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1012 T. Fisher and L. Radičević

1. Introduction

A classical construction, known as the Levi-Delone-Faddeev correspondence
[9, 15] (see also [13]), shows that a binary cubic form

f(x, y) = ax3 + bx2y + cxy2 + dy3

naturally determines a ring of rank 3. Explicitly, if ξ is a symbol formally
satisfying f(ξ, 1) = 0 then ω = aξ and θ = −dξ−1 satisfy the relations

(1)

ω2 = −ac− bω + aθ,

ωθ = −ad,

θ2 = −bd− dω + cθ.

These relations may be used to define a commutative and associative mul-
tiplication on the free module with basis 1, ω, θ. The construction works
over any base ring, and gives a discriminant preserving bijection between
equivalence classes of binary cubic forms and isomorphism classes of rings
of rank 3. This construction was extended to rings of rank 4 and 5 by Bhar-
gava [1, 3], who considered pairs of quadratic forms in 3 variables, and 5× 5
alternating matrices of linear forms in 4 variables.

We describe an extension to rings of rank n for any integer n ⩾ 3. Our
main result (Theorem 2.8) shows how a set of n points X ⊂ Pn−2 in gen-
eral position determines, by means of an explicit construction involving the
minimal free resolution of X, structure constants for an algebra A of rank
n. In particular we show that this algebra A is isomorphic to the coordinate
ring of X.

We should say straight away that we are not expecting to fully gen-
eralise Bhargava’s work, and count number fields of degree n > 5. Instead
our motivation comes from the study of genus one curves. If C ⊂ Pn−1 is a
genus one curve of degree n, embedded by a complete linear system, then
a generic hyperplane section of C will be a set of n points in general posi-
tion. The first author showed in [12] how to associate to such a curve C a
matrix of quadratic forms Ω describing the invariant differential. One appli-
cation of Theorem 2.8 is that the associative law then determines some of
the equations defining the space of all such Ω’s. Another application is given
by the second author in his PhD thesis [16] where for E/Q an elliptic curve
and n ⩾ 2 an integer, he gives a simple bound on the least discriminant of
a degree n number field over which each element of order n in the Tate
Shafarevich group of E capitulates.
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Having mentioned these applications to the study of curves, in the rest
of this article we only consider finite sets of points in projective space.

For the statement of Theorem 2.8 we work over a field K of character-
istic 0. However, examination of the proofs shows that all we need is that
the characteristic does not divide 2n. In Section 3 (with the main proof
postponed to Section 10) we describe a slightly more complicated variant of
our construction that works in all characteristics. It is this construction that
reduces (in the cases n = 3, 4, 5) to the earlier work of Levi-Delone-Faddeev
and Bhargava. It also gives better bounds in [16, Theorem 1.0.1].

In Section 4 we review the connection between non-degenerate algebras
of dimension n and sets of n points in Pn−2 in general position. Then, as
explained in Section 5, the proof of Theorem 2.8 comes down to (i) checking
our construction of the structure constants behaves well under all changes
of co-ordinates, and (ii) checking that the theorem holds for the standard
set of n points:

(1 : 0 : . . . : 0), (0 : 1 : 0 : . . . : 0), . . . , (0 : . . . : 0 : 1), (1 : 1 : . . . : 1).

We give the proof of (i) in Sections 6 and 7. We may check (ii) for any given
n by computer algebra. We give a proof that works for all n in Sections 8
and 9, using an explicit description of the minimal free resolution due to
Wilson [17].

2. Statement of the main theorem

We recall a few basic notions from commutative algebra that will be needed
to state our main theorem. Throughout, we work over a field K with alge-
braic closure K̄. Let R = K[x1, . . . , xm] be the polynomial ring with its usual
grading. For M = ⊕dMd a graded R-module, we write M(c) = ⊕dMc+d for
the graded R-module with grading shifted by c. A direct sum of modules of
the form R(c) is a called a graded free R-module.

Definition 2.1. A graded free resolution of a graded R-module M is a
chain complex F• of graded free R-modules

Fr
ϕr

−−−→ Fr−1
ϕr−1
−−−→ . . .

ϕ2
−−−→ F1

ϕ1
−−−→ F0,

that is exact in degree > 0, and has H0(F•) = F0/ϕ1(F1) ∼= M . Let m =
(x1, . . . , xm) be the maximal homogeneous ideal of R. We say a resolution
F• is minimal if we have ϕk(Fk) ⊂ mFk−1 for every k ⩾ 1.
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1014 T. Fisher and L. Radičević

Our interest is in the case M ∼= R/I, where I is a homogeneous ideal
in R.

Remark 2.2. The minimal free resolution of a module is unique up to an
isomorphism of chain complexes. Any such isomorphism consists of changes
of bases for the free R-modules Fk in the resolution, see [11, Theorem 20.2].

We require that the maps ϕk respect the grading of the modules. For
example, a homomorphism of modules R(−m) → R is defined by multipli-
cation by an element f ∈ R, and this is a graded homomorphism if and
only if f is homogeneous of degree m (or zero). By choosing bases for each
module Fk in the resolution, we may represent the maps ϕk as matrices of
homogeneous polynomials. By abuse of notation we also write ϕk for these
matrices.

Remark 2.3. The condition that the resolution is minimal means that
every non-zero entry of every matrix has positive degree. By Nakayama’s
lemma, this is equivalent to requiring that ϕk takes the basis of Fk to a
minimal set of generators for the kernel of ϕk−1, see [10, Corollary 1.5]. This
characterisation makes it clear that every finitely generated graded module
admits a minimal free resolution.

A minimal free resolution of an ideal contains the data of a set of gener-
ators for the ideal, the data of all relations (syzygies) that these generators
satisfy, the data of relations that these relations satisfy, and so on iteratively.
We illustrate this in the following example.

Example 2.4. Let X be the set of four points (1 : 0 : 0), (0 : 1 : 0), (0 :
0 : 1), (1 : 1 : 1) in P2. The homogeneous ideal I of X in R = K[x1, x2, x3]
is generated by the quadratic forms A = x1(x2 − x3) and B = x2(x1 − x3).
For the first step of the resolution, we can take F0 = R, F1 = R(−2)2, and
let ϕ1 : R(−2)2 −→ R be the map represented by the row matrix (A,B), so
that coker(ϕ1) ∼= R/I. To compute the second step, we observe that A and
B satisfy the relation B ·A+ (−A) ·B = 0. Furthermore, any equation f ·
A+ g ·B = 0 is obtained by multiplying this relation by some r ∈ R, i.e.,
we have f = r ·B and g = −r ·A. We now take F2 = R(−4), and let ϕ2 :
R(−4) −→ R(−2)2 be the map represented by the column matrix (B,−A)T .
Since this map is injective, this is where the resolution stops. We obtain the
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chain complex

(2) 0 −→ R(−4)
(B,−A)T

−−−−−→ R(−2)2
(A,B)
−−−→ R −→ 0

which is exact at the middle term and on the left, and is hence the minimal
free resolution of R/I.

More generally we consider sets of points of the following form.

Definition 2.5. A zero dimensional variety X ⊂ Pn−2 defined over K is a
set of n points in general position, if X has degree n and the set of geometric
points X(K̄) consists of n points in general position, meaning that no subset
of X(K̄) of size n− 1 is contained in a hyperplane.

Theorem 2.6. Let n ⩾ 4, and let R = K[x1, . . . , xn−1] be the coordinate
ring of Pn−2. Let X ⊂ Pn−2 be a set of n points in general position. Let
I ⊂ R be the homogeneous ideal of X. Then I is (arithmetically) Gorenstein,
and the minimal free resolution F• of R/I takes the form

0 −→ R(−n)
ϕn−2
−−−→ R(−n+ 2)bn−3

ϕn−3
−−−→ R(−n+ 3)bn−4

ϕn−4
−−−→ . . .

. . .
ϕ3

−−−→ R(−3)b2
ϕ2

−−−→ R(−2)b1
ϕ1

−−−→ R −→ 0,

where the Betti numbers are given by bi = n
(
n−2
i

)
−
(

n
i+1

)
.

Proof. The minimal free resolution is as described in [17, Theorem 138], and
the references cited there. For the statement that I is Gorenstein see [17,
Corollary 140]. □

We note that ϕ1 and ϕn−2 are represented by matrices of quadratic
forms, while the maps ϕi, for 1 < i < n− 2, are represented by matrices of
linear forms. In Section 9 we make use of an explicit description of these
maps (for a specific choice of X) due to Wilson [17, Chapter 5].

Definition 2.7. The resolution F• determines the following quadratic
forms in the variables x1, . . . , xn−1.

i) For 1 ⩽ a1, a2, . . . , an−2 ⩽ n− 1 we define

[a1, a2, . . . , an−2]F•
=

∂ϕ1

∂xa1

∂ϕ2

∂xa2

· · ·
∂ϕn−2

∂xan−2

,

where the partial derivative of a matrix is the matrix of partial deriva-
tives of its entries, and the product is matrix multiplication. We note



✐

✐

“2-Fisher” — 2024/3/15 — 23:27 — page 1016 — #6
✐

✐

✐

✐

✐

✐

1016 T. Fisher and L. Radičević

that the first and last terms in the product are linear in x1, . . . , xn−1,
whereas all the others are constants. Overall this gives a quadratic form.

ii) Let σ be the (n− 2)-cycle (12 . . . n− 2) in the symmetric group Sn−2.
We define

[[a1, a2, . . . , an−2]]F•
=

n−2∑

k=1

[aσ2k(1), aσ2k(2), . . . , aσ2k(n−2)]F•
.

iii) For 1 ⩽ j ⩽ n− 1 we define Ωj = (−1)j [[1, 2, . . . , ĵ, . . . , n− 1]]F•
.

The choice of resolution will usually be fixed, and we therefore drop the
subscripts F•.

For our main result we work over a field K of characteristic 0.

Theorem 2.8. Let n ⩾ 3 and let X ⊂ Pn−2 be a set of n points in general
position. Let Ω1, . . . ,Ωn−1 be the quadratic forms associated to a minimal
free resolution of X. Then there exists a commutative and associative K-
algebra A, of dimension n, and a K-basis 1 = α0, α1, . . . , αn−1 for A, such
that for each 1 ⩽ i, j ⩽ n− 1 we have

αiαj = c0ij +

n−1∑

k=1

∂2Ωk

∂xi∂xj
αk,

for some constant c0ij ∈ K. Moreover A is isomorphic to the affine coordinate
ring (i.e., ring of global functions) of X, and the αi for 1 ⩽ i ⩽ n− 1 span
the trace zero subspace.

We expect that the basis for the algebra in Theorem 2.8 is the same as
the basis defined in Section 2.4 of the 2022 PhD thesis of Lee [14].

Remark 2.9. Following [3, page 68] we can use the associative law to
solve for the c0ij . Explicitly, for any 1 ⩽ i, j, k ⩽ n− 1 with i ̸= k, comparing
coefficients of αk in αi(αjαk) = (αiαj)αk gives

c0ij =

n−1∑

r=1

(
∂2Ωr

∂xj∂xk

∂2Ωk

∂xr∂xi
−

∂2Ωr

∂xi∂xj

∂2Ωk

∂xr∂xk

)
.

Remark 2.10. The construction of [a1, a2, . . . , an−2], and hence of
Ω1, . . . ,Ωn−1, is independent of the choice of basis for the free R-modules in
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the resolution F•, except for the leftmost module R(−n). The quadratic
forms Ω1, . . . ,Ωn−1 are therefore uniquely determined up to multiplying
through by an overall scalar. It is clear that this gives an isomorphic K-
algebra.

3. Constructing orders in number fields

In this section we explain the connection between Theorem 2.8 and the
previously known constructions due to Levi-Delone-Faddeev and Bhargava
for n = 3, 4, 5. Whereas we work with algebras over a field of characteristic
zero, the latter constructions work for rings of rank n, i.e., algebras over Z.
We discuss to what extent this earlier work generalises to larger n.

Let A be an n-dimensional commutative K-algebra with K-basis
1, α1, . . . , αn−1. The structure constants ckij for 1 ⩽ i, j, k ⩽ n− 1 are de-
termined by

αiαj = c0ij +

n−1∑

k=1

ckijαk.

As noted in Remark 2.9, the c0ij may be recovered from the other structure
constants using the associative law. We say that bases 1, α1, . . . , αn−1 and
1, β1, . . . , βn−1 differ by a shear if βi = αi + λi · 1 for some λ1, . . . , λn−1 ∈ K.

When n = 3 the algebra constructed by Levi-Delone-Faddeev (as defined
by (1) in the introduction) is uniquely determined, up to shear, by

(3) c211 = a, c111 − 2c212 = −b, c222 − 2c112 = c, c122 = −d.

To see this we note that, for example, changing α1 to α1 + λ · 1 increases
c111 and c212 by 2λ and λ respectively. To compare with the algebra in Theo-
rem 2.8 we consider the minimal free resolution

0 −→ R(−3)
f

−→ R −→ 0

where f(x1, x2) = ax31 + bx21x2 + cx1x
2
2 + dx32. Using Definition 2.7, we com-

pute

Ω1 = −[[2]] = −[2] = −
∂f

∂x2
= −bx21 − 2cx1x2 − 3dx22

and

Ω2 = [[1]] = [1] =
∂f

∂x1
= 3ax21 + 2bx1x2 + cx22.
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From this it is easy to check that

ckij =
1

6

∂2Ωk

∂xi∂xj

is a solution to (3).
When n ⩾ 4 a similar argument to that in the case n = 3 shows that the

algebra is uniquely determined, up to shear, by the linear combinations of
structure constants in the left hand column of Table 3.1, where i, j, k range
over all triples of distinct integers with 1 ⩽ i, j, k ⩽ n− 1. These linear com-
binations appear, with what we believe is a type error, in [3, Equation (21)].
The remaining columns are explained below.

n = 4 n = 5 n ⩾ 4

ckij ±{jjii} ±{iiℓjj} ±{i, i, 1, 2, . . . î, . . . , ĵ, . . . , k̂, . . . , n− 1, j, j}

cjii ±{iiik} ±{ℓiiik} ±{i, i, 1, . . . , î, . . . , ĵ, . . . , n− 1, i}

cjij − ckik ±{iijk} ±{jkℓii} ±{i, i, 1, . . . , î, . . . , ĵ, . . . , k̂, . . . , n− 1, j, k}

ciii − cjij − ckik ±{ikij} ±{ijℓki} ±{i, j, 1, . . . , î, . . . , ĵ, . . . , k̂, . . . , n− 1, k, i}

Table 3.1: Structure constants for rings of rank n (up to shear)

Let F• be a minimal free resolution of a set of n points in general po-
sition, with differentials ϕ1, . . . , ϕn−2 represented by matrices of linear and
quadratic forms. We write

ϕ1 =
∑

i⩽j

P (i, j)xixj and ϕn−2 =
∑

i⩽j

Q(i, j)xixj ,

where the P (i, j) are row vectors, and the Q(i, j) are column vectors. We
put P (i, j) = P (j, i) and Q(i, j) = Q(j, i) for i > j. We then define

{a1a2 . . . an} := P (a1, a2)
∂ϕ2

∂xa3

· · ·
∂ϕn−3

∂xan−2

Q(an−1, an).

When n = 4 the minimal free resolution F• takes the form (2) where A
and B are ternary quadratic forms. The symbols {ijkℓ} were denoted λij

kℓ in
[1, Section 3.2]. The structure constants in loc. cit., up to shear, are then as
recorded in Table 3.1, where ± denotes the sign of the permutation taking
1, 2, 3 to i, j, k.

When n = 5 the structure theorem of Buchsbaum and Eisenbud [6] for
Gorenstein ideals of codimension 3 shows that the minimal free resolution
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takes the form

0 −→ R(−5)
PT

−→ R(−3)5
Φ

−→ R(−2)5
P

−→ R −→ 0,

where Φ is a 5× 5 alternating matrix of linear forms, and P is the (signed)
row vector of 4× 4 Pfaffians of Φ. Our symbols {ijkℓm} differ only by some
factors of 2 from those defined in [3, Section 4]. The structure constants in
loc. cit., up to shear, are again as recorded in Table 3.1, where ± denotes
the sign of the permutation taking 1, 2, 3, 4 to i, j, k, ℓ.

The expressions we give in the right hand column of Table 3.1 are new.

Theorem 3.1. Let n ⩾ 4 be an integer. Then the structure constants

ckij =
1

2n

∂2Ωk

∂xi∂xj

satisfy the system of equations in Table 3.1.

Proof. It is clear from the definition that the symbol {· · · } does not depend
on the order of its first two arguments, or the order of its last two arguments.

If n = 4 then by (2) we have [i, j] = −[j, i] and {ijkℓ} = −{kℓij}. Let
i, j, k be an even permutation of 1, 2, 3. By Definition 2.7 we have Ωk =
−2[i, j]. Using the product rule we compute

∂2[j, i]

∂xi∂xj
= 4{jjii}+ {ijij} = 4{jjii},

∂2[i, k]

∂x2i
= 2{iiik}+ 2{iiik} = 4{iiik},

∂2[i, k]

∂xi∂xj
+

∂2[i, j]

∂xi∂xk
= 2{iijk}+ {ijik}+ 2{iijk}+ {ikij}

= 4{iijk},

∂2[k, j]

∂x2i
+

∂2[k, i]

∂xi∂xj
+

∂2[i, j]

∂xi∂xk
= 2{ikij}+ {ikij}+ 2{jkii}+ 2{iijk}+ {ikij}

= 4{ikij}.

This proves the theorem in the case n = 4. We give the proof for n ⩾ 5,
and specify the correct choice of signs ±, in Theorem 10.1. It may also
be checked, using Lemma 10.2, that the expressions in Table 3.1 for n ⩾ 4
do indeed specialise to those in the previous two columns when n = 4 and
n = 5. □
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We have now checked that Theorem 2.8 agrees, up to a shear, with
the previously known constructions for n = 3, 4, 5. However the structure
constants do not agree exactly, since in Theorem 2.8 the basis elements
α1, . . . , αn−1 are normalised (up to shear) so that they have trace zero,
whereas the algebras in [1, 3, 9] are normalised so that

n = 3 c112 = c212 = 0,
n = 4 c112 = c212 = c113 = 0,
n = 5 c112 = c212 = c334 = c434 = 0.

In general we could normalise our basis by choosing a convention such as

(4) c212 = c323 = c434 = . . . = cn−1
n−2,n−1 = c1n−1,1 = 0,

or when n is odd

(5) c112 = c212 = c334 = c434 = . . . = cn−2
n−2,n−1 = cn−1

n−2,n−1 = 0.

With either convention, it is clear that there is a unique way to modify our
basis by a shear so that it satisfies the convention.

Compared to normalising α1, . . . , αn−1 to have trace zero, these conven-
tions break symmetry, but have the advantage of working in all characteris-
tics. They are also useful for constructing orders in number fields as we now
explain.

We take K = Q and suppose that the minimal free resolution F• has in-
teger coefficients, i.e. the differentials ϕk in Theorem 2.6 are represented by
matrices of polynomials in Z[x1, . . . , xn−1]. By Definition 2.7 the structure
constants for the Q-algebra A in Theorem 2.8 are integral, and so deter-
mine an order B = Z⊕ Zα1 ⊕ . . .⊕ Zαn−1 ⊂ A. This ring decomposes (as
a Z-module) as B = Z⊕B0 where B0 = Zα1 ⊕ . . .⊕ Zαn−1 is the subset
of elements of trace zero. Therefore TrA/Z(B) = nZ, and so any prime di-
viding n necessarily ramifies in B. More generally, this order can never be
maximal at the primes dividing 2n. Indeed, if we choose our structure con-
stants using Table 3.1 and one of the normalisation conventions (4) or (5),
then these define an order B′ with B ⊂ B′ ⊂ A. From the factor 2n in the
statement of Theorem 3.1 we see that B′ = Z⊕ Zα′

1 ⊕ . . .⊕ Zα′
n−1, where

1
2nα1, . . . ,

1
2nαn−1 and α′

1, . . . , α
′
n−1 differ by a shear, and hence the index

of B in B′ is (2n)n−1. For n = 3, 4, 5, the ring B′ is the one constructed in
[1, 3, 9]. For general n, working with B′ rather than B gives a larger order
with smaller discriminant, and hence a sharper bound in [16, Theorem 1.0.1].
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Remark 3.2. We briefly mention three respects in which the theory for
n = 3, 4, 5, as described in [1, 3, 13], is still more developed than that for
general n.

i) We conjecture than any order in an étale Q-algebra of rank n is neces-
sarily of the form B′ for some minimal free resolution F• with integer
coefficients. This is known for n = 3, 4, 5. It is also true for the ring
Z× Z× . . .× Z by the calculations in Sections 8 and 9. We hope to
investigate this conjecture further in future work.

ii) For n = 3, 4, 5 the binary cubics, pairs of ternary quadratics, and al-
ternating matrices of linear forms, parameterise all rings of rank n,
including degenerate rings such as Z[x]/(xn). It would be interesting
to determine if there is a suitable class of “degenerate” minimal free
resolutions for n > 5 that correspond to these rings.

iii) The results for n = 3, 4, 5 have been used by Davenport and Heilbronn
[8] and Bhargava [2, 4] to give an asymptotic count of number fields of
degree n ordered by discriminant. Since we do not have a description
of the space of minimal free resolutions that lends itself to the count-
ing arguments used in the geometry of numbers, it remains a difficult
problem to extend these results to n > 5.

4. Points in general position and étale algebras

In this section we give a slightly different perspective on the classical fact
that there is an equivalence of categories between the category of finite sets
of points with a continuous action of the absolute Galois group, and the cat-
egory of finite-dimensional étale algebras. These ideas feature prominently
in works of Bhargava, see especially the discussion in [3, page 59], as well as
the work of his students Wood [18] and Wilson [17].

We fix an integer n ⩾ 3. Let

X = {X ⊂ Pn−2 : X is a set of n points in general position}.

Note that X (K) consists of sets X which (viewed as zero-dimensional vari-
eties) are defined over K but the individual (geometric) points of X need
not be defined over K. The group PGLn−1(K) acts on X (K) by changes of
coordinates.

An n-dimensional commutative K-algebra A is non-degenerate if the
trace form associated to A is non-degenerate. This is equivalent to requiring
that A is étale over K, or that there exists an isomorphism A⊗K K̄ ∼= K̄n.
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For example, the ring A = Γ(X,OX) of global functions on a set of n points
X ∈ X (K) is a non-degenerate K-algebra of dimension n.

The following fact seems to be well-known: see for example [7, Corol-
lary 2.3].

Proposition 4.1. Let A be the set of isomorphism classes of non-
degenerate n-dimensional K-algebras. Then the map X 7→ Γ(X,OX) induces
a bijection between the set of PGLn−1(K)-orbits of X (K) and the set A.

Any two elements of X (K) that lie in the same PGLn−1(K)-orbit have
isomorphic rings of global functions, and so map to the same element of A.
Therefore the map in Proposition 4.1 is well defined. We must show it is a
bijection. First we need two lemmas.

Lemma 4.2. i) Let A be a non-degenerate n-dimensional K-algebra. Let
M be a locally free A-module of rank 1. Then M is free, i.e., it is
isomorphic to A as an A-module.

ii) Let X ⊂ Pn−2 be a set of n distinct points, and let A = Γ(X,OX). Then
X is the image of a map SpecA → Pn−2 given by (α1 : . . . : αn−1) for
some α1, . . . , αn−1 ∈ A.

Proof. (i) Since A is non-degenerate it is isomorphic as an algebra to a direct
product of fields, say, A ∼= A1 × · · · ×Ak. For each 1 ⩽ i ⩽ k, let ei be the
idempotent corresponding to the factor Ai, so that

∑k
i=1 ei = 1, Aei ∼= Ai as

an A-module, e2i = ei and eiej = 0 for all i ̸= j. Then we have the decomposi-
tion M = e1M ⊕ e2M ⊕ · · · ⊕ ekM , where each module eiM is an Ai-vector
space. Since M is locally free of rank 1, each eiM is 1-dimensional, and so
we may choose a basis vector fi. Then M = Af ∼= A, where f =

∑k
i=1 fi.

(ii) The embedding of X = SpecA in Pn−2 is given by global sections
ℓ1, . . . , ℓn−1 belonging to the A-module M = Γ(X,OX(1)). We see by (i)
that M is a free A-module of rank 1, say generated by m ∈ M . We then
write ℓi = αim for some αi ∈ A. □

Lemma 4.3. Let A be a non-degenerate n-dimensional K-algebra. Let X
be the image of the map SpecA → Pn−2 given by (α1 : . . . : αn−1) for some
α1, . . . , αn−1 ∈ A. Then X is a set of n points in general position if and only
if there exists a unit λ ∈ A× such that λα1, . . . , λαn−1 is a K-basis for the
trace zero subspace of A. Moreover, if such a λ exists then it is unique up
to multiplication by an element of K×.
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Proof. We may assume that α1, . . . , αn−1 are linearly independent over K,
since otherwise it is clear that neither condition is satisfied.

The uniqueness follows from the non-degeneracy of the trace form. For
existence, it is clear by linear algebra over K that there exists non-zero
λ ∈ A such that TrA/K(λαj) = 0 for all 1 ⩽ j ⩽ n− 1. It remains to show
that λ is a unit.

Since A is isomorphic to a product of fields, we may write any element
of A as a unit times an idempotent. It therefore suffices to consider λ an
idempotent. Writing σ1, . . . , σn for the distinct K-algebra homomorphisms
A → K̄ we have

X(K̄) = {(σi(α1) : . . . : σi(αn−1)) : 1 ⩽ i ⩽ n} ⊂ Pn−2(K̄).

Since λ is an idempotent we assume by reordering the σi that
(σ1(λ), . . . , σn(λ)) = (1, . . . , 1, 0, . . . 0) where there are (say) m ones and
n−m zeros. Then

∑m
i=1 σi(αj) = TrA/K(λαj) = 0 for all 1 ⩽ j ⩽ n− 1.

Since X is in general position, this forces m = n, and so λ = 1 as re-
quired. □

Proof of Proposition 4.1. First, to prove surjectivity, we suppose that A is a
non-degenerate n-dimensional K-algebra. Then we pick α1, . . . , αn−1 a K-
basis for the trace zero subspace of A, and let X be the image of the map
SpecA → Pn−2 given by (α1 : . . . : αn−1). Lemma 4.3 shows that X is in
general position, and we then have X 7→ A. Next, to prove injectivity, we
suppose that X1 and X2 both map to A. By Lemmas 4.2 and 4.3 both X1

and X2 are embedded in Pn−2 using (possibly) different choices of bases for
the trace zero subspace of A. Hence there exists an element of PGLn−1(K)
taking X1 to X2. □

5. Overview of the proof

Let V = ⟨x1, . . . , xn−1⟩ be the space of linear forms on Pn−2, and denote
the dual basis of V ∗ by x∗1, . . . , x

∗
n−1. The quadratic forms Ω1, . . . ,Ωn−1

determine an element Ω in V ∗ ⊗ S2V via the formula

(6) Ω :=

n−1∑

j=1

x∗j ⊗ Ωj .

The following proposition, which we prove in Section 7, shows that the
construction of Ω from the minimal free resolution is invariant under change
of basis of V .
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Proposition 5.1. Let F• be a minimal free resolution for a set X ⊂ Pn−2

of n points in general position. We write x1, . . . , xn−1 for our coordi-
nates on Pn−2. Let x′j =

∑n−1
i=1 gijxi for some g = (gij) ∈ GLn−1. Writing

ϕ1, . . . , ϕn−2 for the matrices representing the maps in the resolution F•, let
F ′
• be the resolution whose maps are given by matrices ϕ′

1, . . . , ϕ
′
n−2 where

ϕ′
r(x1, . . . , xn−1) = ϕr(x

′
1, . . . , x

′
n−1).

Let Ω and Ω′ be the elements of V ∗ ⊗ S2V associated to the resolutions F•

and F ′
• respectively. Then we have

Ω′ = (det g)(g · Ω),

where the action of g on Ω is the standard action of GLn−1 on V ∗ ⊗ S2V .

Our main theorem (Theorem 2.8) gives an expression for the structure
constants of the algebra A in terms of the quadratic forms Ω1, . . . ,Ωn−1

determined by a minimal free resolution of X. In fact we prove the following
strengthening of that theorem.

Theorem 5.2. Let n ⩾ 3 and let X ⊂ Pn−2 be a set of n points in general
position. Let A = Γ(X,OX) be the coordinate ring of X and let V be the
trace zero subspace of A.

i) There is a K-basis α1, . . . , αn−1 of V , unique up to multiplication by an
overall scalar, such that the embedding of X = SpecA in Pn−2 is given
by (α1 : . . . : αn−1).

ii) Let α1, . . . , αn−1 be as in (i) and let α∗
0, α

∗
1, . . . , α

∗
n be the basis for A

that is dual to 1, α1, . . . , αn−1 with respect to the trace pairing (x, y) 7→
TrA/K(xy). If Ω1, . . . ,Ωn−1 are the quadratic forms determined by a
minimal free resolution of X then there exist constants λ, c0ij ∈ K such
that

(7) α∗
iα

∗
j = c0ij + λ

n−1∑

k=1

∂2Ωk

∂xi∂xj
α∗
k,

for all 1 ⩽ i, j ⩽ n− 1.

Proof. (i) This follows from Lemmas 4.2 and 4.3.
(ii) We claim we are free to make changes of coordinates on Pn−2. This is
proved by considering the effect of such a change of coordinates on each term
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in (7). We may organise this calculation as follows. First we use the trace
pairing to identify A = (K · 1)⊕ V ∗. Then multiplication in A determines a
symmetric bilinear map V ∗ × V ∗ −→ V ∗ and hence an element of V ∗ ⊗ S2V .
Next we use part (i) of the theorem to identify V with the space of linear
forms on Pn−2. The quadratic forms Ω1, . . . ,Ωn−1 determine an element Ω in
V ∗ ⊗ S2V via (6). The theorem asserts that these two elements of V ∗ ⊗ S2V
are equal, up to multiplication by a scalar. To prove our claim it suffices to
show that these two elements transform, under a change of coordinates,
according to the natural action of GL(V ) on V ∗ ⊗ S2V . In the first case this
is clear from the construction, and in the second case we use Proposition 5.1.

We are also free to extend our base field K, and so may assume by a
change of coordinates that X is the standard set of n points in general po-
sition given by P1 = (1 : 0 . . . : 0), P2 = (0 : 1 : 0 . . . : 0), . . . , Pn−1 = (0 : . . . :
0 : 1) and Pn = (1 : 1 : . . . : 1). Having reduced to this special case, we iden-
tify A ∼= Kn via α 7→ (α(P1), . . . , α(Pn)). Then the K-basis for the trace
zero subspace as determined in part (i) of the theorem is

α1 =
1

n
(1, 0, 0, . . . , 0,−1),

α2 =
1

n
(0, 1, 0, . . . , 0,−1),

...

αn−1 =
1

n
(0, 0, 0, . . . , 1,−1),

where at this stage the overall scaling by a factor 1/n is arbitrary, but has
been chosen to simplify the calculations below. The multiplication on Kn is
given by multiplication in each component separately, and the trace pairing
on Kn is given by the standard dot product. Following the statement of part
(ii) of the theorem, we compute:

α∗
1 = (n− 1,−1,−1, . . . ,−1),

α∗
2 = (−1, n− 1,−1, . . . ,−1),

...

α∗
n−1 = (−1,−1, . . . , n− 1,−1).

Then for 1 ⩽ i, j ⩽ n− 1, the multiplication is given by

α∗
iα

∗
j =

{
−1− α∗

i − α∗
j if i ̸= j,

(n− 1) + (n− 2)α∗
i if i = j.
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Equation (7) with λ = 1/2 then follows from the next lemma. □

Lemma 5.3. Let n ⩾ 3 and let X ⊂ Pn−2 be the standard set of n points
in general position. Then the quadratic forms Ωi in Definition 2.7 are given,
up to an overall scalar, by Ωi = nx2i − 2xi

∑n−1
j=1 xj for all 1 ⩽ i ⩽ n− 1.

The proof of Lemma 5.3 is given in Sections 8 and 9. However for specific
small values of n (say n ⩽ 10) it is also possible to check the lemma directly
by computer algebra.

6. Some symmetries

We prove some symmetries satisfied by the square bracket and double square
bracket symbols (see Definition 2.7). For convenience in this section we put
m = n− 2, since all our resolutions have length m.

Lemma 6.1. If 2 ⩽ r ⩽ m− 2 then

[a1, . . . , ar, ar+1, . . . , am] = −[a1, . . . , ar+1, ar, . . . , am].

Proof. For this range of r, both ϕr and ϕr+1 are matrices of linear forms.
We differentiate the relation ϕrϕr+1 = 0. By the Leibniz rule,

0 =
∂2(ϕrϕr+1)

∂xar
∂xar+1

=
∂ϕr

∂xar

∂ϕr+1

∂xar+1

+
∂ϕr

∂xar+1

∂ϕr+1

∂xar

,

hence the desired relation. □

Remark 6.2. The lemma holds only for 2 ⩽ r ⩽ m− 2. Indeed, swap-
ping the first two a’s or the last two a’s need not simply result in a sign
change. See Lemma 8.1 for an explicit example. We introduce the symbols
[[a1, a2, . . . , am]] to rectify this; see Lemma 6.5 below.

Lemma 6.3. We have [a1, a2, . . . , am−1, am] = ±[am, am−1, . . . , a2, a1],
where the sign is +1 if m ≡ 0, 1 (mod 4) and −1 if m ≡ 2, 3 (mod 4).

Proof. The dual of an R-module M is M∗ = HomR(M,R). If an R-module
map M → N between free R-modules is represented by a matrix ϕ (with
respect to some bases) then the dual map N∗ → M∗ is represented by the
transpose matrix ϕT (with respect to the dual bases).
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We saw in Theorem 2.6 that X is Gorenstein. This implies that its
minimal free resolution F• is self-dual. Explicitly, there is a commutative
diagram

0 // R
ϕm

//

±1

��

Fm−1
//

��

. . . // F1
ϕ1

//

��

R // 0

0 // R
ϕT

1
// F ∗

1
// . . . // F ∗

m−1

ϕT

m
// R // 0

where the vertical maps are isomorphisms, the right most one is the iden-
tity map, and the left most one is multiplication by ±1. According to [5,
page 123], the sign is + if and only if m ≡ 0, 1 (mod 4). The lemma now
follows from the definition of the square brackets notation. □

Lemma 6.4. If the terms indicated by . . . are the same in each case then

i) [a, . . . , b] + [b, . . . , a] = 0, and

ii) [a, b, . . . , c, d] + [b, a, . . . , c, d] + [a, b, . . . , d, c] + [b, a, . . . , d, c] = 0.

Proof. Part (i) follows from Lemmas 6.1 and 6.3. For the second part, as
ϕ1ϕ2 = 0 and ϕm−1ϕm = 0, we have

0 =
∂2(ϕ1ϕ2)

∂xa∂xb
=

∂ϕ1

∂xa

∂ϕ2

∂xb
+

∂ϕ1

∂xb

∂ϕ2

∂xa
+

∂2ϕ1

∂xa∂xb
ϕ2,

and similarly,

0 =
∂2(ϕm−1ϕm)

∂xc∂xd
=

∂ϕm−1

∂xc

∂ϕm

∂xd
+

∂ϕm−1

∂xd

∂ϕm

∂xc
+ ϕm−1

∂2ϕm

∂xc∂xd
.

Thus it suffices to show that

∂2ϕ1

∂xa∂xb
ϕ2

∂ϕ3

∂xa3

. . .
∂ϕm−2

∂xam−2

ϕm−1
∂2ϕm

∂xc∂xd
= 0.

For 2 ⩽ r ⩽ m− 3 we have

ϕr
∂ϕr+1

∂xp
= −

∂ϕr

∂xp
ϕr+1.

We use this relation to move the undifferentiated term to the right until we
get an expression involving ϕm−2ϕm−1, which vanishes. □
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As in Definition 2.7, we let σ = (123 . . .m) ∈ Sm and define

[[a1, . . . , am]] =

m−1∑

r=0

[aσ2r(1), . . . , aσ2r(m)].

Lemma 6.5. For τ ∈ Sm we have

[[aτ(1), . . . , aτ(m)]] = sign(τ)[[a1, . . . , am]].

Proof. For m ⩽ 3 the lemma follows easily from Lemma 6.4(i), so we may
assume m ⩾ 4.

We first prove the lemma in the case τ = (12). We have

[[a1, a2, a3, . . . , am]] = [a1, a2, a3, . . . , am] + [a3, a4, . . . , am, a1, a2] + . . . .

We consider the effect of switching a1 and a2 on each term on the right. For
the terms we have not written out, the answer is that they change sign, and
indeed this follows from Lemmas 6.1 and 6.4(i), the latter being used for the
term [a2, a3, . . . , am, a1] which only occurs if n is odd. We are left with the
two terms we did write out. We treat these together. By repeatedly using
Lemma 6.1 to move a3 to the right, we have

[a2, a1, a3, . . . , am] = (−1)m[a2, a1, a4, . . . , am−1, a3, am],

and similarly

[a3, a4, . . . , am, a2, a1] = −[a1, a4, . . . , am, a2, a3]

= (−1)m[a1, a2, a4, . . . , am−1, am, a3],

where the first equality is a consequence of Lemma 6.4(i) and the second is
a repeated application of Lemma 6.1. By Lemma 6.4(ii) we have

(−1)m([a2, a1, a4, . . . , am−1, a3, am] + [a1, a2, a4, . . . , am−1, am, a3])

= (−1)m+1([a1, a2, a4, . . . , am−1, a3, am] + [a2, a1, a4, . . . , am−1, am, a3]).

This is equal, by Lemma 6.4(i) and repeated application of Lemma 6.1, to

−[a1, a2, a3, . . . , am]− [a3, a4, . . . , am, a1, a2].

This completes the proof in the case τ = (12).
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It is immediate from the definition of [[. . .]] that the lemma holds with
τ = σ2. If n is odd then σ2 and (12) generate Sm and we are done. If n is
even then Sm is generated by σ2, (12) and (23). So it suffices to prove the
lemma for τ = (23). However the proof in this case goes through term by
term using Lemmas 6.1 and 6.4(i). □

Remark 6.6. If n is odd then using σ instead of σ2 would make no differ-
ence in the definition of [[. . .]]. However if n is even then this would give an
expression that is identically zero, as may be seen from Lemma 6.5, noting
that σ is an odd permutation.

7. Changes of coordinates

In this section we prove Proposition 5.1. Let V = ⟨x1, . . . , xn−1⟩ be the space
of linear forms on Pn−2, and let x∗1, . . . , x

∗
n−1 be the dual basis for V ∗. We

identify SdV with the space of degree d homogeneous polynomials F in
K[x1, . . . , xn−1]. The natural left actions of GLn−1 on SdV and on V ∗ are
given by

(8) (g · F )(x1, . . . , xn−1) = F (x′1, . . . , x
′
n−1),

where x′j =
∑n−1

i=1 gijxi, and

(9) g · x∗j =
n−1∑

i=1

(g−T )ijx
∗
i .

In Section 2 we defined quadratic forms [[. . .]] and Ωj associated to a
minimal free resolution with differentials ϕr. Fix any g ∈ GLn−1. We now
write [[. . .]]′ and Ω′

j for the quadratic forms associated to the minimal free
resolution with differentials ϕ′

r(x1, . . . , xn−1) = ϕr(x
′
1, . . . , x

′
n−1), where x

′
j =∑n−1

i=1 gijxi. We must prove that

(10)

n−1∑

j=1

x∗j ⊗ Ω′
j = (det g)

n−1∑

j=1

(
g · x∗j

)
⊗ (g · Ωj) .

It suffices to prove this claim for g running over a set of generators for
the group GLn−1, and accordingly we consider g a diagonal matrix, g a
permutation matrix, and g a unipotent matrix.
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First we suppose that g is diagonal, say with diagonal entries
λ1, . . . , λn−1. By the chain rule, we have

[[a1, a2, . . . , an−2]]
′(x1, . . . , xn−1)

= λa1
· · ·λan−2

[[a1, a2, . . . , an−2]](x
′
1, . . . , x

′
n−1).

Therefore

Ω′
j(x1, . . . , xn−1) = (det g)λ−1

j Ωj(x
′
1, . . . , x

′
n−1),

and so (10) follows by (8) and (9).
We next suppose that g is the permutation matrix corresponding to

the transposition τ = (ab) for some 1 ⩽ a < b ⩽ n− 1. If j /∈ {a, b} then by
Lemma 6.5 we have

[[τ(1), τ(2), . . . , τ̂(j), . . . , τ(n− 1)]] = −[[1, 2, . . . , ĵ, . . . , n− 1]],

and

[[1, . . . , â, . . . , b− 1, a, b+ 1, . . . , n− 1]] = (−1)b−a−1[[1, . . . , b̂, . . . , n− 1]],

[[1, . . . , a− 1, b, a+ 1, . . . , b̂, . . . , n− 1]] = (−1)b−a−1[[1, . . . , â, . . . , n− 1]].

Therefore

Ω′
j(x1, . . . , xn−1) =





−Ωj(x
′
1, . . . , x

′
n−1) if j /∈ {a, b},

−Ωb(x
′
1, . . . , x

′
n−1) if j = a,

−Ωa(x
′
1, . . . , x

′
n−1) if j = b,

and so (10) follows by (8) and (9).
Finally, we consider the case g = I + tE21, where Eij is the (n− 1)×

(n− 1) matrix with a 1 in the (i, j)-place, and all other entries 0. The
matrices ϕ′

r are given by

ϕ′
r(x1, . . . , xn−1) = ϕr(x1 + tx2, x2, . . . , xn−1).

So by the chain rule

∂ϕ′
r

∂xj
(x1, . . . , xn−1) =

(
∂ϕr

∂xj
+ δj2t

∂ϕr

∂x1

)
(x1 + tx2, x2, . . . , xn−1).

Therefore, if 2 ̸∈ {a1, . . . , an−2} then

[[a1, . . . , an−2]]
′(x1, . . . , xn−1) = [[a1, . . . , an−2]](x

′
1, . . . , x

′
n−1),
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whereas if ak = 2 then

[[a1, . . . , an−2]]
′(x1, . . . , xn−1)

= [[a1, . . . , an−2]](x
′
1, . . . , x

′
n−1)

+ t[[a1, . . . , ak−1, 1, ak+1, . . . , an−2]](x
′
1, . . . , x

′
n−1).

Note that if 1 ∈ {a1, . . . , an−2} then the final term [[a1, . . . , ak−1, 1,
ak+1, . . . , an−2]] vanishes by Lemma 6.5, since 1 appears twice. Then by
definition of the Ωj we have

Ω′
j(x1, . . . , xn−1) = Ωj(x

′
1, . . . , x

′
n−1)− δj1tΩ2(x

′
1, . . . , x

′
n−1),

and hence

n−1∑

j=1

x∗j ⊗ Ω′
j(x1, . . . , xn−1) =

n−1∑

j=1

(
x∗j − δj2tx

∗
1

)
⊗ Ωj(x

′
1, . . . , x

′
n−1).

Now (10) follows by (8) and (9). This completes the proof of Proposition 5.1.

8. Reduction to the key lemma

In Section 5 we reduced the proof of Theorem 2.8 to a verification in the
case of the standard set of n points: P1 = (1 : 0 . . . : 0), P2 = (0 : 1 : 0 . . . :
0), . . . , Pn−1 = (0 : . . . : 0 : 1) and Pn = (1 : 1 : . . . : 1). This verification de-
pends on the following “key lemma”, the proof of which we postpone to the
next section.

Lemma 8.1. Let n ⩾ 3 and let X ⊂ Pn−2 be the standard set of n points in
general position. Fix a choice of minimal free resolution for X. Then there
exists a scalar λ ∈ K such that whenever a1, . . . , an−2, b is a permutation of
1, 2, . . . , n− 1 we have

[a1, . . . , an−2] = ±λ(xb − xa1
− xan−2

)xb,

where ± is the sign of the permutation, and the symbol [· · · ] was defined in
Section 2.

We use this lemma to compute the quadratic forms Ω1, . . . ,Ωn−1 asso-
ciated to X.

Proof of Lemma 5.3. Recall that we wrote σ for the (n− 2)-cycle in Sn−2

with σ(1) = 2, σ(2) = 3, . . . , σ(n− 2) = 1. Let a1, . . . , an−2, b be as in the
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statement of Lemma 8.1. By the definition of [[· · · ]], and the fact σ2 is an
even permutation, we compute

[[a1, a2, . . . , an−2]] =

n−2∑

k=1

[aσ2k(1), aσ2k(2), . . . , aσ2k(n−2)]

= λ

n−2∑

k=1

(xb − xa
σ2k(1)

− xa
σ2k(n−2)

)xb

= λ


(n− 2)x2b − 2xb

∑

j ̸=b

xj




= λ


nx2b − 2xb

n−1∑

j=1

xj


 .

It follows by the definition of the Ωi and Lemma 6.5 that

Ωi = (−1)i[[1, . . . , î, . . . , n− 1]] = (−1)n−1λ


nx2i − 2xi

n−1∑

j=1

xj


 .

Since we are only computing the Ωi up to an overall scalar, the factor
(−1)n−1λ may be ignored. This completes the proof of Lemma 5.3. □

9. Proof of the key lemma (=Lemma 8.1)

As before, let X ⊂ Pn−2 be the standard set of n points in general position.
In this section we prove Lemma 8.1. Our approach is inspired by an explicit
description of the minimal free resolution of the set X, due to Wilson [17,
Chapter 5]. In [16, Section 4.5] we gave a different proof of Lemma 8.1, based
on the method of unprojection.

Lemma 9.1. If n ⩾ 4 then the ideal I := I(X) ⊂ K[x1, . . . , xn−1] = R is
generated by the quadratic forms xi(xj − xk) for i, j, k ∈ {1, 2, . . . , n− 1}
distinct. If n = 3 then I is generated by x1x2(x1 − x2).

Proof. The case n = 3 is obvious. The case n ⩾ 4 is [17, Lemma 146]. The
proof is a simple computation, since by Theorem 2.6 we already know that
I is generated by quadratic forms. □

For the rest of this section we assume that n ⩾ 5, since the somewhat
degenerate cases n = 3, 4 are easy to handle by a direct computation.
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We fix a minimal graded free resolution (F•, ϕ) of I. The idea is to
describe F• by splicing together Koszul complexes. For each pair J = (j, k),
with j, k ∈ {1, 2, . . . , n− 1} distinct, consider the ideal IJ ⊂ I generated by
the set of quadratic forms

{xi(xj − xk) : i = 1, 2, . . . , ĵ, . . . , k̂, . . . , n− 1}.

As a graded K[x1, . . . , xn−1]-module, IJ is isomorphic to the ideal gener-
ated by the linear forms x1, . . . , x̂j , . . . , x̂k, . . . , xn−1, and so is resolved by a
Koszul complex. We write this complex as

KJ
• : 0 −→ ∧n−3EJ dn−3

−−−→ ∧n−4EJ −→ . . . −→ ∧2EJ d2−→ EJ d1−→ R.

where EJ is a free R-module of rank n− 3 with basis e1, . . . , êj , . . . ,
êk, . . . , en−1, and the differentials dm are given for m > 1 by

(11) dm(ei1 ∧ . . . ∧ eim) =

m∑

ℓ=1

(−1)ℓxiℓ · (ei1 ∧ . . . ∧ êiℓ ∧ . . . ∧ eim)

and for m = 1 by d1(ei) = xi(xj − xk).
The inclusion IJ ⊂ I induces a map of chain complexes KJ

• −→ F•, i.e. a
commutative diagram

0 // ∧n−3EJ //

��

. . . // ∧2EJ
d2

//

��

EJ d1
//

��

R

0 // Fn−2
ϕn−2

// Fn−3
// . . . // F2

ϕ2
// F1

ϕ1
// R

With notation as in Section 2, we may equally write this as

0 // R(−n+ 2) //

��

. . . // R(−3)a2
d2

//

��

R(−2)a1
d1

//

��

R

0 // R(−n)
ϕn−2

// R(−n+ 2)bn−3 // . . . // R(−3)b2
ϕ2

// R(−2)b1
ϕ1

// R

where ai =
(
n−3
i

)
and the bi are specified in Theorem 2.6. In particular, all

the differentials di and ϕi are represented by matrices of linear forms, except
for d1, ϕ1 and ϕn−2 which are represented by matrices of quadratic forms.
The map of chain complexes KJ

• −→ F•, which by construction is unique up
to chain homotopy, is actually uniquely determined. This is because any
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such chain homotopy respects the grading of the modules in the resolutions,
and hence must be zero.

We denote the image of ei1 ∧ . . . ∧ eim in Fm by the symbol (i1 ∧ . . . ∧
im)⊗ (j, k). It follows from equation (11) that for 2 ⩽ m ⩽ n− 3 we have

(12)

ϕm((i1 ∧ . . . ∧ im)⊗ (j, k))

=

m∑

ℓ=1

(−1)ℓxiℓ · (i1 ∧ . . . ∧ îℓ ∧ . . . ∧ im)⊗ (j, k).

Lemma 9.2. i) For any i1, . . . , im, j, k ∈ {1, 2, . . . , n− 1} distinct we
have

(i1 ∧ · · · ∧ im)⊗ (j, k) + (i1 ∧ · · · ∧ im)⊗ (k, j) = 0.

ii) For any i1, . . . , im, j, k, ℓ ∈ {1, 2, . . . , n− 1} distinct we have

(i1 ∧ · · · ∧ im)⊗ (j, k) + (i1 ∧ · · · ∧ im)⊗ (k, ℓ) + (i1 ∧ · · · ∧ im)⊗ (ℓ, j) = 0.

iii) The individual expressions (i1 ∧ · · · ∧ im)⊗ (j, k) are non-zero.

Proof. (i) and (ii). The left hand side of each equation has degree m+ 1 in
Fm

∼= R(−m− 1)bm . Since ϕm in injective in this degree, it suffices to check
the image under ϕm is zero. The proof is now by induction on m. If m = 1
then

ϕ1(i⊗ (j, k) + i⊗ (k, j)) = xi(xj − xk) + xi(xk − xj) = 0,

ϕ1(i⊗ (j, k) + i⊗ (k, ℓ) + i⊗ (ℓ, j))

= xi(xj − xk) + xi(xk − xℓ) + xi(xℓ − xj) = 0.

Ifm > 1 then we instead use (12) to give a linear combination of x1, . . . , xn−1

where each coefficient vanishes by the induction hypothesis.
(iii) This is proved by a similar, but easier, induction. □

We now give a formula for the differential ϕn−2 : Fn−2 −→ Fn−3.

Lemma 9.3. The image of ϕn−2 is generated as an R-module by

(13) t :=
∑

j<k

xjxk · (i1 ∧ . . . ∧ in−3)⊗ (j, k),

where for each j < k we pick i1, . . . , in−3, j, k an even permutation of
1, 2, . . . , n− 1.
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Proof. We first note that t has degree n in Fn−3
∼= R(−n+ 2)bn−3 and is

non-zero by Lemma 9.2(iii). Since Fn−2
∼= R(−n) and F• is exact, it suffices

to show that t belongs to the kernel of ϕn−3. We find using (12) that the
coefficient of x1x2x3 in ϕn−3(t) is

− (4 ∧ . . . ∧ (n− 1))⊗ (1, 2)

− (4 ∧ . . . ∧ (n− 1))⊗ (2, 3)− (4 ∧ . . . ∧ (n− 1))⊗ (3, 1),

which vanishes by Lemma 9.2(ii). The same argument applies to the other
coefficients. □

We now prove Lemma 8.1. The symbol [. . .] was defined in terms of
the partial derivatives of ϕ1, . . . , ϕn−2, so we start by computing these. As
ϕ1(i⊗ (j, k)) = xi(xj − xk), we see that

(14)

∂ϕ1

∂xi
(i⊗ (j, k)) = xj − xk,

∂ϕ1

∂xj
(i⊗ (j, k)) = xi,

∂ϕ1

∂xk
(i⊗ (j, k)) = −xi.

It is immediate from (12) that for 2 ⩽ m ⩽ n− 3 we have

(15)

∂ϕm

∂xi
((i1 ∧ . . . ∧ im)⊗ (j, k))

=

{
(−1)ℓ(i1 ∧ . . . ∧ îℓ ∧ . . . ∧ im)⊗ (j, k) if i = iℓ,
0 if i ̸∈ {i1, . . . , im}.

Since the statement of Lemma 8.1 allows for an overall scalar λ ∈ K, we
may re-scale ϕn−2 so that ϕn−2(1) = t where t is given by (13). Then by
Lemma 9.2(i) we have

(16)
∂ϕn−2

∂xk
(1) =

n−1∑

j=1
j ̸=k

xj · (i1 ∧ . . . ∧ in−3)⊗ (j, k)

where for each j we pick i1, . . . , in−3, j, k an even permutation of 1, 2, . . . ,
n− 1.
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Now let a1, . . . , an−2, b be a permutation of 1, 2, . . . , n− 1. We seek to
compute

[a1, a2, . . . , an−2] =

(
∂ϕ1

∂xa1

◦
∂ϕ2

∂xa2

· · · ◦
∂ϕn−2

∂xan−2

)
(1).

By (16) this equals

(
∂ϕ1

∂xa1

◦
∂ϕ2

∂xa2

◦ · · · ◦
∂ϕn−3

∂xan−3

)



n−1∑

j=1
j ̸=an−2

xj · (i1 ∧ . . . ∧ in−3)⊗ (j, an−2)


 .

where for each j we pick i1, . . . , in−3, j, an−2 an even permutation of
1, 2, . . . , n− 1. It is clear by (15) that for a non-zero contribution we
need {a2, . . . , an−3} ⊂ {i1, . . . , in−3}, equivalently {a1, an−2, b} ⊃ {j, an−2}.
So the only terms to contribute to the sum are those with j = a1 and j = b.
Using (14) and (15) we compute

[a1, a2, . . . , an−2] = ±
∂ϕ1

∂xa1

(
xb · a1 ⊗ (b, an−2)− xa1

· b⊗ (a1, an−2)

)

= ±xb(xb − xa1
− xan−2

).

Finally, it may be checked that the sign ± only depends on n and the sign
of the permutation sending 1, 2, . . . , n− 1 to a1, a2, . . . , an−2, b.

This completes the proof of Lemma 8.1, and hence of Theorem 2.8.

10. Proof of Theorem 3.1

In this section we prove Theorem 3.1 for general n ⩾ 4. This extends the
proof for n = 4 in Section 3, and is based on the proof for n odd in [16,
Section 3.8].

We write 1, . . . , îjk, . . . , n− 1 for the sequence of integers 1, 2, . . . , n− 1,
with i, j, k deleted (in whatever order they occur). Let εij and εijk be the

signs of the permutations taking 1, 2, . . . , n− 1 to i, j, 1, . . . , îj, . . . , n− 1
and i, j, k, 1, . . . , îjk, . . . n− 1, respectively.

With notation as in Sections 2 and 3, we prove the following theorem.
It is a refinement of Theorem 3.1, in that we now specify the signs.
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Theorem 10.1. Let 1 ⩽ i, j, k ⩽ n− 1 distinct. Then

∂2Ωk

∂xi∂xj
= (−1)n+1εijk(2n){i, i, 1, . . . , îjk, . . . , n− 1, j, j},(17)

∂2Ωj

∂x2i
= εij(2n){i, i, 1, . . . , îj, . . . , n− 1, i},(18)

∂2Ωj

∂xi∂xj
−

∂2Ωk

∂xi∂xk
= (−1)nεijk(2n){i, i, 1, . . . , îjk, . . . , n− 1, j, k},(19)

∂2Ωi

∂x2i
−

∂2Ωj

∂xi∂xj
−

∂2Ωk

∂xi∂xk

= (−1)n+1εijk(2n){i, j, 1, . . . , îjk, . . . , n− 1, k, i}.

(20)

For the proof we need some properties of the symbols {· · · }. First, it is
immediate from the definition that the symbol does not depend on the order
of the first two terms, or on the order of the last two terms. We have the
following additional symmetry properties.

Lemma 10.2. i) For any τ ∈ Sn−4 we have

{i, j, aτ(1), . . . , aτ(n−4), k, ℓ} = sign(τ){i, j, a1, . . . , an−4, k, ℓ}.

ii) If i ∈ {a1, . . . , an−3} then for any τ ∈ Sn−3 we have

{i, aτ(1), . . . , aτ(n−3), k, ℓ} = sign(τ){i, a1, . . . , an−3, k, ℓ}.

iii) We have {i, j, a1, . . . , an−4, k, ℓ} = −{k, ℓ, a1, . . . , an−4, i, j}.

Proof. (i) In the case where τ is a transposition of consecutive elements this
is proved exactly as in Lemma 6.1. The general case follows.
(ii) Differentiating ϕ1ϕ2 = 0 gives {i, i, j, . . .}+ {i, j, i, . . .} = 0. We are done
by (i).
(iii) Exactly as in Lemma 6.3, we have

{i, j, a1, . . . , an−4, k, ℓ} = ±{k, ℓ, an−4, . . . , a1, i, j}

where the sign is + if and only if n ≡ 2, 3 (mod 4). We are done by (i). □

Lemma 10.3. If 1 ⩽ i, j, k ⩽ n− 1 distinct then

{i, j, k, a1, . . . , an−3}+ {j, k, i, a1, . . . , an−3}+ {k, i, j, a1, . . . , an−3} = 0.
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Proof. This is proved by differentiating ϕ1ϕ2 = 0. □

We also have the analogues of Lemmas 10.2(ii) and 10.3 where each
symbol is reversed. We write 1A for the indicator function of the event A.

We prove (17) by taking a1, . . . , an−2 = 1, . . . , k̂, . . . , n− 1 in the follow-
ing lemma.

Lemma 10.4. Let 1 ⩽ i, j, k ⩽ n− 1 distinct. Let a1, . . . , an−2, k be a per-
mutation of 1, 2, . . . , n− 1. Then

(21)

∂2[a1, . . . , an−2]

∂xi∂xj

= ±
(
2 + 1i∈{a1,an−2} + 1j∈{a1,an−2}

)
{i, i, 1, . . . , îjk, . . . , n− 1, j, j}

and

(22)
∂2[[a1, . . . , an−2]]

∂xi∂xj
= ±2n{i, i, 1, . . . , îjk, . . . , n− 1, j, j},

where ± is the sign of the permutation taking a1, . . . , an−2 to i, 1, . . . ,
îjk, . . . , n− 1, j.

Proof. We first prove (21) when {a1, an−2} ∩ {i, j} = ∅. Using Lemma 10.2
we compute

∂2[a1, . . . , an−2]

∂xi∂xj
= {i, a1, . . . , an−2, j}+ {j, a1, . . . , an−2, i}

= ±
(
{i, i, 1, . . . , îjk, . . . , n− 1, j, j} − {j, j, 1, . . . , îjk, . . . , n− 1, i, i}

)

= ±2{i, i, 1, . . . , îjk, . . . , n− 1, j, j}.

If a1 = i and an−2 ̸= j then the first term picks up a factor of 2, and the
second term is unchanged. If a1 = i and an−2 = j then the first term picks
up a factor of 4 and the second term vanishes by Lemma 10.2(iii). The other
cases are similar.

We deduce (22) from (21) by summing over the n− 2 terms in Defini-
tion 2.7(ii). Since σ2 is an even permutation, all the terms have the same sign.
There are two terms starting or ending in i, and two terms starting or ending
in j. This gives an overall numerical factor of 2(n− 2) + 2 + 2 = 2n. □

We prove (18) by taking a1, . . . , an−2 = 1, . . . , ĵ, . . . , n− 1 in the follow-
ing lemma.
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Lemma 10.5. Let 1 ⩽ i, j ⩽ n− 1 distinct. Let a1, . . . , an−2, j be a permu-
tation of 1, 2, . . . , n− 1. Then

∂2[a1, . . . , an−2]

∂x2i
= ±2

(
1 + 1i∈{a1,an−2}

)
{i, i, 1, . . . , îj, . . . , n− 1, i}

and

∂2[[a1, . . . , an−2]]

∂x2i
= ±2n{i, i, 1, . . . , îj, . . . , n− 1, i},

where ± is the sign of the permutation taking a1, . . . , an−2 to i, 1, . . . ,
îj, . . . , n− 1.

Proof. If i /∈ {a1, an−2} then

∂2[a1, . . . , an−2]

∂x2i
= 2{i, a1, . . . , an−2, i} = ±{i, i, 1, . . . , îj, . . . , n− 1, i}.

If i ∈ {a1, an−2} then we pick up an extra factor of 2. This proves the result
for [· · · ]. We deduce the result for [[· · · ]] exactly as before. □

We prove (19) by taking r = 0 and b1, . . . , bs = 1, . . . , ĵk, . . . , n− 1 in
the following lemma, and also using Lemma 6.5.

Lemma 10.6. Let 1 ⩽ i, j, k ⩽ n− 1 distinct. Let a1, . . . , ar, b1, . . . , bs, j, k
be a permutation of 1, 2, . . . , n− 1. Then

∂2[a1, . . . , ar, k, b1, . . . , bs]

∂xi∂xj
+

∂2[a1, . . . , ar, j, b1, . . . , bs]

∂xi∂xk

= ±(−1)s
(
2 + 1i∈{a1,bs} + 1rs=0

)
{i, i, 1, . . . , îjk, . . . , n− 1, j, k},

and

∂2[[a1, . . . , ar, k, b1, . . . , bs]]

∂xi∂xj
+

∂2[[a1, . . . , ar, j, b1, . . . , bs]]

∂xi∂xk

= ±(−1)s(2n){i, i, 1, . . . , îjk, . . . , n− 1, j, k},

where ± is the sign of the permutation taking a1, . . . , ar, b1, . . . , bs to
i, 1, . . . , îjk, . . . , n− 1.
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Proof. We first suppose that r, s ⩾ 1. Using Lemmas 10.2 and 10.3, we com-
pute

{i, a1, . . . , ar, k, b1, . . . , bs, j}+ {i, a1, . . . , ar, j, b1, . . . , bs, k}

= (−1)s−1
(
{i, a1, . . . , ar, b1, . . . , bs−1, k, bs, j}

+ {i, a1, . . . , ar, b1, . . . , bs−1, j, bs, k}
)

= (−1)s{i, a1, . . . , ar, b1, . . . , bs, j, k}

= ±(−1)s{i, i, 1, . . . , îjk, . . . , n− 1, j, k},

and

{j, a1, . . . , ar, k, b1, . . . , bs, i}+ {k, a1, . . . , ar, j, b1, . . . , bs, i}

= (−1)r−1
(
{j, a1, k, a2, . . . , ar, b1, . . . , bs, i}

+ {k, a1, j, a2, . . . , ar, b1, . . . , bs, i}
)

= (−1)r{j, k, a1, . . . , ar, b1, . . . , bs, i}

= ±(−1)s−1{j, k, 1, . . . , îjk, . . . , n− 1, i, i}

= ±(−1)s{i, i, 1, . . . , îjk, . . . , n− 1, j, k}.

If i /∈ {a1, bs} then we simply add these two expressions, giving a factor of
2. If i ∈ {a1, bs} then we take twice one expression plus the other, giving a
factor of 3.

We next suppose that s = 0. The first calculation in the last paragraph
is modified by deleting the second line, and introducing a factor of 2 there-
after. If a1 ̸= i then this gives an overall factor of 3. If a1 = i then we
must take twice the first expression, but the second expression vanishes by
Lemma 10.2(iii). This gives an overall factor of 4. The case r = 0 is similar.

We deduce the result for [[· · · ]] from that for [· · · ] as before. □

The following lemma prepares for the proof of (20).

Lemma 10.7. Let 1 ⩽ i, j ⩽ n− 1 distinct. Let a1, . . . , an−3 be a permuta-
tion of 1, 2, . . . , îj, . . . , n− 1 with sign ν. Then

(23) A(i, j) := ν ({i, j, a1, . . . , an−3, i}+ {i, i, a1, . . . , an−3, j})

does not depend on the choice of a1, . . . , an−3.
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Proof. If · · · denotes the same in each case, then by Lemma 10.3 we have

{ij · · · rsi}+ {ij · · · sri}+ {ij · · · irs} = 0,

{ii · · · rsj}+ {ii · · · srj}+ {ii · · · jrs} = 0.

Lemma 10.2(ii) shows that the final terms in these two sums differ by a sign.
The right hand side of (23) is therefore invariant under switching the last
two a’s. The lemma now follows by Lemma 10.2(i). □

Lemma 10.8. Let 1 ⩽ i, j ⩽ n− 1 distinct. Let a1, . . . , ar, b1, . . . , bs, i, j be
a permutation of 1, 2, . . . , n− 1. Then

∂2[a1, . . . , ar, j, b1, . . . , bs]

∂x2i
+ 2

∂2[a1, . . . , ar, i, b1, . . . , bs]

∂xi∂xj

= ±(−1)r2 (1 + 1rs=0)A(i, j)

and

∂2[[a1, . . . , ar, j, b1, . . . , bs]]

∂x2i
+ 2

∂2[[a1, . . . , ar, i, b1, . . . , bs]]

∂xi∂xj

= ±(−1)r(2n)A(i, j),

where ± is the sign of the permutation taking a1, . . . , ar, b1, . . . , bs to
1, . . . , îj, . . . , n− 1.

Proof. If r = 0 then the left hand side equals

(24)
2{i, j, b1, . . . , bs, i}+ 4{i, i, b1, . . . , bs, j}+ 2{j, i, b1, . . . , bs, i}

= ±4A(i, j).

If r, s ⩾ 1 then we instead obtain

2{i, a1, . . . , ar, j, b1, . . . , bs, i}+ 2{i, a1, . . . , ar, i, b1, . . . , bs, j}

+ 2{j, a1, . . . , ar, i, b1, . . . , bs, i}.

Cancelling a factor (−1)r2 and applying Lemma 10.2 term by term gives

−{i, a1, j, . . . , ar, b1, . . . , bs, i}+ {i, i, a1, . . . , ar, b1, . . . , bs, j}

− {j, a1, i, . . . , ar, b1, . . . , bs, i}.

Applying Lemma 10.3 to the first and third terms shows that this equals
±A(i, j).
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Finally, when s = 0 the left hand side is

2{i, a1, . . . , ar, j, i}+ 2{i, a1, . . . , ar, i, j}+ 4{j, a1, . . . , ar, i, i}.

By Lemma 10.2(iii) this is minus the expression we get by replacing b1, . . . , bs
by a2, . . . , ar, a1 in (24). This gives the factor (−1)r.

We deduce the result for [[· · · ]] from that for [· · · ] as before. □

Taking r = 0 and b1, . . . , bs = 1, . . . , îj, . . . , n− 1 in Lemma 10.8, and
appealing to Lemma 6.5, gives

∂2Ωi

∂x2i
− 2

∂2Ωj

∂xi∂xj
= −εij(2n)A(i, j).

Taking a1, . . . , an−3 = 1, . . . , îjk, . . . , n− 1, k in Lemma 10.7 shows that this
equals

(−1)n+1εijk(2n)
(
{i, j, 1, . . . , îjk, . . . , n− 1, k, i}

+ {i, i, 1, . . . , îjk, . . . , n− 1, j, k}
)
.

Adding (19) gives (20). This completes the proof of Theorem 10.1, and hence
of Theorem 3.1.
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