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We establish that the map f 7→ |∇Mαf | is continuous from
W 1,1(Rd) to Lq(Rd), where α ∈ (0, d), q = d

d−α
and Mα denotes

either the centered or non-centered fractional Hardy–Littlewood
maximal operator. In particular, we cover the cases d > 1 and
α ∈ (0, 1) in full generality, for which results were only known for
radial functions.

1. Introduction

Given f ∈ L1
loc

(Rd) and 0 ≤ α < d , the centered fractional Hardy–
Littlewood maximal operator is defined by

Mαf(x) := sup
r>0

rα

|B(x, r)|

ˆ

B(x,r)
|f(y)| dy

for every x ∈ R
d . The non-centered version of Mα, denoted by M̃α, is defined

by taking the supremum over all balls B(z, r) such that x is contained in the
closure of B(z, r). In what follows, we use Mα to denote either the centered
or non-centered version, in the sense that if we formulate a result or a proof
for Mα, we mean that it holds for both Mα and M̃α. The non-fractional
case α = 0 corresponds to the classical maximal function, which we denote
by M = M0, M̃ = M̃0 and M = M0.

The study of regularity properties for M and Mα started with the in-
fluential works of Kinnunen [13] and Kinnunen and Saksman [14], where it
was established that

(1.1) |∇Mαf(x)| ≤ Mα|∇f |(x)

a.e. in R
d. The mapping properties of Mα then imply that the map f 7→

Mαf is bounded from W 1,p(Rd) to W 1,q(Rd) when 1 < p ≤ d/α and 1
q =

689
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1
p − α

d . At the endpoint p = 1 this boundedness fails since Mαf /∈ Lq(Rd)
unless f = 0 a.e.. However, one can still consider the following question:

(1.2) Is the map f 7→ |∇Mαf | bounded from W 1,1(Rd) to L
d

d−α (Rd) ?

By a dilation argument, this is equivalent to proving that there exists a
constant C > 0 such that

(1.3) ∥∇Mαf∥Ld/(d−α)(Rd) ≤ C∥∇f∥L1(Rd).

This question was first explored in the classical case α = 0 and d = 1
[1, 15, 23] and, more recently, for d > 1, radial functions and non-centered

M̃ [18]. For α > 0, this boundedness was first considered in [6], where the

case d = 1 was settled for M̃α. Moreover, they observed that the case d > 1,
1 ≤ α < d follows via Sobolev embedding and the smoothing property of Mα

obtained by Kinnunen and Saksman [14], which ensures that if 1 ≤ α < d
and f ∈ Lp(Rd) with 1 ≤ p ≤ d/α, then

(1.4) |∇Mαf(x)| ≤ (d− α)Mα−1f(x)

a.e. in R
d.

For 0 < α < 1, the first boundedness result in higher dimensions was
established for M̃α in [19] for radial functions. Analogous results in both
d = 1 and d > 1 were obtained for Mα in [3], where a pointwise relation

between ∇Mα and ∇M̃α was observed for the first time for α > 0. That
relation revealed that both operators behave quite similarly, unlike it was
previously thought; note that without taking the gradient the two maximal
functions are comparable. Very recently, the question (1.2) was established
in full generality by the fourth author in [24] for α > 0 for both the centered

and the uncentered operator M̃α, completing the remaining open cases in
the fractional setting (that is, d > 1, 0 < α < 1 and general f). And indeed,
the proof in [24] is almost identical for both maximal operators. It is based
on the corresponding bound for the dyadic maximal operator in the non-
fractional case α = 0 in [25]. Other interesting related results in the context
of fractional maximal functions have recently been proven in [4, 9, 12, 21, 22].

In this manuscript we explore the continuity of the map f 7→ |∇Mαf | for
α > 0. Note that this map is not sublinear, and thus its boundedness from
W 1,1(Rd) to Ld/(d−α)(Rd) does not immediately imply its continuity as a
map between those function spaces. For p > 1, the continuity can be estab-
lished by the methods developed by Luiro [16], which rely on the Lebesgue
space mapping properties of Mα. Once again, the endpoint case p = 1 is
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more intricate. For d = 1 the continuity was established by the third author
[20] for the non-centered case and by the first and third authors [2] for the
centered case. For d > 1, similarly to the boundedness, we shall distinguish
between the ranges 1 ≤ α < d and 0 < α < 1. For the former range, the
result can be obtained via the inequality (1.4) and dominated convergence
theorem arguments. This was proven in [2]. The range 0 < α < 1 is harder as
one can no longer appeal to (1.4). Positive results under a radial assumption
on f were obtained by the first and third authors in both the non-centered
[2] and centered case [3]. We refer to [5, 7, 10, 17] for complementary results

regarding the continuity of M̃ .
Here we establish the following complete result for α > 0, which in par-

ticular yields the continuity in the remaining open cases, that is, for d > 1,
0 < α < 1 and general functions f ∈ W 1,1(Rd).

Theorem 1.1. Let Mα ∈ {M̃α,Mα}. If 0 < α < d, the operator f 7→
|∇Mαf | maps continuously W 1,1(Rd) into Ld/(d−α)(Rd).

As observed in [2], it suffices to establish the continuity for any com-
pact set K ⊆ R

d. For any given δ > 0, we consider two types of points in
K, depending on whether the ball with maximal average has large radius
(larger than δ) or small radius (smaller than δ). The techniques from [2, 3]
immediately apply to prove the continuity for the points whose maximal ball
has large radius: the radiality assumption was not used in that situation.

Thus, in order to establish continuity in Theorem 1.1, it suffices to bound
contributions coming from points whose maximal ball has small radius, i.e.
radius smaller than δ, and show that they go to zero for δ → 0. This is
the main novelty of this paper. To obtain this bound for points with small
radius, we first note that on any compact set K, Mαf is bounded away from
0. Then we use the Poincaré–Sobolev inequality, which becomes stronger the
smaller the radius is and the larger the average of the function is. Then we
apply a refined version of (1.4) which allows us to invoke a local version
of the boundedness (1.3) in [24] on the subset of points with small radius.
This yields the desired result. In the passage, we also use a refined version
of (1.1).

The proof of Theorem 1.1 is presented in Section 4. Auxiliary results
which feature prominently in the proof are presented in Sections 2 and 3.

Notation. Given a measurable set E ⊆ R
d, we denote by Ec := R

d\E the
complementary set of E in R

d. For c ∈ R, we denote by cE the concentric
set to E dilated by c. The integral average of f ∈ L1

loc
(Rd) over E is denoted

by fE ≡
´

E f := |E|−1
´

E f . Given a ball B ⊆ R
d, we denote its radius by
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r(B). The volume of the d-dimensional unit ball is denoted by ωd. The weak
derivative of f is denoted by ∇f .

Acknowledgments. The authors would like to thank Juha Kinnunen
for his encouragement. D.B. was partially supported by NSF grant
DMS-1954479. J.W. has been supported by the Vilho, Yrjö and Kalle
Väisälä Foundation of the Finnish Academy of Science and Letters.

2. Families of good balls

In this section we develop some estimates and identities regarding the weak
derivative of the maximal functions of interest. We shall only be concerned
with 0 < α < d, although many of the arguments can also be extended to
α = 0.

2.1. The truncated fractional maximal function

An important object for our purposes are the truncated fractional maximal
operators which, for a given δ > 0, are defined as

M δ
αf(x) := sup

r>δ
rα
ˆ

B(x,r)
|f(y)| dy and

M̃ δ
αf(x) := sup

B̄(z,r)∋x
r>δ

rα
ˆ

B(z,r)
|f(y)| dy.

We use Mδ
α to denote either M δ

α or M̃ δ
α. Note that if δ = 0, we recover the

original operators Mα = M0
α. The following is a well-known and elementary

result; see for instance [3, Lemma 2.4] and [11, Lemma 8].

Proposition 2.1. Let 0 < α < d and δ > 0. If f ∈ L1(Rd), then Mδ
αf is

Lipschitz continuous (in particular, a.e. differentiable).

2.2. Weak derivative and approximate derivative

As mentioned in the introduction, the fourth author proved in [24], after
partial contributions by many, the following result.
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Theorem 2.2 ([24, Theorem 1.1]). Let 0 < α < d and f ∈ W 1,1(Rd).
Then Mαf is weakly differentiable and the bound

∥∇Mαf∥Ld/(d−α)(Rd) ≤ Cd,α∥∇f∥L1(Rd)

holds, where the constant Cd,α > 0 only depends on α and the dimension.

It will be convenient in our arguments to also recall the concept of ap-
proximate derivative. A function f : Rd → R is said to be approximately
differentiable at a point x0 ∈ R

d if there exists a vector Df(x0) ∈ R
d such

that, for any ε > 0, the set

(2.1) Aε :=

{
x ∈ R

d :
|f(x) − f(x0) − ⟨Df(x0), x− x0⟩|

|x− x0|
< ε

}

has x0 as a density point. In this case, Df(x0) is called the approximate
derivative of f at x0 and it is uniquely determined. It is well-known that
if f is weakly differentiable, then f is approximately differentiable a.e. and
the weak and approximate derivatives coincide [8, Theorem 6.4].

The approximate derivative satisfies the following property, which will
play a rôle in Propositions 2.4 and 2.6 below.

Lemma 2.3. Let f be approximately differentiable at a point x ∈ R
d. Then

there exists a sequence {hn}n∈N with |hn| → 0 such that

|Df(x)| = − lim
n→∞

f(x + hn) − f(x)

|hn|
,

where Df(x) denotes the approximate derivative of f at x.

Proof. Let 0 < ε < π/2. By the definition of the approximate derivative,
there exists 0 < ρ < ε such that

(2.2) |Aε ∩B(x, ρ)| ≥
(

1 −
ωd−1

dωd
(sin ε)d−1(cos ε)d

)
|B(x, ρ)|

where Aε is as in (2.1).
If Df(x) = 0, the result simply follows by the definition of Aε and taking

ε = 1/n.
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ε

ρ

Df(x)

ρ sin ε

Γε,ρ(x)

B(x, ρ)

Aε

Figure 1. The sets Γε,ρ(x) and Aε intersect.

Assume next Df(x) ̸= 0. For each h ∈ R
d, let βh denote the angle formed

by h and −Df(x), so that

−⟨Df(x), h⟩ = |Df(x)||h| cosβh.

The set

Γε,ρ(x) := {x + h : h ∈ B(0, ρ), βh ≤ ε}

has measure

|Γε,ρ(x)| >

ˆ ρ cos ε

0
ωd−1(r sin ε)d−1 dr =

ωd−1

d
(sin ε)d−1(cos ε)dρd.

Thus, it follows from (2.2) that Γε,ρ(x) ∩Aε ̸= ∅, so by the definition of Aε

there is an h ∈ R
d such that

|f(x + h) − f(x) − ⟨Df(x), h⟩|

|h|
< ε,(2.3)

βh ≤ ε and 0 < |h| < ρ < ε.

By the triangle inequality, for h satisfying (2.3),

∣∣∣∣|Df(x)| +
f(x + h) − f(x)

|h|

∣∣∣∣ ≤
∣∣∣∣|Df(x)| +

⟨Df(x), h⟩

|h|

∣∣∣∣

+

∣∣∣∣
f(x + h) − f(x)

|h|
−

⟨Df(x), h⟩

|h|

∣∣∣∣
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< |Df(x)||1 − cosβh| + ε

≤ |Df(x)||1 − cos ε| + ε.

As |Df(x)| ≠ 0, the result now follows taking ε = min{1/2n, 1/
√

|Df(x)|n}
and the corresponding hn = h from the previous display. □

The approximate derivative of Mf for a.e. approximately differentiable
functions f ∈ L1(Rd) was studied by Haj lasz and Malý [11]. In particular,
their arguments show that if f ∈ L1 is a.e. approximately differentiable, then
Mαf is a.e. approximately differentiable.

2.3. The families of good balls

Let 0 < α < d and δ ≥ 0. For the uncentered maximal operator, given a
function f ∈ W 1,1(Rd) and a point x ∈ R

d, define the family of good balls
for f at x as

Bδ
α,x ≡ Bδ

α,x(f) :=
{
B(z, r) : r ≥ δ, x ∈ B(z, r),

Mδ
αf(x) = rα

ˆ

B(z,r)
|f(y)| dy

}
.

For the centered maximal operator we use the same definition, except that
z = x. Note that Bδ

α,x ̸= ∅ for all x ∈ R
d if δ > 0. Moreover, by the Lebesgue

differentiation theorem Bα,x ≡ B0
α,x ̸= ∅ for a.e. x ∈ R

d, and if B(z, r) ∈ B0
α,x,

then r > 0. This immediately implies that for a.e. x there exists δx > 0 such
that if 0 ≤ δ < δx, then

Mδ
αf(x) = Mαf(x).

This type of observation will be used at the derivative level in the forthcom-
ing Lemma 3.5.

2.4. Luiro’s Formula

An important tool for our purposes is the so called Luiro’s formula, which
relates the derivative of the maximal function with the derivative of the
original function. It corresponds to a refinement of Kinnunen’s inequality
(1.1) and has its roots in [16, Theorem 3.1].
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Proposition 2.4. Let 0 < α < d, δ ≥ 0 and f ∈ W 1,1(Rd). Then, for a.e.
x ∈ R

d and B = B(z, r) ∈ Bδ
α,x, the weak derivative ∇Mδ

αf satisfies

(2.4) ∇Mδ
αf(x) = rα

ˆ

B
∇|f |(y) dy.

Proof. This essentially follows from an argument of Haj lasz and Malý [11,
Theorem 2], which we include for completeness. By §2.2 the weak gradient
of Mδ

αf equals its approximate gradient almost everywhere, so it suffices to
show (2.4) at a point x at which Mδ

αf is approximately differentiable and
for which there exists B = B(zx, rx) ∈ Bδ

α,x. Define the function ϕ : Rd → R

by

ϕ(y) := Mδ
αf(y) − rα

ˆ

B(zx+y−x,rx)
|f(t)| dt

= Mδ
αf(y) − rα

ˆ

B(zx−x,rx)
|f(t− y)| dt,

which satisfies ϕ ≥ 0 and ϕ(x) = 0. Thus, ϕ has a minimum at x. Further-
more, ϕ is approximately differentiable at x (note that one can differentiate
under the integral sign) and by Lemma 2.3 there exists a sequence {hn}n∈N
with |hn| → 0 such that

|Dϕ(x)| = − lim
n→∞

ϕ(x + hn) − ϕ(x)

|hn|
.

As ϕ has a minimum at x, the right-hand side is non-positive and thus
Dϕ(x) = 0, which yields the desired result. □

Remark 2.5. Proposition 2.4 continues to hold for α = 0, replacing the
weak derivative by the approximate derivative in the cases where the weak
differentiability of M is currently unknown.

2.5. Refined Kinnunen–Saksman Inequality

The Kinnunen–Saksman inequality (1.4) admits a refinement in terms of
the good balls, in the same spirit as Luiro’s formula (2.4) improves over
Kinnunen’s pointwise inequality (1.1). It is noted that further refinements
involving boundary terms (that is, averages along spheres) have been ob-

tained in [19] and [3] for M̃α and Mα respectively, although these are not
required for the purposes of this paper.
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Proposition 2.6. Let 0 < α < d, δ ≥ 0 and f ∈ W 1,1(Rd). Then, for a.e.
x ∈ R

d and B = B(z, r) ∈ Bδ
α,x, the weak derivative ∇Mδ

αf satisfies

(2.5) |∇Mδ
αf(x)| ≤ (d− α)rα−1

ˆ

B
|f(y)| dy.

Proof. By §2.2 the weak gradient of Mδ
αf equals its approximate gradient

almost everywhere, so it suffices to show (2.5) at a point x at which Mδ
αf is

approximately differentiable and for which there exists B = B(z, r) ∈ Bδ
α,x.

By Lemma 2.3 there is a sequence {hn}n∈N with |hn| → 0 and

|∇Mδ
αf(x)| = lim

n→∞

Mδ
αf(x) −Mδ

αf(x + hn)

|hn|
.

Now the proof follows from the classical Kinnunen–Saksman [14] reasoning,
which we include for completeness. Note that x + hn ∈ B(z + hn, r + |hn|),
and that for the centered maximal operator we have z = x. This implies

Mδ
αf(x + hn) ≥ (r + |hn|)

α

ˆ

B(z+hn,r+|hn|)
|f(y)| dy.

Therefore

Mδ
αf(x) −Mδ

αf(x + hn)

|hn|

≤
1

ωd|hn|

(
rα−d

ˆ

B(z,r)
|f(y)| dy − (r + hn)α−d

ˆ

B(z+hn,r+|hn|)
|f(y)| dy

)

≤
1

ωd|hn|

(
rα−d

ˆ

B(z+hn,r+|hn|)
|f(y)| dy

− (r + |hn|)
α−d

ˆ

B(z+hn,r+|hn|)
|f(y)| dy

)

=
rα−d − (r + |hn|)

α−d

ωd|hn|

ˆ

B(z+hn,r+|hn|)
|f(y)| dy

→
(d− α)rα−d−1

ωd

ˆ

B(z,r)
|f(y)| dy

for n → ∞, which concludes the proof. □

Remark 2.7. Proposition 2.6 continues to hold for α = 0, replacing the
weak derivative by the approximate derivative in the cases where the weak
differentiability of M is currently unknown.
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2.6. A refined fractional maximal function

In view of the Kinnunen–Saksman type inequality (2.5), it is instructive to
define the operator

Mα,−1f(x) = sup
B∈Bα,x(f)

r(B)α−1

ˆ

B
|f(y)| dy,

so that for any 0 < α < d,

(2.6) |∇Mαf(x)| ≤ (d− α)Mα,−1f(x) for a.e. x ∈ R
d.

Furthermore, this extends to the case δ > 0, that is,

(2.7) |∇Mδ
αf(x)| ≤ (d− α)Mα,−1f(x) for a.e. x ∈ R

d.

Indeed, let δ > 0 and B ∈ Bδ
α,x. Then, there exists C ∈ Bα,x such that r(C) ≤

r(B). This immediately yields

r(B)α−1

ˆ

B
|f | ≤ r(C)α−1

ˆ

C
|f | ≤ Mα,−1f(x),

which implies (2.7) via Proposition 2.6.
The proof of Theorem 2.2 in [24] is obtained through the analogous

bound on Mα,−1. Indeed, such a bound is of local nature. The following
is a local version of [24, Theorem 1.2]; the details are explained in [24,
Remark 1.8].

Theorem 2.8. Let 0 < α < d and E ⊆ R
d be a measurable set. There exist

constants c > 1 and Cd,α > 0 such that the inequality

∥Mα,−1f∥Ld/(d−α)(E) ≤ Cd,α∥∇f∥L1(D)

holds for all f ∈ W 1,1(Rd), where

D =
⋃

B∈IE

cB and IE := {B ∈ Bα,x ; for some x ∈ E}.

Remark 2.9. For 0 < α < d one has, combining (2.6) and Theorem 2.8,
that

∥∇Mαf∥Ld/(d−α)(E) ≤ (d− α)Cd,α∥∇f∥L1(D),

where Cd,α is the constant in Theorem 2.8.
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2.7. Poincaré–Sobolev Inequality

Another important tool for our purposes is the following.

Lemma 2.10. Let 0 < α < d and c > 1. Then there is a constant Cd,α,c > 0
such that for all f ∈ W 1,1(Rd), x ∈ R

d, B = B(z, r) ∈ Bα,x(f) the inequality
ˆ

cB
|f(y)| dy ≤ Cd,α,c r

ˆ

cB
|∇f(y)| dy

holds.

Proof. By the triangle inequality and the Poincaré-Sobolev inequality there
is a Cd such that

ˆ

cB

∣∣|f(y)| − |fcB|
∣∣ dy ≤

ˆ

cB
|f(y) − fcB| dy ≤ Cd r

ˆ

cB
|∇f(y)| dy.

Since B ∈ Bα,x we have cα|f |cB ≤ |f |B. This, the triangle inequality and
|fcB| ≤ |f |cB yield

cd
ˆ

cB

∣∣|f(y)| − |fcB|
∣∣ dy ≥

ˆ

B

∣∣|f(y)| − |fcB|
∣∣ dy

≥ |f |B − |f |cB ≥ (cα − 1)

ˆ

cB
|f(y)| dy.

Then, combining the above, we obtain

ˆ

cB
|f(y)| dy ≤

cdCd

cα − 1
r

ˆ

cB
|∇f(y)| dy,

as desired. □

3. Convergences

In this section we review some auxiliary convergence results established in
the series of papers [2, 7] which reduce the proof of Theorem 1.1 to the
convergence of the difference Mαfj −Mδ

αfj on a compact set.

3.1. A Sobolev space lemma

We start recalling an auxiliary result concerning the convergence of the
modulus of a sequence in W 1,1(Rd). This is useful in view of the identity
(2.4).
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Lemma 3.1 ([2, Lemma 2.3]). Let f ∈ W 1,1(Rd) and {fj}j∈N ⊆
W 1,1(Rd) be such that ∥fj − f∥W 1,1(Rd) → 0 as j → ∞. Then

∥∥|fj | −
|f |

∥∥
W 1,1(Rd)

→ 0 as j → ∞.

3.2. Convergence outside a compact set

By Theorem 2.2 and the work of the first and third author in [2] we have
that it suffices to study the convergence in a compact set.

Proposition 3.2 ([2, Proposition 4.10]). Let 0 < α < d, f ∈ W 1,1(Rd)
and {fj}j∈N ⊆ W 1,1(Rd) such that ∥fj − f∥W 1,1(Rd) → 0. Then, for any ε >
0 there exists a compact set K and jε > 0 such that

∥∇Mαfj −∇Mαf∥Ld/(d−α)((3K)c) < ε

for all j ≥ jε.

3.3. Continuity of Mδ
α in W 1,1(Rd), δ > 0

A key observation is the a.e. convergence of the maximal function Mδ
αfj at

the derivative level.

Lemma 3.3. Let 0 < α < d, δ ≥ 0, f ∈ W 1,1(Rd) and {fj}j∈N ⊆ W 1,1(Rd)
be such that ∥fj − f∥W 1,1(Rd) → 0 as j → ∞. Then

∇Mδ
αfj(x) → ∇Mδ

αf(x) a.e. as j → ∞.

A version of this result for the full Mα is given in [2, Lemma 2.4]. The
proof for Mδ

α is identical (in fact, it slightly simplifies), and relies on Luiro’s
formula for Mδ

α, that is, Proposition 2.4. We omit further details. For δ > 0,
we have the following norm convergence.

Proposition 3.4. Let 0 < α < d, δ > 0, f ∈ W 1,1(Rd) and {fj}j∈N ⊆
W 1,1(Rd) be such that ∥fj − f∥W 1,1(Rd) → 0 as j → ∞. Let K ⊆ R

d be a
compact set.

∥∇Mδ
αf −∇Mδ

αfj∥Ld/(d−α)(K) → 0 as j → ∞.

Proof. By Proposition 2.4 and Lemma 3.1 there exists j0 ∈ N such that
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|∇Mδ
αfj(x)| ≤

1

ωd δd−α
∥∇|fj |∥1 ≤

1

ωd δd−α
∥∇|f |∥1 + 1

for all j ≥ j0, a.e. x ∈ K.

Furthermore, by Lemma 3.3

∇Mδ
αfj(x) → ∇Mδ

αf(x) a.e. as j → ∞.

The convergence on Ld/(d−α)(K) then follows from the dominated conver-
gence theorem. □

3.4. δ-convergence of ∇Mδ
αf

Here we establish that ∇Mδ
αf provides a good approximation for ∇Mαf in

Ld/(d−α)(Rd) when δ → 0; note, however, that for the proof of Theorem 1.1
it suffices to establish it in a compact set. This relies on the Theorem 2.2.

Lemma 3.5. Let 0 < α < d and f ∈ W 1,1(Rd). Then

∥∇Mαf −∇Mδ
αf∥Ld/(d−α)(Rd) → 0 as δ → 0.

Proof. Recall from §2.3 that for a.e. x ∈ R
d one has that if B(z, r) ∈ Bδ

α,x,

then r > 0. This and Luiro’s formula (2.4) imply that for a.e. x ∈ R
d there

exists δx > 0 such that

∇Mδ
αf(x) = ∇Mαf(x) for all 0 ≤ δ < δx,

and thus ∇Mδ
αf(x) → ∇Mαf(x) for a.e. x ∈ R

d as δ → 0. Furthermore, as
proven in (2.7), for a.e. x ∈ R

d we have that

|∇Mδ
αf(x)| ≤ (d− α)Mα,−1f(x) for all δ ≥ 0.

Since f ∈ W 1,1(Rd), Theorem 2.8 ensures that Mα,−1f ∈ Ld/(d−α)(Rd) and
we can then conclude the result by the dominated convergence theorem. □

4. Proof of Theorem 1.1

Let f ∈ W 1,1(Rd) and {fj}j∈N ⊆ W 1,1(Rd) be a sequence of functions such
that ∥fj − f∥W 1,1(Rd) → 0 as j → ∞. If f = 0 then the result follows directly
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from the boundedness, that is Theorem 2.2. From now on we assume that
f ̸= 0. Let ε > 0. Then by Proposition 3.2 it is sufficient to prove that for
any compact set K ⊆ R

d there exists j∗ ∈ N such that

(4.1) ∥∇Mαf −∇Mαfj∥Ld/(d−α)(K) < 3ε

for all j ≥ j∗. To this end, for any δ > 0, use the triangle inequality to bound

∥∇Mαf −∇Mαfj∥Ld/(d−α)(K)(4.2)

≤ ∥∇Mαf −∇Mδ
αf∥Ld/(d−α)(K)

+ ∥∇Mδ
αf −∇Mδ

αfj∥Ld/(d−α)(K)

+ ∥∇Mδ
αfj −∇Mαfj∥Ld/(d−α)(K).

To finish the proof, it suffices to show that for ε > 0 fixed, there exist a δ∗

and a j∗ such that for δ = δ∗ and all j ≥ j∗, each of the summands on the
right hand side of (4.2) is bounded by ε. We choose δ∗ depending on ε,K
and f , and j∗ depending on δ∗, ε, K, f and the sequence {fj}j∈N.

For the first term, we know by Lemma 3.5 that there exists a δ′ > 0 such
that

∥∇Mαf −∇Mδ
αf∥Ld/(d−α)(K) < ε

for all 0 ≤ δ ≤ δ′. For the second term, we have by Proposition 3.4 that for
every δ > 0 there exists a j(δ) ∈ N such that

∥∇Mδ
αf −∇Mδ

αfj∥Ld/(d−α)(K) < ε

for all j ≥ j(δ). The rest of the section is devoted to proving a favourable
bound for the third term. More precisely, we will show that there are δ̃ > 0
and j̃ ∈ N such that for all 0 ≤ δ ≤ δ̃ and j ≥ j̃,

(4.3) ∥∇Mδ
αfj −∇Mαfj∥Ld/(d−α)(K) < ε.

Temporarily assuming this, we can then conclude that for δ = δ∗ :=
min{δ′, δ̃} and j ≥ j∗ := max{j(δ∗), j̃}, the right-hand side of (4.2) is
bounded by at most 3ε, as desired for (4.1).

We now turn to the proof of (4.3). We start by noting that there ex-
ists a λ0 > 0 and a j0 ∈ N such that for all j ≥ j0 and x ∈ K we have
Mαfj(x) > λ0. Indeed, as f ∈ L1(Rd), there exists a ball B0 that contains K
with

´

B0
|f | > 1

2

´

Rd |f |. As ∥fj − f∥1 → 0 as j → 0, by the triangle inequal-

ity, there exists j0 > 0 such that for all j ≥ j0 we have
´

B0
|fj | >

1
2

´

B0
|f | >
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1
4

´

Rd |f |. Then, for every j ≥ j0 and x ∈ K we have

Mαfj(x) ≥ 2αr(B0)
α

ˆ

B(x,2r(B0))
|fj | >

(2r(B0))
α−d

4ωd

ˆ

Rd

|f |,

where in the last inequality we have used that B(x, 2r(B0)) ⊃ B0 for all
x ∈ K. Thus, we can take λ0 to be the right-hand side of the inequality
above. Furthermore by Proposition 2.4, if there exists a B ∈ Bα,x(fj) such
that r(B) ≥ δ then ∇Mαfj(x) = ∇Mδ

αfj(x). Define

Eλ0,δ,j :=
{
x ∈ K : if B ∈ Bα,x(fj),

then r(B) < δ and r(B)α
ˆ

B
|fj | > λ0

}
.

By the previous two observations, Proposition 2.6 and a crude application
of the triangle inequality, one has

∥∇Mδ
αfj −∇Mαfj∥Ld/(d−α)(K) = ∥∇Mδ

αfj −∇Mαfj∥Ld/(d−α)(Eλ0,δ,j)

≤ 2(d− α) ∥Mα,−1fj∥Ld/(d−α)(Eλ0,δ,j).

for all j ≥ j0. Define the indexing set

Iλ0,δ,j :=
{
B ∈ Bα,x(fj) : x ∈ K, r(B) < δ and r(B)α

ˆ

B
|fj | > λ0

}

and consider the set

Dλ0,δ,j :=
⋃

B∈Iλ0,δ,j

cB,

where c is the constant from Theorem 2.8. Then, by Theorem 2.8, we have

∥Mα,−1fj∥Ld/(d−α)(Eλ0,δ,j) ≤ Cd,α∥∇fj∥L1(Dλ0,δ,j)

for any δ > 0. Thus, the proof of (4.3) is reduced to showing that there exist
a δ̃ > 0 and a j1 ∈ N such that for all j ≥ j1 and 0 ≤ δ ≤ δ̃ we have

(4.4) ∥∇fj∥L1(Dλ0,δ,j) <
ε

2(d− α)Cd,α
,

as one can then take j̃ := max{j0, j1}.
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704 Beltran, González-Riquelme, Madrid, and Weigt

In order to prove (4.4), we first use the triangle inequality and that
∥∇fj −∇f∥L1(Rd) → 0 as j → ∞ to find a j2 ∈ N such that

(4.5) ∥∇fj∥L1(Dλ0,δ,j) ≤ ∥∇f∥L1(Dλ0,δ,j) +
ε

4(d− α)Cd,α
.

for any δ > 0 and j ≥ j2.
Next, let x ∈ Dλ0,δ,j . Then there is a B ∈ Iλ0,δ,j with x ∈ cB. So, by

Lemma 2.10, we have

λ0 ≤ cdr(B)α
ˆ

cB
|fj | ≤ Cd,α,c c

d+1r(B)α+1

ˆ

cB
|∇fj |

≤ Cd,α,c c
d−α+1δ M̃α|∇fj |(x),

where M̃α in the above inequality denotes the uncentered fractional maximal
operator. Hence, by the weak (1, d/(d− α)) inequality for M̃α,

|Dλ0,δ,j | ≤

∣∣∣∣
{
x : M̃α|∇fj |(x) ≥

λ0

Cd,α,ccd−α+1δ

}∣∣∣∣

≤ Cd,α,c,λ0
δd/(d−α)∥∇fj∥

d/(d−α)
1

≤ Cd,α,c,λ0
δd/(d−α)

(
1 + ∥∇f∥

d/(d−α)
1

)
(4.6)

if j ≥ j3 for some j3 ∈ N, using that ∥∇fj −∇f∥L1(Rd) → 0 as j → ∞.

Finally, note that as ∇f ∈ L1(Rd), there exists ρ > 0 such that for all
A ⊆ R

d satisfying |A| < ρ, one has

(4.7) ∥∇f∥L1(A) <
ε

4(d− α)Cd,α
.

As the right-hand side of (4.6) goes to zero for δ → 0 uniformly in j, there
exists δ̃ > 0 such that |Dλ0,δ,j | < ρ for all j ≥ j3 and δ < δ̃. Thus, taking
j1 := max{j2, j3}, (4.4) follows from combining (4.5) and (4.7) with A =
Dλ0,δ,j . This implies the claimed inequality (4.3) and therefore finishes the
proof of Theorem 1.1. □

Remark. Note that in the above proof, instead of using Lemma 3.5 to
bound the first term in (4.2), we could have also bounded it running the
same scheme as for the third term.
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