphism H →֒ G with H →֒ G → H being
the identity. Applying H0, we get that H0(AH) → H0(AG) → H0(AH) is
also the identity, so H0(AH) → H0(AG) is injective, which implies that we
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also have a short exact sequence 1 → N◦ → G◦ → H◦ → 1 of the underlying
group schemes. In particular, the underlying group scheme of G is a semidirect
product G◦ = N◦ ⋊H◦.

The same proof as in the classical case shows that we have an isomorphism
of dg-schemes G ∼= N ×H. This yields an isomorphism AG

∼= AN ⊗AH of
dg-algebras over the underlying field. Therefore, if G is acting on a dg-
schemeX, we obtain similarly to Theorem 4.1.3 an isomorphism A⊗nG ⊗AX

∼=
A⊗nN ⊗A⊗nH ⊗AX . Applying QCoh and taking homotopy limits, we obtain
from Theorems 4.1.1 and 4.1.2 that

4.2.1. Proposition. If a group dg-scheme G = N ⋊H acts on an affine
dg-scheme X, we have

QCoh(X)G ∼=
(

QCoh(X)N
)

H ,

i.e. you can impose G-equivariance by first imposing N -equivariance and
then H-equivariance. Similarly, we have for derived categories that

(

DQCoh(X)
)

G ∼=
((

DQCoh(X)
)

N
)

H .

We recall from [4] the statement

4.2.2. Theorem. Suppose that X1 ⇒ X0 is a groupoid in affine dg-schemes,
and consider the associated classifying space X· given by

Xn = X1 ×X0
X1 ×X0

· · · ×X0
X1.

Write An = AXn
for the associated cosimplicial system of dg-algebras. Let A =

A0 and C = A1, and note that C is a counital coalgebra in A-dgmod-A via
the map ∆ = ∂#

1 : C → C ⊗A C. Then we have a quasi-equivalence of dg-
categories

holim
←−−−−∆

QCoh(X·) ∼= C-comodhcu,formal
∞ (A-dgmod),

where the right-hand side denotes the dg-category of formal, homotopy-
counital A∞-comodules over C in A-dgmod.

4.2.3. Remark. Suppose that we replace QCoh(X·) by DQCoh(X·). We
may realize this as DQCoh(X·) = QF(QCoh(X·)). Since the pullbacks are
exact and have exact right adjoints, they transform quasi-free objects into
quasi-free objects. This gives a direct description of the derived functors.
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Therefore, one may repeat the proof of the theorem above to obtain the
realization

holim
←−−−−∆

DQCoh(X·) ∼= C-comodhcu,formal
∞ (QF(A-dgmod))

for the homotopy limit of the cosimplicial system of derived dg-categories.
In particular, derived dg-categories commute with equivariance.

5. Equivariant sheaves on loop spaces

Let X ba an affine, smooth, and Noetherian scheme over C. Inspired by
the Hochschild–Kostant–Rosenberg theorem, we define the loop space of
the scheme X as the affine dg-scheme LX = (X,ΩX), where ΩX is the
non-positively graded algebra of differential forms regarded as a dg-algebra
with differential d = 0. If x ∈ X is a point, the based loop space at x is
the dg-scheme LxX = LX ×X x = (X, Sym(T ∗xX

◦[1])), the fibre at x of the
evaluation map LX → X.

5.0.1. Example. In the case of a group dg-scheme G, we have LG =
LeG⋊G, and the based loop space is LeG = g[−1] = (Spec(C), Sym(g∗[1])).

5.0.2. Theorem. Let X ba an affine, smooth, and Noetherian scheme over C
acted on by an affine group scheme G. The derived category of (G,ΩG)-
equivariant ΩX-dg-modules is equivalent to the triangulated subcategory

⟨OX⟩ ⊂ D
(

SymOX
(g⊗OX [−1] → TX [−2])-dgmod

)G

of the derived category of G-equivariant dg-modules generated by OX and
closed under small coproducts.

Proof. Because of the decomposition LG = LeG⋊G from Theorem 5.0.1,
we recall from Theorem 4.2.1 that

(

DQCoh(LX)
)

LG ∼=
((

DQCoh(LX)
)

LeG
)

G.

Via Theorem 4.2.3, we obtain

(

DQCoh(LX)
)

LG ∼= holim
←−−−−
[n]∈∆

holim
←−−−−
[m]∈∆

D(OGn ⊗ Sym(g∗[1])⊗m ⊗ ΩX -dgmod)

∼= holim
←−−−−
[n]∈∆

(

Cn-comodhcu,formal
∞ (QF(Rn-dgmod))

)
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where Rn = OGn ⊗ ΩX and Cn = OGn ⊗ Sym(g∗[1])⊗ ΩX . The Rn–Rn-
bimodule structure on Cn comes from the two face maps

Gn × LeG× LX Gn × LeG× LX

Gn × LX
∂0 ∂1

given by ∂0(g, γ, δ) = (g, δ) and ∂1(g, γ, δ) = (g, γ(δ)). Taking comorphisms,
the bimodule structure maps are given by

OGn ⊗ Sym(g∗[1])⊗ ΩX OGn ⊗ Sym(g∗[1])⊗ ΩX

OGn ⊗ ΩX

∂#
0 ∂#

1

where ∂#
0 = idOGn ⊗ 1⊗ idΩX

provides the right module structure, whereas

∂#
1 = idOGn ⊗ ca provides the left module structure; here,

ca : ΩX → Sym(g∗[1])⊗ ΩX

denotes the coaction map. This coaction map can be made explicit: The
action of G on X yields a map

(g⊗OX)⊕ TX −→ TX

given fibrewise by dρe,x : g⊕ TxX −→ TxX, (v, ξ) 7−→ ξ + d(ρ(x))e(v), where
the map ρ(x) : G → X is given by g 7→ gx. This may be dualized to a map

T ∗X −→ (g∗ ⊗OX)⊕ T ∗X, ω 7−→ φ(ω) + ω,

where φ : T ∗X −→ g
∗ ⊗OX .

Denoting Sym(φ) also by φ, this provides us with the map

ca: SymOX
(T ∗X[1]) −→ SymOX

(g∗ ⊗OX [1])⊗OX
SymOX

(T ∗X[1])

which is our coaction map

ca: ΩX −→ Sym(g∗[1])⊗ ΩX , ω 7−→ 1⊗ ω + φ(ω)⊗ 1.

The coalgebra structure on Cn comes from the composition

∂1 : G
n × LeG× LX ×Gn×LX Gn × LeG× LX −→ Gn × LeG× LX,
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taking a pair ((g, γ2, δ2), (g, γ1, δ1)) with δ2 = γ1(δ1) to (g, γ2γ1, δ1). In other
words, the coalgebra map ∆ = ∂#

1 : Cn → Cn ⊗Rn
Cn is given by

Cn = OGn ⊗ Sym(g∗[1])⊗ ΩX x⊗ y ⊗ z

OGn ⊗ Sym(g∗[1])⊗ Sym(g∗[1])⊗ ΩX x⊗ (1⊗ y + y ⊗ 1)⊗ z

Cn ⊗Rn
Cn (1⊗ 1⊗ 1)⊗ (x⊗ y ⊗ z)

+ (1⊗ y ⊗ 1)⊗ (x⊗ 1⊗ z).

Now the coalgebra Cn is free of finite rank as a right dg-module over the dg-
algebra Rn. Therefore, we may consider the algebra An = Hommod-Rn

(Cn, Rn)
in the category OGn ⊗ ΩX -dgmod-OGn ⊗ ΩX . By adjunction, we get a quasi-
equivalence of dg-categories

Cn-comodhcu,formal
∞ (QF(Rn-dgmod)) ∼= An-modhu∞(QF(Rn-dgmod))

between Cn-comodhcu,formal
∞ and the category of homotopy-unital A∞-

modules over An. The “formal” attribute becomes redundant in this case, as
A∞-modules have no similar convergence condition. We then apply Theo-
rems 2.2.5 and 2.2.6 to obtain that the right-hand side is a presentation of
the derived dg-category D(Rn-dgmod). We sum up the conclusion so far:

5.0.3. Lemma. (DQCoh(LX))LG ∼= holim
←−−−−[n]∈∆

D(An-dgmod).

We claim that the algebra An has a a description as a Heisenberg algebra:

5.0.4. Lemma. The algebra An is the Heisenberg algebra

An = HeisOGn×X
(Mn[1]⊕Nn[−1])

where

Mn = OGn ⊗ T ∗X and Nn = OGn×X ⊗ g

and the pairing is induced by the map φ : Mn → N∗n from above.
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Proof. The underlying complex of An is

An = OGn ⊗ Sym(g[−1])⊗ ΩX .

For an a ∈ An, we have, by the comodule structure on Cn, that a(x⊗
y ⊗ z) = a(1⊗ y ⊗ 1) · x⊗ z for all elements x⊗ y ⊗ z ∈ Cn. Therefore, a is
determined by the element a(1⊗ y ⊗ 1) for y ∈ Sym(g∗[1]). By the above
coalgebra structure, we have for a, b ∈ An that

(a · b)(1⊗ y ⊗ 1) = a(1⊗ 1⊗ 1)b(1⊗ y ⊗ 1) + a(1⊗ y ⊗ 1)b(1⊗ 1⊗ 1)

so a · b = a ∧ b, and we recover the free multiplication on Sym(g[−1]).
The left Rn-multiplication on An is given by the left Rn-multiplication

on Rn. The right Rn-multiplication is given by the left Rn-multiplication
on Cn. To rewrite this, we let r ∈ OGn ⊗ T ∗X[1] ⊂ Rn and a ∈ OGn ⊗
g[−1]⊗ 1 ⊂ An. Then the map a : OGn ⊗ Sym(g∗[1])⊗ ΩX → OGn ⊗ ΩX

kills all elements except those of the form x⊗ y ⊗ z for y ∈ g
∗[1] ⊂ Sym(g∗[1]).

The element φ(r) is of this form. It follows that we have

a · r = a(ca(r) · −) = a
(

(r + φ(r)) · −
)

= (−1)|r||−|a(− · r) + ⟨φ(r), a⟩

= (−1)|r||−|a(−) · r + ⟨φ(r), a⟩

= (−1)|r||−|(−1)|r|(|a|+|−|)r · a(−) + ⟨φ(r), a⟩

= (−1)|a||r|r · a+ ⟨φ(r), a⟩

(note that |a| = 1 and |r| = −1, but they have been kept in the equation for
clarity). In other words, we obtain the desired Heisenberg algebra structure.

□

Applying the Koszul duality statement of Theorem 3.4.4 over the
base Sn = SymOGn×X

(N [−1]), we obtain a quasi-equivalence of dg-categories

D(An-dgmod) ∼= D(A!
n-dgmod)tors

where

A!
n = SymOGn×X

(

Nn[−1]
ϕ∗

−→ M∗n[−2]
)

= SymOGn×X

(

OGn ⊗ g⊗OX [−1]
ϕ∗

−→ OGn ⊗ TX[−2]
)

.
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Thus

(

DQCoh(LX)
)

LG ∼= holim
←−−−−
[n]∈∆

D(A!
n-dgmod)tors

∼= D
(

SymOX
(g⊗OX [−1]

ϕ∗

−→ TX[−2])-dgmod
)G

tors

which is what we wanted to prove. □
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