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3-manifolds that bound no definite

4-manifold

Marco Golla and Kyle Larson

We produce a rational homology 3-sphere that does not smoothly
bound either a positive or negative definite 4-manifold. Such a 3-
manifold necessarily cannot be rational homology cobordant to a
Seifert fibered space or any 3-manifold obtained by Dehn surgery
on a knot. The proof requires an analysis of short characteristic
covectors in bimodular lattices.

1. Introduction

By a definite 4-manifold we mean a smooth, compact, oriented 4-manifold,
possibly with boundary, whose intersection form is positive or negative def-
inite. Many familiar classes of 3-manifolds are known to bound either posi-
tive or negative definite 4-manifolds. These include, for example, any Seifert
fibered rational homology sphere or any 3-manifold obtained by nonzero
surgery on a knot in S3. Lens spaces and those 3-manifolds which are the
double covers of S3 branched over an alternating knot are examples of 3-
manifolds that bound positive and negative definite 4-manifolds.

However, one can often argue that a given 3-manifold cannot smoothly
bound both positive and negative definite 4-manifolds. For example, consider
the Poincaré homology sphere P , oriented as the link of the Brieskorn sin-
gularity. Since its Frøyshov h-invariant (or equivalently, the Heegaard Floer
correction term d) is positive, it cannot bound a positive definite 4-manifold
(see [5, Theorem 3] or [19, Corollary 9.8]). On the other hand, P does bound
negative definite 4-manifolds, e.g., either as −1-surgery on the left-handed
trefoil or as the boundary of the negative E8-plumbing.

To obstruct a 3-manifold from bounding either positive or negative def-
inite 4-manifolds is rather more difficult. Frøyshov has announced the first
examples of integral homology spheres that bound no definite 4-manifolds,
provided that the first homology of the putative definite 4-manifold does
not contain 2-torsion [4]. His argument depends on the fact that the h-
invariant and the q2-invariant arising from instanton homology are linearly
independent. Recent work of Nozaki, Sato, and Taniguchi [17], using filtered
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Figure 1: A surgery description of Y (2; 1513 ,
17
3 ,

23
22).

instanton Floer homology, gives examples of integral homology spheres that
bound no definite 4-manifolds, without any restrictions on the torsion in
homology. Any rational homology sphere rational homology cobordant to
one of the examples of [17] evidently has the same property.

The main result of this paper is the following.

Theorem 1.1. There exist rational homology spheres that are not ratio-
nal homology cobordant to an integral homology sphere and that bound no
definite 4-manifold.

The authors understand that Matthew Hedden has produced similar
(unpublished) examples. As far as we understand, such a result is not cur-
rently accessible with the techniques of [17], since filtered instanton Floer
homology is only defined for integral homology spheres.

The proof of our theorem instead combines an inequality of Ozsváth and
Szabó [19] relating correction terms and the squares of first Chern classes of
spinc structures together with an analysis of short characteristic covectors
in bimodular lattices, using work of Elkies [2] on unimodular lattices.

Let us give a specific example: let N denote the 3-manifold N := 3P#Y ,
i.e. the sum of three copies of the Poincaré sphere P and the Seifert fibered
space Y = Y (2; 1513 ,

17
3 ,

23
22). (See Figure 1.) Note that H1(N) ∼= Z/2Z, so N

cannot be homology cobordant to an integral homology sphere. We will
prove below that N cannot bound a definite 4-manifold.

One can obtain other examples satisfying various properties by con-
structing 3-manifolds that are integral or rational homology cobordant to
N . For example, work of Livingston [12] implies that N is integral homology
cobordant to an irreducible 3-manifold, which can further be assumed to be
hyperbolic by work of Myers [14]. From what we discussed above we get the
following immediate corollaries.



✐

✐

“4-Golla” — 2024/3/5 — 23:50 — page 1065 — #3
✐

✐

✐

✐

✐

✐

3-manifolds that bound no definite 4-manifold 1065

Corollary 1.2. N is not rational homology cobordant to any Seifert fibered
space.

Examples of integral homology spheres that are not integral homology
cobordant to any Seifert fibered space have been produced by Stoffregen [22]
and Frøyshov [4]; previously, rational homology spheres that are not integral
homology cobordant to any Seifert fibered space appeared in [1].

Corollary 1.3. N is not rational homology cobordant to any 3-manifold
obtained by Dehn surgery on a knot in S3.

It is often quite difficult to prove that a 3-manifold cannot be obtained
by surgery on a knot (see, for example, [8]), and most of the known ob-
structions are not preserved under rational homology cobordism. However,
in [7] examples of 3-manifolds Y with b1(Y ) = 1 are constructed that are
not rational homology cobordant to 0-surgery on a knot.

In Section 4 we will give a more direct proof that the 3-manifold Y is not
obtained as Dehn surgery along a knot in S3, and use Y to produce another
example of a spineless 4-manifold (see [11] and [6] for previous work on
the subject—Hayden and Piccirillo’s results in particular are much stronger
than ours).

Organization of the paper

In Section 2 we study bimodular lattices and their short characteristic covec-
tors. In Section 3 we describe an obstruction for a rational homology sphere
Y with H1(Y ) ∼= Z/2Z to bound a definite 4-manifold. In Section 4, we
show that the manifold N described above satisfies the conditions of the
obstruction from Section 3.

2. Characteristic covectors of bimodular lattices

In this section, a lattice Λ will be a subgroup Λ ⊂ Rm isomorphic to Zm,
and such that, with respect to the Euclidean scalar product on Rm one has
v · w ∈ Z for each v, w ∈ Λ. A lattice is said to be minimal if it contains no
vector of square 1.

Note that by our definition lattices correspond to positive definite inte-
gral quadratic forms. Some authors use the ‘lattice’ to denote any integral
quadratic form, even one that is not positive definite.

We denote with Λ′ the dual lattice of Λ, i.e. the set of vectors in Rm that
pair integrally with each element in Λ. Note that Λ ⊂ Λ′, and that Λ′ is not
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a lattice according the definition above, unless Λ = Λ′. (There are always
vectors in Λ′ that square to a rational if the containment is strict.) Each
element in Λ′ is a rational linear combination of vectors in Λ. We implicitly
identify the Q-span of Λ with Λ⊗Q, which therefore we view as a subset
of Rn. The index [Λ′ : Λ] is called the determinant of Λ, and is denoted by
detΛ. If det Λ = 1 (or, equivalently, Λ = Λ′) we say that Λ is unimodular
(or self-dual). We use the notation ⟨ξ, v⟩ to denote the pairing of a covector
ξ ∈ Λ′ and a vector v ∈ Λ (which is simply the scalar product in Rn).

We denote with Char(Λ) the subset of Λ′ comprising all ξ such that
⟨ξ, v⟩ ≡ v2 (mod 2). Each such ξ is a characteristic covector. (Again, when
Λ is unimodular ξ is actually an element in Λ, but we prefer to talk about
covectors to emphasize that we are thinking about the dual.)

Throughout the section, the letter L will always denote an integral
lattice of rank n and determinant 2 (a bimodular lattice), A will be an
auxiliary lattice of determinant 2, and MA will be the lattice L⊕A. Note
thatMA

′/MA
∼= L′/L⊕A′/A ∼= Z/2Z⊕ Z/2Z has a unique metabolizer (i.e.

a subgroup isomorphic to Z/2Z that is isotropic with respect to the in-
duced Q/Z-valued bilinear form induced by the product on MA), so that
MA is an index-2 sublattice of a unimodular lattice UA. (See, for ex-
ample, [10] for a topologically-minded treatment.) In fact, UA is simply
L⊕A ∪ (L′ \ L)× (A′ \A) ⊂ L′ ⊕A′. With a slight abuse of notation, we
view L and A as subsets of UA. It is easy to see that L = A⊥ and A = L⊥.
Since neither L nor A have a metabolizer, note that L⊗Q ∩ UA = L and
A⊗Q ∩ UA = A. Note that UA is uniquely determined by both L and A,
but we do not make the dependency on L explicit in the notation.

Dualizing, U ′
A
∼= UA is an index-2 subset of MA

′ = L′ ⊕A′. Moreover,
the restriction maps U ′

A → L′ and U ′
A → A′ are both onto. In the same way,

the restriction maps Char(UA) → Char(L) and Char(UA) → Char(A) are
onto.

Two choices for A stand out. We can choose A = L, or A = A1, where
A1 is the rank-1 lattice generated by a vector of square 2 (i.e. a root). We
write U and M instead of UA1

and MA1
. Call r one of the two generators of

the auxiliary lattice A1. By construction, U contains r, a vector of norm 2.

Lemma 2.1. Let ξ ∈ Char(L) be a characteristic covector. Then ξ2 is an
integer, and ξ2 ≡ n± 1 (mod 8).

Proof. Choose a characteristic covector ξU ∈ Char(U) that extends ξ, and
call ξA ∈ Char(A1) its restriction to A1. Then ξ2U ≡ rkU = n+ 1 (mod 8),
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and ξ2U = ξ2 + ξ2A. Since ξ
2
A ≡ 0, 2 (mod 8) by direct verification, the lemma

follows. □

We call Char±(L) the set of characteristic covectors ξ of L for which
ξ2 ≡ n± 1 (mod 8). Let us go back to the case of A arbitrary. Since A is a
determinant-2 lattice, Char±(A) are defined, too.

Lemma 2.2. ξu ∈ U ′
A is a characteristic covector of UA if and only if there

exists a sign s such that ξu|L ∈ Chars(L) and ξu|A ∈ Char−s(A).

Recall that if Λ is a lattice, then Char(Λ) is affine over 2Λ′ (i.e.
Char(Λ) = ξ + 2Λ′ for any ξ ∈ Char(Λ)). An easy extension of this fact is
the observation that Char±(L) is affine over 2L (and not over 2L′), and that
translations by elements in 2L′ \ 2L swap Char+(L) and Char−(L).

Proof. Call ξℓ = ξu|L and ξa = ξu|A. The ‘only if’ direction is clear, since
ξ2ℓ + ξ2a = ξ2u ≡ n+ rkA (mod 8).

Let us look at the ‘if’ direction. Now, let C := Char+(L)× Char−(A) ∪
Char−(L)× Char+(A) ⊂ M ′. By the ‘only if’ direction above, C con-
tains Char(UA), which is an affine space over 2U ′

A. On the other hand,
Char±(L)× Char∓(A) is also affine over 2L+ 2A = 2MA, and, by the re-
mark below the statement, if v ∈ UA \ (L⊕A) = (L′ \ L)× (A′ \A) and
ξ ∈ Char±(L)× Char∓(A) then ξ + 2v ∈ Char∓(L)× Char±(A), so that C
is affine over 2U ′

A, too. In particular, C and Char(UA) are both affine sub-
spaces over 2U ′

A, and since Char(UA) ⊂ C then they are equal. □

We denote with Im the lattice Zm ⊂ Rn. This is the unique unimodular
lattice that has an orthonormal basis (and we will say it is diagonal). The
lattice ∆n := In−1 ⊕A1 is the unique bimodular lattice of rank n whose
intersection form is diagonal (i.e. which has an orthogonal basis).

Lemma 2.3. The lattice U is diagonal if and only if L is.

Proof. Suppose that U is diagonal, with basis e0, . . . , en. Then the generator
r of A1 is a root in U . In particular, up to re-indexing the generators of
U (and possibly flipping signs), r = e0 − e1. Now, L ∼= ⟨r⟩⊥, but ⟨r⟩⊥ is
spanned by e0 + e1, e2, . . . , en, and in particular it is isomorphic to ∆n.

If L = ∆n, then L embeds in In+1 as we have just seen; however, U is
uniquely determined by L, so U ∼= In+1. □

We recall a result of Elkies on characteristic covectors in unimodular
lattices.
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Theorem 2.4 ([2]). Let Λ be unimodular lattice of rank m. Then

min
ξ∈Char(Λ)

ξ2 ≤ m,

and the equality is attained if and only if Λ is the diagonal lattice Im.

We find it convenient to introduce the notation for the defect of a lattice.
The defect d(Λ) of Λ is:

d(Λ) = min
ξ∈Char(Λ)

ξ2 − rkΛ

4

Note that Elkies’ theorem can be rephrased as saying that a unimodular
lattice has non-positive defect, and that the defect is 0 if and only if the
lattice is diagonal.

When L is bimodular, using Lemma 2.1 we can identify two defects,
denoted with d±(L):

d±(L) = min
ξ∈Char±(L)

ξ2 − rkL

4

Note that d±(L) ≡ ±1
4 (mod 2).

We start by recasting Lemma 2.3 in terms of d±.

Lemma 2.5. The lattice L is diagonal if and only if d±(L) = ±1
4 .

Proof. Suppose that d±(L) = ±1
4 . Since d±(A1) = ±1

4 , d(U) = min{d+(L) +
d−(A1), d−(L) + d+(A1)} = 0. By Elkies’ theorem U is diagonal, and by
Lemma 2.3 so is L.

On the other hand, a direct computation shows that d±(∆n) = ±1
4 . □

The main result of this section is a bimodular version of of Elkies’ the-
orem and gives another characterization of ∆n (see [18] for a different char-
acterization).

Theorem 2.6. For every bimodular lattice L, d+(L) + d−(L) ≤ 0. More-
over, if equality is attained, L is diagonal, and in particular d±(L) = ±1

4 .

As mentioned above, a root in a lattice Λ is a vector of square 2; we
say that Λ is a root lattice if it is rationally spanned by its set of roots. To
a collection R ⊂ Λ of Q-linearly independent roots we associate an edge-
weighted graph G(R) as follows: the set of vertices of G(R) is R, and there
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is an edge joining r, s ∈ R with weight r · s if r · s ̸= 0. Note that if r, s ∈ R
are distinct, they are linearly independent, so by Cauchy–Schwarz r · s ∈
{−1, 0, 1}.

We will make the choice of L itself as an auxiliary lattice in the proof.
To make the notation lighter, we denote UL by D, and we call it the double
of L. To distinguish between the two summands in ML

∼= L⊕ L, we call B
its second summand; however, we drop the dependency the auxiliary lattice
from the notation. In summary, we have M = L⊕B as an index-2 sublattice
ofD, and L and B are isomorphic and they are viewed as a pair of orthogonal
sublattices in M and in D.

We call πℓ : M → L and πb : M → B the two orthogonal projections,
and ρℓ : D′ → L′ and ρb : D′ → B′ the two restriction maps. In fact, πℓ and
ρℓ are both restrictions of a linear map D ⊗Q → L⊗Q (and similarly for
B).

Proof. We can assume, without loss of generality, that L is minimal (i.e. it
contains no vectors of norm 1): indeed, it is easy to verify that d±(L) =
d±(L⊕ Im), and L is diagonal if and only if L⊕ Im is.

Call n the rank of L. Consider nowD, the double of L.D is a unimodular
lattice, so d(D) ≤ 0. By Lemma 2.2, d(D) = min{d+(L) + d−(B), d−(L) +
d+(B)} = d+(L) + d−(L), which proves the first assertion.

Let us now suppose that d+(L) + d−(L) = 0; again by Elkies’ theorem,
this implies that D is the diagonal lattice I2n. Call e1, . . . , e2n an orthonor-
mal basis of D.

We claim that L is a root lattice.
Since L is minimal, ei ∈ D \M . However, sinceM has index 2 inD, 2ei ∈

M . We also know that 2ei ̸∈ L ∪B: indeed, as mentioned at the beginning of
the section, L⊗Q ∩D = L, so if 2ei ∈ L, then also ei ∈ L. (By symmetry,
this proves the statement for B as well.)

This implies that ri := πℓ(2ei) and πb(2ei) are two non-zero vectors
whose squares sum to (2ei)

2 = 4; since L is minimal, they both have square
2. Since the collection {2ei} is a rational basis of D, the collection {ri} is a
set of roots that rationally spans L, which proves the claim.

If d±(L) = ±1
4 , by Lemma 2.5 L is diagonal.

Suppose now d±(L) ̸= ±1
4 , so that in particular |d+(L)| = |d−(L)| =:

d ≥ 7
4 . Consider the characteristic covector ξ0 = e1 + · · ·+ e2n ∈ Char(D),

and, for each i, the characteristic covector ξi = ξ0 − 2ei ∈ Char(D). Note
that ξi is norm-minimizing among all characteristic covectors in D for
i = 0, . . . , 2n, and so that its restrictions λi = ρℓ(ξi) ∈ L′ and βi = ρb(ξi)
are characteristic and they minimize the norm in their congruence class.



✐

✐

“4-Golla” — 2024/3/5 — 23:50 — page 1070 — #8
✐

✐

✐

✐

✐

✐

1070 Marco Golla and Kyle Larson

That is, if λi ∈ Char+(L), then λi minimizes the norm among all elements
in Char+(L); in this case, βi ∈ Char−(B) and βi minimizes the norm in
Char−(B).

Without loss of generality, let us suppose that λ0 ∈ Char+(L). The key
observation is that λi ∈ Char−(L) for each i = 1, . . . , 2n. This follows from
the fact, observed above, that ei ̸∈ L, so that πℓ(2ei) ∈ 2L′ \ 2L, and in
particular πℓ(2ei) swaps Char+(L) and Char−(L).

Now, since λi ∈ Char−(L) for each i > 0 is a norm-minimizer in its class:

|λ2
0 − λ2

i | = 8d ≥ 14.

However,

λ2
0 − λ2

i = 2⟨λ0, ri⟩ − r2i ,

so that for each i > 0:

|⟨λ0, ri⟩| ≥ 4d− 1 ≥ 3.

Pick a subset J ⊂ {1, . . . , 2n} of indices such that R = {rj | j ∈ J} is a
rational basis for L; this in particular means that |J | = n. Up to relabelling,
let us assume J = {1, . . . , n}. We claim that G(R) is bipartite.

To see this, we will prove that all cycles in G(R) have even length. More
precisely, say that a cycle r1, . . . , rk is minimal if there is an edge between ri
and rj if and only if |i− j| = 1 or {i, j} = {1, k}. We claim that all minimal
cycles in G(R) have length 4. (See Remark 2.7 below for the necessity of this
assumption.) This implies that G(R) is bipartite, since every cycle in G(R)
can be decomposed into minimal cycles, and if all minimal cycles have even
length, then so do all other cycles.

Let us now prove that all minimal cycles have length 4. Assume by
contradiction that there is a minimal cycle C ⊂ G(R) of length k ≥ 3, k ̸= 4.
Up to another relabelling, let us assume that C comprises r1, . . . , rk in this
order. Up to replacing ri with −ri for some values of i, we can assume that
all edges (r1, r2), . . . , (rk−1, rk) are labelled with −1. Under this assumption,
(rk, r1) has to be labelled by +1, for otherwise (r1 + · · ·+ rk)

2 = 0, which
would contradict the fact that R is a linearly independent set. Now recall
that R ⊂ L ⊂ D ∼= I2n comprises elements of square 2. So there is a basis
f1, . . . , f2n of D such that r1 = f1 − f2, . . . , rk−1 = fk−1 − fk, and rk = fk +
f1; but then r1 + · · ·+ rk = 2f1 ∈ L, which implies f1 ∈ L since L⊗Q ∩
D = L, and this contradicts the minimality of L.

Since G(R) is bipartite there is a subset R′ ⊂ R, indexed by J ′ ⊂ J ,
containing ⌈n2 ⌉ roots that are pairwise orthogonal.
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Now, by Bessel’s inequality:

λ2
0 ≥

∑

j∈J ′

⟨λ0, rj⟩
2

r2j
≥

⌈n

2

⌉

·
9

2
> 2n,

which contradicts the fact that λ2
0 ≤ λ2

0 + β2
0 = ξ20 = 2n. □

Remark 2.7. There exists, in fact, a 4-cycle of roots in a diagonal lattice
for which the argument above does not hold. The quadruple of linearly
independent vectors

(r1, r2, r3, r4) = (f1 − f2, f2 − f3,−f1 − f2,−f1 + f4),

defines a minimal 4-cycle of roots in I4 (with orthonormal basis f1, . . . , f4)
such that r1 + · · ·+ r4 = −f1 − f2 − f3 + f4 is a primitive vector. We do not
know whether this cycle embeds in a lattice of determinant 2 that is also
rationally generated by roots.

3. The obstruction

In this section we discuss a topological application of Theorem 2.6. We start
with an algebraic topology lemma.

Lemma 3.1. Let X be a compact, oriented 4-manifold with boundary Y ,
a closed 3-manifold with H1(Y ) finite of square-free order. Then |detQX | =
|H1(Y )| and all spinc structures on Y extend to X.

Proof. Let us look at the long exact sequence for the pair (X,Y ):

0 → H2(X,Y ) → H2(X) → H2(Y ) → H3(X,Y ) → H3(X) → 0.

All spinc structures on Y extend if and only if the restriction map H2(X) →
H2(Y ) is onto. Since H2(Y ) is finite, H3(X,Y ) and H3(X) have the same
rank, b3; call B and A their torsion subgroups, respectively. For the same
reason, H2(X,Y ) and H2(X) have the same rank, b2; by the universal coef-
ficient theorem and Poincaré–Lefschetz duality, their torsion subgroups are
isomorphic to A and B, respectively. Since torsion can only map to torsion,
call τi the map obtained by restricting π∗

i : H i(X,Y ) → H i(X) to the tor-
sion subgroup, and then projecting the target to the torsion subgroup; we
regard τ2 as a map τ2 : A → B, and τ3 as a map τ3 : B → A. Note that,
since π∗

3 is onto and H2(Y ) is torsion, the induced map on the quotient
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H3(X,Y )/B → H3(X)/A is injective (in fact, an isomorphism). Finally, the
map H2(X,Y )/A → H2(X)/B is represented by the intersection form QX

of X.
With this in place, we can then apply the nine lemma to

0 // B //

��

H3(X,Y ) //

��

H3(X,Y )/B

��

// 0

0 // A // H3(X) // H3(X)/A // 0

and

0 // A //

��

H2(X,Y ) //

��

H2(X,Y )/A

��

// 0

0 // B // H2(X) // H2(X)/B // 0

to obtain that kerπ∗
3 is a group G of order |ker τ3| = |B|/|A|, and that

cokerπ∗
2 is a group H of order |coker τ2| · |cokerQX | = (|B|/|A|) · |detQX |.

It follows that we can extract a short exact sequence of finite groups:

0 → H → H1(Y ) → G → 0,

from which

|H1(Y )| = |H| · |G| =
|B|2

|A|2
|detQX |.

Since we assumed that H1(Y ) has square-free order, we conclude that |A| =
|B| and |H1(Y )| = |detQX |; each of these conclusions imply that H2(X) →
H2(Y ) is onto. □

To a closed, oriented, spinc rational homology 3-sphere (Y, t), Ozsváth
and Szabó [21] associate a family of invariants, collectively called Heegaard
Floer homology.

In [19], Ozszáth and Szabó extracted from the Heegaard Floer homology
package a rational number d(Y, t), called the correction term of (Y, t), that is
an invariant under spinc rational homology cobordism, and reduces modulo
2 to the rho-invariant ρ(Y, t). Recall that the rho-invariant of (Y, t) is defined
as:

ρ(Y, t) =
c1(s)

2 − σ(W )

4
∈ Q/2Z,

where (W, s) is any compact spinc 4–manifold whose boundary is (Y, t).
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In the remainder of the section Y will always denote a closed, oriented
3-manifold with H1(Y ) ∼= Z/2Z; we say that Y is a homology RP3. Hence Y
has exactly two spinc structures.

Our argument will depend on the value of these correction terms. First
we pin down their value modulo 2.

Proposition 3.2. We can label the two spinc structures on Y as t+ and
t−, so that d(Y, t±) ≡ ±1

4 (mod 2).

We start with a preliminary lemma.

Lemma 3.3. Let W be a cobordism from an integral homology sphere Z to
a homology RP3, Y . Then both spinc structures on Y extend to W .

Proof. Carve an open neighborhood of a path from Z to Y into W , to obtain
a 4-manifold X with boundary Y#(−Z). The statement is equivalent to the
fact that both spinc structures on ∂X = Y#(−Z) extend toX, which follows
from Lemma 3.1. □

Fix a spinc structure t on Y and a simply-connected 4-manifold X with
spinc structure s, such that ∂X = Y and s|Y = t. Recall now that the d-
invariant d(Y, t) reduces modulo 2 to the rho-invariant ρ(Y, t) ∈ Q/2Z. The

rho-invariant is defined as ρ(Y, t) ≡ c1(s)2−σ(X)
4 (mod 2); it follows from the

definition that if (W, s) is a spinc cobordism from (Y, t) to (Y ′, t′), then

ρ(Y ′, t′)− ρ(Y, t) ≡ c1(s)2−σ(W )
4 (mod 2). In particular, integral homology

spheres Z have ρ(Z, t) = 0, since they bound spin manifolds (which have
signature divisible by 8, by the van der Blij Lemma [13, Section II.5], and
which have a spinc structure with trivial first Chern class).

Proof of Proposition 3.2. Since ρ(Y, t) lifts to d(Y, t), the statement clearly
reduces to showing that ρ(Y, t±) ≡ ±1

4 (mod 2). This is what we set out
to prove, by finding a suitable cobordism from Y to an integral homology
sphere.

Pick a knot K in Y such that [K] ̸= 0 ∈ H1(Y ). Then there exists a
slope γ such that the result of Dehn surgery along K with slope γ is an
integral homology sphere Z0 := Yγ(K). Let K0 ⊂ Z0 denote the dual knot.
Since H1(Y ) ∼= Z/2Z and Z0 is an integer homology sphere, the surgery on
K0 that returns Y must have slope 2/q for some odd integer q.

We can write 2/q as a (negative) continued fraction 2/q = [0,− q+1
2 ,−2],

so that Y can be represented by the surgery diagram in Figure 2. It is easy
to see that the 3-manifold obtained by doing surgery on the 0- and − q+1

2 -
framed components is again an integral homology sphere, which we denote
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K0 = =

2
q

K0

0

− q
2

K0

⟨0⟩

⟨− q+1
2 ⟩ −2

Figure 2: Going from Z0 to Z. Recall that the knotK0 lives in Z0. The right-
most picture represents the cobordism from Z to Y . Here we used the braced
framing notation: namely, the surgery diagram comprising the components
with braced framings describes Z, i.e. the lower boundary component of the
cobordism, and the non-braced ones represent actual handle attachments
for the cobordism.

by Z, and that the cobordism W from Z to Y given by the −2-framed
2-handle is negative definite. Moreover, since W is obtained by attaching
a single 2-handle to an integral homology sphere, H1(W ) = H3(W ) = 0; in
particular, both spinc structures on Y extend to W .

Since W is the trace of a 2-handle attachment along a knot in an integral
homology sphere with framing −2, the two spinc structures s+ and s−, with
Chern classes 0 and 2γ ∈ H2(W ;Z) ≡ Z · γ respectively, have c1(s+)

2 = 0,
c1(s

2
−) = −2. By the cobordism formula mentioned above, letting t± be the

restriction of s± to Y , we get:

ρ(Y, t+) =
c1(s+)

2 − σ(W )

4
+ ρ(Z, t) ≡ +

1

4
(mod 2),

ρ(Y, t−) =
c1(s−)

2 − σ(W )

4
+ ρ(Z, t) ≡ −

1

4
(mod 2),

thus concluding the proof. □

Proposition 3.2 justifies the following definition.

Definition 3.4. For Y a homology RP3, we set d±1/4(Y ) = d(Y, t±).

Note that the labelling is chosen so that d±1/4(Y ) ≡ ±1
4 (mod 2);

observe also that since d(Y, t) = −d(−Y, t), we have that d±1/4(−Y ) =
−d∓1/4(Y ).
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Now suppose that Y bounds a positive definite 4-manifold W . In this
context we have the following inequality.

Theorem 3.5 ([19]). For each spinc structure s on W with s|Y = t, we
have

c1(s)
2 − b2(W )

4
≥ d(Y, t).

Moreover, the two sides of the inequality are congruent modulo 2.

We are now ready to give a topological translation of Theorem 2.6.

Proposition 3.6. Let Y be a homology RP3. If Y bounds a positive definite
4-manifold, then d1/4(Y ) + d−1/4(Y ) ≤ 0. Moreover, if equality is attained,

then d±1/4(Y ) = ±1
4 .

Proof. Suppose that Y bounds a positive definite 4-manifold W , and let
L be the lattice (H2(W ;Z)/Tor, QW ). By Lemma 3.1, L is a positive def-
inite lattice of determinant 2, and the first Chern class gives a surjection
c1 : Spin

c(W ) → Char(L). Call n = b2(W ) = rkL.
By the last statement in Theorem 3.5, using the labelling of Propo-

sition 3.2, we see that s ∈ Spinc(W ) restricts to t± if and only if c1(s) ∈
Char±(L). Let ξ+ ∈ Char+(L) and ξ− ∈ Char−(L) be characteristic covec-
tors with minimal square; note that there exist spinc structures s± on W
such that c1(s±) = ξ±, and that s± restricts to t±.

Then using Theorem 3.5 and Theorem 2.6 we get

d1/4(Y ) + d−1/4(Y ) ≤
ξ2+ − n

4
+

ξ2− − n

4
= d+(L) + d−(L) ≤ 0,

proving the first part of the theorem. Furthermore, if d1/4(Y ) + d−1/4(Y ) =
0, then the above inequality forces d+(L) + d−(L) = 0, and so by Theo-
rem 2.6 we get that d±(L) = ±1

4 . This, in turn, together with Theorem 3.5,
forces d±1/4(Y ) = ±1

4 . □

Remark 3.7. It follows from the proof of Proposition 3.2 that every homol-
ogy RP3 Y bounds a negative definite topological 4-manifold. In that proof,
we exhibited a negative definite homology cobordism W from an integral
homology sphere Z to Y . By Freedman’s work [3], Z bounds a contractible
topological 4-manifold W ′, and gluing W ′ and W along Z gives a negative
definite topological 4-manifold bounding Y .
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4. The example

Recall that we defined Y as the Seifert fibered space Y (2; 1513 ,
17
3 ,

23
22) and

N = 3P#Y , where P is the Poincaré homology sphere, oriented as the
boundary of the negative E8-plumbing; equivalently, P is the Brieskorn
sphere Σ(2, 3, 5).

We start by computing the correction terms of Y .

Proposition 4.1. d−1/4(Y ) = −17
4 and d1/4(Y ) = −31

4 .

Proof. Since −Y is the boundary of a negative definite plumbing with
a single bad vertex, we can compute these correction terms using Çağrı
Karakurt’s implementation [9] of Némethi’s formula [15, Section 11.13],
which, in turn, is a generalization of Ozsváth and Szabó’s algorithm
from [20]. □

Remark 4.2. Némethi computes of the d-invariant of a Seifert fibered
space as a sum of two terms; the first summand is expressed in terms of
Dedekind–Rademacher sums associated to the Seifert parameters [15, Sec-
tion 11.9], while the second depends on the minimum of a certain function
τ : Z≥0 → Z. The function is eventually increasing, and the minimum is con-
tained in a bounded interval [0, N ], where N can be chosen to be the product
of the multiplicities of the fibers.

Furthermore, in principle the computation of the correction terms of Y
could be done in other ways: either by computing the minimal squares in
the lattice associated to the canonical negative plumbing of −Y [20, Corol-
lary 1.5] or by following the entire algorithm in [20].

We are now ready to prove our main result; more precisely, we will prove
that N does not bound a definite 4-manifold.

Proof of Theorem 1.1. By additivity of correction terms, and since d(P, t) =
2 for the unique spinc structure t on P , we know that d±1/4(N) = 3d(P, t) +

d±1/4(Y ). By the previous proposition, we get d±1/4(N) = ∓7
4 .

Proposition 3.6 now implies that N cannot bound a positive definite
4-manifold. Reversing orientation and again applying Proposition 3.6 shows
that N cannot bound a negative definite 4-manifold either. □

We conclude with two observations about Y and spineless 4-manifolds.
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Proposition 4.3. Let Σ be an integral homology sphere. The 3-manifold
Y#Σ is not integral homology cobordant to a 3-manifold obtained as Dehn
surgery along a knot in S3.

Proof. If we let Y = S3
2/q(K) with q > 0; then, by [16, Proposition 1.4 and

Lemma 2.4]:

d±1/4(Y ) ∈

{

−2V0(K) +
1

4
,−2V1(K) +

1

4

}

=⇒ d1/4(Y ) ≥ −2V0(K) +
1

4
,

d−1/4(Y ) = −2V0(K)−
1

4
,

so that in particular d1/4(Y )− d−1/4(Y ) ≥ 1
2 . However

d1/4(Y#Σ)− d−1/4(Y#Σ) = d1/4(−(Y#Σ))− d−1/4(−(Y#Σ)) = −
7

2
,

so ±(Y#Σ) cannot be integrally homology cobordant to a positive surgery
along a knot in S3. □

The following remark was suggested to the authors by Adam Levine.

Remark 4.4. Note that the previous proposition implies that, for any inte-
gral homology sphere Σ, Y#Σ cannot bound a simply-connected 4-manifold
with H2(W ) = Z that has a spine, i.e. the generator of H2(W ) is repre-
sented by a PL-sphere. (Note that under these assumptions W is homotopy
equivalent to a 2-sphere.)

Closely following Levine and Lidman’s approach [11], we produce a ho-
motopy S2 whose boundary is Y#Σ for some homology sphere Σ, which is
necessarily going to be spineless. We sketch the construction, which is very
similar to [11].

The key observation is that there is an integral homology sphere −Σ such
that Y is obtained as integral surgery along a knot in −Σ. For example, we
can choose Σ to be the Brieskorn sphere Σ(15, 17, 181). Indeed, the negative
plumbing graph of Σ(15, 17, 181) is obtained by adding a single vertex to
the negative plumbing graph of −Y , which exhibits Y as surgery along a
singular fiber of −Σ(15, 17, 181).

By [11, Lemma 3.2 and Proposition 3.1], the 4-manifold obtained from
the trace of this surgery and carving a path in Σ× I is a homotopy S2 whose
boundary is Y#Σ.
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