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Whitney-Graustein homotopy of locally

convex curves via a curvature flow

Laiyuan Gao

Let X0, X̃ be two smooth, closed and locally convex curves in the
plane with same winding number. A curvature flow with a nonlocal
term is constructed to evolve X0 into X̃. It is proved that this flow
exits globally, preserves both the local convexity and the elastic
energy of the evolving curve. If the two curves have same elastic
energy then the curvature flow deforms the evolving curve into the
target curve X̃ as time tends to infinity.

1. Introduction

In 1937, H. Whitney [32] showed that two smooth and closed curves in the
Euclidean plane may be smoothly deformed to each other if and only if the
two curves have same winding number. Whitney in his paper said that this
result and its proof had been suggested by W. C. Graustein, so this fact is
called Whitney-Graustein Theorem now.

Since 1980, geometers have created different kinds of curvature flows
to study the deformation of curves, surfaces and higher dimensional mani-
folds. The developments of these curvature flows play very important roles
in geometry and topology. Apart from those higher dimensional arts, there
are some profound and essential results on the curvature flow of curves,
such as the curve shortening flow by Gage [12, 13], Gage-Hamilton [16] and
Grayson [21, 22], the expanding flow by Chow-Liou-Tsai [7] and Tsai [28],
the anisotropic flow by Chou-Zhu [8, 9] and the applications of curve flows
to classical geometry by Angenent [5] and so on. In this situation, S. T.
Yau in 2007 [25] asked that whether one can use a parabolic curvature flow
method to evolve one curve to another. An answer to Yau’s question is a
realization of Whitney-Graustein differential homotopy for closed curves via
a curvature flow.

In order to settle this problem, Lin and Tsai in their paper [25] defined
a new parabolic model to evolve one convex curve to another. They showed
that if two convex curves have same length then their flow can deform one
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curve into the other, provided that the flow exists globally. Later, Tsai [29]
found the blow-up phenomenon of this linear flow. Following Gage [15] and
Gage-Li [17], Pan and Yang [26] in 2017 studied a nonlocal flow which evolves
convex curves into a given centrosymmetric convex one. In the same time,
inspired by Lin-Tsai [25] and Chou-Zhu [8, 9] , Gao and Zhang [20] gener-
alized Gage’s area-preserving flow [14] and proved that the generalized flow
exists globally and, up to a rescaling, evolves one convex curve to another
given one. So the convex case of Yau’s above question of evolving one curve
to another has been solved.

In this paper, the author continues to study Yau’s question for the case
of locally convex curves. If a C2 and closed curve in the plane has positive
(relative) curvature everywhere then it is called locally convex. Apart from
convex curves, there are uncountably many other locally convex curves. This
is a very special phenomenon in the planar geometry, because compact and
locally convex hypersurfaces in higher dimensional Euclidean spaces are all
convex ones (see Hadamard’s theorem [23] or [24]). Due to this reason, the
curvature flows of locally convex curves in the plane arose some particular
interests in the past several years (see Chen-Wang-Yang [6], Wang-Li-Chao
[30], Wang-Wo-Yang [31]). Locally convex curves also play an important role
in understanding the asymptotic behavior of the famous curve shortening
flow (see Abresch-Langer [1], Altschuler [2], Angenent [4] and Epstein-Gage
[11]) and its generalization (see Andrews [3], Chou-Zhu [10]).

Let X0 : [0, L0] → R
2(s → (x(s), y(s))) be a C2 and closed curve in the

plane, where s is the arc length parameter and L0 is the length. Denote
by {T,N} the Frenet frame of this curve, i.e., for each s, the ordered
pair (T (s), N(s)) determines a positive orientation of the plane. Denote by

κ0(s) := ⟨dT (s)
ds

, N(s)⟩ the curvature of the curve X0. The winding number
of X0 is defined by

m(X0) :=
1

2π

∫ L0

0
κ0(s)ds.(1.1)

If X0 is locally convex then κ0(s) is positive everywhere and m(X0) is a
positive integer. The elastic energy of the curve (see [18], [27]) is defined by

E(X0) :=

∫ L0

0
(κ0(s))

2ds.

The function p0(s) := −⟨X0(s), N(s)⟩ is called the support function of the
curve. Let θ be the tangent angle, i.e., the angle from positive direction of
x-axis to the unit tangent vector. Since dθ

ds
= κ0(s) is positive for each s,
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θ can be used as a parameter of X0. And the curve X0 : mS1 → E
2(θ 7→

(x(θ), y(θ))) is a C2 mapping from the m-fold circle to the plane. If the
locally convex curve X0 is parametrised by the tangent angle θ then the
Frenet formula is as follows

(1.2)
dT

dθ
(θ) = N(θ),

dN

dθ
(θ) = −T (θ).

Furthermore, differentiating the support function gives us

(1.3)
dp0

dθ
(θ) = ⟨X0(θ), T (θ)⟩,

d2p0

dθ2
(θ) = ρ0(θ)− p(θ),

where ρ0(θ) =
1

κ0(θ)
is the radius of the curvature.

Let X0, X̃ : mS1 → E
2 be two smooth and locally convex curves in the

plane with same winding number m. Denote by

X : mS1 × [0, ω) → E
2((θ, t) 7→ (x(θ, t), y(θ, t)))

a family of locally convex curves withX(θ, 0) = X0(θ), where θ is the tangent
angle. Since the locally convex curve X̃ has the same winding number with
X(·, t), θ can also be used as a parameter for this curve. Let p(θ, t) be the
support function of the curve X(·, t) and let ρ(θ, t) be its radius of curvature.
Denote by p̃(θ) and ρ̃(θ) the support function and the radius of curvature
of the curve X̃, respectively. In order to answer Yau’s question for the case
of locally convex curves, the next curvature flow is introduced:

(1.4)





∂X
∂t

(θ, t) = α(θ, t)T (θ, t)

+[2p(θ, t)− ρ(θ, t)− 2p̃(θ, t) + ρ̃(θ, t) + f(t)]N(θ, t)

in mS1 × (0, ω),

X(θ, 0) = X0(θ) on mS1,

where the coefficient of the tangent component is formulated as

(1.5) α(θ, t) = −
∂

∂θ
(2p(θ, t)− ρ(θ, t)− 2p̃(θ, t) + ρ̃(θ, t))

and the nonlocal term is given by

(1.6) f(t) =
1∫

mS1 κ2dθ

[∫

mS1

κ2
(
∂2ρ

∂θ2
−

d2ρ̃

dθ2

)
dθ −

∫

mS1

κ2 (ρ− ρ̃) dθ

]
.
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Remark 1.1. The local convexity of the evolving curve is preserved under
the flow (see Lemma 2.9), so the tangent angle θ can be used as a parameter
of the evolving curve and the evolution equation (1.4) is well defined for
t > 0.

Remark 1.2. In contrast to the flow by Lin-Tsai [25], the support functions
p and p̃ and a complicated nonlocal term f(t) are used in the flow equation
(1.4). Without these terms, one can not expect the global existence and the
convergence of the flow (1.4) with a generic initial locally convex curve X0.
See a blow-up example of the flow by Lin-Tsai [25] in the paper [29].

The evolution equation (1.4) is a completely nonlinear parabolic system
for the evolving curve X(θ, t) = (x(θ, t), y(θ, t)), where (θ, t) ∈ mS1 × [0, ω).
The purpose of this paper is to partially answer Yau’s question by under-
standing the asymptotic behavior of the evolving curve X(·, t). As an ap-
plication in the field of topology, this curvature flow can be used to real-
ize Whitney-Graustein differential homotopy for locally convex curves. The
main result of this paper is as follows.

Theorem 1.3. Let X0 and X̃ be two smooth and locally convex curves.
The flow (1.4) with initial X0 and target X̃ exists globally, preserves both
the positivity of the curvature and the elastic energy of the evolving curve
X(·, t). If X0 and X̃ have same elastic energy, then X(·, t) converges, in the
sense of C∞ metric, to the target curve X̃ as time t → +∞.

The key idea in the proof of Theorem 1.3 is to reduce the nonlinear
system to the evolution equation of the radius of the curvature ρ (see (2.7)).
It is a semilinear equation with nonlinear part contained in the integral term
f(t). The short time existence and the global existence of the flow (1.4)
are proved in Section 2. The convergence of this nonlocal flow is proved in
Section 3. An example is presented in Section 4.

2. Existence

2.1. Short Time Existence

In this subsection, we prove that the flow (1.4) has a smooth solution on the
domain mS1 × [0, t0), where t0 is a positive number.

Suppose there is a family of locally convex curves evolving under the
flow (1.4). Set β(θ, t) = 2p(θ, t)− ρ(θ, t)− 2p̃(θ, t) + ρ̃(θ, t) + f(t). By direct
calculations, one has the following evolution equations.
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Lemma 2.1. Applying the equations (1.14)-(1.17) in the book [10], one
obtains

∂T

∂t
=

(
ακ+

∂β

∂s

)
N =

(
α+

∂β

∂θ

)
κN,(2.1)

∂N

∂t
= −

(
ακ+

∂β

∂s

)
T = −

(
α+

∂β

∂θ

)
κT,(2.2)

∂θ

∂t
= ακ+

∂β

∂s
=

(
α+

∂β

∂θ

)
κ,(2.3)

∂κ

∂t
= κ2

(
−
∂2ρ

∂θ2
+

d2ρ̃

dθ2
+ ρ− ρ̃− f(t)

)
.(2.4)

By the choice of the tangent component (1.5), we know α = −∂β
∂θ
. So

both the Frenet frame {T,N} and the tangent angle θ are independent of
the time:

∂T

∂t
≡ 0,

∂N

∂t
≡ 0,

∂θ

∂t
≡ 0.(2.5)

Using the above evolution equations, one can compute the evolution equation
of the support function:

∂p

∂t
= −

∂

∂t
⟨X,N⟩ = −

〈
∂X

∂t
,N

〉
= −β.

So it follows from (1.3) that

(2.6)
∂p

∂t
=

∂2p

∂θ2
(θ, t)− p(θ, t) + 2p̃(θ)− ρ̃(θ)− f(t)

Using the equation (2.4) and the fact that the radius of the curvature
ρ = 1

κ
, we have

(2.7)
∂ρ

∂t
(θ, t) =

∂2ρ

∂θ2
(θ, t)−

∂2ρ̃

∂θ2
(θ)− ρ(θ, t) + ρ̃(θ)− f(t).

Since the function ρ(θ, t) determines the shape of the evolving curve, the
flow (1.4) can be reduced to the equation (2.7) with initial ρ(θ, 0) = ρ(θ) in
some small time interval.

Lemma 2.2. The flow (1.4) is equivalent to the equation (2.7) with initial
ρ(θ, 0) = ρ0(θ) on some domain mS1 × [0, t0).
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Proof. Let X(·, t) be a family of locally convex curves evolving under the
flow (1.4). We immediately have the evolution equation (2.7).

On the other hand, suppose we have a smooth function ρ(θ, t) satisfying
the evolution equation (2.7) with initial ρ(θ, 0) = ρ0(θ) > 0 which is the
radius of curvature of a given locally convex curve X0. By the continuity
of ρ, there is a positive t0 such that ρ(θ, t) > 0 for all (θ, t) ∈ mS1 × [0, t0).
Then one can construct a family of locally convex curves:

X(θ, t) =

∫ θ

0
ρ(θ̂, t)T (θ̂)dθ̂,(2.8)

where (θ, t) ∈ mS1 × [0, t0). Using the equation (2.7), one can check that the
X(·, t), up to a parallel movement, satisfies the equation (1.4). So we have
done. □

Lemma 2.3. The flow (1.4) has a unique smooth solution in some time
interval [0, ω).

Proof. The equation (2.7) is semilinear with a non-local term f(t). The
equation is uniformly parabolic, so this Cauchy problem has a unique smooth
solution in a short time interval.

Since the initial value ρ0 is smooth and the higher order derivative
evolves according to a linear equation

(2.9)
∂k+1ρ

∂θk∂t
=

∂k+2ρ

∂θk+2
−

dk+2ρ̃

dθk+2
−

∂kρ

∂θk
+

dkρ̃

dθk
,

the higher order regularity of ρ(θ, t) can be obtained by the classical theory
of linear parabolic equations. Using the equation (2.8), we know that the
evolving curve X(·, t) is smooth. □

Under the flow (1.4), the length of the evolving curve satisfies that

dL

dt
(t) = −L(t) + L̃− 2πf(t),

where L̃ is the length of X̃ and the nonlocal term f(t) is given by (1.6). In
fact, the nonlocal term f(t) is rather complicated. So the length L(t) of the
evolving curve has no explicit solution.

Remark 2.4. In the previous studies [19, 25], the Fourier series expansion
is applied to study curvature flows. Under the flow (1.4), both the evolution
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equation (2.6) and (2.7) are semilinear. The nonlinear term f(t) makes the
method of solving linear equations with constant coefficients by the Fourier
series expansion do not work here.

Remark 2.5. Although the initial value ρ(θ, 0) = ρ0(θ) of the equation
(2.7) is positive on mS1, there is a lack of maximum principle for the equa-
tion (2.7). Until now we do not know whether ρ(θ, t) is always positive or
not. Once it is proved that ρ(θ, t) > 0 holds for all t ∈ (0,+∞), one can fur-
ther show that the flow (1.4) exits globally. We leave this part to the next
subsection.

2.2. Global Existence

In this subsection, it is proved that the flow (1.4) exists on time interval
[0,+∞). We shall show that the curvature of the evolving curve has both
uniformly lower and upper bounds and the evolving curve X(·, t) is smooth
for each t ∈ (0,+∞).

Lemma 2.6. If the flow (1.4) preserves the local convexity of the evolving
curve, then the elastic energy is fixed as time goes.

Proof. Under the flow (1.4), the curvature κ(θ, t) of the curve X(·, t) satisfies
the equation (2.4). So the elastic energy of the evolving curve satisfies that

dE

dt
(t) =

d

dt

∫

X(·,t)
κ2(s, t)ds =

d

dt

∫

mS1

κ(θ.t)dθ

=

∫

mS1

κ2
(
−
∂2ρ

∂θ2
+

∂2ρ̃

∂θ2
+ ρ− ρ̃+ f(t)

)
dθ.

By the choice of the nonlocal term f(t), we have dE
dt

≡ 0. □

To make the statement brief in the following proofs, we introduce two
functions for t ≥ 0. Now define

ρmax(t) := max{ρ(θ, t)|θ ∈ mS1}, ρmin(t) := min{ρ(θ, t)|θ ∈ mS1}.

Corollary 2.7. If the flow (1.4) preserves the local convexity of the evolving
curve, then

ρmin(t) ≤
2mπ

E
≤ ρmax(t).(2.10)
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Proof. The elastic energy is preserved under the flow (1.4), so

E =

∫

mS1

κ(θ.t)dθ =

∫

mS1

1

ρ(θ.t)
dθ ≤

2mπ

ρmin(t)
,

i.e., ρmin(t) ≤
2mπ
E

. Similarly, we have 2mπ
E

≤ ρmax(t). □

The following Harnack estimate is a key step towards the proof of the
global existence of the flow (1.4). By this estimate, one may control the
curvature uniformly.

Lemma 2.8. (Harnack estimate) If the flow (1.4) preserves the local con-
vexity of the evolving curve, then there exists a constant H independent of
time such that

ρmax(t) ≤ ρmin(t) ·H.(2.11)

Proof. Set u(θ, t) = ρ(θ, t)− ρ̃(θ). By the evolution equation of ρ (or see the
equation (2.9) ), ∂iu

∂θi satisfies

∂

∂t

∂iu

∂θi
=

∂i+2u

∂θi+2
−

∂iu

∂θi

So the function
(
∂iu
∂θi

)2
evolves according to

∂

∂t

(
∂iu

∂θi

)2

=
∂2

∂θ2

(
∂iu

∂θi

)2

− 2

(
∂i+2u

∂θi+2

)2

− 2

(
∂iu

∂θi

)2

≤
∂2

∂θ2

(
∂iu

∂θi

)2

− 2

(
∂iu

∂θi

)2

.

Applying the maximum principle, one obtains that

(
∂iu

∂θi

)2

≤ Cie
−2t,(2.12)

where

Ci = max

{(
∂iu

∂θi
(θ, 0)

)2 ∣∣∣∣θ ∈ mS1

}

is a constant depending on the initial curve X0. Since
∣∣∣∣
∂iρ

∂θi

∣∣∣∣ ≤
∣∣∣∣
∂iρ̃

∂θi

∣∣∣∣+
∣∣∣∣
∂iu

∂θi

∣∣∣∣ ≤
∣∣∣∣
∂iρ̃

∂θi

∣∣∣∣+
√

Ci,



✐

✐

“3-Gao” — 2024/3/15 — 0:41 — page 1053 — #9
✐

✐

✐

✐

✐

✐

Whitney-Graustein homotopy of locally convex curves 1053

there is a constant, denoted by Mi, independent of time such that

∣∣∣∣
∂iρ

∂θi

∣∣∣∣ ≤ Mi,(2.13)

where i = 1, 2, 3, · · · .
Fixed the time t. Suppose the function ρ(θ, t) attains its minimum and

maximum at points θ1, θ2, respectively. Compute

ln ρmax(t)− ln ρmin(t) =

∫ θ2

θ1

1

ρ

∂ρ

∂θ
dθ ≤

∫ θ2

θ1

1

ρ

∣∣∣∣
∂ρ

∂θ

∣∣∣∣ dθ ≤ M1E,

where the constant M1 is given by (2.13). Therefore, choosing H = eM1E

can give us the estimate (2.11). □

Lemma 2.9. The flow (1.4) preserves the local convexity of the evolving
curve.

Proof. By the continuity of the evolving curve, there exists t0 > 0 such that
X(·, t) is locally convex on the time interval [0, t0). In this same time interval,
it follows from Lemma 2.8 and Corollary 2.7,

ρmax(t) ≤ ρmin(t)H ≤
2mπ

E
H.(2.14)

So the curvature of the evolving curve satisfies that

κ(θ, t) ≥ κmin(t) =
1

ρmax(t)
≥

E

2mπH
> 0.

As the flow exists, the evolving curve is always locally convex. □

Theorem 2.10. The flow (1.4) exists on the time interval [0,+∞).

Proof. By (2.13), all higher derivatives ∂iρ
∂θi is uniformly bounded. It suf-

fices to show that ρ(θ, t) > 0 for all (θ, t) ∈ mS1 × [0,+∞). The Harnack
estimate (2.14) and the second inequality of (2.10) imply that

ρmin(t) ≥ ρmax(t)
1

H
≥

2mπ

EH
.(2.15)

Hence, the curvature κ = 1
ρ
never blows up as time goes. Until now we have

shown that the function ρ(θ, t) is uniformly bounded and positive on the
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domain mS1 × [0,+∞). So the velocity of the flow (1.4) ∂X
∂t

is smooth for
all t > 0. Integrating the equation (1.4) gives us

X(θ, t) = X0(θ) +

∫ t

0

∂X

∂t
(θ, t̃)dt̃.(2.16)

We know the evolving curve X(·, t) is smooth for every t ∈ [0,+∞). The
flow (1.4) exists globally. □

There are two key steps in the proof of Theorem 2.10. The first one is
that the derivative ∂ρ

∂θ
has a uniform bound under the flow (see the equation

(2.13)). This fact holds because we have the term 2p(θ.t)− 2p̃(θ) in the flow
equation (1.4). The second step is that the flow preserves the elastic energy.
The construction of the nonlocal term f(t) in the flow equation guarantees
this property.

3. Convergence

We first prove the convergence of the radius of curvature. Then we show the
convergence of the support function, which implies the convergence of the
evolving curve X(·, t) as the time t → +∞.

Lemma 3.1. Under the flow (1.4), the radius of the curvature ρ(θ, t) of the
evolving curve converges as t → +∞. If X0 and X̃ have same elastic energy
then

lim
t→+∞

ρ(θ, t) = ρ̃(θ).(3.1)

Proof. By (2.11), (2.13) and (2.14), both ρ and |∂ρ
∂θ
| are uniformly bounded

by constants. There exits a convergent subsequence ρ(θ, ti) as ti → +∞. Let
ρ∞(θ) be the limit of ρ(θ, ti). By (2.13), ρ∞(θ) is smooth and for any positive
integer k,

lim
ti→+∞

∂kρ

∂θk
(θ, ti) =

dkρ∞

dθk
(θ).(3.2)

It follows from (2.12) that, for every fixed θ ∈ mS1,

lim
t→+∞

∂ρ

∂θ
(θ, t) =

dρ̃

dθ
(θ).(3.3)
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So, combining (3.2) and (3.3), we have

dρ∞

dθ
(θ) = lim

ti→+∞

∂ρ

∂θ
(θ, ti) =

dρ̃

dθ
(θ).

By (2.14) and (2.15), the limit function ρ∞(θ) is uniformly bounded. There
is a constant c0 such that

ρ∞(θ) = ρ̃(θ) + c0,(3.4)

where θ ∈ mS1. Recall that the flow (1.4) preserves the elastic energy E.
The constant c0 is uniquely determined by

E =

∫

mS1

1

ρ̃(θ) + c0
dθ.(3.5)

Since every convergent subsequence of ρ(·, t) tends to the fixed limit ρ̃(·) +
c0, ρ(·, t) itself converges to the same limit:

lim
t→+∞

ρ(θ, t) = ρ̃(θ) + c0.(3.6)

Suppose X0 and X̃ have same elastic energy. Noticing that the flow (1.4)
preserves the elastic energy, one gets from (3.4) and (3.5) that

∫

mS1

1

ρ̃(θ) + c0
dθ =

∫

mS1

1

ρ∞(θ)
dθ(3.7)

= E =

∫

mS1

1

ρ0(θ)
dθ =

∫

mS1

1

ρ̃(θ)
dθ.

Comparing the both sides, one obtains that the constant c0 = 0. By (3.6),
ρ(θ, t) converges to ρ̃(θ) as t → +∞. It follows from (2.13) and (2.12) that
this convergence is in the sense of C∞ metric, i.e., we have the limit

lim
t→+∞

∂iρ

∂θi
(θ, t) =

diρ̃

dθi
(θ),

for each integer i = 1, 2, · · · . □

As a corollary of the convergence of ρ(θ, t), we know that the nonlocal
term f(t) (see (1.6)) in the flow (1.4) converges:

lim
t→+∞

f(t) = 0.
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Theorem 3.2. The evolving curve under flow (1.4) converges to the target
curve X̃, if X0 and X̃ have same elastic energy.

Proof. By (1.2) and (1.3), the evolving X(·, t) is uniquely determined by its
support function

X(θ, t) =
∂p

∂θ
(θ, t)T (θ)− p(θ)N(θ).

So it suffices to prove the convergence of p(·, t). Under the flow (1.4), the
support function of the evolving curve satisfies the equation (2.6). Mimicing
the proof of Lemma 3.1, one can show that

lim
t→+∞

∂ip

∂θi
(θ, t) =

dip̃

dθi
(θ),(3.8)

where i = 1, 2, · · · . Therefore the equations (3.6) and (3.8) together with the
relation between p and ρ imply that

lim
t→+∞

p(θ, t) = p̃(θ) + c0.(3.9)

where constant c0 is uniquely determined by (3.5).
If X0 and X̃ have same elastic energy then it follows from (3.7) that

c0 = 0. The convergence of the support function implies that the evolving
curve X(·, t) converges to the curve X̃:

lim
t→+∞

X(θ, t) = X̃(θ).

The higher order convergence of the evolving curve follows from the C∞

convergence of the support function directly. □

Combining Theorem 2.10 with Theorem 3.2, one immediately proves
Theorem 1.3.

Corollary 3.3. Let X0 be an initial locally convex curve with winding num-
ber m and elastic energy E. Let Y0 be a target convex curve with elastic
energy E

m
. The flow (1.4) can deform X0 into the m-fold convex curve mY0

as t → +∞.

Remark 3.4. Let X0 and Y0 be any two locally convex curves with same
wingding number. There is a proper rescaling of Y0, denoted by Ỹ , such that
X0 and Ỹ have same elastic energy. By Theorem 1.3, X0 can be deformed
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into Ỹ under the flow (1.4). Therefore, up to a rescaling, any two locally
convex curves with same wingding number can be evolved into each other
via the curvature flow (1.4).

4. An Example

In this section, an example of the flow (1.4) is investigated. Let X̃ be a
locally convex curve with support function

p̃(θ) = 10 + 10 sin

(
2

3
θ

)
+ 10 sin

(
2

3
θ

)
,

where θ ∈ [0, 6π]. With the help of MATLAB, one can calculate that the
minimum value of its radius of the curvature is 2.1433. We choose a locally
convex curve X0 with support function

p0(θ) = 11.6736 + 9 sin

(
4

3
θ

)
+ 9 sin

(
4

3
θ

)
,

where θ ∈ [0, 6π]. The minimum value of its radius of the curvature is 1.7741.
The two curves have same winding number 3 and same elastic energy 3.0469.
See the figures (up to proper rotations) of the two curves in Figure 1.
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(a) The Initial Curve X0
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−10

0
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20

30

(b) The Target Curve X̃

Figure 1. The Initial Curve And The Target Curve

Example 4.1. Let X̃ be the target curve and let X0 evolve according to the
flow (1.4). By Theorem 1.3, the evolving curve X(·, t) is smooth on the time
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Time t
L(t)
6π ρmin(t) ρmax(t) Elastic Energy

0 11.6736 1.7741 21.5731 3.0469

0.01 11.4599 1.632 21.1711 3.0469

0.05 10.8917 1.3325 19.9101 3.0469

0.1 10.4986; 1.2312 18.7768 3.0469

0.2 10.073 1.2673 17.2338 3.0469

0.4 9.76318 1.5216 15.8235 3.0469

0.6 9.7429 1.7638 15.7577 3.0469

1 9.8708 2.0262 16.8691 3.0469

2 9.9905 2.1369 17.7900 3.0469

4 9.99999 2.1433 17.8565 3.0469

+∞ 10 2.1432 17.8567 3.0469

Table 1. Some Geometric Quantities of the Evolving Curve

interval [0,+∞) and it converges to the curve X̃ as t → +∞. Some evolving
curves (up to proper rotations) are presented in Figure 2 and some relative
geometric quantities are given in Table 1.
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(i) t = 4

Figure 2. Some Time Shots of the Evolution
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