An example of non-Kähler Calabi-Yau fourfold

Nam-Hoon Lee
We show that there exists a non-Kähler Calabi-Yau fourfold, constructing an example by smoothing a normal crossing variety.

1. Introduction

In this note, a Calabi-Yau manifold is a simply-connected compact complex manifold with trivial canonical class and $H^{i}\left(M, \mathcal{O}_{M}\right)=0$ for $0<i<\operatorname{dim} M$. $K 3$ surfaces are Calabi-Yau twofolds in this definition and they are all Kähler ([24]), forming a single irreducible smooth family of dimension 20 ([14, [15]). Hence, they are all diffeomorphic. The moduli spaces of projective $K 3$ surfaces are a countable union of analytic subspaces inside of the family of all $K 3$ surfaces.

In higher dimensions, the situation is a bit different. Kähler CalabiYau manifolds are necessarily projective when their dimensions are greater than two and there exist non-Kähler Calabi-Yau threefolds. A number of non-homeomorphic Kähler Calabi-Yau threefolds have been constructed ([1, 2, 17]) and it is still an open problem whether there are finitely many non-homeomorphic Kähler Calabi-Yau threefolds or not. On the other hand, there are found infinitely many non-Kähler, non-homeomorphic Calabi-Yau threefolds ([5, 8, 9, 12]). In an effort to understand the situation in a similar way to that of the $K 3$ surfaces, Reid conjectured that there still may be a single irreducible moduli space of Calabi-Yau threefolds, such that any Kähler (thus, projective) Calabi-Yau threefold is the small resolution of a degeneration of this family and that any two Kähler Calabi-Yau threefolds may be related by deformations, small resolutions and their inverses through nonKähler Calabi-Yau threefolds, although they are non-homeomorphic ([22]). - figuratively speaking, projective Calabi-Yau threefolds may appear as scattered islands in the sea of (generically non-projective) Calabi-Yau threefolds just as projective $K 3$ surfaces appear as scattered islands in the sea of (generically non-projective) $K 3$ surfaces. This speculation demonstrates a role of non-Kähler Calabi-Yau manifolds in understanding Kähler ones.

In dimension four, the situation is even more obscure. A huge number of non-homeomorphic Kähler Calabi-Yau fourfolds can be constructed as complete intersections in toric varieties. However, to the best of the author's knowledge, not a single example of non-Kähler Calabi-Yau fourfold has been found. The purpose of this note is to construct an example of non-Kähler Calabi-Yau fourfold. Hence, we establish the following:

Theorem 1.1. There exists a non-Kähler Calabi-Yau fourfold.
We note that some examples of simply-connected non-Kähler compact holomorphic symplectic fourfolds with trivial canonical class and $H^{2}\left(M, \mathcal{O}_{M}\right) \neq 0$ were constructed ([4, 11]). We also remark that interests in non-Kähler Calabi-Yau manifolds in other directions also have been growing rapidly ([6, 10, 21, 25]).

We shall construct our example by smoothing a normal crossing variety. By smoothing, we mean the reverse process of the semistable degeneration of a manifold to a normal crossing variety. If a normal crossing variety is the central fiber of a semistable degeneration of Calabi-Yau manifolds, it can be regarded as a member in a deformation family of those Calabi-Yau manifolds. So building a normal crossing variety smoothable to a CalabiYau manifold can be regarded as building a deformation type of Calabi-Yau manifolds. The construction by smoothing is intrinsically up to deformation.

The structure of this note is as follows.
We start Section 2 by introducing two background materials - a smoothing theorem and a Calabi-Yau threefold. The smoothing theorem will be used to smooth a normal crossing variety to a non-Kähler Calabi-Yau fourfold and the Calabi-Yau threefold will be used as a building block in constructing the normal crossing variety in the next sections.

In Section 3, we build a smoothable normal crossing variety. The construction, starting from the Calabi-Yau threefold introduced in Section 2, involves several steps of taking quotients and blow-ups of varieties.

In Section 4, we showed that the fourfold, which is a smoothing of the normal crossing variety constructed in Section 3, is a non-Kähler Calabi-Yau fourfold and calculate its topological Euler number.

After finishing the manuscript, the author received an e-mail from Taro Sano, informing that he constructed non-Kähler Calabi-Yau manifolds of dimension higher than three by smoothing method ([23]).

2. A smoothing theorem and a Calabi-Yau threefold

By a variety, we mean a reduced complex analytic space. Let $\mathcal{X}=X_{1} \cup X_{2}$ be a variety whose irreducible components are two smooth varieties X_{1} and $X_{2} . \mathcal{X}$ is called a normal crossing variety if, near any point $p \in X_{1} \cap X_{2}, \mathcal{X}$ is locally isomorphic to

$$
\left\{\left(x_{0}, x_{1}, \cdots, x_{n}\right) \in \mathbb{C}^{n+1} \mid x_{n-1} x_{n}=0\right\}
$$

with p corresponding to the origin and X_{1}, X_{2} locally corresponding to the hypersurfaces $x_{n-1}=0, x_{n}=0$ respectively in \mathbb{C}^{n+1}. Note that the variety $D_{\mathcal{X}}:=X_{1} \cap X_{2}$ is smooth. Suppose that there is a proper map $\varsigma: \mathfrak{X} \rightarrow \Delta$ from a complex manifold \mathfrak{X} onto the unit disk $\Delta=\{t \in \mathbb{C} \mid\|t\| \leq 1\}$ such that the fiber $\mathfrak{X}_{t}=\varsigma^{-1}(t)$ is a smooth manifold for every $t \neq 0$ and $\mathfrak{X}_{0}=\mathcal{X}$. We denote a generic fiber $\mathfrak{X}_{t}(t \neq 0)$ by $M_{\mathcal{X}}$ and we say that \mathcal{X} is a semistable degeneration of a smooth manifold $M_{\mathcal{X}}$ and that $M_{\mathcal{X}}$ is a semistable smoothing (simply smoothing) of \mathcal{X}.

We will use the following result from [12] and [7] as a generalization of results in [13].

Theorem 2.1. Let $\mathcal{X}=X_{1} \cup X_{2}$ be a normal crossing variety of dimension $n \geq 3$ whose irreducible components are two smooth compact varieties X_{1} and X_{2} such that $D_{\mathcal{X}}$ is smooth. Assume that

1) $\omega_{\mathcal{X}} \simeq \mathcal{O}_{\mathcal{X}}$,
2) $H^{n-1}\left(\mathcal{X}, \mathcal{O}_{\mathcal{X}}\right)=0, H^{n-2}\left(X_{i}, \mathcal{O}_{X_{i}}\right)=0$ for $i=1,2$,
3) $N_{D_{\mathcal{X}} / X_{1}} \otimes N_{D_{\mathcal{X}} / X_{2}}$ on $D_{\mathcal{X}}$ is trivial.

Then \mathcal{X} is smoothable to a complex manifold $M_{\mathcal{X}}$.
This smoothing theorem was proved firstly in [13] with an assumption of Kählerness condition and the condition was removed in [12] and [7]. We will also need the following lemma (Lemma 3.14 in [12]) in the proof of Theorem 4.1.

Lemma 2.2. With conditions in Theorem 2.1, assume further that X_{1}, X_{2} are projective and $M_{\mathcal{X}}, D_{\mathcal{X}}$ are a projective Calabi-Yau n-fold and a CalabiYau $(n-1)$-fold respectively. Then there exists a big line bundle on \mathcal{X}.

We will build a normal crossing variety and smooth it to a Calabi-Yau fourfold by applying Theorem 2.1 and show, using Lemma 2.2, that the

Calabi-Yau fourfold is non-Kähler. To make the normal crossing variety $\mathcal{X}=X_{1} \cup X_{2}$, we need to construct the varieties X_{1}, X_{2} first. X_{1} and X_{2} will be built from Beauville's Calabi-Yau threefold and two involutions on it.

We briefly recall Beauville's Calabi-Yau threefold. Let $\zeta=e^{2 \pi \frac{\sqrt{-1}}{3}}$. By E_{ζ}, we denote the elliptic curve whose period is ζ and by $E_{\zeta}^{3} /\langle\zeta\rangle$ the quotient of the product manifold E_{ζ}^{3} by the scalar multiplication by ζ. Let

$$
Q_{0}=0, Q_{1}=\frac{1-\zeta}{3}, Q_{2}=\frac{-1+\zeta}{3}
$$

in E_{ζ}. These are exactly the fixed points of the scalar multiplication by ζ on E_{ζ}. For $i, j, k=0,1,2$, let

$$
Q_{i, j, k}=\left(Q_{i}, Q_{j}, Q_{k}\right) \in E_{\zeta}^{3}
$$

and let $\bar{Q}_{i, j, k}$ be its image in $E_{\zeta}^{3} /\langle\zeta\rangle$. Then $\bar{Y}=E_{\zeta}^{3} /\langle\zeta\rangle$ has singularities of type $\frac{1}{3}(1,1,1)$ at $\bar{Q}_{i, j, k}$'s and the blow-up $Y \rightarrow \bar{Y}$ at these 27 singular points gives a Calabi-Yau threefold Y. This is a Kähler Calabi-Yau threefold with Hodge numbers $h^{1,2}(Y)=0$ and $h^{1,1}(Y)=36$, which was originally found by Beauville ([3]).

3. Construction of a normal crossing variety $\mathcal{X}=X_{1} \cup \boldsymbol{X}_{2}$

Consider two 3×3 matrices in $\mathrm{GL}_{3}(\mathbb{Z}[\zeta])$

$$
A_{1}=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad A_{2}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Note that A_{i}^{2} is the 3×3 identity matrix and $\operatorname{det}\left(A_{i}\right)=-1$ for $i=1,2$. The matrix A_{i} induces an involution σ_{i} on E_{ζ}^{3}. Note that σ_{i}^{*} acts as multiplication by -1 on $H^{3,0}\left(E_{\zeta}^{3}\right)$. Noting that the subgroup of $\mathrm{GL}_{3}(\mathbb{Z}[\zeta])$ that is generated by A_{1}, A_{2} is infinite, we make the following remark which will play a key role in showing the non-Kählerness in the proof of Theorem 4.1.

Remark 3.1. The group of automorphisms of E_{ζ}^{3} that is generated by σ_{1}, σ_{2} is infinite.

There is a unique involution ρ_{i} on Y such that the following diagram commutes:

We note that ρ_{i}^{*} also acts as multiplication by -1 on $H^{3,0}(Y)$ and the fixed locus S_{i} of ρ_{i} is a smooth surface (a disjoint union of irreducible surfaces). Now we move on to the construction of smooth varieties X_{1}, X_{2}. We borrow a method of construction from [16] ($\S 4$ in [16]) that makes use of non-symplectic involutions on $K 3$ surfaces.

Let $\psi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ be any involution fixing two distinct points and consider a quotient $\bar{X}_{i}=\left(Y \times \mathbb{P}^{1}\right) /\left(\rho_{i} \times \psi\right)$. Then the singular locus of \bar{X}_{i} is a product of smooth surfaces and ordinary double points, resulting from the fixed locus of ρ_{i}. Let $X_{i} \rightarrow \bar{X}_{i}$ be the blow-up along the singular locus of \bar{X}_{i}. It is elementary to check that X_{i} is smooth. Choose a point $p \in \mathbb{P}^{1}$ such that $p \neq \psi(p)$. Let D_{i}^{\prime} be the image of $Y \times\{p\}$ in \bar{X}_{i} and D_{i} be the inverse image of D_{i}^{\prime} in X_{i}. Then D_{i} is isomorphic to Y and it is an anticanonical divisor of X_{i} whose normal bundle $N_{D_{i} / X_{i}}$ in X_{i} is trivial. Since Y is projective, all the varieties $Y \times \mathbb{P}^{1}, \bar{X}_{i}$ and X_{i} are projective.

We summarize our notations, including ones to be defined:

- $\zeta=e^{2 \pi \frac{\sqrt{-1}}{3}}$.
- $E_{\zeta}=\mathbb{C} /(\mathbb{Z} \oplus \mathbb{Z} \zeta)$ is the elliptic curve with period ζ.
- $\bar{Y}=E_{\zeta}^{3} /\langle\zeta\rangle$.
- $\phi: \widetilde{Y} \rightarrow E_{\zeta}^{3}$ is the blow-up at the 27 points of $Q_{i, j, k}$'s.
- $\eta: \widetilde{Y} \rightarrow Y$ is the map induced by $E_{\zeta}^{3} \rightarrow \bar{Y}$.
- $Y \rightarrow \bar{Y}$ is the blow-up of \bar{Y} at its singular points. Y is a Kähler CalabiYau threefold.
- $\sigma_{i}: E_{\zeta}^{3} \rightarrow E_{\zeta}^{3}$ is the involution induced by the matrix A_{i} for $i=1,2$.
- $\rho_{i}: Y \rightarrow Y$ is the involution induced by σ_{i} for $i=1,2$.
- $S_{i}=Y^{\rho_{i}}$ is the fixed locus of ρ_{i} for $i=1,2$.
- $\check{S}_{i}=\phi\left(\eta^{-1}\left(S_{i}\right)\right)$, the fixed locus of σ_{i} for $i=1,2$.
- $\psi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ is an involution fixing two distinct points $q_{1}, q_{2} \in \mathbb{P}^{1}$.
- $\bar{X}_{i}=\left(Y \times \mathbb{P}^{1}\right) /\left(\rho_{i} \times \psi\right)$ for $i=1,2$.
- $X_{i} \rightarrow \bar{X}_{i}$ is the blow-up along the singular locus of \bar{X}_{i} for $i=1,2$.
- $\widetilde{X}_{i} \rightarrow Y \times \mathbb{P}^{1}$ is the blow-up of $Y \times \mathbb{P}^{1}$ along the surface $S_{i} \times\left\{q_{1}, q_{2}\right\}$.
- D_{i}^{\prime} : the image of $Y \times\{p\}$ in \bar{X}_{i} for a point $p \in \mathbb{P}^{1}$ with $p \neq \psi(p)$ for $i=1,2$.
- D_{i} : the inverse image of D_{i}^{\prime} in X_{i} for $i=1,2 . D_{i} \simeq Y$ and $D_{i} \in$ $\left|-K_{X_{i}}\right|$.
- $X_{i}^{*}=X_{i}-D_{i}$.
- $\mathcal{X}=X_{1} \cup X_{2}$ is the normal crossing variety of X_{1}, X_{2}, made by gluing along their isomorphic smooth anticanonical sections D_{1}, D_{2}.
- $D_{\mathcal{X}}=X_{1} \cap X_{2}$.
- $M_{\mathcal{X}}$ is a smoothing of a normal crossing variety $\mathcal{X}=X_{1} \cup X_{2}$.

We make a normal crossing variety $\mathcal{X}=X_{1} \cup X_{2}$ by gluing transversally along D_{1} and D_{2}, (see $\S 2$ (especially Corollary 2.4) of [12] for details of the gluing process). Then $D_{\mathcal{X}}:=X_{1} \cap X_{2}$ is a copy of Y. Since $D_{\mathcal{X}}=X_{1} \cap X_{2}$ is an anticanonical divisor of both X_{1} and $X_{2}, \omega_{\mathcal{X}} \simeq \mathcal{O}_{\mathcal{X}}$. Note that $N_{D_{\mathcal{X}} / X_{1}} \otimes$ $N_{D_{\mathcal{X}} / X_{2}}$ is trivial. Let $X_{i}^{*}=X_{i}-D_{i}$. For varieties X_{1}, X_{2} and $\mathcal{X}=X_{1} \cup X_{2}$ constructed in this section, we gather some of their properties:

Proposition 3.2. 1) X_{1} and X_{2} are projective.
2) $\omega_{\mathcal{X}} \simeq \mathcal{O}_{\mathcal{X}}$.
3) $N_{D_{\mathcal{X}} / X_{1}} \otimes N_{D_{\mathcal{X}} / X_{2}}$ on $D_{\mathcal{X}}$ is trivial.
4) Both X_{i} and X_{i}^{*} are simply-connected for $i=1,2$.
5) $H^{k}\left(X_{i}, \mathcal{O}_{X_{i}}\right)=0$ for $i=1,2, k=1,2,3,4$.
6) $H^{k}\left(\mathcal{X}, \mathcal{O}_{\mathcal{X}}\right)=0$ for $k=1,2,3$.

Proof. The properties (1), (2), (3) are already shown.
We show the property (4). One can obtain X_{i} differently. Let q_{1}, q_{2} be the fixed points of ψ. Let \widetilde{X}_{i} be the blow-up of $Y \times \mathbb{P}^{1}$ along the surface $S_{i} \times\left\{q_{1}, q_{2}\right\}$. Then the involution on $Y \times \mathbb{P}^{1}$ induces an involution on \widetilde{X}_{i}, whose fixed locus is the exceptional divisor over $S_{i} \times\left\{q_{1}, q_{2}\right\}$. The quotient
of \widetilde{X}_{i} by the involution is isomorphic to X_{i}. This may be summarized by the diagram,

where $h: \widetilde{X}_{i} \rightarrow X_{i}$ is the quotient map. Let $f: \widehat{X_{i}} \rightarrow X_{i}$ be the universal covering. The fourfold \widetilde{X}_{i} is simply-connected, therefore the map $h: \widetilde{X}_{i} \rightarrow$ X_{i} lifts to a map $g: \widetilde{X}_{i} \rightarrow \widehat{X}_{i}$ so that there is a commutative diagram:

Since the involution $\rho_{i} \times \psi$ has fixed points, the induced involution on $\widetilde{X_{i}}$ also has fixed points and hence the branch locus of the double covering $h: \widetilde{X}_{i} \rightarrow X_{i}$ is not empty. Choose a point b in the branch locus of the map h. Then the set $h^{-1}(\{b\})\left(=g^{-1}\left(f^{-1}(\{b\})\right)\right)$ is composed of a single point. Hence the set $f^{-1}(\{b\})$ is also composed of a single point, which implies that f is of degree one because f is an étale covering. We conclude that the universal covering $f: \widehat{X_{i}} \rightarrow X_{i}$ is an isomorphism. Now $\widehat{X_{i}}$ is isomorphic to X_{i} and so X_{i} is simply-connected.

There is a natural projection: $\bar{X}_{i}=\left(Y \times \mathbb{P}^{1}\right) /\left(\rho_{i} \times \psi\right) \rightarrow Y / \rho_{i}$. Let ν be the composition of $X_{i} \rightarrow \bar{X}_{i}$ and $\left(Y \times \mathbb{P}^{1}\right) /\left(\rho_{i} \times \psi\right) \rightarrow Y / \rho_{i}$. Let $x \in Y / \rho_{i}$ be a point in the branch locus of the map $Y \rightarrow Y / \rho_{i}$. Then $\nu^{-1}(x)$ is a union of three smooth rational curves, one of which (denoted by l) crosses D_{i} transversely at a single point and the other two are disjoint from D_{i}, resulting from the blow-up. Since X_{i} and D_{i} are simply connected, the fundamental group $\pi_{1}\left(X_{i}^{*}\right)$ of X_{i}^{*} is generated by a loop around D_{i}. We can assume that the loop is contained in $l^{*}=l-D_{i}$. Since the loop can be contracted to a point in l^{*}, X_{i}^{*} is simply-connected.

We move on to the property (5). Since

$$
\operatorname{dim} H^{k}\left(X_{i}, \mathcal{O}_{X_{i}}\right) \leq \operatorname{dim} H^{k}\left(\widetilde{X}_{i}, \mathcal{O}_{\widetilde{X}_{i}}\right)=\operatorname{dim} H^{k}\left(Y \times \mathbb{P}^{1}, \mathcal{O}_{Y \times \mathbb{P}^{1}}\right)=0
$$

for $k=1,2$, we have

$$
H^{k}\left(X_{i}, \mathcal{O}_{X_{i}}\right)=0
$$

for $k=1,2$.
Note that X_{i} has an effective anticanonical divisor D_{i}, which is a CalabiYau threefold. Hence, we have

$$
H^{4}\left(X_{i}, \mathcal{O}_{X_{i}}\right) \simeq H^{0}\left(X_{i}, \Omega_{X_{i}}^{4}\right)=0
$$

Taking the cohomology of the structure sheaf sequence,

$$
0 \rightarrow \mathcal{O}_{X_{i}}\left(K_{X_{i}}\right) \rightarrow \mathcal{O}_{X_{i}} \rightarrow \mathcal{O}_{D_{i}} \rightarrow 0
$$

we obtain an exact sequence

$$
\begin{array}{r}
H^{3}\left(X_{i}, \mathcal{O}_{X_{i}}\left(K_{X_{i}}\right)\right) \rightarrow H^{3}\left(X_{i}, \mathcal{O}_{X_{i}}\right) \rightarrow H^{3}\left(D_{i}, \mathcal{O}_{D_{i}}\right) \rightarrow \\
H^{4}\left(X_{i}, \mathcal{O}_{X_{i}}\left(K_{X_{i}}\right)\right) \rightarrow H^{4}\left(X_{i}, \mathcal{O}_{X_{i}}\right)=0
\end{array}
$$

Since, by Serre duality,

$$
\begin{aligned}
H^{3}\left(X_{i}, \mathcal{O}_{X_{i}}\left(K_{X_{i}}\right)\right) & \simeq H^{1}\left(X_{i}, \mathcal{O}_{X_{i}}\right)=0 \\
\operatorname{dim} H^{4}\left(X_{i}, \mathcal{O}_{X_{i}}\left(K_{X_{i}}\right)\right) & =\operatorname{dim} H^{0}\left(X_{i}, \mathcal{O}_{X_{i}}\right)=1
\end{aligned}
$$

and

$$
\operatorname{dim} H^{3}\left(D_{i}, \mathcal{O}_{D_{i}}\right)=1
$$

we have $\operatorname{dim} H^{3}\left(X_{i}, \mathcal{O}_{X_{i}}\right)=0$.
Finally, we show the property (6). From the exact sequence of sheaves

$$
0 \rightarrow \mathcal{O}_{\mathcal{X}} \rightarrow \mathcal{O}_{X_{1}} \oplus \mathcal{O}_{X_{2}} \rightarrow \mathcal{O}_{D_{\mathcal{X}}} \rightarrow 0
$$

we obtain an exact sequence

$$
H^{k-1}\left(D_{\mathcal{X}}, \mathcal{O}_{D_{\mathcal{X}}}\right) \rightarrow H^{k}\left(\mathcal{X}, \mathcal{O}_{\mathcal{X}}\right) \rightarrow H^{k}\left(X_{1}, \mathcal{O}_{X_{1}}\right) \oplus H^{k}\left(X_{2}, \mathcal{O}_{X_{2}}\right)
$$

Since

$$
H^{k-1}\left(D_{\mathcal{X}}, \mathcal{O}_{D_{\mathcal{X}}}\right)=H^{k}\left(X_{1}, \mathcal{O}_{X_{1}}\right)=H^{k}\left(X_{2}, \mathcal{O}_{X_{2}}\right)=0
$$

for $k=2,3$, we have

$$
H^{2}\left(\mathcal{X}, \mathcal{O}_{\mathcal{X}}\right)=H^{3}\left(\mathcal{X}, \mathcal{O}_{\mathcal{X}}\right)=0
$$

Moreover, the exact sequence

$$
\begin{aligned}
0 \rightarrow H^{0}\left(\mathcal{X}, \mathcal{O}_{\mathcal{X}}\right) & \rightarrow H^{0}\left(X_{1}, \mathcal{O}_{X_{1}}\right) \oplus H^{0}\left(X_{2}, \mathcal{O}_{X_{2}}\right) \rightarrow H^{0}\left(D_{\mathcal{X}}, \mathcal{O}_{D_{\mathcal{X}}}\right) \\
& \rightarrow H^{1}\left(\mathcal{X}, \mathcal{O}_{\mathcal{X}}\right) \rightarrow H^{1}\left(X_{1}, \mathcal{O}_{X_{1}}\right) \oplus H^{1}\left(X_{2}, \mathcal{O}_{X_{2}}\right)=0
\end{aligned}
$$

gives $H^{1}\left(\mathcal{X}, \mathcal{O}_{\mathcal{X}}\right)=0$.

4. The example

By Theorem 2.1 with the properties in Proposition 3.2, one can show that the normal crossing variety \mathcal{X}, constructed in Section 3, is smoothable to a smooth fourfold $M_{\mathcal{X}}$ with trivial canonical class. We can also check that $H^{i}\left(M_{\mathcal{X}}, \mathcal{O}_{\mathcal{X}}\right)=0$ for $i=1,2,3$ by the upper semicontinuity theorem with the property (6) in Proposition 3.2.

Theorem 4.1. $M_{\mathcal{X}}$ is a non-Kähler Calabi-Yau fourfold.
Proof. We only need to show that $M_{\mathcal{X}}$ is simply-connected and non-Kähler.
First, we show the simply-connectedness. We can obtain the topological type of $M_{\mathcal{X}}$ by pasting X_{1}^{*} and X_{2}^{*}. One can regard the normal bundle $N_{D_{\mathcal{X}} / X_{i}}$ as a complex manifold containing $D_{\mathcal{X}}$. Then

$$
N_{D_{\mathcal{X}} / X_{i}}^{*}:=N_{D_{\mathcal{X}} / X_{i}}-D_{\mathcal{X}}
$$

is a \mathbb{C}^{*}-bundle over $D_{\mathcal{X}}$, where $\mathbb{C}^{*}:=\mathbb{C}-\{0\}$. The triviality property on $N_{D_{\mathcal{X}} / X_{1}} \otimes N_{D_{\mathcal{X}} / X_{2}}$ implies the map

$$
\varphi: N_{D_{\mathcal{X}} / X_{1}}^{*} \rightarrow N_{D_{\mathcal{X}} / X_{2}}^{*}
$$

locally defined by

$$
\left(x \in \mathbb{C}^{*}, y \in D_{\mathcal{X}}\right) \mapsto(1 / x, y),
$$

is globally well-defined and an isomorphism. Note that $D_{\mathcal{X}}$ in X_{i} has a neighborhood U_{i} that is homeomorphic to $N_{D_{\mathcal{X}} / X_{i}}$. Let $U_{i}^{*}=U_{i}-D_{\mathcal{X}}$. Then the map φ induces a homeomorphism between U_{1}^{*} and U_{2}^{*}. One can construct a manifold M^{\prime} by pasting together X_{1}^{*} and X_{2}^{*} along U_{1}^{*} and U_{2}^{*} with the homeomorphism. The manifold M^{\prime} is homeomorphic to $M_{\mathcal{X}}$. Note that X_{1}^{*}, X_{2}^{*} are simply-connected (the property (4) in Proposition 3.2). Hence, by Seifert-van Kampen theorem, M^{\prime} is simply-connected.

For the non-Kählerness, suppose that $M_{\mathcal{X}}$ is Kähler, then it is necessarily projective. Note that $D_{\mathcal{X}}, X_{1}$ and X_{2} are all projective (the property (1) in Proposition 3.2). Hence, by Lemma 2.2, there exists a big line bundle \mathcal{L} on \mathcal{X}. Let h_{i} be the big divisor class in $\operatorname{Pic}\left(X_{i}\right)$ corresponding to $\left.\mathcal{L}\right|_{X_{i}}$, then $\left.h_{1}\right|_{D_{\mathcal{X}}}$ is linearly equivalent to $\left.h_{2}\right|_{D_{\mathcal{X}}}$. Note that $D_{\mathcal{X}}$ is a copy of Y. Let us denote
the divisor class in $\operatorname{Pic}(Y)$ of $\left.h_{1}\right|_{D_{\chi}},\left.h_{2}\right|_{D_{\mathcal{X}}}$ by \hat{h}. Chasing the construction of X_{1} and X_{2}, one can check that \hat{h} belongs to $\operatorname{Pic}(Y)^{\rho_{1}^{*}} \cap \operatorname{Pic}(Y)^{\rho_{2}^{*}}$, where $\operatorname{Pic}(Y)^{\rho_{i}^{*}}$ is the subgroup of $\operatorname{Pic}(Y)$ that consists of the classes invariant under ρ_{i}^{*}.

The linear system $\left|D_{\mathcal{X}}\right|$ is base-point free and it gives a fibration $X_{i} \rightarrow \mathbb{P}^{1}$ and $D_{\mathcal{X}}$ is one of its generic fibers. Hence \hat{h} is a big divisor of Y (see, for example, Corollary 2.2 .11 in [18]). Let $\phi: \widetilde{Y} \rightarrow E_{\zeta}^{3}$ be the blow-up at the 27 points of $Q_{i, j, k}$'s and $\eta: \widetilde{Y} \rightarrow Y$ be the map induced by $E_{\zeta}^{3} \rightarrow \bar{Y}$ such that the diagram commutes:

It is not hard to check that $\check{h}=\phi_{*}\left(\eta^{*}(\hat{h})\right)$ is a big divisor of E_{ζ}^{3} and the class \check{h} belongs to $\operatorname{NS}\left(E_{\zeta}^{3}\right)^{\sigma_{1}^{*}} \cap \operatorname{NS}\left(E_{\zeta}^{3}\right)^{\sigma_{2}^{*}}$. Note that any big divisor of the abelian variety E_{ζ}^{3} is ample. However, the group of automorphisms of E_{ζ}^{3} that is generated by σ_{1}, σ_{2} is infinite (Remark 3.1) and so $\operatorname{NS}\left(E_{\zeta}^{3}\right)^{\sigma_{1}^{*}} \cap \operatorname{NS}\left(E_{\zeta}^{3}\right)^{\sigma_{2}^{*}}$ does not contain an ample class. Therefore, we have a contradiction and $M_{\mathcal{X}}$ should be non-Kähler.

Topological invariants of $M_{\mathcal{X}}$ can be calculated from the topological manifold M^{\prime} in the proof of Theorem 4.1. For example, the topological Euler number $\chi\left(M_{\mathcal{X}}\right)$ of $M_{\mathcal{X}}$ is

$$
\chi\left(M_{\mathcal{X}}\right)=\chi\left(M^{\prime}\right)=\chi\left(X_{1}^{*}\right)+\chi\left(X_{2}^{*}\right)-\chi\left(U_{1}\right)
$$

Note

$$
\chi\left(X_{i}\right)=\chi\left(X_{i}^{*}\right)+\chi\left(D_{i}\right)=\chi\left(X_{i}^{*}\right)+\chi(Y)
$$

and $\chi\left(U_{1}\right)=\chi\left(S^{1}\right) \chi\left(D_{1}\right)=0$. Hence,

$$
\chi\left(M_{\mathcal{X}}\right)=\chi\left(X_{1}\right)+\chi\left(X_{2}\right)-2 \chi(Y)
$$

The topological Euler characteristic of \widetilde{X}_{i} is

$$
\chi\left(\widetilde{X}_{i}\right)=2 \chi(Y)+2 \chi\left(S_{i}\right)
$$

On the other hand,

$$
2 \chi\left(X_{i}\right)-4 \chi\left(S_{i}\right)=\chi\left(\widetilde{X}_{i}\right)
$$

and so

$$
\begin{aligned}
\chi\left(X_{i}\right) & =\frac{1}{2}\left(4 \chi\left(S_{i}\right)+\chi\left(\tilde{X}_{i}\right)\right) \\
& =2 \chi\left(S_{i}\right)+\chi(Y)+\chi\left(S_{i}\right) \\
& =\chi(Y)+3 \chi\left(S_{i}\right)
\end{aligned}
$$

Let $\check{S}_{i}=\phi\left(\eta^{-1}\left(S_{i}\right)\right)$. Note that \check{S}_{i} is the fixed locus of σ_{i}. Let $\Theta=$ $\left\{Q_{i, j, k} \mid i, j, k=0,1,2\right\}$. One can easily check

$$
\chi\left(S_{i}\right)=2\left|\check{S}_{i} \cap \Theta\right|=18
$$

where $\left|\check{S}_{i} \cap \Theta\right|$ is the number of points in $\check{S}_{i} \cap \Theta$.
Therefore, the topological Euler number $\chi\left(M_{\mathcal{X}}\right)$ of $M_{\mathcal{X}}$ is

$$
\begin{aligned}
\chi\left(M_{\mathcal{X}}\right) & =\chi\left(X_{1}\right)+\chi\left(X_{2}\right)-2 \chi(Y) \\
& =\chi(Y)+3 \chi\left(S_{1}\right)+\chi(Y)+3 \chi\left(S_{2}\right)-2 \chi(Y) \\
& =3 \chi\left(S_{1}\right)+3 \chi\left(S_{2}\right) \\
& =108
\end{aligned}
$$

The pair of matrices A_{1}, A_{2} in Section 2 , which can be used in the construction, is obviously not unique. Any pair of 3×3 matrices A_{1}, A_{2} that satisfies the following conditions,

1) $A_{i} \in \mathrm{GL}_{3}(\mathbb{Z}[\zeta])$,
2) A_{i}^{2} is the 3×3 identity matrix,
3) $\operatorname{det}\left(A_{i}\right)=-1$,
4) ρ_{i} is not fixed-free and its fixed locus is a smooth surface and
5) The subgroup of $\mathrm{GL}_{3}(\mathbb{Z}[\zeta])$ containing both A_{1}, A_{2} is infinite,
gives rise to a non-Kähler Calabi-Yau fourfolds through the construction of Sections 3 and 4, where the conditions guarantee, respectively,
6) A_{i} induces an automorphism of E_{ζ}^{3} which induces an automorphism of Y.
7) A_{i} induces an involution of E_{ζ}^{3} which induces an involution of Y,
8) ρ_{i}^{*} acts as multiplication by -1 on $H^{3,0}(Y)$ so that X_{i} has an anticanonical section isomorphic to Y,
9) both X_{i} and X_{i}^{*} are simply-connected, which leads to the simplyconnectedness of $M_{\mathcal{X}}$ and
10) the group of automorphisms of E_{ζ}^{3} that is generated by σ_{1}, σ_{2} is infinite, which eventually leads to the non-Kählerness of $M_{\mathcal{X}}$.

The author could not obtain other non-Kähler Calabi-Yau fourfolds of different topological Euler numbers although he tried many pairs of such matrices. The author suspects that all the pairs of such matrices may give rise to non-Kähler Calabi-Yau fourfolds of the same topological Euler number ($=108$).

Acknowledgements

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2020R1A2C1A01004503) and 2022 Hongik University Research Fund.

References

[1] Altman, Ross; Gray, James; He, Yang-Hui; Jejjala, Vishnu; Nelson, Brent D. A Calabi-Yau database: threefolds constructed from the Kreuzer-Skarke list. J. High Energy Phys. 2015, no. 2, 158.
[2] Batyrev, Victor V. Dual polyhedra and mirror symmetry for CalabiYau hypersurfaces in toric varieties. J. Algebraic Geom. 3 (1994), no. 3, 493-535.
[3] Beauville, Arnaud Some remarks on Kähler manifolds with $c_{1}=0$. Classification of algebraic and analytic manifolds (Katata, 1982), 126, Progr. Math., 39, Birkhäuser Boston, Boston, MA, 1983.
[4] Bogomolov, Fedor A. On Guan's examples of simply connected nonKähler compact complex manifolds. Amer. J. Math. 118 (1996), no. 5, 1037-1046.
[5] Clemens, C. Herbert Double solids. Adv. in Math. 47 (1983), no. 2, 107-230.
[6] Fei, Teng A construction of non-Kähler Calabi-Yau manifolds and new solutions to the Strominger system. Adv. Math. 302 (2016), 529550.
[7] Felten, Simon; Filip, Matej; Ruddat, Helge Smoothing toroidal crossing spaces. arXiv:1908.11235.
[8] Friedman, Robert Simultaneous resolution of threefold double points. Math. Ann. 274 (1986), no. 4, 671-689.
[9] Friedman, Robert On threefolds with trivial canonical bundle. Complex geometry and Lie theory, 103-134, Proc. Sympos. Pure Math., 53, Amer. Math. Soc., Providence, RI, 1991.
[10] Fu, Jixiang; Li, Jun; Yau, Shing-Tung Balanced metrics on nonKähler Calabi-Yau threefolds. J. Differential Geom. 90 (2012), no. 1, 81-129.
[11] Guan, Daniel Examples of compact holomorphic symplectic manifolds which are not Kählerian. II. Invent. Math. 121 (1995), no. 1, 135-145.
[12] Hashimoto, Kenji; Sano, Taro Examples of non-Kähler Calabi-Yau 3-folds with arbitrarily large b_{2}, arXiv:1902.01027.
[13] Kawamata, Yujiro; Namikawa, Yoshinori Logarithmic deformations of normal crossing varieties and smoothing of degenerate Calabi-Yau varieties. Invent. Math. 118 (1994), no. 3, 395-409.
[14] Kodaira, K. On the structure of compact complex analytic surfaces. I. Amer. J. Math. 86 (1964), 751-798.
[15] Kodaira, K.; Nirenberg, L.; Spencer, D. C. On the existence of deformations of complex analytic structures. Ann. of Math. 68 (1958), 450-459.
[16] Kovalev, Alexei; Lee, Nam-Hoon K3 surfaces with non-symplectic involution and compact irreducible G2-manifolds. Math. Proc. Cambridge Philos. Soc. 151 (2011), no. 2, 193-218.
[17] Kreuzer, Maximilian; Skarke, Harald Calabi-Yau data. http://hep. itp.tuwien.ac.at/~kreuzer/CY/
[18] Lazarsfeld, Robert Positivity in algebraic geometry. I. Classical setting: line bundles and linear series. A Series of Modern Surveys in Mathematics, 48. Springer-Verlag, Berlin, 2004.
[19] Lee, Nam-Hoon Calabi-Yau construction by smoothing normal crossing varieties. Internat. J. Math. 21 (2010), no. 6, 701-725.
[20] Lee, Nam-Hoon Mirror pairs of Calabi-Yau threefolds from mirror pairs of quasi-Fano threefolds. J. Math. Pures Appl. (9) 141 (2020), 195-219.
[21] Qin, Lizhen; Wang, Botong A family of compact complex and symplectic Calabi-Yau manifolds that are non-Kähler. Geom. Topol. 22 (2018), no. 4, 2115-2144.
[22] Reid, Miles The moduli space of 3-folds with $K=0$ may nevertheless be irreducible. Math. Ann. 278 (1987), no. 1-4, 329-334.
[23] Sano, Taro Examples of non-Kähler Calabi-Yau manifolds with arbitrarily large b_{2}, arXiv:2102.13437.
[24] Siu, Y. T. Every K3 surface is Kähler. Invent. Math. 73 (1983), no. 1, 139-150.
[25] Tosatti, Valentino Non-Kähler Calabi-Yau manifolds. Analysis, complex geometry, and mathematical physics: in honor of Duong H. Phong, 261-277, Contemp. Math., 644, Amer. Math. Soc., Providence, RI, 2015.

Department of Mathematics Education, Hongik University 42-1, Sangsu-Dong, Mapo-Gu, Seoul 121-791, Korea
E-mail address: nhlee@kias.re.kr
Received March 15, 2021
Accepted March 212022

