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1. Introduction

For each d ≥ 2, let Ratd (resp. Polyd) be the space of degree d ratio-
nal maps (resp. polynomials) in one complex variable. Denote by ratd :=
Ratd/Aut(P

1) (resp. polyd := Polyd/Aut(C)) the moduli space of degree d
rational maps (resp. polynomials), modulo the action by conjugation of the
group of Möbius transformations (resp. affine maps). Then ratd is a complex
(2d− 2)-dimensional orbifold and polyd is a complex (d− 1)-dimensional
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subspace of ratd. The Hausdorff dimension function δ : Ratd → [0, 2], send-
ing f ∈ Ratd to the Hausdorff dimension of the Julia set J(f) of f is invariant
under conjugacy. Hence it descends to a well-defined function on ratd, which
we also call the Hausdorff dimension function δ:

δ : ratd → [0, 2],

sending the conjugacy class [f ] ∈ ratd to the Hausdorff dimension of J(f).
In [7], McMullen proposed an analogue of the Weil-Petersson metric on

the moduli space of degree d Blaschke products. Via Bers embedding, this
metric induces a metric on the central hyperbolic component H0 in polyd,
that is H0 ⊂ polyd is the hyperbolic component containing [zd]. The goal of
this paper is to introduce a natural metric on other hyperbolic components
in polyd (or in ratd).

For a hyperbolic rational map f ∈ Ratd, there exists a unique invari-
ant probability measure ν on J(f) such that the pressure of the poten-
tial −δ(f) log |f ′| : J(f) → R is zero. Then the measure-theoretic entropy
hν(f) = δ(f)Lyν(f), where Lyν(f) is the Lyapunov exponent of f with
respect to ν. Note that there is a small neighborhood U(f) ⊂ Ratd of f
such that the natural holomorphic motion on U(f)× J(f) with identity on
{f} × J(f) induces a homeomorphism ϕg : J(f) → J(g), for any g ∈ U(f).
Then the pushforward measure (ϕg)∗ν is a g-invariant probability measure
on J(g). Consider the map

Gf : U(f) → R

sending g ∈ U(f) to δ(g)Ly(ϕg)∗ν(g). It is well-known that the Hausdorff
dimension function δ is real-analytic on U(f), see [13]. Moreover, it turns
out that the map g 7→ Ly(ϕg)∗ν(g) is also real-analytic on U(f) (Proposition
2.10), and that Gf has a local minimum at f (Proposition 4.1). Hence the
Hessian of Gf is well-defined at f . It then induces a symmetric bilinear form
|| · ||G on the tangent space Tf of Ratd at f as follows: given w⃗ ∈ Tf ∼= R4d+2,
for a smooth real 1-dimensional path γ : (−1, 1) → U(f) with γ(0) = f and
γ′(0) = w⃗ ∈ Tf , define

||w⃗||2G :=
∂2Gf
∂w⃗∂w⃗

=
d2

dt2

∣∣∣∣
t=0

Gf (γ(t)),

which in fact only depends on the initial conditions of γ. The form || · ||G
descends to a 2-form on the corresponding hyperbolic component in ratd
(see Section 4.2) and we again denote this form by || · ||G.
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A Riemannian metric on hyperbolic components 735

Our main result asserts that || · ||G is nondegenerate on certain hyper-
bolic components.

Theorem 1.1. Let H be a hyperbolic component in ratd. Suppose that every
[f ] ∈ H has a repelling multiplier which is not a real number. Then on H,
the form || · ||G is a Riemannian metric and is conformal equivalent to the
standard pressure metric.

A key ingredient to prove Theorem 1.1 is a distribution result on repelling
multipliers for elements in H (see Section 2.2). With this distribution result,
for a point [f ] ∈ H, we consider an analytic path [ft], t ∈ D, in H with [f0] =
[f ] and show that under the assumption in Theorem 1.1, the quantities
d
dt |t=0 log |λt|/ log |λ0| cannot be constant for all repelling multipliers λt of
[ft] (Proposition 5.1). However, from the thermodynamic formalism, if ||v||G
is degenerate for some tangent vector v ∈ T[f ]H, there exists a path [ft] with

a constant d
dt |t=0 log |λt|/ log |λ0| for all repelling multipliers λt. This gives a

contradiction and proves the positive-definiteness of || · ||G.
By Sullivan’s dictionary between rational maps and Kleinian groups,

our work is inspired by the work of Bridgeman [2] and Bridgeman-Taylor
[3]. They established an extension of the Weil-Peterson metric to the quasi-
Fuchsian space QF (S) of a closed surface S of genus at least 2. In particular,
Bridgeman [2, Main Theorem] proved that the extension is degenerate on
the so-called pure bending vectors. Moreover, using our metric and applying
an analog of the proof of [2, Theorem 1.2], we can obtain that the function δ
has no local maximum on the hyperbolic components mentioned in Theorem
1.1, although it has already proven by Ransford [12] with a distinct method.

A result [4, Theorem 1] of Eremenko and van Strien states that if all the
repelling multipliers of a rational map are real, then its Julia set is contained
in a circle. Thus Theorem 1 implies immediately the following.

Corollary 1.2. Let H be a hyperbolic component in ratd such that δ(H) ⊂
(1, 2). Then on H, the form || · ||G is a Riemannian metric and is conformal
equivalent to the standard pressure metric.

Now we restrict our attention to hyperbolic components in polyd. Recall
that the shift locus is the hyperbolic component in polyd such that for each
element, all its critical points are in the basin of ∞. By a characterization of
the hyperbolic polynomials f ∈ Polyd with δ(f) > 1 (Proposition 2.2), from
Corollary 1.2, we have the following.
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Corollary 1.3. Let H be a hyperbolic component in polyd that is neither
the central hyperbolic component nor the shift locus. Then on H, the form
|| · ||G is a Riemannian metric and is conformal equivalent to the standard
pressure metric.

The central hyperbolic component and the shift locus are the only hyper-
bolic components in polyd containing elements with all real multipliers. In
the central hyperbolic component, the point [zd] is the only element whose
Hausdorff dimension of Julia set is not in (1, 2). Computer experiments show
that it is possible to extend the metric || · ||G to the central component. We
give a direct computation to show it is the case for d = 2. But it is unclear
to us for a rigorous proof in the general case (see Section 5.2).

Organization of the paper

The paper is organized as follows. In Section 2, we prove some preparatory
results regarding the Hausdorff dimension of Julia sets (Proposition 2.2) and
some properties of multipliers (Proposition 2.6) and Lyapunov exponents
(Proposition 2.10). In Section 3, we review thermodynamic formalism and
the pressure metric on the moduli space. We introduce the non-negative
form || · ||G in Section 4 and prove the main result Theorem 1.1 in Section 5.

2. Complex dynamics background

In this section, we give an expository account for the basics in complex
dynamics. It covers Hausdorff dimension of Julia sets, distribution of multi-
pliers and Lyapunov exponents.

2.1. Hausdorff dimension of Julia sets for hyperbolic maps

Let f ∈ C(z) be a rational map of degree at least 2. Denote by F (f) and
J(f) the Fatou set and Julia set of f , respectively. Recall that f is hyperbolic
if all the critical points under iterations converge to attracting cycles. In this
subsection, we state some results about the Hausdorff dimension of J(f).

The following result, due to Przytycki [10], concerns the dimensions of
boundaries of immediate attracting basins. It is a continuation of Zdunik’s
work [16]. Recall that for an f -invariant set K, its hyperbolic Hausdorff di-
mension is the supremum of the Hausdorff dimensions of f -invariant subsets
X of K such that f |X is expending.
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Proposition 2.1. [10, Theorem A] Let f ∈ C(z) be a rational map of degree
at least 2. Suppose f is not a finite Blaschke product in some holomorphic
coordinates or a quotient of a Blaschke product by a rational function of
degree 2. Assume f has an attracting cycle and denote by B its immedi-
ate basin. If each component of B is simply connected, then the hyperbolic
Hausdorff dimension of ∂B is larger than 1.

If P ∈ C[z] is a polynomial of degree at least 2, the Julia set J(P ) is the
boundary of the basin B∞(P ) of∞. If J(P ) is connected, equivalently all the
critical points of P are away from B∞(P ), Zdunik’s result [15] implies that
the Hausdorff dimension of J(P ) is larger than 1 unless P is conjugate to a
monomial or a ± Chebyshev polynomial. Indeed, in this case the Hausdorff
dimension of the measure of maximal entropy for P is 1, see [6].

For a hyperbolic polynomial P , if J(P ) is not a Cantor set, equivalently
not all the critical points are contained in B∞(P ), then the Hausdorff di-
mension of J(P ) is larger than 1 unless P is conjugate to a monomial:

Proposition 2.2. Let P be a hyperbolic polynomial of degree at least 2.
Suppose P is not conjugate to a monomial. If J(P ) is not a Cantor set,
then the Hausdorff dimension of J(P ) is larger than 1.

Proof. Since P is hyperbolic and has a critical point not in the basin of ∞, it
follows that P has an attracting cycle in C. Then the immediate basin of the
attracting cycle is a union of finitely many simply connected components.
Note that the boundary of this immediate basin is contained in J(P ). Thus
by Proposition 2.1, we only need to deal with the case that P is a quotient
of a Blaschke product by a rational function of degree 2. In this case, the
map P is a ± Chebyshev polynomial in some holomorphic coordinates. It is
impossible since P is hyperbolic. Then the conclusion follows. □

Proposition 2.2 concerns with hyperbolic polynomials. In a recent paper
[11, Theorem 2] Przytycki and Zdunik proved that a more general result
asserting that for any polynomial P of degree d ≥ 2 whose Julia set J(P ) is
not a Cantor set, the Hausdroff dimension of J(P ) is 1 if and only if P is
affine conjugate to the monomial zd or a ± Chebyshev polynomial.

Recall that polyd is the moduli space of degree d polynomials. For the
descended map δ : polyd → [0, 2], sending [P ] to the Hausdorff dimension of
J(P ), the above proposition immediately implies the following.

Corollary 2.3. For d ≥ 2, let H ⊂ polyd be a hyperbolic component. Sup-
pose H is not the shift locus. Then δ(H− {[zd]}) ⊂ (1, 2).
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2.2. Distribution of multipliers

Let f ∈ C(z) be a hyperbolic rational map of degree at least 2. Given any
primitive periodic orbit ẑ = {z, f(z), · · · , fk−1(z)} on the Julia set J(f), we
consider its multiplier λ(ẑ) given by, in the local coordinates,

λ(ẑ) = (fk)′(z).

Let O denote the set of all primitive periodic orbits of f in J(f). For T > 0,
consider the counting function

NT (O) := #{ẑ ∈ O | |λ(ẑ)| < T}.

Since f is hyperbolic, NT (O) is finite for any T > 0. In [8], Oh and Winter
proved the following asymptotics for NT (O).

Theorem 2.4. [8, Theorem 1.1 (1)] Let f ∈ C(z) be a hyperbolic rational
map of degree at least 2. Suppose that f is not conjugate to a monomial.
Then there exists ϵ := ϵ(f) > 0 such that

NT (O) = Li(T β) +O(T β−ϵ)

where Li(t) =

∫ t

2

dt

log t
is the offset logarithmic integral and β := δ(f) is the

Hausdorff dimension of J(f).

Remark 2.5. Under the assumptions in Theorem 2.4, we set

ϵ∗ = ϵ∗(f) := sup
{Ti}i≥1

sup
{
ϵ > 0 : NTi

(O) = Li(Ti
β) +O(Ti

β−ϵ)
}
,

where the first supremum is taken over all ϵ > 0 satisfying the indicated
equality for a given strictly increasing sequence {Ti}i≥1 tending to ∞, and
the second supremum is taken over all strictly increasing sequences {Ti}i≥1

tending to ∞. Then 0 < ϵ∗ ≤ β by Theorem 2.4. In our later argument,
we can pick ϵ = ϵ(f) = ϵ∗/2 in Theorem 2.4. Moreover, if ϵ∗ < β, for any
0 < ϵ′ < β − ϵ∗,

lim
T→+∞

|NT (O)− Li(T β)|
T β−(ϵ∗+ϵ′)

= +∞,

It follows that there exists C(T ) := Cϵ′(T ) depending on ϵ′ with C(T ) → ∞
as T → ∞ such that

NT (O)− Li(T β) = C(T )T β−(ϵ∗+ϵ′) + o(T β−(ϵ∗+ϵ′)).
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If ϵ∗ = β, we set ϵ′ = 0 and C(T ) = NT (O)− Li(T β). We will use the term
C(T ) for a specific ϵ′0 > 0 in the proof of Theorem A.1. We mention here
that an analog of Riemann hypothesis conjectures that ϵ∗ < β.

Using the above theorem, we prove the following result regarding the
existence of multipliers within an annulus which we will use in Section 5.

Proposition 2.6. Let f ∈ C(z) be a hyperbolic rational map of degree at
least 2. Suppose that f is not conjugate to a monomial. Let ϵ > 0 be as in
Remark 2.5. Suppose {Tn} ⊂ R>0 is a sequence with Tn → +∞, as n→ +∞.
Then for Sn ≥ Tαn with α > 1− ϵ/2,

NTn+Sn
(O)−NTn

(O) → ∞ as n→ ∞.

Proof. It suffices to prove the conclusion for 1− ϵ/2 < α < 1. In this case,
Tαn ≤ Sn = o(Tn). Note that Li(x) = x/ ln(x) + o(x/ ln(x)) for sufficiently
large x. Denote β := δ(f) > ϵ. Then we have

Li((Tn + Sn)
β)− Li(T βn ) = β

T β−1
n Sn
lnTn

+ o

(
T β−1
n Sn
lnTn

)
.

On the other hand, there exists ϵ′ ≥ ϵ such that

(NTn+Sn
(O)− Li((Tn + Sn)

β))− (NTn
(O)− Li(T βn ))

= O((Tn − Sn)
β−ϵ)−O(T β−ϵn )

= O(T β−ϵ
′

n ).

Then

(NTn+Sn
(O)− Li((Tn + Sn)

β))− (NTn
(O)− Li(T βn ))

= o

(
T
β−ϵ/2
n

lnTn

)
= o(Li((Tn + Sn)

β)− Li(T βn )).

The first equality holds since β − ϵ′ < β − ϵ/2. The second equality holds
since β − ϵ/2 < β − 1 + α.
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Therefore, we have

NTn+Sn
(O)−NTn

(O) = β
T β−1
n Sn
lnTn

+ o

(
T β−1
n Sn
lnTn

)
.

Since β > ϵ/2, we have, as n→ ∞,

T β−1
n Sn
lnTn

→ ∞.

The conclusion follows. □

Let D ⊂ C be the unit disk. We say that a family {ft}t∈D is a holomor-
phic family of degree d ≥ 2 rational maps if each ft is a rational map of
degree d and each coefficient of ft is a holomorphic function in t. In this
case, the periodic points and hence the corresponding multipliers of ft are
holomorphic in t, up to a base change. We will use the following notation
throughout the paper. For a real number s ∈ R and a nonzero complex num-
ber a ∈ C \ {0}, we write as for exp(sLog(a)), where Log(a) is the principle
value of the logarithm of a. We will mainly consider the modulus of as.

Corollary 2.7. Let {ft}t∈D be a holomorphic family of hyperbolic rational
maps of degree at least 2, and let at be the multiplier of a repelling cycle of ft.
Suppose that f0 is not conjugate to a monomial. Then there exists 0 < κ0 < 1
such that for any κ ∈ (κ0, 1), the following holds: for any arbitrary multiplier
bt of a repelling cycle of ft, any sufficiently large positive integer n ≥ 1 and
any t close to 0, there exist θt,n := θ(t, n, κ, bt) ∈ [0, 2π) and multipliers λt,n
of ft of the form

λt,n = eiθt,n(ant + anκt bt + o(anκt bt)),

where the little-o term is taken with respect to n.

Proof. For each t ∈ D, let ϵt := ϵ(ft) be as in Remark 2.5. By Theorem A.1
in Appendix A, there exist a small disk D′ ⊂ D centered at 0 and ϵ′ > 0 such
that ϵt > ϵ′ for all t ∈ D′. Let κ0 = 1− ϵ′/2. Then 0 < κ0 < 1. For t ∈ D′,
set

ϵ′t =
1− ϵt/2

1− ϵ′/2
∈ (0, 1).

Then for κ ∈ (κ0, 1), we have κϵ′t > 1− ϵt/2.
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For t ∈ D′ and n ≥ 1, consider the annulus

At,n = {z ∈ C | |ant + anκt bt| ≤ |z| ≤ |ant + anκt bt|+ |anκt bt|ϵ
′
t}.

We first claim that for each t, there exists a multiplier of ft in the annulus
At,n for sufficiently large n. Indeed, apply Proposition 2.6 to each ft with
Tn = |ant + anκt bt|, Sn = |anκt bt|ϵ′t and α = κϵ′t.

Let λt,n be such a multiplier of ft contained in At,n. Then, we must have
|λt,n| = |ant + anκt bt + o(anκt bt)| with |o(anκt bt)| ≤ |anκt bt|ϵ′t . Therefore λt,n =
eiθt,n(ant + anκt bt + o(anκt bt)) for some θt,n ∈ [0, 2π). □

Remark 2.8. Let us take the notations in Corollary 2.7 and in its proof. For
each n≫ 1, since λt,n is holomorphic, up to base change, in t and |λ0,n| > 1,
there exists a small disk Dn ⊂ D centered at 0 on which we can choose θn :=
θt,n in Corollary 2.7 independent of t ∈ Dn. Indeed, pick θn = Arg(λ0,n)−
Arg(an0 + anκ0 b0). On Dn, denote by En(t) := λt,n/e

iθn − (ant + anκt bt). Then
up to base change t→ sℓ for some integer ℓ, the map En(t) naturally extends
to a holomorphic function in the small disk D′ ⊂ D centered at 0, that is,
for t ∈ D′,

En(t) = ei(θt,n−θn)(ant + anκt bt + o(anκt bt))− (ant + anκt bt).

To abuse the notation, we denote this extension by En(t) also. Now we
give a uniform upper bound of |En(t)/ant | in any small compact set.
Shrinking ϵ′ in the proof of Corollary 2.7 if necessary, we can assume
that χ := sup{ϵ′t : t ∈ D′} < 1. For a compact subset X ⊂ D′, set amax :=
max{|at| : t ∈ X}, amin := min{|at| : t ∈ X} and bmax := max{|bt| : t ∈ X}.
Then amax ≥ amin > 1 and bmax > 1. We consider compact subsets X ⊂ D′

small enough such that aχmax < amin. We claim that there exists N ≥ 1 such
that if n ≥ N , then for any t ∈ X,

|En(t)| =
∣∣∣ei(θt,n−θn)(ant + anκt bt + o(anκt bt))− (ant + anκt bt)

∣∣∣
≤ |ant |+ |anκt bt|+ |o(anκt bt)|+ |ant |+ |anκt bt|
< 5 |ant | .

Let us see the existence of N and the last inequality. Noting that 0 < κ < 1,

we conclude that there existsN1 ≥ 1 such that bmax < a
n(1−κ)
min for all n ≥ N1,
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and hence for any t ∈ X,

|anκt bt| ≤ |anκt | bmax < |anκt | an(1−κ)min ≤ |anκt | |at|n(1−κ) = |ant | .

Moreover, since o(anκt bt) = λt,n − (ant + anκt bt) is holomorphic for each n,
there exists tn ∈ X such that

|o(anκt bt)| ≤ max{|o(anκt bt)| : t ∈ X} = |o(anκtn btn)|.

Noting that for each t ∈ D′, |o(anκt bt)| ≤ |anκt bt|ϵ′t , as n→ ∞, in the proof
of Corollary 2.7, we conclude that there exists N ≥ N1 such that for any
n ≥ N and any t ∈ X,

|o(anκt bt)| ≤ |o(anκtn btn)| ≤ (anκmaxbmax)
χ ≤ anκminb

χ
max ≤ anκminbmax

< anκmina
n(1−κ)
min = anmin ≤ |ant | .

This gives the existence of N and the desired inequality. Furthermore, for
sufficiently large n, shrinking Dn if necessary, we have the following better
estimate for En(t) on Dn. By the choice of Dn and the definition of θn, we
have that for t ∈ Dn,

En(t) = ei(θt,n−θn)(ant + anκt bt + o(anκt bt))− (ant + anκt bt)

= (ant + anκt bt + o(anκt bt))− (ant + anκt bt)

= o (anκt bt) .

Remark 2.9. Since ft has only countably many multipliers, there are un-
countably many κ ∈ (κ0, 1) giving rise to the same values of λt,n although
the expressions of λt,n are different.

2.3. Lyapunov exponents

For a hyperbolic rational map f of degree at least 2, we denote byMf the set
of f -invariant probability measures on the Julia set J(f). Recall that U(f) is
a small neighborhood of f in Ratd such that the natural holomorphic motion
induces a homeomorphism ϕg : J(f) → J(g) for g ∈ U(f). For µ ∈ Mf , the
Lyapunov exponent Lyµ(f) =

∫
J(f) log |f ′|dµ induces a well-defined function
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Ly = Lyf : Mf × U(f) → R by

Ly(µ, g) := Ly(ϕg)∗µ(g) =

∫

J(g)
log |g′|d(ϕg)∗µ.

In this subsection, we discuss analytic properties of the function Ly(·, ·).
Recall that if X is a smooth manifold and C∞(X,R) is the set of smooth

real-valued functions on X, the C∞-topology on C∞(X,R) is given by ψn →
ψ if the derivatives of ψn converge uniformly on compact subsets of X to
the derivatives of ψ.

Proposition 2.10. The map Ly : Mf × U(f) → R satisfies the following
properties:

1) for each µ ∈ Mf , the function Ly(µ, ·) : U(f) → R is harmonic and
hence is real analytic; and

2) the map from Mf to C∞(U(f),R), sending µ to Ly(µ, ·), is continu-
ous.

To prove the proposition, we first show that if µn → µ in Mf , the func-
tions Ly(µn, ·) converge uniformly on compact subsets of U(f).

Lemma 2.11. If µn → µ in Mf with respect to the weak-∗ topology, then
Ly(µn, ·) → Ly(µ, ·) uniformly on compact subsets of U(f).

Proof. Let g ∈ U(f). For any ϵ > 0, we first claim that there is a neighbor-
hood W of g in U(f) such that for any ν ∈ Mf and any h ∈W ,

|Ly(ν, g)− Ly(ν, h)| < ϵ.

Indeed,

|Ly(ν, g)− Ly(ν, h)| =
∣∣∣∣∣

∫

J(f)
log |g′ ◦ ϕg|dν −

∫

J(f)
log |h′ ◦ ϕh|dν

∣∣∣∣∣

=

∣∣∣∣∣

∫

J(f)
(log |g′ ◦ ϕg| − log |h′ ◦ ϕh|)dν

∣∣∣∣∣

=

∣∣∣∣∣

∫

J(f)
log

∣∣∣∣
g′ ◦ ϕg
h′ ◦ ϕh

∣∣∣∣ dν
∣∣∣∣∣

≤ max

{∣∣∣∣log
∣∣∣∣
g′ ◦ ϕg(z)
h′ ◦ ϕh(z)

∣∣∣∣
∣∣∣∣ : z ∈ J(f)

}
.



✐

✐

“6-Nie” — 2023/12/16 — 0:51 — page 744 — #12
✐

✐

✐

✐

✐

✐

744 Y. Mary He and H. Nie

Consider

αg(h, z) :=
g′ ◦ ϕg(z)
h′ ◦ ϕh(z)

.

Then αg is well-defined on U(f)× J(f) since the Julia sets do not con-
tain critical points. Moreover, αg is continuous in both h and z. Note that
αg(g, z) = 1 for all z ∈ J(f). Since J(f) is compact, we can choose a suffi-
ciently small neighborhood W of g such that |αg(h, z)| < eϵ for all h ∈W
and all z ∈ J(f). Hence the claim holds.

Now consider the sequence {µn}. For any ϵ > 0, by the previous claim, we
can choose a neighborhood V of g in U(f) such that for all µn and all h ∈ V ,
we have |Ly(µn, g)− Ly(µn, h)| < ϵ. It follows that the sequence {Ly(µn, ·)}
is equicontinuous on any compact subset of U(f). Moreover, by definition of
Ly(µn, ·) and Ly(µ, ·), we have that Ly(µn, ·) converges pointwise to Ly(µ, ·).
It follows that Ly(µn, ·) locally uniformly converges to Ly(µ, ·). □

Proof of Proposition 2.10. For µ ∈ Mf , by definition of Ly(µ, ·), we have

Ly(µ, g) =

∫

J(f)
log |g′ ◦ ϕg|dµ.

Since ϕg is holomorphic in g, the map g 7→ g′ ◦ ϕg is holomorphic in g. Then
log |g′ ◦ ϕg| is harmonic in g. Therefore Ly(µ, ·) is harmonic. In particular,
it is real-analytic. This completes the proof of statement (1).

For statement (2), if µn → µ, again by Lemma 2.11, the sequence
Ly(µn, ·) converges to Ly(µ, ·) uniformly on compact sets. As Ly(µn, ·) are
harmonic, uniform convergence on compact sets implies uniform convergence
of derivatives on compact sets. □

3. Thermodynamic formalism and the pressure metric

In this section, we first review the thermodynamic formalism for conformal
repellers. In particular, we discuss the topological pressure of a Hölder con-
tinuous function and the pressure metric on the space of cohomology classes
of Hölder continuous functions with pressure zero. Standard references are
[9, 14, 17]. Via the thermodynamic mapping, the pressure metric pulls back
to a non-negative two-form on a hyperbolic component in the moduli space
ratd of degree d ≥ 2 rational maps.
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3.1. Conformal repellers

Let f be a holomorphic function from an open subset V ⊂ C into C and let
J be a compact subset of V . The triple (J, V, f) is a conformal repeller if

1) (Expansiveness) there exist C > 0 and λ > 1 such that |(fn)′(z)| ≥
Cλn for every z ∈ J and n ≥ 1,

2) (Invariance) f−1(V ) ⊂ V is relatively compact in V with J =
∩n≥1f

−n(V ), and

3) (Topological exactness) for any open set U with U ∩ J ̸= ∅, there exists
an n > 0 such that J ⊂ fn(U ∩ J).

An important property of conformal repellers is the existence of a
Markov partition. A Markov partition of J is a finite cover of J by sets
Rj , 1 ≤ j ≤ N satisfying the following conditions:

1) each set Rj is the closure of its interior IntRj ,

2) the interiors of the Rj are pariwise disjoint,

3) if x ∈ IntRj and f(x) ∈ IntRℓ, then Rℓ ⊂ f(Rj), and

4) each restriction f |Rj
is injective.

Let (J, V, f) be a conformal repeller and let (R1, · · · , Rm) be a Markov
partition of J . Define a matrix A by

Aj,ℓ =

{
1, if Rℓ ⊂ f(Rj),

0, otherwise.

Then every point x ∈ J corresponds to an infinite sequence {ℓk}k≥0 where
ℓk ∈ {1, · · · ,m} and Aℓk,ℓk+1

= 1. Let Σ be the set of all such sequences, i.e.

Σ = {{ℓk}k≥0 | ℓk ∈ {1, · · · ,m}, Aℓk,ℓk+1
= 1}

and σ : Σ → Σ be the shift map, i.e.

σ(ℓ0, ℓ1, ℓ2 · · · ) = (ℓ1, ℓ2, ℓ3, · · · ).

There is a standard metric on Σ defined as

d(x, y) = 2−N(x,y)
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where N(x, y) = min{n : xn ̸= yn}. Given α ∈ (0, 1], a continuous function
ϕ is α-Hölder continuous if there exists a constant C > 0 such that

|ϕ(x)− ϕ(y)| ≤ Cd(x, y)α

for any x, y ∈ Σ. Denote by Cα(Σ) the space of α-Hölder continuous real-
valued functions on Σ. We say that a continuous function ϕ is Hölder con-
tinuous if it is α-Hölder continuous for some α ∈ (0, 1].

Given a conformal repeller (J, V, f), there is a projection map Ψf :
Σ → J sending a sequence {ℓk}k≥0 to z ∈ J such that f ℓk(z) ∈ Rℓk . Let
ϕf = − log |f ′ ◦Ψf |. Then ϕf is a Hölder continuous function. Bowen’s the-
orem states that the Hausdorff dimension of J is the unique solution to the
equation P(tϕf ) = 0 (see [17]). Here P is the topological pressure which we
introduce now.

3.2. The pressure function

In this subsection, we review definitions of topological pressure and equilib-
rium states. Then we summarize formulas for the derivatives of the pressure
function. A standard reference is [9].

Given ϕ ∈ Cα(Σ), the transfer operator Lϕ : Cα(Σ) → Cα(Σ) is defined
by

Lϕ(g)(y) =
∑

σ(x)=y

eϕ(x)g(x).

By Ruelle-Perron-Frobenius theorem, there is a positive eigenfunction eψ,
unique up to scale, such that

Lϕ(eψ) = ρ(Lϕ)eψ,

where ρ(Lϕ) is the isolated maximal eigenvalue of the transfer operator and
the rest of the spectrum is contained in a disk of radius r < ρ(Lϕ).

The pressure of ϕ is defined by

P(ϕ) = log ρ(Lϕ).

Alternatively, the pressure P(ϕ) can also be defined using variational meth-
ods. Let Mσ be the set of σ-invariant probability measures on Σ. Then

P(ϕ) = sup
m∈Mσ

(
hm(σ) +

∫

Σ
ϕdm

)
.
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where hm(σ) is the measure-theoretic entropy of σ with respect to the mea-
sure m. A measure m = m(ϕ) ∈ Mσ is called an equilibrium state of ϕ if
P(ϕ) = hm(σ) +

∫
Σ ϕdm. It is well-known that ϕ has a unique equilibrium

state, see [1].
The equilibrium statem(ϕ) is also related to the spectral data of transfer

operators. If P(ϕ) = 0, then Lϕ(eψ) = eψ. It follows that there is a unique
positive measure µ on Σ such that

∫

Σ
Lϕ(ϕ̃)dµ =

∫

Σ
ϕ̃dµ

for all ϕ̃ ∈ Cα(Σ) and
∫
Σ e

ψdµ = 1. We have

m(ϕ) = eψµ.

Note that m(ϕ) is an ergodic, σ-invariant probability measure with positive
entropy.

The asymptotic variance (cf. ”variance” in [7]) of a Hölder continuous
function ψ : Σ → R with

∫
ψdm(ϕ) = 0 is given by

V ar(ψ,m(ϕ)) = lim
n→∞

1

n

∫

Σ

∣∣∣∣∣

n−1∑

i=0

ψ ◦ σi(x)
∣∣∣∣∣

2

dm(ϕ).

It follows that, as t→ 0,

P(ϕ+ tψ) = P(ϕ) + (t2/2)V ar(ψ,m(ϕ)) +O(t3)

([7], p. 373 Equation (1.5)). We summarize the following formulas for the
derivatives of the pressure P.

Proposition 3.1. [7, Theorem 2.2] Let ϕt be a smooth path in Cα(Σ), let
m = m(ϕ0) and let ϕ̇0 = dϕt/dt|t=0. We have

dP(ϕt)

dt

∣∣∣∣
t=0

=

∫

Σ
ϕ̇0dm

and, if the first derivative of P(ϕt) is zero, then

d2P(ϕt)

dt2

∣∣∣∣
t=0

= V ar(ϕ̇0,m) +

∫
ϕ̈0dm.
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3.3. The pressure metric

Recall that two continuous functions ϕ1 and ϕ2 are cohomologous, denoted
by ϕ1 ∼ ϕ2, if there exists a continuous function h : Σ → R such that ϕ1(x)−
ϕ2(x) = h(σ(x))− h(x). The pressure function P : Cα(Σ) → R depends only
on the cohomology classes [9]. We show in this subsection that it defines a
metric in the thermodynamic setting.

Let C(Σ) be the set of cohomology classes of Hölder continuous functions
with pressure zero, that is,

C(Σ) = {ϕ : ϕ ∈ Cα(Σ) for some α,P(ϕ) = 0}/ ∼

where ϕ1 ∼ ϕ2 if ϕ1 and ϕ2 are cohomologous.
If [ϕ] ∈ C(Σ), let m be an equilibrium state for ϕ. Then by the formula

for the derivative of the pressure P, the tangent space of C(Σ) at [ϕ] can be
identified with

T[ϕ]C(Σ) =
{
ψ
∣∣∣ ψ Hölder,

∫

Σ
ψdm = 0

}
/ ∼ .

We define the pressure metric || · ||pm on C(Σ) as follows (see [7], p. 375).
Given [ψ] ∈ T[ϕ]C(Σ), define

||[ψ]||2pm :=
V ar(ψ,m)

−
∫
Σ ϕdm

.

We claim that || · ||pm is non-degenerate. Indeed, on one hand, by convexity
of P and Proposition 3.1, the second derivative

d2P(ϕ+ tψ)

dt2

∣∣∣∣
t=0

= V ar(ψ,m(ϕ))

is non-negative on the tangent space T[ϕ]C(Σ). In fact, the variance is zero
if and only if ψ is cohomologous to zero ([9], Proposition 4.12). On the
other hand, we have

∫
Σ ϕdm < 0 since 0 = P(ϕ) =

∫
Σ ϕdm+ hm(σ) and

hm(σ) > 0.

3.4. Thermodynamic mapping on hyperbolic components

Let H ⊂ ratd be a hyperbolic component. For [f ] ∈ H, there exists a neigh-
borhood V of J(f) such that (J(f), V, f) is a conformal repeller. Moreover,
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(J(f), f) admits a Markov partition. Recall that Ψf : Σ → J(f) is the pro-
jection map as in Section 3.1.

Recall that δ(f) is the Hausdorff dimension of the Julia set J(f). The
function − log |f ′ ◦Ψf | : Σ → R is Hölder continuous and by Bowen’s theo-
rem, we have

P(−δ(f) log |f ′ ◦Ψf |) = 0.

Note that if f1 ∈ Ratd is Möbius conjugate to f , then δ(f1) = δ(f) and for
all k ≥ 1 and any k-periodic point xk of σ,

log |(fk1 )′(Ψf1(xk))|) = log |(fk)′(Ψf (xk))|).

It follows that

−δ(f1) log |(fn1 )′(Ψf1(xk))| = −δ(f) log |(fn)′(Ψf (xk))|.

By Livsic Theorem, we have −δ(f1) log |f ′1 ◦Ψf1 | and −δ(f) log |f ′ ◦Ψf | are
cohomologous. Thus, there is a thermodynamic mapping

E : H → C(Σ),

given by

E ([f ]) = [−δ(f) log |f ′ ◦Ψf |].
We remark that a result [5, Theorem 2] of Levin implies that the map E is
a local embedding, although we will not use this fact in the paper.

We define a non-negative metric || · ||P on H as the pullback of the
pressure metric || · ||pm on C(Σ). Indeed, || · ||P is non-negative since || · ||pm
is positive-definite. Abusing notation, we also call || · ||P the pressure metric
on H.

Now we derive a formula for || · ||P . Given [f ] ∈ H and v⃗ ∈ T[f ]H ∼=
R4d−4, let c(t) := [ft], t ∈ (−1, 1) be a smooth real 1-dimesional path in H
such that c(0) = [f ] and c′(0) = v⃗. Moreover, we can assume that all ft are
in the same lift of H in Ratd. Under the thermodynamic mapping, c(t)
corresponds to the following one-parameter family of pressure zero Hölder
continuous functions on Σ:

g(t, x) = −δ(ft) log |f ′t(Ψft(x))|, t ∈ (−1, 1).

Since the Julia sets J(ft) form a holomorphic motion as t varies, the depen-
dence of the projection map Ψft on t is given by the holomorphic motion.
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Denote by ġ(0, x) = d
dt

∣∣
t=0

g(t, x). Then by definition of the pressure met-
ric,

||v⃗||2P =
V ar(ġ(0, x), ν)

−
∫
Σ g(0, x)dν(x)

where ν is the equilibrium state for g(0, x).
Since P(g(t, x)) = 0 for all t ∈ (−1, 1), we have d2

dt2

∣∣
t=0

P(g(t, x)) = 0. By
Proposition 3.1, we have

V ar(ġ(0, x), ν) +

∫

Σ
g̈(0, x)dν(x) = 0.

It follows that

||v⃗||2P =
V ar(ġ(0, x), ν)

−
∫
Σ g(0, x)dν(x)

=

∫
Σ g̈(0, x)dν(x)∫
Σ g(0, x)dν(x)

.

4. A symmetric bilinear form || · ||G

Our main goal in this section is to define a non-negative 2-form || · ||G on
hyperbolic components in Ratd and then show it descends to a non-negative
2-form on a hyperbolic component in ratd.

4.1. The 2-form on hyperbolic components in Ratd

Suppose H̃ is a hyperbolic component in Ratd and fix f ∈ H̃. Let U(f) be
as in Section 1 and let ν be the equilibrium state of the Hölder potential
−δ(f) log |f ′| : J(f) → R which has pressure zero. Recall that the function
Ly(ν, ·) : U(f) → R is given by

Ly(ν, g) =

∫

J(g)
log |g′|d ((ϕg)∗ν) =

∫

J(f)
log |g′ ◦ ϕg|dν,

where ϕg : J(f) → J(g) is the quasi-conformal conjugacy. Now consider the
real analytic function Gf : U(f) → R given by

Gf (g) = δ(g)Ly(ν, g).

In what follows, we will show the Hessian of the function Gf is well-

defined at f and gives us a non-negative 2-form on H̃. Note that the Hessian
of a smooth real-valued function G : X → R on a smooth manifold X is not
well-defined at a point x ∈ X unless G′(x) = 0 (see [3, Section 7]). We first
show Gf has a minimum at f and hence G′

f (f) = 0 in the following result.
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Proposition 4.1. Fix f ∈ H̃ and ν as above. Then for all g ∈ U(f), we
have

δ(f)

δ(g)
≤ Ly(ν, g)

Ly(ν, f)
.

Proof. To ease notation, set mg := (ϕg)∗ν. Then

Ly(ν, g) =

∫

J(g)
log |g′|dmg.

Since −δ(f) log |f ′| : J(f) → R has pressure zero and ν = mf is its equi-
librium state, by the variational definition of pressure,

hmf
(f) = δ(f)

∫

J(f)
log |f ′|dmf ,

where hmf
(f) is the measure-theoretic entropy of f with respect to mf .

Since entropy is invariant under topological conjugacy, it follows that
hmf

(f) = h(ϕg)∗mf
(g). We have hmf

(f) = hmg
(g). Since mf is f -invariant,

it follows that mg is g-invariant. Again, by the variational definition of pres-
sure, we have

hmg
(g) ≤ δ(g)

∫

J(g)
log |g′|dmg.

Hence δ(f)Ly(ν, f) ≤ δ(g)Ly(ν, g) and the conclusion follows. □

Therefore, the Hessian of Gf at f is well-defined and it defines a

symmetric bilinear form || · ||G on the tangent space TfH̃ as follows. Let
γ(t), t ∈ (−1, 1) be a smooth real 1-dimensional path in U(f) with γ(0) = f
and γ′(0) = w⃗ ∈ TfH̃ ∼= R4d+2. Define

||w⃗||2G :=
∂2Gf
∂w⃗∂w⃗

=
d2

dt2

∣∣∣
t=0

Gf (γ(t)).

Note that ||w⃗||2G only depends on f and w⃗. Indeed,

d2

dt2

∣∣∣∣
t=0

Gf (γ(t)) = G′′
f (γ(0)) · (γ′(0))2 +G′

f (γ(0))γ
′′(0)

= G′′
f (γ(0)) · (γ′(0))2

since by Proposition 4.1, we have G′
f (γ(0)) = G′

f (f) = 0. Moreover, again

by Proposition 4.1, we have ||w⃗||2G ≥ 0.
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4.2. The 2-form on hyperbolic components in ratd

Let H ⊂ ratd be a hyperbolic component. For [f ] ∈ H and v⃗ ∈ T[f ]H ∼=
R4d−4, let c(t) be a smooth real 1-dimensional curve in H defined on (−1, 1)
with c(0) = [f ] and c′(0) = v⃗. Consider two distinct lifts c̃(t) and c̃1(t) in
Ratd. Since our analysis is local, we may assume that c̃(t) ⊂ U(c̃(0)) and
c̃1(t) ⊂ U(c̃1(0)) as in the previous section. By the definition of || · ||G, we
have ||c̃′(0)||G = ||c̃′1(0)||G. Indeed, since c̃(t) and c̃1(t) are Möbius conju-
gate, Gc̃(0)(c̃(t)) = Gc̃1(0)(c̃1(t)) on (−1, 1). Thus the 2-form || · ||G descends
to a 2-form on H. Abusing notation, we also denote the 2-form on H by
|| · ||G and therefore

||v⃗||G := ||c̃′(0)||G.
Write c̃(t) = ft ∈ Ratd. Recall notations from Section 3. For x ∈ Σ,

g(t, x) = −δ(ft) log |f ′t ◦Ψft(x)|,

where t ∈ (−1, 1). Denote by ġ(0, x) = d
dt

∣∣
t=0

g(t, x) and ν the equilibrium
state for g(0, x).

Proposition 4.2. The form || · ||G is conformal equivalent to the pressure
form || · ||P . More precisely, fixing the notations as above, we have

||v⃗||2P =
||v⃗||2G

−
∫
Σ g(0, x)dν(x)

.

Proof. By straightforward calculation,

||v⃗||2P =
V ar(ġ(0, x), ν)

−
∫
Σ g(0, x)dν(x)

=

∫
Σ g̈(0, x)dν(x)∫
Σ g(0, x)dν(x)

=
−||v⃗||2G∫

Σ g(0, x)dν(x)
.

The last equality holds by definition of || · ||G. □

Recall that a continuous function ϕ : Σ → R is a coboundary if it is
cohomologous to zero.

Corollary 4.3. Fix the notations as above. The following are equivalent.

1) ||v⃗||G = 0.

2) ||v⃗||P = 0.

3) ġ(0, x) is a coboundary.
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Proof. The equivalence follows immediately from Proposition 4.2 and a stan-
dard fact from Thermodynamic Formalism that V ar(ġ(0, x), ν) = 0 if and
only if ġ(0, x) is a coboundary. □

5. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. For quadratic polynomials, we also
show that || · ||G is positive-definite on the central hyperbolic component.

5.1. Proof of Theorem 1.1

We first show the following result concerning the derivative of repelling mul-
tipliers for an analytic family of hyperbolic rational maps.

Proposition 5.1. Suppose f ∈ C(z) is a hyperbolic rational map of degree
at least 2. Let {ft}t∈D be a holomorphic family of hyperbolic rational maps
such that f0 = f and some repelling multiplier has nonzero derivative at
t = 0. Assume that there exists K ∈ R such that

d

dt

∣∣∣
t=0

log |λt| = K log |λ0|

for all repelling multipliers λt of ft. Then all the repelling multipliers of f
are real.

Proof. If f is conjugate to a monomial, then all the multipliers of f are real.
Now we assume that f is not conjugate to a monomial. Let at be a repelling
multiplier of ft such that a′t|t=0 ̸= 0, and let bt be a repelling multiplier of ft.
By Corollary 2.7, there exists κ0 ∈ (0, 1) such that for any κ ∈ (κ0, 1) and t
close to 0, the map ft has a repelling cycle with multiplier

λt,n = eiθt,n(ant + anκt bt + o(anκt bt)).

Then

d

dt

∣∣∣
t=0

log |λt,n| = K log |λ0,n|.

Consider Dn and En(t) as in Remark 2.8 for this λt,n. Then on Dn,

|λt,n| = |ant + anκt bt + En(t)| = |at|n · |1 + a
n(κ−1)
t bt + En(t)/a

n
t |.



✐

✐

“6-Nie” — 2023/12/16 — 0:51 — page 754 — #22
✐

✐

✐

✐

✐

✐

754 Y. Mary He and H. Nie

To ease notation, set η := κ− 1. Then η ∈ (κ0 − 1, 0). It follows that

log |λt,n| = n log |at|+ log |1 + anηt bt + En(t)/a
n
t |

= n log |at|+Re(log(1 + anηt bt + En(t)/a
n
t )).

Now we begin to compute d
dt

∣∣∣
t=0

log |λt,n|. First note that

d

dt

∣∣∣
t=0

log(1 + anηt bt + En(t)/a
n
t ) =

d
dt

∣∣∣
t=0

(anηt bt) +
d
dt

∣∣∣
t=0

(En(t)/a
n
t )

1 + anη0 b0 + En(0)/an0
.

We claim that
d

dt

∣∣∣
t=0

(En(t)/a
n
t ) = o(nanη0 ).

Suppose on the contrary that there exist α > 0 and a strictly increasing

subsequence {ni}i≥1 such that
∣∣∣ ddt
∣∣∣
t=0

(Eni
(t)/ani

t )
∣∣∣ > α |nianiη

0 | for all suffi-

ciently large ni ≫ 1. Considering the extension of En(t) as in Remark 2.8, we
have that En(t)/a

n
t is holomorphic on D. Adding a nonzero constant if neces-

sary, which does not change the derivative, we can write En(t)/a
n
t = (gn(t))

n

for some holomorphic function gn(t). Moreover, considering a small closed
disk D ⊂ D centered at 0, by Remark 2.8, we have |En(t)/ant | is uniformly
bounded on D, so is |gn(t)|. It follows that {gn(t)} is normal on D, and
hence passing to subsequence if necessary, gni

converges uniformly on D to
a holomorphic map h(t). We also have g′ni

(0) converges to h′(0) ∈ C. Note
that gni

(0) = o(aη0) for sufficiently large ni ≫ 1 since by Remark 2.8 we have
En(0) = o(anκ0 b0). We conclude that

d

dt

∣∣∣
t=0

(Eni
(t)/ani

t ) = ni(gni
(0))ni−1g′ni

(0) = o(nia
niη
0 ),

which contradicts the choice of {ni}i≥1. So the claim holds.
Thus we obtain

d

dt

∣∣∣
t=0

log(1 + anηt bt + En(t)/a
n
t ) = (1 + o(1))

(
d

dt

∣∣∣
t=0

(anηt bt) + o(nanη0 )

)
.

It follows that

d

dt

∣∣∣
t=0

log |λt,n| = n
d

dt

∣∣∣
t=0

log |at|+Re

(
d

dt

∣∣∣
t=0

(log(1 + anηt bt + En(t)/a
n
t )

)

= n
d

dt

∣∣∣
t=0

log |at|+ (1 + o(1))Re

(
d

dt

∣∣∣
t=0

(anηt bt) + o(nanη0 )

)
.
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Applying the equation d
dt

∣∣∣
t=0

log |at| = K log |a0|, we obtain

0 =
d

dt

∣∣∣
t=0

log |λt,n| −K log |λ0,n|

= (1 + o(1))Re

(
d

dt

∣∣∣
t=0

(anηt bt) + o(nanη0 )

)

−KRe(log(1 + anη0 b0 + En(0)/a
n
0 ))

= (1 + o(1))Re

(
d

dt

∣∣∣
t=0

(anηt bt) + o(nanη0 )

)

− (K + o(1))Re(anη0 b0 + En(0)/a
n
0 )

= (1 + o(1))
(
Re(nηanη−1

0 a′t|t=0b0 + anη0 b′t|t=0) +Re(o(nanη0 ))
)

− (K + o(1))Re(anη0 b0 + En(0)/a
n
0 ).

Dividing by n|a0|nη in the above equality and taking limit as n→ ∞,
we have

lim
n→∞

Re

(
η
anη0
|a0|nη

a′t|t=0

a0
b0

)
= 0.

Since η is real and nonzero, it follows that

lim
n→∞

Re

(
anη0
|a0|nη

a′t|t=0

a0
b0

)
= 0.

Set u0 := a0/|a0| = eiθ0 . Then uη0 = aη0/|a0|η = eiηθ0 . Choose a subse-
quence nj such that u

njη
0 → 1 as j → ∞. Then we have

lim
j→∞

Re

(
u
njη
0

a′t|t=0

a0
b0

)
= Re

(
a′t|t=0

a0
b0

)
.

It follows that

Re

(
a′t|t=0

a0
b0

)
= 0.

Now we claim that a0 is real. Suppose otherwise. Then we have θ0 ∈
(0, 2π) and θ0 ̸= π. To obtain a contradiction, we discuss in the following
two cases.

Case 1: θ/π ∈ (0, 2) is irrational. Pick κ ∈ (κ0, 1) to be rational. Then
η ∈ (κ0 − 1, 0) is rational. Choose a subsequence nk such that unkη

0 → i as
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k → ∞. Then

lim
k→∞

Re

(
ankη
0

|a0|nkη

a′t|t=0

a0
b0

)
= Im

(
a′t|t=0

a0
b0

)
.

It follows that

Im

(
a′t|t=0

a0
b0

)
= 0.

Thus

a′t|t=0

a0
b0 = 0.

Since a′t|t=0 ̸= 0, we have b0 = 0. It is impossible since b0 is the multiplier of
a repelling cycle of f .

Case 2: θ/π ∈ (0, 2) is rational and θ/π ̸= 1. Pick κ ∈ (κ0, 1) to be irra-
tional. Then η ∈ (κ0 − 1, 0) is irrational. Write θ/π = p/q for two (not nec-
essarily coprime) integers p and q such that uq0 = 1. Set nℓ = ℓq + 1. Then
unℓ

0 = u0. It follows that

0 = lim
ℓ→∞

Re

(
unℓη
0

a′t|t=0

a0
b0

)

= Re

(
uη0
a′t|t=0

a0
b0

)

= Re(uη0)Re

(
a′t|t=0

a0
b0

)
− Im(uη0)Im

(
a′t|t=0

a0
b0

)
.

Since Re
(
a′
t|t=0

a0
b0

)
= 0, we have

Im(uη0)Im

(
a′t|t=0

a0
b0

)
= 0.

Note that Im(uη0) ̸= 0. It follows that

Im

(
a′t|t=0

a0
b0

)
= 0.

Then we obtain the same contradiction as in Case 1. This proves the claim.
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Note that bt is an arbitrary repelling multiplier of ft in the above argu-
ment. If we set bt = at, we have

Re

(
a′t|t=0

a0
a0

)
= 0.

Hence a′t|t=0 is purely imaginary. Since a0 is real, it follows that a′t|t=0/a0 is
purely imaginary.

We claim that b0 is real. Indeed, it immediately follows from that

Re
(
a′
t|t=0

a0
b0

)
= 0 and Re

(
a′
t|t=0

a0

)
= 0.

Since b0 is arbitrary, all the repelling multipliers of f are real. □

Now we prove Theorem 1.1.

Proof of Theorem 1.1. By Proposition 4.2, we only need to show || · ||G is
positive-definite on H. We prove by contradiction. Suppose that there exist
[f ] ∈ H and a nonzero tangent vector v⃗ ∈ T[f ]H ∼= R4d−4 such that ||v⃗||G =
0. Then consider a holomorphic path c(t) = [ft] ∈ H with t ∈ D such that
{ft}t∈D is a holomorphic family of hyperbolic rational maps with f0 = f and
identifying D to a real 2-dimensional disk, the directional derivative of c(t)
along the positive real axis is v⃗. We show that there exists a constant K ∈ R

such that

d

dt

∣∣∣
t=0

log |λt| = K log |λ0|

for all multipliers λt of repelling periodic orbits of ft. Since log |λt| is real
analytic in t ∈ D, it is sufficient to treat the parameter t ∈ (−1, 1), so in next
paragraph, we assume t ∈ (−1, 1).

By Corollary 4.3, the derivative ġ(0, x) of the map g(t, x) =
−δ(ft) log |f ′t ◦Ψft(x)| is a coboundary. Recall that σ is the left shift map on
Σ. By definition of coboundary, there exists a continuous function h : Σ → R

such that ġ(0, x) = h(x)− h(σ(x)). Let x ∈ Σ be a periodic point of σ, i.e.
σn(x) = x for some n ≥ 1. Then

0 = h(x)− h(σn(x))

=
d

dt

∣∣∣∣
t=0

g(t, x) +
d

dt

∣∣∣∣
t=0

g(t, σ(x)) + · · ·+ d

dt

∣∣∣∣
t=0

g(t, σn−1(x))

= − d

dt

∣∣∣∣
t=0

δ(ft) log |(fnt )′ ◦Ψft(x)|.
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Applying the chain rule, we obtain

d

dt

∣∣∣
t=0

log |(fnt )′ ◦Ψft(x)| = −
d
dt

∣∣
t=0

δ(ft)

δ(f0)
· log |(fn0 )′ ◦Ψf0(x)|.

Then K := d
dt

∣∣
t=0

δ(ft)/δ(f0) is the desired real number.
Reparametrizing c(t) if necessary, the family ft has a multiplier of some

repelling periodic orbit with nonzero derivative at t = 0 since v ̸= 0. Then
by Proposition 5.1, all the repelling multipliers of f are real. It contradicts
to the assumption on f . □

5.2. The component H0 in poly2

In this subsection, we show || · ||G is also positive-definite on the main car-
dioid of the Mandelbrot set.

Theorem 5.2. If H0 is the central hyperbolic component in poly2, then
|| · ||G is positive-definite on H0.

Proof. Consider a curve Pt(z) = z2 + c(t) with Pt ∈ H0. We first claim that
if c(0) ̸= 0, then ||v⃗||G ̸= 0 for any nonzero tangent vector v⃗ ∈ TP0

H. Indeed,
if ||v⃗||G = 0, then again, there exists a constantK = δ′(v)/δ(0) ∈ R such that

d

dt

∣∣∣
t=0

log |λt| = K log |λ0|

for all multipliers λt of repelling cycles of Pt. Since δ(P0) > 1, Proposition
5.1 gives a contradiction.

Therefore, it suffices to check that || · ||G is nondegenerate on the tangent
space T[z2]H at [z2]. Suppose ||v⃗||G = 0 for some nonzero v⃗ ∈ T[z2]H. Then
there exists a constant K = δ′(v) such that

d

dt

∣∣∣
t=0

log |λt| = K log |λ0|

for all multipliers λt of repelling cycles of Pt. But hereK = 0 since P0(z) = z2

is the local minimum for the Hausdorff dimension function. Also we note
that all multipliers λ0 of the repelling cycles of P0(z) = z2 are real numbers.
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Therefore, d
dt

∣∣∣
t=0

log |λt| = 0 implies that

Re

(
d

dt

∣∣∣
t=0

λt

)
= 0

for all multipliers λt of repelling cycles of ft.
A contradiction follows from direct computations. The multiplier for the

repelling 1-cycle is 1 +
√

1− 4c(t). Plugging into the above equation and
using c0 = 0,

Re

(
d

dt

∣∣∣
t=0

λt

)
= Re

( −2c′(0)√
1− 4c0(1 +

√
1− 4c0)

)
= 0

implies the tangent vector v⃗ = c′(0) must be ±i, namely the purely imagi-
nary direction. On the other hand, there are two 3-cycles and their multi-
pliers are

−4
(
−c(t)− 2± c(t)

√
−4c(t)− 7

)
, respectively. Therefore,

Re

(
d

dt

∣∣∣
t=0

λt

)
= Re



−c′(0) + c′(0)

√−4c0 − 7− 2c0c′(0)√
−4c0−7

−c0 − 2 + c0
√−4c0 − 7


 .

But c0 = 0 and v⃗ = ±i do not give Re
(
d
dt

∣∣
t=0

λt
)
= 0, which is a contradic-

tion.
Hence, || · ||G is positive-definite on H0. □

If H0 is the central component in polyd for d ≥ 3, then by the same
argument as in Theorem 5.2, the form || · ||G is positive-definite on the tan-
gent space T[P ]H0 if [P ] ̸= [zd]. Therefore the positive-definiteness of || · ||G
on H0 is reduced to the positive-definiteness of || · ||G on the tangent space
T[zd]H0. However, the proof of Theorem 5.2 is much difficult to reproduce
for T[zd]H0 when d ≥ 3. In fact, the positive-definiteness of || · ||G on T[zd]H0

is equivalent to a negative answer of the following question.

Question 5.3. For d ≥ 3, let {Pt}t∈D be a holomorphic family with P0(z) =
zd. Are λ′t|t=0 purely imaginary for all repelling multipliers λt of Pt?

A positive answer for the above question seems improbable. When d = 3,
we consider repelling cycles of period 3 and compute the multipliers nu-
merically. There exist repelling multipliers whose derivatives are not purely
imaginary. However, it is still unclear to us how to obtain a conceptual proof.
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Appendix A: A local upper bound of the exponent of the

error term

Let f ∈ C(z) be a hyperbolic rational map of degree d ≥ 2 and let {ft}t∈D
be a holomorphic family of hyperbolic rational maps of degree d such that
f0 = f . Denote by δt the Hausdorff dimension of the Julia set J(ft). Recall
from Section 2.2 that for T > 0, NT (Ot) is the number of primitive periodic
orbits of ft in J(ft) whose multipliers have absolute value less than T . Now
suppose f is not conjugate to a monomial. Let ϵ∗t := ϵ∗(ft) be as in Remark
2.5 for ft and let ϵt := ϵ(ft) in Theorem 2.4 be ϵt := ϵ∗t /2. In this appendix,
we establish that δt − ϵt has an upper bound on a small neighborhood of 0,
which completes the proof of Corollary 2.7 and is of independent interest.
By Remark 2.5, it suffices to show that ϵ∗(ft) has a lower bound near t = 0.

Theorem A.1. Fix the notations as above. There exist a small disk D′ ⊂ D

centered at 0 and ϵ > 0 such that ϵ∗t > ϵ for t ∈ D.

Proof. Suppose on the contrary that there exists a sequence {tn} such that as
n→ ∞, tn → 0 and ϵ∗tn → 0. We will obtain a contradiction to the estimate
of NT (Ot).

Fix 0 < ϵ′t < min{δt − ϵ∗t , ϵ
∗
t } if ϵ∗t < δt; and set ϵ′t = 0 if ϵ∗t = δt. Since

ϵ∗tn → 0, then ϵ′tn → 0 as n→ ∞. When t = 0, for ϵ′0, let C(T ) be as in
Remark 2.5 for f0. Now fix τ ∈ (0, 1) and η > 0, choose Tη > 0 sufficiently
large so that for any T ≥ Tη, the following hold:

(A.1) (C(T )− η)T δ0−(ϵ∗0+ϵ
′
0) < NT (O0)− Li(T δ0) < (C(T ) + η)T δ0−(ϵ∗0+ϵ

′
0);

(A.2) |Li((T ± τ)δ0)− Li(T δ0)| < 2τ T
δ0−1

lnT ;

(A.3) (C(T )− 2η)T δ0−(ϵ∗0+ϵ
′
0) < (C(T )± η)(T ± τ)δ0−(ϵ∗0+ϵ

′
0) < (C(T ) +

2η)T δ0−(ϵ∗0+ϵ
′
0);

(A.4) −ηT δtn−(ϵ∗tn+ϵ
′
tn

) < (C(T )± 2η)T δ0−(ϵ∗0+ϵ
′
0) < ηT δtn−(ϵ∗tn+ϵ

′
tn

) for n
sufficiently large; and

(A.5) −ηT δtn−(ϵ∗tn+ϵ
′
tn

) < 2τ T
δ0−1

lnT < ηT δtn−(ϵ∗tn+ϵ
′
tn

) for n sufficiently large.

Inequality (A.1) is from the asymptotic expression of NT (O0), see Re-
mark 2.5. Inequalities (A.2) and (A.3) are from Taylor expansions. Inequal-
ities (A.4) and (A.5) are from the fact that δt is real-analytic and hence
continuous and the assumption ϵtn → 0.
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Since the multipliers of ft are continuous in t and NT (O0) is finite for
each fixed above such T , choose t′ := t′(T ) > 0 such that for |t| < t′,

(A.6) NT−τ (O0) < NT (Ot) < NT+τ (O0).

Then

(A.7) NT−τ (O0)− Li(T δ0) < NT (Ot)− Li(T δ0) < NT+τ (O0)− Li(T δ0).

Note that we can choose t′ → 0 as T → ∞.
Substituting T by T ± τ in inequality (A.1), we have

(C(T )− η)(T ± τ)δ0−(ϵ∗0+ϵ
′
0) < NT±τ (O0)− Li((T ± τ)δ0)(A.8)

< (C(T ) + η)(T ± τ)δ0−(ϵ∗0+ϵ
′
0).

We obtain an estimate for NT (Ot)− Li(T δ0) by first combining inequal-
ities (A.7) with (A.2) and (A.8):

(C(T )− η)(T − τ)δ0−(ϵ∗0+ϵ
′
0) − 2τ

T δ0−1

lnT
(A.9)

< NT−τ (O0)− Li((T − τ)δ0) + Li((T − τ)δ0)− Li(T δ0)

< NT (Ot)− Li(T δ0)

< NT+τ (O0)− Li((T + τ)δ0) + Li((T + τ)δ0)− Li(T δ0)

< (C(T ) + η)(T + τ)δ0−(ϵ∗0+ϵ
′
0) + 2τ

T δ0−1

lnT
.

Then we apply inequality (A.3) to the first and the last line in inequality
(A.9):

(A.10) (C(T )− 2η)T δ0−(ϵ∗0+ϵ
′
0) − 2τ

T δ0−1

lnT
< NT (Ot)− Li(T δ0)

< (C(T ) + 2η)T δ0−(ϵ∗0+ϵ
′
0) + 2τ

T δ0−1

lnT
.

Now we obtain an estimate for NT (Ot)− Li(T δt). Since δt is real an-
alytic, from the expansion of Li(T δt), there exist small t′′ > 0 and large
T ′′ > 0 such that for any |t| < t′′ and any T ′ ≥ T ′′,

|Li((T ′)δt)− Li((T ′)δ0)| < (T ′)(δ0−ϵ0)/2.



✐

✐

“6-Nie” — 2023/12/16 — 0:51 — page 762 — #30
✐

✐

✐

✐

✐

✐

762 Y. Mary He and H. Nie

We can assume that Tη > T ′′. Then

(A.11) |Li(T δt)− Li(T δ0)| < T (δ0−ϵ0)/2.

Now for |t| < min{t′, t′′}, since

Li(T δt)− Li(T δ0) = (Li(T δt)−NT (Ot)) + (NT (Ot)− Li(T δ0)),

using inequalities (A.11) and (A.10), we get the following bound for
NT (Ot)− Li(T δt):

|NT (Ot)− Li(T δt)| ≤ |Li(T δt)− Li(T δ0)|+ |NT (Ot)− Li(T δ0)|(A.12)

< T (δ0−ϵ0)/2 + |C(T ) + 2η|T δ0−(ϵ∗0+ϵ
′
0) + 2τ

T δ0−1

lnT
.

Now consider the sequence {tn}. Applying inequalities (A.4) and (A.5)
to (A.12), we have

|NT (Otn)− Li(T δtn )| ≤ 3ηT δtn−(ϵ∗tn+ϵ
′
tn

).(A.13)

for each large n with |tn| < min{t′, t′′}. Since t′ depends on T , we remark
here that n→ ∞ as T → ∞. Then passing to a subsequence of T if necessary,
we have

lim
T→∞

|tn|<min{t′,t′′}

T δtn−(ϵ∗tn+ϵ
′
tn

)

|NT (Otn)− Li(T δtn )| ≥
1

3η
,(A.14)

where the limit is possibly ∞.
However, note that by Remark 2.5

lim
T→∞

T δtn−(ϵ∗tn+ϵ
′
tn

)

|NT (Otn)− Li(T δtn )| = 0.(A.15)

Moreover, by the real analyticity of δt in t and the assumptions on ϵ∗tn and
ϵ′tn , we have

lim
n→∞

T δtn−(ϵ∗tn+ϵ
′
tn

)

|NT (Otn)− Li(T δtn )| =
T δ0

|NT (O0)− Li(T δ0)| .(A.16)

Applying Moore-Osgood theorem, by the limits (A.15) and (A.16), we have

lim
T→∞
n→∞

T δtn−(ϵ∗tn+ϵ
′
tn

)

|NT (Otn)− Li(T δtn )| = lim
n→∞

lim
T→∞

T δtn−(ϵ∗tn+ϵ
′
tn

)

|NT (Otn)− Li(T δtn )| = 0,
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which contradicts the limit (A.14). This completes the proof. □
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