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We generalize the construction of a moduli space of semistable
pairs parametrizing isomorphism classes of morphisms from a fixed
coherent sheaf to any sheaf with fixed Hilbert polynomial under
a notion of stability to the case of projective Deligne-Mumford
stacks. We study the deformation and obstruction theories of stable
pairs, and then prove the existence of virtual fundamental classes
for some cases of dimension two and three. This leads to a definition
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1. Introduction

Gromov-Witten theory, Donaldson-Thomas theory and Pandharipande-
Thomas theory are three important approaches to curve counting in enu-
merative geometry via intersection theories on moduli spaces of stable
maps, ideal sheaves and stable pairs respectively. It is interesting that
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these theories are conjectured to be related to each other. The conjec-
ture of Gromov-Witten/Donaldson-Thomas correspondence was proposed
by MNOP in [37, 38], which predicted that the partition function of GW
theory can be equated with the one of DT theory by a change of variables
for smooth projective 3-folds. The GW/DT correspondence has been proved
in several cases (e.g., [14, 37–40, 46]) with a formal reduced theory for DT
side. In [53], the authors developed a PT theory providing a geometric in-
terpretation of the reduced DT theory, and the DT/PT correspondence for
Calabi-Yau 3-folds was proposed to be viewed as a wall-crossing formula in
the derived category. This DT/PT correspondence has been proved in sev-
eral approaches [10, 62, 64]. On the other hand, the GW/PT correspondence
has also been treated in [42, 45, 51, 52].

As a generalization of the above mainfold cases, the orbifold GW the-
ory and orbifold DT theory for smooth projective Deligne-Mumford stacks
have been investigated in [2, 15] and [13, 20, 68] respectively. The orbifold
GW/DT correspondence was proved in some cases (e.g. [56–58, 70, 71]). It is
natural and expected to have an orbifold PT theory together with the orb-
ifold GW/PT or DT/PT correspondence. In [7], the authors follow Toda’s
method [64] of applying the notion of a torsion pair to obtain a stacky ver-
sion of PT stable pairs, and then combine the motivic Hall algebra (cf. [11])
and Behrend’s constructible function [8] to define orbifold PT invariants for
smooth projective Calabi-Yau 3-orbifolds. The orbifold DT/PT correspon-
dence are proved there for some special cases. However, without Calabi-Yau
condition, it is well known that one may construct a perfect obstruction
theory on some moduli space to define a virtual fundamental class [9, 34],
which can be integrated to obtain orbifold PT invariants. For this purpose,
we shall first aim to provide an alternative construction of moduli spaces of
PT stable pairs in the stacky sense.

To achieve this goal, there is a need for another way to generalize the
notion of PT stable pairs to the stacky case. Now we begin with the notion of
stable pairs for the case of a smooth projective variety X. Based on the work
of Le Potier [32], Pandharipande and Thomas [53] define a stable pair (F, s)
where F is a pure sheaf of dimension one and the section s : OX → F has
cokernel with 0-dimensional support. In a more general setting, the author
in [67] defines a δ-semistable pair (F,φ) consisting of a coherent sheaf F
on X and a morphism φ : F0 → F under a notion of stability depending
on some choice of a parameter δ ∈ Q[m] where F0 is any fixed coherent
sheaf. It is shown in [36] that the notion of δ-stable pairs (F,φ) defined
in [67] actually generalizes the one of PT stable pairs for the case when
deg δ ≥ deg P = 1 where P is the Hilbert polynomial of F . Therefore, it is
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natural to generalize the notion of stability [36, 67] to the case of projective
Deligne-Mumford stacks to obtain the stacky PT stable pairs.

Observe that the stability condition used in [36, 67] is different from
the one defined in [22, 23] due to the different framing, where the latter
has been naturally generalized to the stacky case [12] using the modified
Hilbert polynomial defined in [43]. In order to construct moduli spaces of
the stacky PT stable pairs, we generalize the construction of moduli spaces
of δ-(semi)stable pairs in [36, 67] to the case of projective Deligne-Mumford
stacks by means of techniques developed in [12, 23, 43]. We state this result
explicitly as follows. Let X be a projective Deligne-Mumford stack of dimen-
sion d over an algebraically closed field k of characteristic zero with a moduli
scheme π : X → X and a polarization (E ,OX(1)), see Definition 2.9. Assume
F0 is any fixed coherent sheaf on X . Let δ be any given stability parameter
which is zero or a rational polynomial with positive leading coefficient and P
any given polynomial of degree deg P ≤ d. We have a contravariant functor

M
(s)s
X/k(F0, P, δ) : (Sch/k)

◦ → (Sets)

where if S is a k-scheme of finite type, M
(s)s
X/k(F0, P, δ)(S) is the set of

isomorphism classes of flat families of δ-(semi)stable pairs (F , φ) on X with
modified Hilbert polynomial P parametrized by S, see Definition 4.8. A
central result for the existence of (fine) moduli space for this moduli functor
is obtained in the following

Theorem 1.1 (see Theorem 4.10 and Theorem 4.24). There is
a projective scheme M ss :=M ss

X/k(F0, P, δ) which is a moduli space for

the moduli functor Mss
X/k(F0, P, δ). Moreover, there is an open subscheme

M s :=M s
X/k(F0, P, δ) of M ss which is a fine moduli space for the moduli

functor Ms
X/k(F0, P, δ).

This theorem provides a moduli space M (s)s of δ-(semi)stable pairs on
X with modified Hilbert polynomial P and implies that the quasi-projective
scheme M s has equipped with a universal family. Given a coherent sheaf
F0 and a polynomial P , moduli spaces M (s)s of δ-(semi)stable pairs depend
on the stability parameter δ. As in [67, Section 5] for the case of smooth
projective varieties, we have a chamber structure of the stability parameter
for the variation of moduli spaces M (s)s.
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Theorem 1.2 (see Theorem 4.26). There are finitely many critical val-
ues δ1, · · · , δt ∈ Q[m] satisfying

δ0 := 0 < δ1 < · · · < δt < δt+1 := +∞

such that we have the chamber structure of the stability parameter as follows:

M0
X/k(F0, P, δ)

�� ((

· · · M t
X/k(F0, P, δ)

�� ((

M ss
X/k(F0, P, δ

0) M ss
X/k(F0, P, δ

1) · · · · · ·M ss
X/k(F0, P, δ

t) M ss
X/k(F0, P, δ

t+1)

where M i
X/k(F0, P, δ) :=M ss

X/k(F0, P, δ) =M s
X/k(F0, P, δ) for some δ ∈

(δi, δi+1), i = 0, · · · , t.

Since the moduli spaceM s contains as a special case the moduli space of
stacky PT stable pairs mentioned above, in order to construct a perfect ob-
struction theory, we next consider the deformation and obstruction theory of
stable pairs inM s. Suppose that X is a smooth projective Deligne-Mumford
stack. Let [(F , φ)] be a point in M s

X/k(F0, P, δ) where φ : F0 → F . Suppose
that Artk is the category of Artinian local k-algebras with residue field k.
For A,A′ ∈ ObArtk and let the short exact sequence

0 → I → A′ → A→ 0

be a small extension, that is, mA′I = 0. Assume φ̌A : F0 ⊗k A→ FA is a
morphism over XA := X ×Spec k SpecA extending φ, where FA is a coherent

sheaf flat over A. Let I• := {F0
φ
−→ F} and I•A := {F0 ⊗k A

φ̌A
−−→ FA} be the

complexes concentrated in degree 0 and 1. Then we have I•A ⊗ k = I•. As
obtained in [36, Theorem 1.2] for the deformation and obstruction theory of
stable pairs on smooth projective varieties, we generalize this result to our
stacky case.

Theorem 1.3 (see Theorem 5.1). For a given small extension 0 → I →
A′ σ

−→ A→ 0, there is a class

ob(φ̌A, σ) ∈ Ext1(I•,F ⊗ I)

such that there exists a flat extension of φ̌A over XA′ if and only if
ob(φ̌A, σ) = 0. If ob(φ̌A, σ) = 0, the space of extensions is a torsor under
Hom(I•,F ⊗ I).
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With this result, one can show the existence of virtual fundamental
classes for the 2-dimensional case which is a generalization of [36, Theo-
rem 1.3].

Theorem 1.4 (see Theorem 5.12). Let X be a smooth projective
Deligne-Mumford stack of dimension 2 over C. Let F0 be a torsion free
sheaf and deg δ ≥ deg P = 1. Then the moduli space M s

X/C(F0, P, δ) of δ-
stable pairs admits a virtual fundamental class.

While for the case of dimension three, it is unsuitable to apply Theo-
rem 5.1 to obtain some two-term complex for the obstruction theory (cf.
Lemma 5.13 and Remark 5.14). Alternatively, we follow Inaba’s approach
to the deformation and obstruction theory in [27, Section 2]. Explicitly, we
derive a stacky version of [27, Proposition 2.3] as follows.

Theorem 1.5 (see Theorem 5.5). For a given small extension 0 → I →
A′ σ

−→ A→ 0, there is an element

ω(I•A) ∈ Ext2(I•, I• ⊗ I)

such that there exists a flat extension of φ̌A over XA′ if and only if
ω(I•A) = 0. If ω(I•A) = 0, then the space of extensions form a torsor under
Ext1(I•, I• ⊗ I).

The similar result as above also holds in the case of a square zero exten-
sion (cf. Theorem 5.6). As an application, we study the case when dimX = 3,
F0 = OX and polynomials δ, P satisfying deg δ ≥ deg P = 1. The corre-
sponding moduli spaceM

s
:=M s

X/C(OX , P, δ) parametrizes orbifold PT sta-

ble pairs (cf. Lemma 2.26 and Remark 2.27). Furtherly, we consider the
subfunctor Ms

X/C(OX , β, δ) of M
s
X/C(OX , P, δ), which associates for any C-

scheme S of finite type with the set of isomorphism classes of flat families
of δ-(semi)stable pairs (F , φ) with the fixed numerical class β ∈ N≤1(X )
parametrized by S where PE(β) = P , see Section 5.3 for more details. Sim-
ilarly, there is a projective scheme M

s
β :=M s

X/C(OX , β, δ) (⊆M
s
), which

is a fine moduli space for Ms
X/C(OX , β, δ), see Theorem 5.20. Assume Ī•

and Ī•β are the universal complexes on X ×M
s
and X ×M

s
β respectively.

Let πMs : X ×M
s
→M

s
, πX : X ×M

s
→ X , π̃Ms

β
: X ×M

s
β →M

s
β , and

π̃X : X ×M
s
β → X be the projections. To assert the existence of virtual

fundamental classes of M
s
and M

s
β , we construct the perfect obstruction

theories with fixed determinant for these moduli spaces in the sense of [9].
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Theorem 1.6 (see Theorem 5.17, Corollary 5.18 and Theo-
rem 5.21). Let X be a 3-dimensional smooth projective Deligne-Mumford
stack over C. Assume that polynomials δ and P satisfy deg δ ≥ deg P = 1.
The maps

Φ : E• := RπMs
∗(RHom(Ī•, Ī•)0 ⊗ π∗XωX )[2] → LMs .

and

Φβ : E•
β := Rπ̃Ms

β∗
(RHom(Ī•β , Ī

•
β)0 ⊗ π̃∗XωX )[2] → LMs

β
.

are perfect obstruction theories for M
s
and M

s
β respectively. And there

exist virtual fundamental classes [M
s
]vir ∈ Avdim1

(M
s
) and [M

s
β ]

vir ∈

Avdim2
(M

s
β) where vdim1 = rk(E•) and vdim2 = rk(E•

β). Here, LMs and

LMs

β
are truncated cotangent complexes of M

s
and M

s
β respectively.

By integrations against virtual fundamental classes of M
s
β , one can de-

fine the orbifold descendent PT theory (cf. Definition 5.23) for 3-dimensional
smooth projective Deligne-Mumford stacks. In particular, when X is a
Calabi-Yau 3-orbifold, our definition of orbifold PT invariants of X is corre-
sponding to the one in [7] (cf. Definition 5.25 and Remark 5.26) by applying
[8, Theorem 4.18] for some moduli space with a symmetric perfect obstruc-
tion theory.

It is also natural to study the stacky version of higher rank PT sta-
ble pairs [61] if dimX = 3, F0 = OX (−n)

⊕r and polynomials δ, P satisfying
deg δ ≥ deg P = 1. As the orbifold PT invariants defined here is absolute,
we will explore the relative orbifold PT theory and its degeneration formula
elsewhere based on the work of [33, 42] as in the case of relative DT theory
[68]. One may study the issue of rationality for the partition function of orb-
ifold PT invariants (cf. Definition 5.23) as in [10, 48–50, 64], and furtherly
investigate the conjecture of orbifold GW/PT or DT/PT correspondence as
in [7, 69, 70], or more generally the stacky version of GW/PT or DT/PT
correspondence proved in [10, 42, 45, 51, 64].

This paper is organized as follows. In Section 2, we recall the definitions
of projective Deligne-Mumford stacks with polarizations and the modified
Hilbert polynomial together with some relevant facts, and then generalize
the notion of semistable pairs and some related results in [36, 67] to the
stacky case. And we recollect the definition of set-theoretic families of co-
herent sheaves and several boundedness results in [43] and give the notion
of flat families of pairs. We devote Section 3 to prove the boundedness of



✐

✐

“7-Lin” — 2024/3/15 — 0:31 — page 1137 — #7
✐

✐

✐

✐

✐

✐

Moduli spaces of semistable pairs 1137

families of δ-(semi)stable pairs on projective Deligne-Mumford stacks. In
Section 4, we prove Theorem 1.1 generalizing the construction of moduli
spaces of δ-(semi)stable pairs in [36, 67] and then describe the variation
of moduli spaces along of the change of the stability parameter δ. In Sec-
tion 5, we present two deformation and obstruction theories of stable pairs
which are useful for proving the existence of virtual fundamental classes in
some 2-dimensional and 3-dimensional cases respectively, and then provide
a definition of orbifold Pandharipande-Thomas invariants.

2. Semistable pairs on projective Deligne-Mumford stacks

In this section, we first recollect some preliminaries of projective Deligne-
Mumford stacks and properties of coherent sheaves on them, and then recall
the definition of the modified Hilbert polynomial and generalize the notion of
stability in [36, 67] to give the definition of δ-(semi)stable pairs and some re-
lated properties. We also recollect some boundedness results for set-theoretic
families of coherent sheaves and introduce the definition of flat families of
pairs used in the rest sections. For the theory of stacks, one may refer to
[18, 31, 66] for more details.

2.1. Preliminaries on projective Deligne-Mumford stacks

In this subsection, we recall the definition of projective Deligne-Mumford
stacks and some relevant properties of coherent sheaves on them (see
[3, 4, 28, 30, 43, 47]). We first make some convention as in [12, 43] here
as follows. Let k be an algebraically closed field of characteristic zero. All
schemes are assumed to be noetherian over k, and every variety is a re-
duced separated scheme of finite type over k. Denote by S the generic base
scheme of finite type over k. For a Deligne-Mumford S-stack and its related
properties, one may refer to [18] or [66, Appendix]. Every Deligne-Mumford
S-stack is assumed to be a separated noetherian Deligne-Mumford stack of
finite type over S, and when S = Spec k, it is called a Deligne-Mumford stack
(over k). Let p : X → S be the structure morphism of X . By an orbifold we
mean a smooth Deligne-Mumford stack of finite type over k with generically
trivial stabilizer. By [28, Corollary 1.3 (1)] for a Deligne-Mumford S-stack
X , we have a separated algebraic space X and a morphism π : X → X. More
explicitly, the following properties are stated in [4, Theorem 2.2.1]:

(i) The morphism π : X → X is proper and quasi-finite.
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(ii) If f is an algebraically closed field, the map X (f)/Isom → X(f) is a
bijection.

(iii) If Ŝ → S is a flat morphism of schemes, and suppose that Y → Ŝ is
an algebraic space and X ×S Ŝ → Y is a morphism, then X ×S Ŝ → Y
factors uniquely as X ×S Ŝ → X ×S Ŝ → Y .

(iv) π∗OX = OX .
Here, we call X a coarse moduli space (or moduli space) of X , and
when X is a scheme, we call it a moduli scheme.

It is shown in [3] that Deligne-Mumford S-stacks with the above con-
vention are tame. This implies three useful properties: (i) the functor
π∗ : QCoh(X ) → QCoh(X) is exact and carries coherent sheaves to coher-
ent sheaves by [4, Lemma 2.3.4]; (ii) π∗F is flat over S if F ∈ QCoh(X ) is a
flat sheaf over S by [43, Corollary 1.3 (3)]; (iii) for any quasi-coherent sheaf
F , we have H•(X ,F) ∼= H•(X,π∗F) by [43, Remark 1.4 (3)]. Here, QCoh
denotes the category of quasi-coherent sheaves.

To begin with, we introduce the following

Definition 2.1. ([43, Definitions 2.4 and 2.6]) Let X be a Deligne-
Mumford S-stack with moduli space π : X → X. Let E be a locally free sheaf
on X . Define two functors

FE : QCoh(X ) → QCoh(X), F 7→ π∗HomOX
(E ,F);

GE : QCoh(X) → QCoh(X ), F 7→ π∗F ⊗ E .

A locally free sheaf E is said to be a generator for the quasi-coherent sheaf

F if the left adjoint of the identity π∗(F ⊗ E∨)
id
−→ π∗(F ⊗ E∨), i.e.,

θE(F) : GE ◦ FE(F) = π∗π∗HomOX
(E ,F)⊗ E → F

is surjective. It is a generating sheaf for X if it is a generator for every
quasicoherent sheaf on X .

Obviously the functor FE is exact since two functorsHom(E , ·) and π∗ are
exact. It is shown in [43, Remark 2.5 (1)] that GE is exact if the morphism π
is flat. And this holds when X is a flat gerbe over a scheme or a root stack.
Compared with θE , one can also define the right adjoint of the identity

π∗F ⊗ E
id
−→ π∗F ⊗ E as

φE(F ) : F → π∗Hom(E , π∗F ⊗ E) = FE(GE(F )) = F ⊗ π∗EndOX
(E)
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where the last equality is obtained by the projection formula in the following
lemma. Thus φE is the map given by tensoring a section with the identity
endomorphism, which implies that φE is injective.

Lemma 2.2. Let F be a quasi-coherent sheaf on X andM a quasi-coherent
sheaf on X. Then we have a projection formula

π∗(π
∗M ⊗F) =M ⊗ π∗F .

Moreover, it is functorial that if ϕ : F → F ′ is a morphism of quasi-coherent
sheaves on X and ψ :M →M ′ is a morphism of quasi-coherent sheaves on
X, then

π∗(π
∗ψ ⊗ ϕ) = ψ ⊗ π∗ϕ.

Proof. See the proofs in [47, Corollary 5.4] and [43, Lemma 2.8]. □

Next, we recall some more results in [47, Section 5]. We start with the
following

Proposition 2.3. ([47, Theorem 5.2]) A locally free sheaf E on X is a gen-
erating sheaf if and only if for each geometric point of X , the representation
of the stabilizer group at that point on the fiber contains every irreducible
representation.

Definition 2.4. ([19, Definition 2.9]) Let X be a stack of finite type over a
base scheme S. We say X is a global quotient stack over S if it is isomorphic
to a stack [Z/G] where Z is an algebraic space of finite type over S and G is
a flat group scheme over S which is a subgroup scheme of the general linear
group scheme GLn,S for some n.

Theorem 2.5. Let X be a Deligne-Mumford S-stack which is a global quo-
tient stack over S, we have

(i) there is a locally free sheaf E over X which is a generating sheaf for X ;

(ii) let π : X → X be the moduli space of X and f : X ′ → X a morphism of
algebraic spaces, then X ′ is the moduli space of X ′ := X ×X X ′. More-
over, let p : X ′ → X be the natural projection, then p∗E is a generating
sheaf for X ′.

Proof. See [47, Proposition 5.3] for the proof of (i), and use [3, Corollary 3.3
(a)] and [47, Lemma 1.3 and Theorem 5.5] for the second part. □
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Now, we present the definitions of projective Deligne-Mumford stacks and a
family of projective stacks as follows.

Definition 2.6. (see [30, Definition 5.5] and [43, Definition 2.23]) A
Deligne-Mumford stack X over k is a (quasi-)projective stack if X admits a
(locally) closed embedding into a smooth proper Deligne-Mumford stack and
has a projective moduli scheme.

Let p : X → S be a Deligne-Mumford S-stack which is a global quotient
stack over S with a moduli scheme X. We call p : X → S a family of projec-
tive stacks if p factorizes as π : X → X followed by a projective morphism
ρ : X → S.

The notion of projective Deligne-Mumford stacks has some equivalent
definitions.

Proposition 2.7 ([30, Theorem 5.3]). Let X be a Deligne-Mumford
stack over k. The following are equivalent:

(i) X is (quasi-)projective.

(ii) X has a (quasi-)projective moduli scheme and possesses a generating
sheaf.

(iii) X is global quotient stack over k with a moduli space which is a (quasi-
)projective scheme.

Remark 2.8. Proposition 2.7 shows that Theorem 2.5 holds for any pro-
jective Deligne-Mumford stack and every family of projective stacks. In par-
ticular, if p : X := [Z/G] → S is a family of projective stacks, then for any
geometric point s ∈ S, we have

(i) the fibre Xs = [Zs/Gs] is a projective Deligne-Mumford stack with a
moduli scheme Xs which is the fibre of ρ : X → S over s;

(ii) there is a generating sheaf E for the family of projective stacks p :
X → S, and hence Es which is the fibre of E over s is a generating
sheaf for Xs.

To conclude this subsection, we introduce the notion of polarizations
for projective Deligne-Mumford stacks and the family of projective stacks
[12, 43].

Definition 2.9. Let X be a projective Deligne-Mumford stack over k with
a moduli scheme X. A polarization of X is a pair (E ,OX(1)) where E is
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a generating sheaf for X and OX(1) is a very ample invertible sheaf on X
relative to Spec k.

Let p : X → S be a family of projective stacks. A relative polarization
of p : X → S is a pair (E ,OX(1)) where E is a generating sheaf for X and
OX(1) is a very ample invertible sheaf on X relative to S.

2.2. The modified Hilbert polynomial

In this subsection, we recall some properties of coherent sheaves on a pro-
jective Deligne-Mumford stack, and then present the definition of the mod-
ified Hilbert polynomial and its related stability [43]. Let X be a projective
Deligne-Mumford stack over k with a moduli scheme π : X → X and a po-
larization (E ,OX(1)).

Definition 2.10 ([24, Definitions 1.1.1 and 1.1.2]). Let F be a coherent
sheaf on X . The support of F , denoted by Supp(F), is defined by the closed
substack associated to the ideal I:

0 → I → OX → EndOX
(F).

The dimension of F is defined as the dimension of its support. F is called
pure of dimension d if dim(G) = d for every nonzero subsheaf G ⊂ F .

As in [24, Definition 1.1.4], there is a unique torsion filtration of any
coherent sheaf F :

0 ⊆ T0(F) ⊆ · · · ⊆ Td(F) = F

where d = dim(F) and Ti(F) is the maximal subsheaf of F of dimension
≤ i. Hence Ti(F)/Ti−1(F) is zero or pure of dimension i. And F is pure if
and only if Td−1(F) = 0.

Definition 2.11. ([24, Definition 1.1.5]) The saturation of a subsheaf
F ′ ⊂ F is the minimal subsheaf F ′ containing F ′ such that F/F ′ is pure
of dimension dim(F) or zero.

Remark 2.12. As in [24], the saturation of F ′ is also defined to be the
kernel of the surjection

F → F/F ′ →
(
F/F ′

)
/TdimF−1

(
F/F ′

)
.

Now we have the following properties of coherent sheaves on X .
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Lemma 2.13 (see [43, Lemma 3.4 and Proposition 3.6] and [12,
Proposition 2.22]). Let F be a coherent sheaf on X . Then we have

(i) π(Supp(F)) = π(Supp(F ⊗ E∨)) ⊇ Supp(FE(F)).

(ii) FE(F) is zero if and only if F is zero.

(iii) If F is pure of dimension d, then FE(F) is pure of the same dimension.
Moreover, F is pure if and only if FE(F) is pure.

Lemma 2.14 ([43, Corollary 3.7 and 3.8]). Let F be a coherent sheaf
on X of dimension d. Then the functor FE sends the torsion filtration
0 ⊆ T0(F) ⊆ · · · ⊆ Td(F) = F of F to the torsion filtration of FE(F), i.e.,
FE(Ti(F)) = Ti(FE(F)) for 0 ≤ i ≤ d. Moreover, if F is pure, then we have
π(Supp(F)) = Supp(FE(F)).

Next, we have the following definition of the modified Hilbert polyno-
mial.

Definition 2.15 ([43, Definition 3.10]). Let F be a coherent sheaf of
dimension d on X . The modified Hilbert polynomial of F is defined as

PE(F)(m) := χ(X ,F ⊗ E∨ ⊗ π∗OX(m))

= χ(X,FE(F)(m)) = P (FE(F)(m)).

Since dimFE(F) = dimF = d by Lemma 2.13, the modified Hilbert
polynomial can be written as

PE(F)(m) =

d∑

i=0

αE,i(F)
mi

i!
.

The multiplicity of FE(F) is defined by

r(FE(F)) = αE,d(F).

As in [24, Definition 1.2.2], if dimF = d = dimX, the rank of FE(F) is
defined by

rk(FE(F)) =
αE,d(F)

αd(OX)
,

where αd(OX) is the leading coefficient of Hilbert polynomial χ(OX(m)) =∑d
i=0 αi(OX)

mi

i! .
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Definition 2.16 ([43, Definition 3.12 and 3.13]). Define the reduced
Hilbert polynomial of a coherent sheaf F of dimension d as

pE(F) =
PE(F)

αE,d(F)
,

and its slope as

µ̂E(F) =
αE,d−1(F)

αE,d(F)
.

Then we have the following definition of stabilities with respect to pE
and µ̂E .

Definition 2.17. ([24, Definition 1.2.4]) A coherent sheaf F is pE -
semistable (respectively µ̂E -semistable) if F is pure and for every proper sub-
sheaf F ′ ⊂ F one has pE(F

′) ≤ pE(F) (respectively µ̂E(F
′) ≤ µ̂E(F)), and it

is pE -stable (respectively µ̂E -stable) if it is pE -semistable (respectively µ̂E -
semistable) and the corresponding inequality is strict.

As in [24, Theorem 1.6.7], for a pure sheaf F , there is a unique Harder-
Narasimhan filtration with respect to the µ̂E -stability:

0 = F0 ⫋ F1 ⫋ F2 ⫋ · · · ⫋ Fl = F

such that the factors Fi/Fi−1 for i = 1, · · · , l are µ̂E -semistable and

µ̂E,max(F) := µ̂E(F1) > µ̂E(F2/F1) > · · · > µ̂E(Fl/Fl−1) := µ̂E,min(F).

Similarly, one also has a unique Harder-Narasimhan filtration with respect
to the pE -stability.

2.3. Semistable pairs

We generalize the notion of semistable pairs on smooth projective varieties
[36, 67] to the case of projective Deligne-Mumford stacks in this subsection.
Let X be a projective Deligne-Mumford stack over k with a moduli scheme
π : X → X and a polarization (E ,OX(1)). Let F0 be a fixed coherent sheaf
on X and δ ∈ Q[m] be 0 or a polynomial with positive leading coefficient.

Definition 2.18. A pair (F , φ) on X consists of a coherent sheaf F and a
morphism φ : F0 → F . A morphism of pairs ϕ : (F , φ) → (G, ψ) is a mor-
phism of sheaves ϕ : F → G such that there is an element λ ∈ k making the
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following diagram commute

F0

φ

��

λ·id // F0

ψ
��

F
ϕ

// G

A subpair (F ′, φ′) of (F , φ) consists of a coherent subsheaf F ′ ⊂ F and a
morphism φ′ : F0 → F ′ satisfying i ◦ φ′ = φ if imφ ⊂ F ′, and φ′ = 0 other-
wise, where i denotes the inclusion F ′ →֒ F . A quotient pair (F ′′, φ′′) con-
sists of a coherent quotient sheaf q : F → F ′′ and a morpism φ′′ = q ◦ φ :
F0 → F ′′.

A pair (F , φ) is said to be of dimension d if dimF = d. We say a pair
(F , φ) is pure if F is pure. Let P be a polynomial of degree d, we call a pair
(F , φ) of type P if PE(F) = P .

Lemma 2.19 ([23, Lemma 1.5]). The set Hom((F , φ), (G, ψ)) of mor-
phisms of pairs is a linear subspace of Hom(F ,G). If ϕ : (F , φ) → (G, ψ) is
an isomorphism, the factor λ in the definition satisfies λ ∈ k∗. In particular,
the isomorphism ϕ0 = λ−1ϕ satisfies ϕ0 ◦ φ = ψ.

Remark 2.20. As in [12, Remark 3.5], we have the cartesian diagram

W

��

// k

·ψ
��

Hom(F ,G) ◦φ
// Hom(F0,G)

and

W ∼=

{
Hom((F , φ), (G, ψ)), if ψ ̸= 0;

Hom((F , φ), (G, ψ))× k, otherwise.

Define the Hilbert polynomial of a pair (F , φ) as

P(F ,φ) = PE(F) + ϵ(φ)δ

and the reduced Hilbert polynomial of this pair by

p(F ,φ) = pE(F) +
ϵ(φ)δ

r(FE(F))
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where

ϵ(φ) =

{
1, if φ ̸= 0;

0, otherwise.

Remark 2.21. As in [36], a short exact sequence of pairs,

0 → (F ′, φ′)
i
−→ (F , φ)

q
−→ (F ′′, φ′′) → 0

consists of a short exact sequence of sheaves 0 → F ′ → F → F ′′ → 0 such
that (F ′, φ′) is a subpair and (F ′′, φ′′) is the corresponding quotient pair.
Here, F ′′ = F/F ′, φ′′ = q ◦ φ if φ′ = 0, and φ′′ = 0 if imφ ⊂ F ′. Since the
modified Hilbert polynomial is additive in a short exact sequence of coherent
sheaves [43, Remark 3.11 (2)] and ϵ(φ) = ϵ(φ′) + ϵ(φ′′), it is obviously that
the Hilbert polynomial is also additive in a short exact sequence of pairs.

We present a definition of δ-(semi)stable pairs on a projective Deligne-
Mumford stack.

Definition 2.22. A pair (F , φ) is δ-semistable if F is pure and p(F ′,φ′) ≤
p(F ,φ) for every proper subpair (F ′, φ′). We call (F , φ) a δ-stable pair if it
is δ-semistable and the inequality is strict.

Remark 2.23. As in [24, Proposition 1.2.6], Definition 2.22 can be shown
to be equivalent to the statement: a pair (F , φ) is δ-(semi)stable if and only
if F is pure and p(F ′′,φ′′)(≥)p(F ,φ) for every proper purely quotient pair
(F ′′, φ′′) of dimension dimF .

Notice that when φ = 0 or δ = 0, the δ-(semi)stablility of a pair (F , φ) is
equivalent to pE -(semi)stablility of the coherent sheaf F . We say a pair (F , φ)
is nondegenerate if φ ̸= 0 as in [36]. Since most of the following results in
this subsection are straightforward generalizations of those in [36, Section 2],
some proofs are omitted.

Lemma 2.24. When deg δ ≥ degP , every nondegenerate δ-semistable pair
of type P is δ-stable.

Lemma 2.25. Let F be a pure coherent sheaf of dimension d with the mod-
ified Hilbert polynomial PE(F) = P , and assume deg δ ≥ degP = d. Then a
pair (F , φ) is δ-stable if and only if for every proper subpair (F ′, φ′),

PE(F
′)

2r(FE(F ′))− ϵ(φ′)
<

PE(F)

2r(FE(F))− ϵ(φ)
.
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Lemma 2.26. If deg δ ≥ degP , then a nondegenerate pair (F , φ) of type
P is δ-stable if and only if F is pure and dim cokerφ < degP .

Remark 2.27. Lemma 2.26 implies that when F0 = OX and deg P = 1 ≤
deg δ, a nondegenerate δ-sable pair (F , φ) of type P is a stable pair in the
sense of Pandharipande-Thomas [53, Lemma 1.3].

Lemma 2.28. Suppose ϕ : (F , φ) → (G, ψ) is a nonzero morphism of pairs.
If (F , φ) and (G, ψ) are δ-semistable pairs of dimension d, then p(F ,φ) ≤
p(G,ψ). Suppose (F , φ) and (G, ψ) are δ-stable with the same reduced Hilbert
polynomial, then ϕ induces an isomorphism between F and G. In particular,
we have End((F , φ)) ∼= k for a δ-stable pair (F , φ).

Proposition 2.29 (Harder-Narasimhan filtration). Let (F , φ) be a
pair and F be pure of dimension d. Then there exists a unique filtration by
subpairs

0 ⫋ (G1, φ1) ⫋ (G2, φ2) ⫋ · · · ⫋ (Gl, φl) = (F , φ)

such that the factors gri = (Gi, φi)/(Gi−1, φi−1) for i = 1, · · · , l, are δ-
semistable pair of dimension d with the reduced Hilbert polynomials pgri
satisfying

pgr1 > · · · > pgrl .

Proof. Given a pair (F , φ), any subpair (F ′, φ′) is actually determined by
the subsheaf F ′ ⊆ F since φ′ is determined by the given morphism φ and
comparing F ′ with imφ by definition of a subpair. With this point of view,
the proof is completed by using the similar argument in the proof of [24,
Theorem 1.3.4] with the (reduced) Hilbert polynomial of pairs and the mul-
tiplicity of FE(G) for any subsheaf G of F . Alternatively, one may refer to
the similar argument in the proof of [60, Theorem 1] for a pure sheaf as in
[36, Proposition 2.12]. □

Remark 2.30. For a nondegenerate pair (F , φ), let gri := (griF , griφ) for
i = 1, · · · , l, it is obviously that there is only one nonzero griφ by the def-
inition of subpairs and quotient pairs. When deg δ ≥ d, only gr1φ = φ1 is
nonzero.
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Proposition 2.31 (Jordan-Hölder filtration). Let (F , φ) be a δ-
semistable pair. There is a filtration

0 ⫋ (F1, φ1) ⫋ (F2, φ2) ⫋ · · · ⫋ (Fl, φl) = (F , φ)

such that all factors gri = (Fi, φi)/(Fi−1, φi−1) for i = 1, · · · , l, are δ-stable
with the same reduced Hilbert polynomial p(F ,φ). Here, gr(F , φ) = ⊕igri does
not depend on the choice of filtration.

Remark 2.32. As in [67], Jordan-Hölder filtration induces a homomor-
phism gr(φ) : F0 → gr(F , φ) which is nontrivial for a nondegenerate pair
(F , φ) and its image is contained in exactly one summand of gr(F , φ).

Definition 2.33. Two δ-semistable pair (F1, φ1) and (F2, φ2) with the
same reduced Hilbert polynomial are called S-equivalent if gr(F1, φ1) ∼=
gr(F2, φ2).

2.4. Families of coherent sheaves and pairs

We first recall the definition of a set-theoretic family of coherent sheaves as
in [29, Section 1.12] and its relevant boundedness results in [43, Section 4],
and then give the notion of flat families of pairs. Let p : X → S be a family
of projective stacks with a relative polarization (E ,OX(1)). Suppose s ∈ S
and K is a field extension of residue field k(s), a coherent sheaf on a fiber of
p is defined to be a coherent sheaf FK on XK := X ×S SpecK. Given two
extensions K1 and K2, two coherent sheaves FK1

and FK2
are equivalent if

there are k(s)-homomorphisms of K1, K2 to a third extension K3 such that
FK1

⊗k(s) K3 and FK2
⊗k(s) K3 are isomorphic.

Definition 2.34 ([29, Section 1.12] or [43, Definitions 4.9 and 4.10]).
A set-theoretic family of coherent sheaves on p : X → S is a set of coher-
ent sheaves defined on the fibers of p. A set-theoretic family F of coherent
sheaves on X is bounded if there is an S-scheme T of finite type and a co-
herent sheaf G on XT := X ×S T such that every sheaf in F is contained in
{G|X×SSpec k(t)|t ∈ T}.

Definition 2.35 (see [24, Definition 1.7.1 and 1.7.3] and [43, Defi-
nition 4.2]). Let X be a projective scheme over k with a very ample line
bundle OX(1). A coherent sheaf F on X is said to be m-regular if for every
i > 0 we have H i(X,F (m− i)) = 0. The Mumford-Castelnuovo regularity of
F is defined to be the least integer m such that F is m-regular. Let X be a
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projective Deligne-Mumford stack over k with a polarization (E ,OX(1)). A
coherent sheaf F on X is defined to be m-regular if FE(F) on X is m-regular.
Denote by regE(F) the Mumford-Castelnuovo regularity of FE(F).

A criterion for boundedness of a set-theoretic family of coherent sheaves
is Kleiman criterion for stacks [43, Theorem 4.12]. It implies that if a set-
theoretic family F is bounded, then the set of modified Hilbert polynomials
PEK

(FK) for FK ∈ F is finite, and there exists an integer m ≥ 0 such that
every coherent sheaf FK is m-regular. Kleiman criterion for stacks is also
used in proving the following stacky version of Grothendieck lemma.

Lemma 2.36 ([43, Lemma 4.13 and Remark 4.14]). Let X be a pro-
jective Deligne-Mumford stack over k with a moduli scheme π : X → X and
a polarization (E ,OX(1)). Let P be an polynomial of degree d ∈ [0, dim(X)]
and ρ̄ an integer. There exists a constant C = C(P, ρ̄) such that if F is a co-
herent sheaf of dimension d on X with PE(F) = P and regE(F) ≤ ρ̄, then for
every purely d-dimensional quotient F ′, we have µ̂E(F

′) ≥ C. Moreover, the
family of purely d-dimensional quotients F ′

i , i ∈ I (for some set of indices
I) with µ̂E(F

′
i) bounded from above is bounded.

The similar statement as above is true, that is, for every purely satu-
rated subsheaf F ′, the slope µ̂E(F

′) is bounded from above, and the family
of pure subsheaves F ′

i ⊆ F , i ∈ I with µ̂E(F
′
i) bounded from below such that

the quotient F/F ′
i is pure of dimension d, is bounded.

Boundedness of a family of coherent sheaves on projective Deligne-
Mumford stacks is proved to be equivalent to boundedness of the one on
projective schemes under some conditions in the following

Proposition 2.37. ([43, Corollary 4.17]) Let p : X → S be a family of pro-
jective stacks with a relative polarization (E ,OX(1)). Let F be a set-theoretic
family of coherent sheaves on the fibers of p. Then the family F is bounded
if and only if FE(F) is bounded.

Here is a useful boundedness result as follows.

Theorem 2.38 ([43, Theorem 4.27 (1)]). Let p : X → S be a family of
projective stacks with a relative polarization (E ,OX(1)). Let P be a polyno-
mial of degree d and µ0 a real number. Every set-theoretic family Fi, i ∈ I (I
is a set) of purely d-dimensional sheaves on the fiber of p with fixed modified
Hilbert polynomial P such that µ̂max(FE(Fi)) ≤ µ0 is bounded.
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The following bound of the number of global sections will be used in
Section 3.

Lemma 2.39 ([43, Proposition 4.24 and Corollary 4.30]). Let X be
a projective Deligne-Mumford stack over k with a moduli scheme π : X → X
and a polarization (E ,OX(1)). For any µ̂E -semistable sheaf F of dimension
d on X , we have

h0(X ,F ⊗ E∨) ≤





r

(
µ̂E(F) + m̃ deg(OX(1)) + r2 + f(r) + d−1

2

d

)
,

if µ̂max(FE(F)) ≥
d+ 1

2
− r2

0, otherwise

where µ̂max(FE(F)) ≤ µ̂E(F) + m̃ deg(OX(1)), r = r(FE(F)), f(r) = −1 +∑r
i=1

1
i , and m̃ is the integer making that π∗EndOX

(E)(m̃) is generated by
global sections.

Now, as in [36, 67], we introduce the notion of a flat family of pairs.

Definition 2.40. A flat family (F , φ) of pairs parametrized by a scheme S
consists of a coherent sheaf F on X × S which is flat over S and a morphism
φ : π∗XF0 → F , where πX : X × S → X is the natural projection. Two fami-
lies (F , φ) and (G, ψ) are isomorphic if there is an isomorphism Φ : F → G
such that Φ ◦ φ = ψ.

Remark 2.41. In Definition 2.40, the implicit λ-scaling of π∗XF0 as in
Definition 2.18 for the isomorphism of two families has been absorbed in
Φ as in Lemma 2.19. Compared with the notion of a flat family of framed
sheaves defined in [12, Definition 3.16], one may alternatively define a flat
family of pairs as follows. A flat family (F , LF , ϕF ) of pairs parameterized by
a scheme S consists of a coherent sheaf F on X × S which is flat over S, a
line bundle LF on S, and a morphism ϕF : LF → πS∗Hom(π∗XF0,F), where
πS : X × S → S is the projection. Two families (F , LF , ϕF ) and (G, LG , ψG)
are isomorphic if there are isomorphisms Φ : F → G and Ψ : LF → LG such
that

ψG ◦Ψ = Φ̂ ◦ ϕF

where

Φ̂ : πS∗Hom(π∗XF0,F) → πS∗Hom(π∗XF0,G)
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is the isomorphism induced by Φ. For this definition, one can impose the
λ-scaling on π∗XF0 for two isomorpic families which is also absorbed in Φ.
As in [12, Remark 3.17], the morphism ϕF : LF → πS∗Hom(π∗XF0,F) may
be taken as a nowhere vanishing morphism, i.e., the composition as follows

π∗SLF ⊗ π∗XF0 → π∗SπS∗Hom(π∗XF0,F)⊗ π∗XF0

→ Hom(π∗XF0,F)⊗ π∗XF0 → F .

When LF is trivial, the morphism ϕF may be viewed as φ in Definition 2.40.
However, we will adopt the notion of a flat family of pairs in Definition 2.40
(see Remark 4.23 for the reason).

3. Boundedness of the family of semistable pairs

One important step in constructing moduli spaces of semistable pairs is to
prove the boundedness of the family of semistable pairs. Given a polynomial
P ∈ Q[m] and a stability parameter δ ∈ Q[m] which is zero or a polynomial
with positive leading coefficient, we will prove in this section that the family
of δ-semistable pairs of type P is bounded. In fact, we will generalize the
boundedness results on smooth projective varieties in [67, Section 3] when
deg δ < degP and those in [36, Section 3] when deg δ ≥ degP to the case of
projective Deligne-Mumford stacks. Let X be a projective Deligne-Mumford
stack over k with a moduli scheme π : X → X and a polarization (E ,OX(1)).
We start with the case when deg δ < degP .

Lemma 3.1. When deg δ < degP . Suppose that (F , φ) is a nondegener-
ate δ-semistable pair with the modified Hilbert polynomial PE(F) = P . Then
µ̂max(FE(F)) is bounded above by a constant depending on P , F0 and X.

Proof. We combine the arguments in the proofs of [67, Proposition 2.1] and
[43, Proposition 4.24]. Suppose that F is pure of dimension d, and let δ1

(d−1)!
be the coefficient of δ in degree d− 1. The assumption of δ implies that δ1 ≥
0. Let (F ′, φ′) be a subpair of (F , φ) satisfying imφ ⊂ F ′. By assumption
we have

µ̂E(F
′) +

δ1
r(FE(F ′))

≤ µ̂E(F) +
δ1

r(FE(F))

Then µ̂E(F
′) ≤ µ̂E(F) since the exactness of the functor FE implies

r(FE(F
′)) ≤ r(FE(F)). Now, let F ′ ⊆ F be any subsheaf. Set H = F ′ + imφ
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and G = imφ/(F ∩ imφ). Then G is a quotient of F0 and we have a short
exact sequence

0 → F ′ → H → G → 0.

Note that H ⊆ F and imφ ⊆ H, then (H, i ◦ φ) is a subpair of (F , φ), where
i denotes the inclusion H →֒ F . As above, we have µ̂E(H) ≤ µ̂E(F). Since
FE(G) is a quotient of FE(F0), we have µ̂min(FE(F0)) ≤ µ̂E(G). Since the
modified Hilbert polynomial PE(·) is additive in a short exact sequence, we
have

µ̂E(F
′) =

µ̂E(H)r(FE(H))− µ̂E(G)r(FE(G))

r(FE(F ′))

≤
µ̂E(F)r(FE(H))− µ̂min(FE(F0))r(FE(G))

r(FE(F ′))

= µ̂E(F) + (µ̂E(F)− µ̂min(FE(F0)))
r(FE(G))

r(FE(F ′))
.

where F ′ and H are of dimension d, and r(FE(G)) = αE,d(G) ≥ 0 (it is zero
if dim(FE(G)) < d). Set

C̃ := max{µ̂E(F), µ̂E(F) + (µ̂E(F)− µ̂min(FE(F0))) · r(FE(F))}

which is a constant depending on P and F0. Then µ̂E(F
′) ≤ C̃ for any

subsheaf F ′ ⊆ F .
By Serre’s vanishing theorem, one can choose an integer m̃ large

enough such that π∗EndOX
(E)(m̃) is generated by global sections. Set N =

h0(X,π∗EndOX
(E)(m̃)). Let F be the maximal destabilizing sheaf of FE(F)

with respect to ordinary µ̂-stability. Then µ̂(F ) = µ̂max(FE(F)). As in the
argument of [43, Proposition 4.24], one has a surjection F ⊗OX(−m̃)⊕N →
FE(F), where F is a subsheaf of F associated to F by some transformation.
Since F ⊗OX(−m̃)⊕N is also µ̂-semistable, then

µ̂(F (−m̃)) = µ̂(F ⊗OX(−m̃)⊕N ) ≤ µ̂(FE(F)) = µ̂E(F) ≤ C̃.

The above inequality implies that µ̂max(FE(F)) ≤ C, where C := C̃ +
m̃ deg(OX(1)) is a constant depending on P , F0 and X. □

The remaining case is

Lemma 3.2. When deg δ ≥ degP . Suppose that (F , φ) is a nondegener-
ate δ-semistable pair with the modified Hilbert polynomial PE(F) = P . Then
µ̂min(FE(F)) is bounded below by a constant depending on P , F0 and X.
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Proof. Since the functor FE is exact, from the short exact sequence

0 → imφ→ F → cokerφ→ 0

we have FE(cokerφ) ∼= FE(F)/FE(imφ). By Lemma 2.24 and Lemma 2.26,
dim cokerφ < degP = dimF . Then dimFE(cokerφ) < degP = dimFE(F) by
Lemma 2.13 and Lemma 2.14. The exactness of FE implies FE(φ) : FE(F0) ↠
FE(imφ) →֒ FE(F) and imFE(φ) = FE(imφ). The proof is completed by
applying the argument about (E0, E) in the proof of [36, Lemma 3.1] to
(FE(F0), FE(F)). □

As the modified Hilbert polynomial is additive in a short exact sequence
and PE(F) = P is fixed, bounding µ̂min from below is equivalent to bounding
µ̂max from above. Hence the constant C can be chosen to be independent
of δ such that µ̂max is bounded above by C by Lemma 3.1 and Lemma 3.2.
Using these two lemmas and Theorem 2.38 with S = Spec k, we have

Proposition 3.3. Fix a modified Hilbert polynomial P and some δ. The
set-theoretic family

{F|(F , φ) is a nondegenerate δ-semistable pair of type P}

of coherent sheaves on X is bounded.

Next, in order to apply GIT machinery, one may relate the semista-
bility condition to the number of global sections of subsheaves as in [24,
Theorem 4.4.1]. We need the following estimate for the number of global
sections.

Lemma 3.4. Let X be a projective Deligne-Mumford stack over k with a
polarization (E ,OX(1)). Let F be a pure coherent sheaf of dimension d on
X , then

h0(X,FE(F)(m))

r
=
h0(X ,F ⊗ π∗OX(m)⊗ E∨)

r

≤
r − 1

r

[(
µ̂max(FE(F)) +m+ C

d

)]

+

+
1

r

[(
µ̂(FE(F)) +m+ C

d

)]

+
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where r = r(FE(F)) and C := m̃ deg(OX(1)) + r2 + f(r) + d−1
2 . Here,

[x]+ := max{0, x} for any x ∈ R, f(r) = −1 +
∑r

i=1
1
i and the integer m̃

is the same as in Lemma 2.39.

Proof. For a pure coherent sheaf F of dimension d, we have the following
Harder-Narasimhan filtration with repect to µ̂E -stability

0 = F0 ⫋ F1 ⫋ F2 ⫋ · · · ⫋ Fl = F

such that the factors Fi/Fi−1 for i = 1, · · · , l are µ̂E -semistable of dimension
d and

(1) µ̂(FE(F1)) > µ̂(FE(F2/F1)) > · · · > µ̂(FE(Fl/Fl−1)).

For any i = 1, · · · , l, we have a short exact sequence

0 → Fi−1 → Fi → Fi/Fi−1 → 0.

Tensor with π∗OX(m) and apply the exact functor FE , we obtain the fol-
lowing exact sequence

0 → FE(Fi−1)(m) → FE(Fi)(m) → FE(Fi/Fi−1)(m) → 0.

Then for any i = 1, · · · , l, we have

r(FE(Fi/Fi−1)(m)) = r(FE(Fi)(m))− r(FE(Fi−1)(m)),

h0(X,FE(Fi)(m))− h0(X,FE(Fi−1)(m)) ≤ h0(X,FE(Fi/Fi−1)(m)).

This implies that

r(FE(F)(m)) =

l∑

i=1

r(FE(Fi/Fi−1)(m)),

h0(X,FE(F)(m)) ≤
l∑

i=1

h0(X,FE(Fi/Fi−1)(m)).

By a simple computation, we have for any pure coherent sheaf G,

r(FE(G)(m)) = r(FE(G));

µ̂E(G ⊗ π∗OX(m)) = µ̂(FE(G)(m)) = µ̂(FE(G)) +m.
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Let ri =: r(FE(Fi/Fi−1)) for i = 1, · · · , l. Since for each 1 ≤ i ≤ l, the sheaf
Fi/Fi−1 is µ̂E -semistable of dimension d, (Fi/Fi−1)⊗ π∗OX(m) is also µ̂E -
semistable of dimension d. By Lemma 2.39, we have for each i = 1, · · · , l,

h0(X,FE(Fi/Fi−1)(m))

ri
=
h0(X , (Fi/Fi−1)⊗ π∗OX(m)⊗ E∨)

ri

≤

[(
µ̂(FE(Fi/Fi−1)) +m+ m̃ deg(OX(1)) + r2i + f(ri) +

d−1
2

d

)]

+

Since FE(F1) →֒ FE(F), we have

µ̂(FE(F1)) ≤ µ̂max(FE(F1)) ≤ µ̂max(FE(F)).

Combining with (1), we have µ̂(FE(Fi/Fi−1)) ≤ µ̂max(FE(F)) for i =
1, · · · , l − 1 and µ̂(FE(Fl/Fl−1)) ≤ µ̂(FE(F)). Then

h0(X,FE(F)(m))

r
≤

l∑

i=1

ri
r

h0(X,FE(Fi/Fi−1)(m))

ri

≤
r − 1

r

[(
µ̂max(FE(F)) +m+ C

d

)]

+

+
1

r

[(
µ̂(FE(F)) +m+ C

d

)]

+

where C := m̃ deg(OX(1)) + r2 + f(r) + d−1
2 .

□

Now, we begin with the first case when deg δ < degP .

Lemma 3.5. Let X be a projective Deligne-Mumford stack over k with a
polarization (E ,OX(1)). Assume that deg δ < degP . Then there is an integer
m0 > 0, such that for any integerm ≥ m0 and any nondegenerate pair (F , φ)
satisfying that F is a pure coherent sheaf of dimension d on X with PE(F) =
P and r = r(FE(F)), the following properties are equivalent.

(i) The pair (F , φ) is δ-(semi)stable.

(ii) P (m) ≤ h0(FE(F)(m)) and for any subpair (F ′, φ′) with r(FE(F
′)) =

r′ satisfying 0 < r′ < r,

h0(FE(F
′)(m)) + ϵ(φ′)δ(m)(≤)

r′

r
(P (m) + ϵ(φ)δ(m)).
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(iii) For any quotient pair (G, φ′′) with r(FE(G)) = r′′ satisfying 0 < r′′ < r,

r′′

r
(P (m) + ϵ(φ)δ(m))(≤)h0(FE(G)(m)) + ϵ(φ′′)δ(m).

Proof. We will deal with the δ-stable case, the δ-semistable case can be
proved similarly.
(i) ⇒ (ii): By Proposition 3.3, the set-theoretic family of coherent sheaves
on X underlying δ-semistable pairs with fixed modified Hilbert polynomial P
is bounded. By Kleiman criterion for stacks, there is an integer m0 > 0 such
that for any F underlying a δ-stable pair (F , φ), we have H i(FE(F)(m)) = 0
for all i > 0, and hence P (m) = h0(FE(F)(m)). Since the pair (F , φ) is δ-
stable, by Lemma 3.1, there is a constant µ0 depending on P , F0 and X
such that µ̂max(FE(F)) ≤ µ0. As (F ′, φ′) is a subpair of (F , φ), we have
µ̂max(FE(F

′)) ≤ µ̂max(FE(F)) ≤ µ0. By Lemma 3.4 and the inequality 0 <
r′ < r, there is a constant C depending on r and d such that

h0(FE(F
′)(m))

r′
≤
r − 1

r

[(
µ0 +m+ C

d

)]

+

(2)

+
1

r

[(
µ̂(FE(F

′)) +m+ C

d

)]

+

.

We distinguish two cases:

(a) µ̂(FE(F
′)) ≥ r · µ̂(FE(F))− (r − 1) · µ0 − r · (C − d−3

2 + δ1),

(b) µ̂(FE(F
′)) < r · µ̂(FE(F))− (r − 1) · µ0 − r · (C − d−3

2 + δ1),

where δ1
(d−1)! is the coefficient of δ in degree d− 1. Then δ1 ≥ 0. In order to

show (ii), we assume that F ′ is saturated in F since by Remark 2.12 the sat-
uration F ′ ⊇ F ′ implies that r(FE(F

′)) = r(FE(F ′)) and h0(FE(F
′)(m)) ≤

h0(FE(F ′)(m)). The set-theoretic family of purely saturated subsheaves F ′

of type (a) is bounded by Grothendieck’s Lemma 2.36. By Kleiman criterion
for stacks, the set of modified Hilbert polynomials are finite and enlarging
m0 if necessary, for m ≥ m0, we have h0(FE(F

′)(m)) = PE(F
′)(m) and by

δ-stability of (F , φ),

PE(F
′) + ϵ(φ′)δ <

r′

r
(P + ϵ(φ)δ)

⇐⇒ PE(F
′)(m) + ϵ(φ′)δ(m) <

r′

r
(P (m) + ϵ(φ)δ(m)).
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For the subsheaves F ′ of type (b), enlarging m0 if necessary, it follows
from (2)

h0(FE(F
′)(m))

r′
≤
r − 1

r

[(
µ0 +m+ C

d

)]

+

+
1

r

[(
r · µ̂(FE(F))− (r − 1) · µ0 − r · (C − d−3

2 + δ1) +m+ C

d

)]

+

=
md

d!
+

md−1

(d− 1)!

(
r − 1

r

(
µ0 + C −

d− 1

2

)
+

1

r

(
r · µ̂(FE(F))

− (r − 1) · µ0 − r · (C −
d− 3

2
+ δ1) + C −

d− 1

2

))
+ · · ·

=
md

d!
+

md−1

(d− 1)!
(µ̂(FE(F))− δ1 − 1) + · · ·

where · · · denotes for some polynomial in m of degree ≤ d− 2 with coeffi-
cients independent of F ′. Since

µ̂(FE(F))− δ1 − 1 +
ϵ(φ′)

r′
δ1 < µ̂(FE(F)) +

ϵ(φ)

r
δ1,

by enlarging m0 if necessary, we have

h0(FE(F
′)(m)) + ϵ(φ′)δ(m)

r′
<
P (m) + ϵ(φ)δ(m)

r

for any m ≥ m0.
(ii) ⇒ (iii): For any quotient pair (G, φ′′) with multiplicity r(FE(G)) = r′′

satisfying 0 < r′′ < r, we have a short exact sequence

0 → (F ′, φ′) → (F , φ) → (G, φ′′) → 0.

Since the functor FE is exact, we have h0(FE(G)(m)) ≥ h0(FE(F)(m))−
h0(FE(F

′)(m)). Set r′ = r(FE(F
′)), we have r = r′ + r′′. Also, we have

ϵ(φ) = ϵ(φ′) + ϵ(φ′′). By (ii), we have

h0(FE(G)(m)) + ϵ(φ′′)δ(m)

≥ h0(FE(F)(m)) + ϵ(φ)δ(m)− h0(FE(F
′)(m))− ϵ(φ′)δ(m)

> P (m) + ϵ(φ)δ(m)−
r′

r
(P (m) + ϵ(φ)δ(m))

=
r′′

r
(P (m) + ϵ(φ)δ(m)).
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(iii) ⇒ (i): Fix a pair (F , φ) with modified Hilbert polynomial PE(F) = P .
Let (G, φ′′) be any purely quotient pair of (F , φ) with 0 < r(FE(G)) = r′′ < r,
we distinguish all sheaves G into two cases:

(ã) µ̂(FE(G)) > µ̂(FE(F)) + δ1
r ,

(b̃) µ̂(FE(G)) ≤ µ̂(FE(F)) + δ1
r ,

where δ1
(d−1)! is the coefficient of δ in degree d− 1. For the case (ã), we

have p(F ,φ) < p(G,φ′′). For the case (b̃), the set-theoretic family of purely
d-dimensional quotient G with µ̂E(G) bounded from above is bounded by
Grothendieck’s Lemma 2.36. By Kleiman criterion for stacks, for large m we
have h0(FE(G)(m)) = PE(G)(m), and by (iii) we have

r′′

r
(P (m) + ϵ(φ)δ(m)) < PE(G)(m) + ϵ(φ′′)δ(m) ⇔ p(F ,φ) < p(G,φ′′)

Then the pair (F , φ) is δ-stable by Remark 2.23. Thus all pairs (F , φ) satisfy-
ing (iii) for largem are δ-stable pairs with fixed modified Hilbert polynomial
PE(F) = P , and hence the set-theoretic family of sheaves F underlying pairs
(F , φ) satisfying (iii) for large m is bounded by Proposition 3.3. □

The remaining case when deg δ ≥ degP is presented in the following

Lemma 3.6. Let X be a projective Deligne-Mumford stack over k with a
polarization (E ,OX(1)). Assume that deg δ ≥ degP . Then there is an integer
m0 > 0, such that for any integerm ≥ m0 and any nondegenerate pair (F , φ)
satisfying that F is a pure coherent sheaf of dimension d on X with PE(F) =
P and r = r(FE(F)), the following properties are equivalent.

(i) The pair (F , φ) is δ-stable.

(ii) P (m) ≤ h0(FE(F)(m)) and for any subpair (F ′, φ′) with r(FE(F
′)) =

r′ satisfying 0 < r′ < r,

h0(FE(F
′)(m))

2r′ − ϵ(φ′)
<
h0(FE(F)(m))

2r − ϵ(φ)
.

(iii) For any quotient pair (G, φ′′) with r(FE(G)) = r′′ satisfying 0 < r′′ < r,

P (m)

2r − ϵ(φ)
<
h0(FE(G)(m))

2r′′ − ϵ(φ′′)
.

Proof. (i) ⇒ (ii): Using the same argument in the proof of Lemma 3.5 with
the same notation µ0 and C, we have P (m) = h0(FE(F)(m)) form ≥ m0 and
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µ̂max(FE(F
′)) ≤ µ̂max(FE(F)) ≤ µ0 by Lemma 3.2. Then we also have the

inequality (2). And all sheaves F ′ underlying subpairs (F ′, φ′) are divided
into the following two cases:

(a) µ̂(FE(F
′)) ≥ r · µ̂(FE(F))− (r − 1) · µ0 − r · (C − d−3

2 ),

(b) µ̂(FE(F
′)) < r · µ̂(FE(F))− (r − 1) · µ0 − r · (C − d−3

2 ).

For type (a), one uses Grothendieck’s Lemma 2.36, Kleiman criterion for
stacks and Lemma 2.25 to derive the desired inequality. For type (b), it is

easy to show h0(FE(F ′)(m))
r′ < h0(FE(F)(m))

r and then use the inequality ϵ(φ′)
r′ ≤

ϵ(φ)
r (see [36, Lemma 2.9 (2-1)]) to complete this part of proof.

(ii) ⇒ (iii): Follow the similar arguemnt in [36, Lemma 3.5].
(iii) ⇒ (i): Fix a nondegenerate pair (F , φ). As in [36, Lemma 3.5], let grl :=
(grlF , grlφ) be the last factor of Harder-Narasimhan filtration for (F , φ) by
Proposition 2.29, by (iii) we have

h0(FE(grlF)(m))

2r(FE(grlF))− ϵ(grlφ)
>
P (m)

2r − 1
.

For large m, we have h0(FE(grlF)(m)) = PE(grlF)(m) and hence

PE(grlF)(m)

2r(FE(grlF))− ϵ(grlφ)
>
P (m)

2r − 1
⇐⇒

PE(grlF)

2r(FE(grlF))− ϵ(grlφ)
>

P

2r − 1
.

Since both polynomials PE(grlF)
r(FE(grlF)) and P

r have the same leading coefficient,

we have ϵ(grlφ)
r(FE(grlF)) ≥

1
r . Then ϵ(grlφ) = 1, which implies l = 1 by Remark

2.30. Thus (F , φ) is a nondegenerate δ-semistable pair, and hence it is δ-
stable by Lemma 2.24. Thus all pairs (F , φ) satisfying (iii) for large m are
δ-stable pairs with fixed modified Hilbert polynomial PE(F) = P , and hence
the set-theoretic family of sheaves F underlying pairs (F , φ) satisfying (iii)
for large m is bounded by Proposition 3.3. □

4. Construction of moduli spaces of semistable pairs

In this section, given a polynomial P ∈ Q[m] and a stability parameter
δ ∈ Q[m] which is zero or a polynomial with positive leading coefficient,
we will construct a moduli space of δ-(semi)stable pairs of type P on a pro-
jective Deligne-Mumford stack X over k with a moduli scheme π : X → X
and a polarization (E ,OX(1)). We will only consider the case of nondegen-
erate δ-(semi)stable pairs since otherwise these are the moduli spaces of
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(semi)stable sheaves which have been constructed in [43, Section 6]. Actu-
ally, we generalize the construction of moduli spaces on smooth projective
varieties in [36, 67] to the case of projective Deligne-Mumford stacks. We also
give a description of variation of moduli spaces when the stability parameter
δ changes.

4.1. The parameter space, group actions and linearizations

We first recall some notation and results in [24, 43, 47]. If p : X → S is a

family of projective stacks with a moduli scheme X
π
−→ X

p̂
−→ S and a rela-

tive polarization (E ,OX(1)). Let H be a coherent sheaf on X . Denote by
Quot

X/S
(H, P ) the functor of quotients of H with modified Hilbert poly-

nomial P . It is shown in [43, Proposition 4.20] or [47, Proposition 6.2], the
natural transformation FE which maps Quot

X/S
(H, P ) to the ordinary Quot

functor Quot
X/S

(FE(H), P ) is relatively representable by schemes and is a

closed immersion. And this implies that Q̂ := QuotX/S(H, P ) which repre-
sents Quot

X/S
(H, P ) is a closed immersion of the ordinary Quot scheme

Q := QuotX/S(FE(H), P ) which represents Quot
X/S

(FE(H), P ), and hence

Q̂ is a projective scheme. Let i : Q̂ → Q be the closed immersion. Let Û be
the universal quotient sheaf of Q̂, that is, the morphism OQ̂ ⊗H → Û is the

universal quotient parameterized by Q̂. And let U be the universal quotient
sheaf of Q. As in the proof of [24, Proposition 2.2.5], for sufficiently large l,
we have a closed immersion

QuotX/S(FE(H), P )
ζl
−→ GrassS(p̂∗FE(H)(l), P (l))

and a Plücker embedding of the Grassmannian

GrassS(p̂∗FE(H)(l), P (l))
ξl
−→ P̃ := P(ΛP (l)(p̂∗FE(H)(l))).

Then we have a class of very ample line bundles on Q:

ζ∗l ξ
∗
l OP̃

(1) = det(p̂Q∗(U(l))).

where p̂Q : XQ := X ×S Q → Q is the natural projection. Then by [43,
Proposition 6.2], a class of very ample line bundles on Q̂ is constructed
as follows

Ll := det(p̂Q̂∗(Fp̂∗XE(Û)(l))) = i∗ζ∗l ξ
∗
l OP̃

(1)
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where p̂Q̂ : XQ̂ = X ×S Q̂ → Q̂ and p̂X : X ×S Q̂ → X are the natural pro-
jections. In this section, we will consider the case when S = Spec k and
H := V ⊗ E ⊗ π∗OX(−m).

Using the boundedness results in Section 3, there exists an integer m̂ > 0
such that for every integer m ≥ m̂, we have

(a) FE(F0) is m-regular (by Serre vanishing theorem) and δ(m) > 0 unless
δ = 0.

(b) For any δ-semistable pair (F , φ) of type P , the coherent sheaf F is
m-regular (by Proposition 3.3).

(c) Equivalent properties in both Lemma 3.5 and Lemma 3.6 hold.

Now, we fix such an integer m, then for any δ-semistable pair (F , φ) of type
P , the sheaf FE(F) is globally generated and h0(FE(F)(m)) = P (m). Let
V = k⊕P (m). Then we have an isomorphism ρ : V → H0(FE(F)(m)), which
induces the following quotient ρ̃ = ev ◦ (ρ⊗ id):

V ⊗OX(−m)
ρ⊗id
−−−→ H0(FE(F)(m))⊗OX(−m)

ev
−→ FE(F).

Since GE is a right exact functor and the morphism θE(F) is surjective, we
have the following quotient q := θE(F) ◦GE(ρ̃):

V ⊗ E ⊗ π∗OX(−m) = GE(V ⊗OX(−m))
GE(ρ̃)
−−−→ GE ◦ FE(F)

θE(F)
−−−→ F .

This defines a point [q] in QuotX/k(V ⊗ E ⊗ π∗OX(−m), P ). On the other
hand, given a point in QuotX/k(V ⊗ E ⊗ π∗OX(−m), P ) which is repre-

sented by a quotient V ⊗ E ⊗ π∗OX(−m)
σ
−→ F , we have the composition

σ̃ := FE(σ) ◦ φE(V ⊗OX(−m)) as follows:

V ⊗OX(−m)
φE(V⊗OX(−m))
−−−−−−−−−−→ FE ◦GE(V ⊗OX(−m))

FE(σ)
−−−→ FE(F)

which induces a morphism in cohomology H0(σ̃(m)) : V →
H0(X,FE(F)(m)). Define Q to be the set of points [σ] of
QuotX/k(V ⊗ E ⊗ π∗OX(−m), P ) such that the induced morphism

H0(σ̃(m)) is an isomorphism where σ̃ := FE(σ) ◦ φE(V ⊗OX(−m)). The
proof in [43, Theorem 5.1] shows Q is an open subscheme of the projective
scheme QuotX/k(V ⊗ E ⊗ π∗OX(−m), P ).

Given a δ-semistable pair (F , φ), consider the morphism φ : F0 → F ,
by applying the functor FE , tensoring with OX(m), and then applying the
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global section functor, we get

H0(FE(φ)(m)) : H0(FE(F0)(m)) → H0(FE(F)(m))

Composing with ρ−1 : H0(FE(F)(m)) → V , we have

a := ρ−1 ◦H0(FE(φ)(m)) : H0(FE(F0)(m)) → V

Then we have the commutative diagram

H0(FE(F0)(m))⊗OX(−m)

a

��

ev // FE(F0)

FE(φ)

��

V ⊗OX(−m)
ρ̃

// FE(F)

where ev is the evaluation map, a on the left column denotes a⊗ id and
ρ̃ := ev ◦ (ρ⊗ id). By applying the functor GE and then using the natural
transformation θE , we have the commutative diagram

H0(FE(F0)(m))⊗ E ⊗ π∗OX(−m)

a

��

ẽv // F0

φ

��

V ⊗ E ⊗ π∗OX(−m) q
// F

where a again denotes a⊗ id, q := θE(F) ◦GE(ρ̃) and ẽv := θE(F0) ◦GE(ev).
Notice that a = 0 if and only if φ = 0. Then a ̸= 0 since the pair (F , φ) is
nondegenerate.

Define

Q̃ := QuotX/k(V ⊗ E ⊗ π∗OX(−m), P ),

P := P(Hom(H0(FE(F0)(m)), V )).

Since the morphism ẽv is surjective, assume that K0 is its kernel, then we
have a short exact sequence:

0 → K0
ι
−→ H0(FE(F0)(m))⊗ E ⊗ π∗OX(−m)

ẽv
−→ F0 → 0.

As in [67, Proposition 3.4], the composition q ◦ a factor through ẽv if and
only if q ◦ a ◦ ι = 0, and there is a closed subscheme Z ⊆ P× Q̃ such that
([a], [q]) ∈ Z if and only if q ◦ a ◦ ι = 0. In particular, a point ([a], [q]) ∈ Z
corresponds to a pair (F , φ) induced by q ◦ a factoring through ẽv.
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Remark 4.1. As in [12, Section 4.1], one has a flat family of pairs pa-
rameterized by Z ⊆ P× Q̃ as follows. From now on, we make the conven-
tion that the notation p•,⋆ denotes the natural projection from • to ⋆. Let

ĩ : Z → P× Q̃ be the inclusion. Let q̆ : p∗
X×Q̃,X

(V ⊗ E ⊗ π∗OX(−m)) → F̃

be the universal quotient family parameterized by Q̃. Then there is a quo-
tient morphism

p∗
X×P×Q̃,X×Q̃

q̆ : p∗
X×P×Q̃,X

(V ⊗ E ⊗ π∗OX(−m)) → p∗
X×P×Q̃,X×Q̃

F̃ .

The universal quotient family parameterized by P is

Hom(V ⊗OP, H
0(FE(F0)(m))⊗OP) → OP(1),

or

H0(FE(F0)(m))⊗OP

ǎ
−→ V ⊗OP(1).

Then we have

p∗
X×P×Q̃,X

(H0(FE(F0)(m))⊗ E ⊗ π∗OX(−m))⊗ p∗
X×P×Q̃,P

OP

idp∗
X×P×Q̃,X

(E⊗π∗OX (−m))⊗p
∗

X×P×Q̃,P
ǎ

−−−−−−−−−−−−−−−−−−−−−−−−→ p∗
X×P×Q̃,X

(V ⊗ E ⊗ π∗OX(−m))⊗ p∗
X×P×Q̃,P

OP(1)

and

p∗
X×P×Q̃,X

ẽv : p∗
X×P×Q̃,X

(H0(FE(F0)(m))⊗ E ⊗ π∗OX(−m)) → p∗
X×P×Q̃,X

F0.

Combined with the definition of Z, we have a morphism

p∗X×Z,XF0 = (idX × ĩ)∗p∗
X×P×Q̃,X

F0

→ (idX × ĩ)∗p∗
X×P×Q̃,X×Q̃

F̃ ⊗ (idX × ĩ)∗p∗
X×P×Q̃,P

OP(1)

which is obviously a flat family of pairs parameterized by Z in the sense of
Definition 2.40. In the sense of [12, Definition 3.16] (see also Remark 2.41),
the flat family of pairs is given as

(
(idX × ĩ)∗p∗

X×P×Q̃,X×Q̃
F̃ , ĩ∗p∗

P×Q̃,P
OP(−1), ϕF̃

)

where

ϕF̃ : ĩ∗p∗
P×Q̃,P

OP(−1) → pX×Z,Z∗Hom
(
p∗X×Z,XF0, (idX × ĩ)∗p∗

X×P×Q̃,X×Q̃
F̃
)
.
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The subset of Z in which every point ([a], [q]) satisfying [q] ∈ Q and
F = q(V ⊗ E ⊗ π∗OX(−m)) is pure forms an open subset. In fact, the first
condition is an open condition mentioned above. With the notation in Re-
mark 4.1, consider the universal quotient family parameterized by Z:

p∗X×Z,X (V ⊗ E ⊗ π∗OX(−m)) → (idX × ĩ)∗p∗
X×P×Q̃,X×Q̃

F̃

The second condition is equivalent to the requirement that (idX ×
ĩ)∗p∗

X×P×Q̃,X×Q̃
F̃ is pure, which is an open condition by using [24, Proposi-

tion 2.3.1] for the sheaf Fp∗X×Z,XE

(
(idX × ĩ)∗p∗

X×P×Q̃,X×Q̃
F̃
)
being of pure

dimension (if and only if (idX × ĩ)∗p∗
X×P×Q̃,X×Q̃

F̃ is pure by Lemma 2.13),

together with Grothendieck’s Lemma 2.36 and [43, Proposition 4.20]. Let
Z ′ be the closure of this open subset in Z. We call Z ′ the parameter space.
Obviously, Z ′ is a projective scheme.

Next, we will consider a GL(V )-action on Z ′ ⊆ P× Q̃, which is induced
by GL(V )-actions on P and Q̃. We recall these actions in [24, Section 4.3]
and [12, Section 4.1] as follows. Let τ : V ⊗OGL(V ) → V ⊗OGL(V ) be the
universal automorphism of V parameterized by GL(V ). By the universal
property of Q̃, we have a classifying morphism η1 : Q̃ ×GL(V ) → Q̃ which
is the right action by composition [q] · g := [q ◦ g], such that the following
diagram commute

p∗
X×Q̃×GL(V ),X

(V ⊗ E ⊗ π∗OX(−m))
(idX×η1)∗q̌

//

p∗
X×Q̃×GL(V ),GL(V )

τ

��

(idX × η1)
∗F̃

Λ1

��

p∗
X×Q̃×GL(V ),X

(V ⊗ E ⊗ π∗OX(−m))
p∗
X×Q̃×GL(V ),X×Q̃

q̌
// p∗

X×Q̃×GL(V ),X×Q̃
F̃

where q̌ is defined in Remark 4.1 and Λ1 : (idX × η1)
∗F̃ →

p∗
X×Q̃×GL(V ),X×Q̃

F̃ is an isomorphism. In Remark 4.1, the universal

quotient family parameterized by P is given as

H0(FE(F0)(m))⊗OP

ǎ
−→ V ⊗OP(1).

Then we have the following surjective composition

H0(FE(F0)(m))⊗OP×GL(V )

p∗
P×GL(V ),Pǎ

−−−−−−−→ V ⊗ p∗
P×GL(V ),POP(1)

p∗
P×GL(V ),GL(V )τ

−−−−−−−−−−→ V ⊗ p∗
P×GL(V ),POP(1)
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which induces a classifying morphism η2 : P×GL(V ) → P, where η2 is the
action by composition [a] · g = [g ◦ a]. Then we have an isomorphism Λ2 :
η∗2OP(1) → p∗

P×GL(V ),POP(1) such that we have the following commutative
diagram

H0(FE(F0)(m))⊗OP×GL(V )
η∗
2 ǎ //

p∗
P×GL(V ),Pǎ

��

V ⊗ η∗2OP(1)

p∗
P×GL(V ),GL(V )τ⊗Λ2

��

V ⊗ p∗
P×GL(V ),POP(1)

p∗
P×GL(V ),GL(V )τ

// V ⊗ p∗
P×GL(V ),POP(1).

Using the stacky version of the G-linearization of a coherent sheaf in [55,
Example 4.3], it can be verified that Λ1 is a GL(V )-linearization for F̃ and
Λ2 is a GL(V )-linearization for OP(1).

Two morphisms η1 and η2 induce a GL(V )-action η : P× Q̃ ×GL(V ) →
P× Q̃ and hence induces a natural SL(V )-action on P× Q̃ pointwise as
follows

([a], [q]) · g = ([g−1 ◦ a], [q ◦ g])

where g ∈ SL(V ) and ([a], [q]) ∈ P× Q̃. This is a right SL(V )-action. Ob-
viously, Z and Z ′ are invariant under this action. For l sufficiently
large, it is shown in [43, Lemma 6.3], the class of very ample invertible

sheaves Ll := det
(
pX×Q̃,Q̃∗

(
Fp∗

X×Q̃,X
E(F̃)(l)

))
carries a natural GL(V )-

linearization which induces a SL(V )-linearization. Notice that Λ2 induces
a SL(V )-linearization for OP(1). Then for any two positive integers n1 and
n2, we have the very ample line bundles

OZ′(n1, n2) := OP(n1)⊠ L⊗n2

l := p∗
P×Q̃,P

OP(n1)⊗ p∗
P×Q̃,Q̃

Ln2

l

which again carry natural SL(V )-linearizations.

4.2. GIT-stability and δ-stability

We have obtained SL(V )-linearized very ample line bundles OZ′(n1, n2) for l
sufficiently large and any two integers n1, n2, the next step is to consider the
GIT (semi)stable points of Z ′ and compare with δ-stability condition for the
corresponding pairs. In this subsection, we first generalize the results which
relate GIT-stability condition with δ-stability condition in [67, Section 4]
when deg δ < degP and then those in [36, section 4] when deg δ ≥ degP to
the case of projective Deligne-Mumford stacks.
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We recall the relation between linear subspaces of V and subsheaves
of F in [43, Remark 6.14], which is useful for the argument below.
Given a quotient q : V ⊗ E ⊗ π∗OX(−m) → F and any linear subspace
V ′ ⊆ V , we have the induced subsheaf F ′ := q(V ′ ⊗ E ⊗ π∗OX(−m)) ⊆ F .
On the other hand, given a subsheaf F ′ ⊆ F , we have a injective mor-
phism FE(F

′)(m) →֒ FE(F)(m) and hence an inclusion H0(FE(F
′)(m)) →֒

H0(FE(F)(m)). Since we have the following composition q̃ := FE(q)(m) ◦
φE(V ⊗OX) = (FE(q) ◦ φE(V ⊗OX(−m))) (m):

V ⊗OX
φE(V⊗OX)
−−−−−−−→ FE ◦GE(V ⊗OX)

FE(q)(m)
−−−−−−→ FE(F)(m),

then we have the following cartesian diagram:

V ∩H0(FE(F
′)(m)) //

��

H0(FE(F
′)(m))

��

V
H0(q̃)

// H0(FE(F)(m))

where we use the notation V ∩H0(FE(F
′)(m)) forH0(q̃)−1(H0(FE(F

′)(m)))
as in [24, Lemma 4.4.6]. We call V ′ := V ∩H0(FE(F

′)(m)) the linear space
induced by F ′. If F ′ is induced by V ′ ⊆ V , then V ′ ⊆ V ∩H0(FE(F

′)(m)).
And if F ′ ⊆ F is an arbitrary subsheaf and V ′ = V ∩H0(FE(F

′)(m)), then
the subsheaf induced by V ′ is contained in F ′.

Since the parameter space Z ′ is a closed set, we have to consider the
more general class of sheaves in the following

Lemma 4.2. If a pair (F , φ) on X of dimension d can be deformed to a
pure pair, then there is a pure sheaf H with a morphism ψ : F → H satisfying
kerψ = Td−1(F) and PE(F) = PE(H).

Proof. Since (F , φ) can be deformed to a pure pair, there is a smooth
connected curve C and a flat family (FC , φC) on XC := X × C such that
(F0, φ0) ∼= (F , φ) for some closed point 0 ∈ C and (Ft, φt) is pure for any
point t ̸= 0. This implies that F deforms into a pure sheaf. The proof is
completed by [43, Lemma 6.10]. □

Now, we consider the case when deg δ < degP . In this case, as in [67, sec-
tion 3], two positive integers n1, n2 are chosen to satisfy

(3)
n1
n2

=
P (l) · δ(m)− δ(l) · P (m)

P (m) + δ(m)
.
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Proposition 4.3. Assume the equality (3) holds. Let ([a], [q]) ∈ Z ′ be a
point with the corresponding pair (F , φ). For l sufficiently large, ([a], [q]) is
GIT-(semi)stable with respect to OZ′(n1, n2) if and only if for any nonzero
proper subsheaf F ′ and the induced subspace V ′ := V ∩H0(FE(F

′)(m)), we
have an inequality of polynomials in l:

P · (dimV ′ + ϵ(φ′)δ(m)) + δ · (dimV ′ − ϵ(φ′)P (m))(≤)PE(F
′) · (P (m) + δ(m)).

where (F ′, φ′) is the induced subpair of (F , φ).

Proof. Let ([a], [q]) ∈ Z ′ be represented by morphisms a : H0(FE(F0)(m)) →
V and q : V ⊗ E ⊗ π∗OX(−m) → F . Let φ : F0 → F be the correspond-
ing pair. For any [q] ∈ Q̃, we have a point [FE(q)] in QuotX/k(V ⊗

π∗EndOX
(E)(−m), P ) and hence the set-theoretic family {FE(F)|[q] ∈ Q̃}

with fixed Hilbert polynomial P is bounded. Then we can choose an in-
teger l(≥ m) sufficiently large such that FE(F) and π∗EndOX

(E)(−m) are
both l-regular for any q ∈ Q̃. Using the same argument in the proof of [67,
Proposition 4.1], the Hilbert-Mumford criterion shows the following:

([a], [q]) is GIT-(semi)stable with respect to OZ′(n1, n2) if and only if
for any nontrivial subspace U ⊆ V we have

(4) dimU · (n2P (l)− n1)(≤)P (m) · (dim(q′(U ⊗W ))n2 − ϵ(U)n1).

where W := H0(π∗EndOX
(E)(l −m)), q′ := H0(FE(q)(l)) : V ⊗W →

H0(FE(F)(l)) and ϵ(U) = 1 if ima ⊆ U and 0 otherwise.
It is shown in the proof of [43, Lemma 6.15], for a fixed q, the family of

subsheaves FU ⊆ F induced by a linear subspace U ⊆ V is bounded since
exact sequences of linear spaces split which implies that any subsheaf FU
has the same regularity as F . By Kleiman criterion for stacks, for l suffi-
ciently large, all the subsheaves FU are l-regular, that is, all FE(FU ) are
l-regular, and then we have PE(FU )(l) = h0(FE(FU )(l)) = dim(q′(U ⊗W ))
for any FU . Using the similar argument in the proofs of [67, Propositions 4.3
and 4.4] and the equality (3), the criterion for GIT-(semi)stability above can
be restated as:

([a], [q]) is GIT-(semi)stable with respect to OZ′(n1, n2) if and only if
for any nontrivial proper subspace U ⊆ V and the induced sheaf FU :=
q(U ⊗ E ⊗ π∗OX(−m)), we have an inequality of polynomials in l:

P · (dimU + ϵ(φ|U )δ(m)) + δ · (dimU − ϵ(φ|U )P (m))(≤)PE(FU ) · (P (m) + δ(m)).

where φ|U = φ if imφ ⊆ FU and φ|U = 0 otherwise.
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The proof is completed by using the similar argument in the proof of [67,
Theorem 4.5] to drop the restriction to subsheaves FU induced by subspaces
U ⊆ V in the last statement of the criterion but instead use any subsheave
F ′ with the induced subpace V ′ := V ∩H0(FE(F

′)(m)). □

Theorem 4.4. Assume deg δ < degP and the equality (3) holds. For l
sufficiently large, a point ([a], [q]) ∈ Z ′ is GIT-(semi)stable with respect to
OZ′(n1, n2) if and only if the corresponding pair (F , φ) is δ-(semi)stable and
the map H0(q̃) : V → H0(FE(F)(m)) induced by q is an isomorphism.

Proof. Let ([a], [q]) ∈ Z ′ be a GIT-semistable point. Let U ⊆ V be the ker-
nel of H0(q̃) : V → H0(FE(F)(m)), then it is shown in the proof of [43,
Lemma 6.16] that

FU := q(U ⊗ E ⊗ π∗OX(−m)) = 0.

In fact, if FU ̸= 0, we have FE(FU ) ̸= 0. Then U ⊆ V ∩H0(FE(FU )(m)) and
the cartesian diagram

V ∩H0(FE(FU )(m)) //

��

H0(FE(FU )(m))

��

V
H0(q̃)

// H0(FE(F)(m))

shows that the map U → H0(FE(FU )(m)) is zero. Since FU ̸= 0, we have a
nonzero morphism U ⊗OX → FU ⊗ E∨ ⊗ π∗OX(m) and hence U ⊗OX →
FE(FU )(m) is nonzero by applying the exact functor π∗. This produces a
contradiction. Thus, for l sufficiently large, q′(U ⊗W ) = 0. By the inequal-
ity (4) and P (l) > n1

n2
, one has U = 0. Then H0(q̃) : V → H0(FE(F)(m)) is

injective.
The proof is completed by following the similar argument in the proofs

of [67, Theorems 4.5 and 4.7] together with the corresponding Lemma 3.5,
Lemma 4.2 and Proposition 4.3. □

Next is the case when deg δ ≥ degP where as in [36, Section 4] we set

(5)
n1
n2

=
P (l)

2r
.

Applying the proof of Proposition 4.7 with the equality (5), we have
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Proposition 4.5. Assume the equality (5) holds. Let ([a], [q]) ∈ Z ′ be a
point with the corresponding pair (F , φ). For l sufficiently large, ([a], [q]) is
GIT-(semi)stable with respect to OZ′(n1, n2) if and only if for any nonzero
proper subsheaf F ′ and the induced subspace V ′ := V ∩H0(FE(F

′)(m)), we
have an inequality of polynomials in l:

P · ((2r − 1) dimV ′ + P (m)ϵ(φ′))(≤)PE(F
′) · (2r · P (m))

where (F ′, φ′) is the induced subpair of (F , φ).

Theorem 4.6. Assume deg δ ≥ degP and the equality (5) holds. For l
sufficiently large, a point ([a], [q]) ∈ Z ′ is GIT-(semi)stable with respect to
OZ′(n1, n2) if and only if the corresponding pair (F , φ) is δ-(semi)stable and
the map H0(q̃) : V → H0(FE(F)(m)) induced by q is an isomorphism.

Proof. The proof follows from the similar argument in Theorem 4.4, but
together with Lemma 3.6 and Proposition 4.5. □

Remark 4.7. By Lemma 2.24, the statement in Theorem 4.6 actually prove
that a GIT-stable point corresponds to a δ-stable pair.

4.3. Moduli spaces of δ-(semi)stable pairs

In this subsection, we introduce a moduli functor of δ-(semi)stable pairs,
and then prove that there is a moduli space for this functor. These results
generalize the ones in [67, Theorem 3.8] and [36, Theorem 1.1] to the case of
projective Deligne-Mumford stacks. We will adopt the techniques and ideas
in [12, Section 4], most of which can be traced back to the theory for the case
of projective schemes in [24, Chapter 4] (see also [22, 23]). Different from
the definition of a flat family of pairs [12, Definition 3.16], we take Definition
2.40 for our families. With this notion of families, as in [24, Section 4.1], we
give

Definition 4.8. Define a functor

Mss
X/k(F0, P, δ) : (Sch/k)

◦ → (Sets)

as follows. If S is a k-scheme of finite type, let Mss
X/k(F0, P, δ)(S) be the

set of isomorphism classes of flat families of δ-semistable pairs (F , φ) with
modified Hilbert polynomial P parametrized by S, that is, such a flat family
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(F , φ) satisfies that for each point s ∈ S, the pair (Fs, φ|(π∗
XF0)s) is a δ-

semistable pair with modified Hilbert polynomial Pπ̌∗
sE(Fs) = P where πX :

X × S → X and π̌s : X × Spec(k(s)) → X are the projections. And for every
morphism of k-schemes f : S′ → S, we obtain a map

Mss
X/k(F0, P, δ)(f) : M

ss
X/k(F0, P, δ)(S) → Mss

X/k(F0, P, δ)(S
′)

via pulling back F and φ by idX × f . If we take families of δ-stable pairs,
we denote the corresponding subfunctor by Ms

X/k(F0, P, δ).

Remark 4.9. By [43, Proposition 1.5] and Theorem 2.5, we have
Fπ∗

XE(F)s = Fπ̌∗
sE(Fs). Then one has P (Fπ∗

XE(F)s(m)) = Pπ̌∗
sE(Fs)(m) =

P (m) for each point s ∈ S in the above definition.

Recall that a scheme M is called a (coarse) moduli space for the functor
M if it correpresents the functor M and called a fine moduli space for M
if it represents M. One can refer to [24, Sections 2.2, 4.1 and 4.6] for more
details. In order to apply GIT to prove the existence of moduli spaces for

functors M
(s)s
X/k(F0, P, δ), we will consider the GIT-(semi)stable points.

Define R(s)s ⊆ Z ′ ⊆ Z to be the subset of GIT-(semi)stable points
([a], [q]) corresponding to δ-(semi)stable pairs by Theorem 4.4 and Theorem
4.6. As in [24, Section 4.2], the sets Rs and Rss are open SL(V )-invariant
subset of Z ′. In particular, Rs is an open subset of Rss. In Remark 4.1,
we have obtained a flat family (F̌X×Z , φ̌X×Z) of pairs parametrized by Z,
where

F̌X×Z := (idX × ĩ)∗p∗
X×P×Q̃,X×Q̃

F̃ ⊗ (idX × ĩ)∗p∗
X×P×Q̃,P

OP(1)

and φ̌X×Z : p∗X×Z,XF0 → F̌X×Z . As in [12, Proposition 4.2], the scheme

Z ′ has the universal property due to the ones of P and Q̃. By pulling
back the flat family (F̌X×Z , φ̌X×Z) to R(s)s, we get the universal family
(F̌X×R(s)s , φ̌X×R(s)s) of δ-semistable pairs with modified Hilbert polynomial
P parameterized by R(s)s where the morphism φ̌X×R(s)s is

φ̌X×R(s)s : p∗X×R(s)s,XF0 → F̌X×R(s)s

:= (idX × ĩ(s)s)
∗p∗

X×P×Q̃,X×Q̃
F̃ ⊗ (idX × ĩ(s)s)

∗p∗
X×P×Q̃,P

OP(1)

and ĩ(s)s : R
(s)s → P× Q̃ are the inclusions.

Since SL(V )-linearized ample line bundles OZ′(n1, n2) depend on choices
of two positive integers n1 and n2, we make the convention that they are
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chosen to satisfy the equality (3) when deg δ < degP and the equality (5)
if deg δ ≥ degP . By [24, Theorem 4.2.10], we have

Theorem 4.10. There is a projective scheme M ss :=M ss
X/k(F0, P, δ) and

a morphism Θ : Rss →M ss such that Θ is a universal good quotient
for the SL(V )-action on Rss. And there is an open subscheme M s :=
M s

X/k(F0, P, δ) ⊆M ss such that Rs = Θ−1(M s) and Θ : Rs →M s is a uni-

versal geometric quotient. Moreover, there is a positive integer l̂ and a very

ample line bundle M on M ss such that OZ′(n1, n2)
⊗l̂|Rss ∼= Θ∗(M).

To obtain the similar results in [24, Theorem 4.3.3], we need the following
semicontinuous result for the Hom group of pairs. The proof of this result
is mainly based on the argument in that of [23, Lemma 3.4]. We will adopt
the slightly modified proof of [12, Proposition A.2] as follows.

Lemma 4.11. Let X be a projective Deligne-Mumford stack over k with a
polarization (E ,OX(1)). Let (F , φ) and (G, ψ) be two flat families of pairs
over XT := X × T parametrized by a scheme T of finite type over k. Then
the function

t→ dimk(t)HomX×{t}((Ft, φt), (Gt, ψt))

is an upper semicontinuous function on T .

Proof. It suffices to prove the case when T = SpecA where A is a k-algebra
of finite type. Since pT : X × T → T is a family of projective stacks, we have
the following locally free resolutions (see also the argument in Section 5.1):

p∗X (E)
⊕N1 ⊗ p∗X ◦ π∗OX(−m1) → p∗X (E)

⊕N2 ⊗ p∗X ◦ π∗OX(−m2) → F → 0,

p∗X (E)
⊕Ñ1 ⊗ p∗X ◦ π∗OX(−m̃1) → p∗X (E)

⊕Ñ2 ⊗ p∗X ◦ π∗OX(−m̃2) → p∗XF0 → 0,

where pX : X × T → X is the natural projection,Ni, Ñi are positive integers,
and mi, m̃i are positive integers large enough for i = 1, 2. Then we have the
exact sequences for any A-module M

0 → Hom(F ,G ⊗AM) →M2
F ⊗AM →M1

F ⊗AM,

0 → Hom(p∗XF0,G ⊗AM) →M2
F0

⊗AM →M1
F0

⊗AM,
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where

M i
F := H0(X × T, Fp∗X (E)(G)

⊕Ni(mi)),

M i
F0

:= H0(X × T, Fp∗X (E)(G)
⊕Ñi(m̃i)),

and A-module M i
F ,M

i
F0

are free for i = 1, 2 by the similar argument in the
proof of [43, Lemma 6.18]. Define the follwoing complexes of free A-modules
concentrated in degree 0 and 1:

M•
F : 0 →M2

F →M1
F → 0,

M•
F0

: 0 →M2
F0

→M1
F0

→ 0.

Then we have for any A-module M

Hom(F ,G ⊗AM) ∼= H0(M•
F ⊗AM),

Hom(p∗XF0,G ⊗AM) ∼= H0(M•
F0

⊗AM).

The morphism φ : p∗XF0 → F induces a morphism of complexes, denoted
again by φ :M•

F →M•
F0
. Denote by A• the complex such that A0 = A and

Ai = 0 for i ̸= 0, then the morphism ψ : p∗XF0 → G induces a morphism
ψ : A• →M•

F0
. Therefore, we have a morphism Ψ := (φ,−ψ) :M•

F ⊕A• →
M•

F0
. Let Cone(Ψ)• be the mapping cone of Ψ, we have a short exact se-

quence

0 →M•
F0

→ Cone(Ψ)• →M•
F ⊕A•[1] → 0.

Then we obtain the following long exact sequence

0 → h−1(Cone(Ψ)• ⊗AM)

→ Hom(F ,G ⊗AM)⊕M → Hom(p∗XF0,G ⊗AM) → · · · .

For any t ∈ T and M = k(t), we have the following cartesian diagram

h−1(Cone(Ψ)• ⊗A k(t))

��

// k(t)

·ψt

��

Hom(Ft,Gt) ◦φt

// Hom(F0,Gt)
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By Remark 2.20, we have

dimk(t)HomX×{t}((Ft, φt), (Gt, ψt))

= dimk(t) h
−1(Cone(Ψ)• ⊗A k(t))− 1 + ϵ(ψt).

The proof is completed by using the fact that ϵ(ψt) is either zero
for all t ∈ T or never zero by assumption of flatness and the func-
tion t→ dimh−1(Cone(Ψ)• ⊗A k(t)) is upper semicontinuous by [12,
Lemma A.1]. □

As in [36, Section 4], we call a δ-semistable pair δ-polystable if it is iso-
morphic to the direct sum of δ-stable pair with the same reduced Hilbert
polynomial. Notice that the assumption of nondegerateness is not imposed
on every summand of a nondegenerate δ-polystable pair. Using the similar
argument in the proof of [23, Proposition 3.3] and Lemma 4.11, we have

Lemma 4.12. Two points ([a1], [q1]) and ([a2], [q2]) are mapped to the same
point in M ss if and only if their corresponding δ-semistable pairs (F1, φ1)
and (F2, φ2) are S-equivalent. The orbit of a point ([a], [q]) is closed in Rss

if and only if the corresponding pair (F , φ) is δ-polystable.

Remark 4.13. Since Θ : Rss →M ss is a good quotient for the SL(V )-
action on Rss, the statement that two points ([a1], [q1]) and ([a2], [q2]) are
mapped to the same point in M ss is equivalent to the one that the closure of
orbits of two points ([a1], [q1]) and ([a2], [q2]) in Rss intersect.

Next, we shall show that the projective scheme M ss is a moduli space
for the functor Mss

X/k(F0, P, δ) and the quasi-projective scheme M s is a fine

moduli space for the functor Ms
X/k(F0, P, δ). Following the method in [12,

Section 4.2], we first recall the definition of good moduli space [5] as follows.

Definition 4.14. ([5, Section 2]) Let S be a scheme and (Sch/S)Et a cat-
egory of schemes over S with the global étale topology. An algebraic space
over S is a sheaf of sets X on (Sch/S)Et such that

(i) ∆X/S : X → X ×S X is representable by schemes and quasi-compact.
(ii) There exists an étale, surjective map U → X, where U is a scheme.

An Artin stack over S is a stack X over (Sch/S)Et such that
(i) ∆X/S : X → X ×S X is representable, separated and quasi-compact.
(ii) There exists a smooth, surjective map X → X , where X is an alge-

braic space.
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Remark 4.15. An Artin stack X here is referred as an algebraic stack in
[31, Definition 4.1]. It is a Deligne-Mumford stack over S when there exists
an étale, surjective map from an algebraic space.

Definition 4.16. ([5, Definition 3.1]) A morphism f : X → Y of Artin
stacks over S is cohomologically affine if f is quasi-compact and the functor
f∗ : QCoh(X ) → QCoh(Y) is exact.

Definition 4.17. ([5, Definition 4.1]) Let X be an Artin stack and Y be
an algebraic space over S. We say that a morphism f : X → Y is a good
moduli space if the following conditions are satisfied:

(i) f is cohomologically affine.
(ii) The natural morphism OY → f∗OX is an isomorphism.

Definition 4.18. ([5, Definiton 7.1]) We call f : X → Y a tame moduli
space if

(i) f is a good moduli space,
(ii) for all geometric points Spec k → S, the map [X (k)] → Y (k) is a

bijection of sets, where [X (k)] denotes the set of isomorphism classes of
objects of X (k).

We introduce the following Artin stacks of finite type:

SR(s)s := [Rs(s)/SL(V )], R(s)s := [Rs(s)/GL(V )],

PR(s)s := [Rs(s)/PGL(V )],

where PR(s)s is well-defined due to Lemma 4.21. Using the rigidification
of a stack in [1, Section 5], it is easy to show that R(s)s is Gm-gerbe on
PR(s)s and SR(s)s is µ(V )-gerbe on PR(s)s where µ(V ) ⊆ SL(V ) denotes
the group of the product of dim(V )-roots of unity and the identity ma-
trix. Since OZ′(n1, n2)|Rss is a SL(V )-linearization on Rss, we denote by
O(n1, n2) the corresponding line bundle on SRss. Combing with Theo-
rem 4.10, an analogue of GIT in [5, Theorem 13.6] shows

Theorem 4.19. There is a good moduli space ΘS : SRss →M ss with

O(n1, n2)
⊗l̂ = Θ∗

S(M) and the morphism ΘS : SRs →M s is a tame moduli
space.



✐

✐

“7-Lin” — 2024/3/15 — 0:31 — page 1174 — #44
✐

✐

✐

✐

✐

✐

1174 Yijie Lin

As in [12, Section 4.2], the morphism ΘS : SRss →M ss induces the
commutative diagram

SR(s)s

ΘS
((

// PR(s)s

ΘP

��

R(s)soo

ΘG
vv

M (s)s

and morphisms ΘG and ΘP also satisfy assertions stated in Theorem 4.19.
Following [12, Section 4.2], we define [R(s)s] to be the contravariant functor
such that for any scheme S of finite type, [R(s)s](S) is the set of isomorphism
classes of objects of R(s)s(S). An object in [R(s)s](S) is an isomorphism class
[(q : P → S, ϕ : P → R(s)s)], where q : P → S is a GL(V )-torsor over S and
ϕ is a GL(V )-equivariant morphism. Here, (q : P → S, ϕ : P → R(s)s) and

(q′ : P
′
→ S, ϕ′ : P

′
→ R(s)s) are called isomorphic objects if we have the

following commutative diagram

P

q

��

ς
// P

′

q′

��

S
idS

// S

where ς is an isomorphism of GL(V )-torsors compatible with ϕ and ϕ′. Now,
we have

Theorem 4.20. The functor M
(s)s
X/k(F0, P, δ) is isomorphic to [R(s)s].

Proof. Use the similar argument in the proof of [12, Theorem 4.12] with our
notion of flat families of pairs in Definition 4.8 (see also Definition 2.40)
and the universal family (F̌X×R(s)s , φ̌X×R(s)s) of δ-(semi)stable pairs with
modified Hilbert polynomial P parameterized by R(s)s. □

Since the morphism ΘG : R(s)s →M (s)s factors through R(s)s → [R(s)s],

we have the morphism M
(s)s
X/k(F0, P, δ) →M (s)s by Theorem 4.20. By the

Yoneda Lemma, we may take the scheme M (s)s as a functor Mor(−,M (s)s)

and the mophism M
(s)s
X/k(F0, P, δ) →M (s)s as a natural transformation

M
(s)s
X/k(F0, P, δ) → Mor(−,M (s)s). We need the following lemmas which are

useful for proving the existence of a fine moduli space for Ms
X/k(F0, P, δ).

First, as in [12, Lemma 4.5], we have
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Lemma 4.21. Let ([a], [q]) ∈ Z ⊆ P× Q̃ be a closed point corresponding
to a pair (F , φ) such that FE(F)(m) is globally generated and H0(q̃) : V →
H0(FE(F)(m)) induced by q : V ⊗ E ⊗ π∗OX(−m) → F is an isomorphism.
Then there exists a natural injective homomorphism Aut(F , φ) → GL(V )
whose image is precisely the stabilizer group GL(V )([a],[q]) of the point
([a], [q]).

Proof. Notice morphisms of pairs in Definition 2.18 and use the similar ar-
gument in the proof of [24, Lemma 4.3.2]. □

Corresponding to [12, Proposition 4.14], we have

Lemma 4.22. Let (F̌X×Rs , φ̌X×Rs) be the universal family of δ-semistable
pairs with modified Hilbert polynomial P parameterized by Rs. Then F̌X×Rs

is invariant with respect to the action of the center Gm of GL(V ).

Proof. Since the assumption of Lemma 4.21 is satisfied on Rs by Theo-
rem 4.4 and Theorem 4.6, the center Gm of GL(V ) acts trivially on Rs. This
implies that the restriction of η : P× Q̃ ×GL(V ) → P× Q̃ to Rs ×Gm is a
trivial action where η is induced by GL(V )-actions η1 : Q̃ ×GL(V ) → Q̃ and
η2 : P×GL(V ) → P. Denote by iGm

: Gm → GL(V ) the inclusion. Then we
have the following identities:

pX×P×Q̃,X×Q̃ ◦ (idX × ĩs) ◦ pX×Rs×Gm,X×Rs

= (idX × η1) ◦ pX×P×Q̃×GL(V ),X×Q̃×GL(V ) ◦ (idX × ĩs × iGm
)

= pX×Q̃×GL(V ),X×Q̃ ◦ pX×P×Q̃×GL(V ),X×Q̃×GL(V ) ◦ (idX × ĩs × iGm
)

and

pX×P×Q̃,P ◦ (idX × ĩs) ◦ pX×Rs×Gm,X×Rs

= η2 ◦ pP×Q̃×GL(V ),P×GL(V ) ◦ (̃is × iGm
) ◦ pX×Rs×Gm,Rs×Gm

= pP×GL(V ),P ◦ pP×Q̃×GL(V ),P×GL(V ) ◦ (̃is × iGm
) ◦ pX×Rs×Gm,Rs×Gm

.
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Then two isomorphisms Λ1 : (idX × η1)
∗F̃ → p∗

X×Q̃×GL(V ),X×Q̃
F̃ and Λ2 :

η∗2OP(1) → p∗
P×GL(V ),POP(1) induces the following isomorphisms

Λ̃1 : p
∗
X×Rs×Gm,X×Rs(idX × ĩs)

∗p∗
X×P×Q̃,X×Q̃

F̃

= (idX × ĩs × iGm
)∗p∗

X×P×Q̃×GL(V ),X×Q̃×GL(V )
(idX × η1)

∗F̃

∼=
−→ (idX × ĩs × iGm

)∗p∗
X×P×Q̃×GL(V ),X×Q̃×GL(V )

p∗
X×Q̃×GL(V ),X×Q̃

F̃

= p∗X×Rs×Gm,X×Rs(idX × ĩs)
∗p∗

X×P×Q̃,X×Q̃
F̃

and

Λ̃2 : p
∗
X×Rs×Gm,X×Rs(idX × ĩs)

∗p∗
X×P×Q̃,P

OP(1)

= p∗X×Rs×Gm,Rs×Gm
(̃is × iGm

)∗p∗
P×Q̃×GL(V ),P×GL(V )

η∗2OP(1)

∼=
−→ p∗X×Rs×Gm,Rs×Gm

(̃is × iGm
)∗p∗

P×Q̃×GL(V ),P×GL(V )
p∗
P×GL(V ),POP(1)

= p∗X×Rs×Gm,X×Rs(idX × ĩs)
∗p∗

X×P×Q̃,P
OP(1)

such that the following diagram commute

p∗X×Rs×Gm,X
F0

p∗
X×Rs×Gm,X×Rs φ̌X×Rs

��

p∗X×Rs×Gm,X
F0

p∗
X×Rs×Gm,X×Rs φ̌X×Rs

��

p∗X×Rs×Gm,X×RsF̌X×Rs

Λ̃1⊗Λ̃2

// p∗X×Rs×Gm,X×RsF̌X×Rs

where

φ̌X×Rs : p∗X×Rs,XF0 → F̌X×Rs

:= (idX × ĩs)
∗p∗

X×P×Q̃,X×Q̃
F̃ ⊗ (idX × ĩs)

∗p∗
X×P×Q̃,P

OP(1).

Using the similar argument in the proof of [12, Proposition 4.14], one can
show that both Λ̃1 and Λ̃2 are the identity morphisms. This implies F̌X×Rs

is invariant with respect to the action of the center Gm of GL(V ). □

Remark 4.23. In the proof of [12, Proposition 4.14], the assumption of
irreducibility of X is used to assert that their universal family of framed
sheaves parameterized by Rs can be PGL(V )-linearized in order to show
that moduli spaces of δ-stable framed sheaves are fine. While in our setting,
the universal family (F̌X×Rs , φ̌X×Rs) of δ-stable pairs is PGL(V )-linearized
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without this assumption since F̌X×Rs is invariant with respect to the action
of the center Gm of GL(V ) by Lemma 4.22.

Now, we have

Theorem 4.24. Let X be a projective Deligne-Mumford stack of dimension
d over k with a moduli scheme π : X → X and a polarization (E ,OX(1)).
Let F0 be any fixed coherent sheaf on X , and let δ be any given stabil-
ity parameter which is a rational polynomial with positive leading coeffi-
cient and P any given polynomial of degree deg P ≤ d. Then the projec-
tive scheme M ss :=M ss

X/k(F0, P, δ) is a moduli space for the moduli functor

Mss
X/k(F0, P, δ) and the quasi-projective scheme M s :=M s

X/k(F0, P, δ) is a

fine moduli space for the moduli functor Ms
X/k(F0, P, δ). Moreover, the Artin

stack Rs is a Gm-gerbe over its moduli scheme M s.

Proof. The proof is completed by following the similar argument in [12,
Theorem 4.15] but with our notion of universal families (F̌X×R(s)s , φ̌X×R(s)s).
The last statement is true since Rs →M s can be shown to be a PGL(V )-
torsor. □

Remark 4.25. One may consider the construction of relative moduli spaces
of δ-(semi)stable pairs by using [5, 59] for GIT construction in relative case
and obtaining the relative version of [43, Proposition 4.24], Lemma 2.36
and Lemma 2.39 for the boundedness results. We will investigate this issue
elsewhere which is essential to the study of relative orbifold PT theory and
its degeneration formula.

4.4. Variation of moduli spaces

For a given polynomial P and a fixed coherent sheaf F0 on X , as in [67,
Section 5], we will investigate the variation of moduli spaces M ss

X/k(F0, P, δ)

when one changes the stability parameter δ ∈ Q[m]. To indicate the depen-
dence on δ, we denote by R(s)s(δ) the subset of GIT-(semi)stable points
([a], [q]) ∈ Z ′ corresponding to δ-(semi)stable pairs. We generalize [67, The-
orem 5.5] to the case of projective Deligne-Mumford stacks as follows.

Theorem 4.26. Let X be a projective Deligne-Mumford stack over k with a
moduli scheme π : X → X and a polarization (E ,OX(1)). There are finitely
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many critical values δ1, · · · , δt ∈ Q[m] satisfying

δ0 := 0 < δ1 < · · · < δt < δt+1 := +∞

such that we have the following properties:

(i) For i = 0, · · · , t and δ, δ′ ∈ (δi, δi+1), one has R(s)s(δ) = R(s)s(δ′).

(ii) For i = 0, · · · , t and δ ∈ (δi, δi+1), we have

Rss(δ) ⊆ Rss(δi) ∩Rss(δi+1), Rs(δ) ⊇ Rs(δi) ∪Rs(δi+1).

(iii) For i = 0, · · · , t and δ ∈ (δi, δi+1), one has

M ss
X/k(F0, P, δ) =M s

X/k(F0, P, δ).

Moreover, we have the chamber structure of the stability parameter as fol-
lows:

M0
X/k(F0, P, δ)

�� ((

· · · M t
X/k(F0, P, δ)

�� ((

M ss
X/k(F0, P, δ

0) M ss
X/k(F0, P, δ

1) · · · · · ·M ss
X/k(F0, P, δ

t) M ss
X/k(F0, P, δ

t+1)

whereM i
X/k(F0, P, δ) :=M ss

X/k(F0, P, δ) for some δ ∈ (δi, δi+1), i = 0, · · · , t.

Proof. With the notation in Remark 4.1, we have the following universal
morphism

p∗
X×P×Q̃,X

(H0(FE(F0)(m))⊗ E ⊗ π∗OX(−m))⊗ p∗
X×P×Q̃,P

OP

→ p∗
X×P×Q̃,X×Q̃

F̃ ⊗ p∗
X×P×Q̃,P

OP(1).

As in [67, Lemma 5.1], one can show that the set-theoretic family of sub-
sheaves imφ from δ-semistable pairs (F , φ) for all δ is bounded. Using this
result together with Grothendieck’s Lemma 2.36 and Kleiman criterion for
stacks, and following the similar argument in the proof of [67, Proposi-
tion 5.2], one has the following result:
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There exists a rational polynomial δmax of degree (deg P − 1) such that
for each δ > δmax and each pair (F , φ), we have

(F , φ) is δ-semistable ⇐⇒ F is pure and dim cokerφ < dimF .

It is easy to verify that those δ satisfying deg δ ≥ dimX (or more generally
deg δ ≥ deg P ) are also allowed in the inequality δ > δmax.

The proof of [67, Lemma 5.3 and Corollary 5.4] also holds in our stacky
version. We complete the proof by using the results above, Theorem 4.4 and
Theorem 4.6. □

Remark 4.27. Notice that a critical value is defined to be a value such
that when δ crosses it, the moduli space M ss

X/k(F0, P, δ) changes. As in [67],

the maps in the chamber structure above are determined by the property (ii)
in Theorem 4.26 and the universal properties of the universal good quotient
in Theorem 4.10. In addition, we have δmax ≥ δt. One can choose δmax to
be δt. By the properties (i), (iii) and Theorem 4.10, for any two parameters
δ′, δ′′ > δt, one has M s

X/k(F0, P, δ
′) =M ss

X/k(F0, P, δ
′) ∼=M ss

X/k(F0, P, δ
′′) =

M s
X/k(F0, P, δ

′′). This implies that as is pointed out in the introduction of

[36], one can choose a stability parameter δ̂ of degree (deg P − 1) with δ̂ >
δmax such that the construction of moduli space M ss

X/k(F0, P, δ̂) implies the

existence of M ss
X/k(F0, P, δ) for any δ satisfying deg δ ≥ deg P . Furtherly,

it is interesting to study the explicit wall-crossing behavior for variation of
moduli spaces.

5. Deformation-obstruction theories and virtual

fundamental classes

We generalize the deformation and obstruction theory of δ-stable pairs for
smooth projective varieties in [36, Theorem 1.2] and the existence of virtual
fundamental classes of moduli spaces of δ-stable pairs for a smooth projec-
tive surface in [36, Theorem 1.3] to the case of smooth projective Deligne-
Mumford stacks. We will generalize the deformation and obstruction theory
developed in [27] to our case as an alternative approach, which is useful for
proving the existence of virtual fundamental classes as in [25, 53] for the
case of dimension three. Finally, we give a definition of a stacky version of
Pandharipande-Thomas invariants.
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5.1. Deformation and obstruction theories

It is proved in [30, Section 5] that the resolution property holds for a projec-
tive Deligne-Mumford stack X , that is, any coherent sheaf admits a surjec-
tive morphism from a locally free coherent sheaf of finite rank. By inductive
use of this property, every coherent sheaf on X has a locally free resolution.
It is interesting to know whether the locally free resolution is of finite length
or not. It is shown in [12, Appendix B] that a smooth projective Deligne-
Mumford stack is of the form [Z/G] where Z is a smooth quasi-projective
variety and G is a linear algebraic group, and hence any coherent sheaf on a
smooth projective stack X admits a finite resolution by locally free sheaves
of finite rank by using [17, Proposition 5.1.28 and Theorem 5.1.30] and the
fact that the category of coherent sheaves on X = [Z/G] is equivalent to the
category of coherent G-equivariant sheaves on Z (see [12, Remark 2.17]). In
this section, we will consider smooth projective Deligne-Mumford stacks.

Let X be a smooth projective Deligne-Mumford stack over k with a mod-
uli scheme π : X → X and a polarization (E ,OX(1)). Since E is a generating
sheaf for X , the morphism

π∗(π∗HomOX
(E ,G))⊗OX

E → G

is surjective for any coherent sheaf G. As π∗HomOX
(E ,G) is a coherent sheaf

on the projective scheme X, then we can take a positive integer n1 ≥ m
large enough such that π∗HomOX

(E ,G)(n1) is generated by global sections
where m is the integer chosen in the Section 4. Then we have the following
surjective morphism

H0(π∗HomOX
(E ,G)(n1))⊗OX(−n1) → π∗HomOX

(E ,G) → 0.

Thus, we have the following surjective morphism

H0(π∗HomOX
(E ,G)(n1))⊗ π∗OX(−n1)⊗ E

→ π∗(π∗HomOX
(E ,G))⊗ E → G → 0.

Denote by W1 = H0(π∗HomOX
(E ,G)(n1)), we have a surjection from a

locally free sheaf W1 ⊗ E ⊗ π∗OX(−n1) → G → 0. Let G1 = ker(W1 ⊗ E ⊗
π∗OX(−n1) → G). Applying the same process above to G1, one can get

W2 ⊗ E ⊗ π∗OX(−n2) ↠ G1 →֒W1 ⊗ E ⊗ π∗OX(−n1) ↠ G
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or a locally free resolution

W2 ⊗ E ⊗ π∗OX(−n2) →W1 ⊗ E ⊗ π∗OX(−n1) → G → 0

where n1, n2 ≥ m are positive integers large enough and W1,W2 are vec-
tor spaces. The next step is again applying the same process to G2 =
ker(W2 ⊗ E ⊗ π∗OX(−n2) →W1 ⊗ E ⊗ π∗OX(−n1)). By induction and the
finite resolution property in [12, Lemma B.3], we construct a finite locally
free resolution of G (see also Lemma 5.9):

· · · → Wi+1 → Wi → · · · → W1 → G → 0

where Wi =Wi ⊗ E ⊗ π∗OX(−ni) with ni ≥ m large enough and Wi is a
vector space for any i ≥ 1.

Let Artk be the category of Artinian local k-algebras with residue field
k. For A,A′ ∈ ObArtk and let the short exact sequence

0 → I → A′ → A→ 0

be a small extension, that is, mA′I = 0. Let F0 be any fixed coherent sheaf on
X , and let δ be any rational polynomial with positive leading coefficient and
P any given polynomial of degree deg P ≤ d. Let [(F , φ)] be a point in the
moduli space M s

X/k(F0, P, δ). Suppose φ̌A : F0 ⊗A→ FA over XA = X ×

SpecA is a flat extension of (F , φ) where FA is flat over A. Let I• := {F0
φ
−→

F} and I•A := {F0 ⊗A
φ̌A
−−→ FA} be the complexes concentrated in degree 0

and 1. Since XA → SpecA is a family of projective stacks by Theorem 2.5,
the morphism

(π × idSpecA)
∗
(
(π × idSpecA)∗Hom(p∗XA,XE ,FA)

)
⊗ p∗XA,XE → FA

is surjective. Since any coherent sheaf on XA has a locally free resolution,
together with using the finite resolution property for any fiber of XA →
SpecA, the similar argument as above shows that there exists a finite locally
free resolution of FA:

· · · → W i−1
A → W i

A → · · · → W0
A → FA → 0

where W i
A =W i ⊗ p∗XA,X

E ⊗ p∗XA,X
π∗OX(−ni) with ni ≥ m large enough

and W i is a vector space for any i ≤ 0. Again, we take a finite locally free
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resolution of F0 as follows:

· · · → V i−1 → V i → · · · → V0 → F0 → 0

where V i = V i ⊗ E ⊗ π∗OX(−mi) with mi ≥ m large enough and V i is a
vector space for any i ≤ 0. As in [36, Section 5A], lifting φ̌A : F0 ⊗A→ FA
to a morphism of complexes φ̌•

A : V• ⊗A→ W•
A, we have the commutative

diagram as follows

· · ·
d−2
V ⊗A

// V−1 ⊗A

φ̌−1
A

��

d−1
V ⊗A

// V0 ⊗A

φ̌0
A

��

// F0 ⊗A

φ̌A

��

// 0

· · ·
d−2
WA // W−1

A

d−1
WA // W0

A
// FA // 0.

Notice that ni,mi ≥ m, one has

H i(X ,F ⊗ E∨ ⊗ π∗OX(nj)) = H i(X,FE(F)(nj)) = 0,

H i(X ,F ⊗ E∨ ⊗ π∗OX(mj)) = H i(X,FE(F)(mj)) = 0,

for all i > 0 and j ≤ 0.
With these preparations, by the similar argument in [36, Section 5], we

have the following straightforward generalization of [36, Theorem 1.2].

Theorem 5.1. Let [(F , φ)] be a point in the moduli space M s
X/k(F0, P, δ).

Let φ̌A : F0 ⊗k A→ FA be a morphism over XA = X ×Spec k SpecA extend-
ing φ, where FA is a coherent sheaf flat over A. Then for a given small
extension 0 → I → A′ σ

−→ A→ 0, there is a class

ob(φ̌A, σ) ∈ Ext1(I•,F ⊗ I)

such that there exists a flat extension of φ̌A over XA′ if and only if
ob(φ̌A, σ) = 0. If ob(φ̌A, σ) = 0, the space of extensions is a torsor under
Hom(I•,F ⊗ I).

Remark 5.2. The deformation and obstruction theory in [36, Theorem 1.2]
is analogous to the one in [61, Theorem 4.2] (see also [26, IV 3.2.12]) for any
small extension 0 → I → A′ → A→ 0 when we view the 2-term complex as a
mapping cone. Actually Theorem 5.1 provides a deformation and obstruction
theory for the stacky version of higher rank Pandharipande-Thomas stable
pairs [61].
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The deformation and obstruction theory in Theorem 5.1 is suitable for
showing the existence of virtual fundamental classes for the case of dimension
two in the next subsection, but it seems difficult to deal with 3-dimensional
case (see Lemma 5.13 and Remark 5.14). Now, we take another approach
to give a stacky version of the deformation and obstruction theory in [27,
Section 2]. We start with

Lemma 5.3. Suppose B ∈ ObArtk, and let F• be a bounded complex
of coherent sheaves over XB := X × SpecB where each F j is flat over
B. Then there are a complex V • = (V i, diV •) where V i = Li ⊗ p∗XB ,X

E ⊗
p∗XB ,X

π∗OX(−mi) and a quasi-isomorphism ϕ• : V • → F• such that (V • →
F•, V •) satisfies the following two conditions:

(i) Hc(XB,F
j ⊗ p∗XB ,X

E∨ ⊗ p∗XB ,X
π∗OX(mi)) = 0 for any i, j and any c >

0.

(ii) Let U• := F• ⊕ V •[1] be the mapping cone of ϕ• and set
W i := ker(U i → U i+1). Then the map H0(XB, U

j−1 ⊗ p∗XB ,X
E∨ ⊗

p∗XB ,X
π∗OX(mj)) → H0(XB,W

j ⊗ p∗XB ,X
E∨ ⊗ p∗XB ,X

π∗OX(mj)) is

surjective for any j and Hc(XB,W
j ⊗ p∗XB ,X

E∨ ⊗ p∗XB ,X
π∗OX(mi)) =

0 for i ≤ j and c > 0.

Here, Li is a vector space and mi is a sufficiently large integer for any i.

Proof. We follow the similar argument in the poofs of [27, Proposition 1.1
and Remark 2.2]. Choose an integer l such that F j = 0 if j > l. By Theo-
rem 2.5, the sheaf p∗XB ,X

E is a generating sheaf for XB. Then we have the
surjective morphism

(π × idSpecB)
∗(Fp∗XB,XE(F

l))⊗ p∗XB ,XE → F l.

Choose a positive integer ml sufficiently large such that Fp∗XB,XE(F
l)⊗

p∗XB ,X
OX(ml) is generated by global sections, and then we have the fol-

lowing surjective morphism

V l := H0(XB, Fp∗XB,XE(F
l)⊗ p∗XB ,XOX(ml))⊗ p∗XB ,XE ⊗ p∗XB ,Xπ

∗OX(−ml)

→ F l

where XB := X × SpecB. Set Ll := H0(XB, Fp∗XB,XE(F
l)⊗ p∗XB ,X

OX(ml)),

W̃ l := F l and W̃ l−1 := ker(F l−1 ⊕ V l → W̃ l). Inductively define V i :=

Li ⊗ p∗XB ,X
E ⊗ p∗XB ,X

π∗OX(−mi) and W̃
i−1 := ker(F i−1 ⊕ V i → W̃ i) where
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Li := H0(XB, Fp∗XB,XE(W̃
i)⊗ p∗XB ,X

OX(mi)) and mi is a positive integer
sufficiently large. Notice that for any coherent sheaf G on X and any i, j, we
have

Hj(XB,G ⊗ p∗XB ,XE
∨ ⊗ p∗XB ,Xπ

∗OX(mi))

= Hj(XB, Fp∗XB,XE(G)⊗ p∗XB ,XOX(mi)).

Actually one can inductively choose mi sufficiently large to satisfy the con-
dition (i) and

Hc(XB, W̃
j ⊗ p∗XB ,XE

∨ ⊗ p∗XB ,Xπ
∗OX(mi)) = 0, for i ≤ j and c > 0.

The similar argument in the proof of [27, Proposition 1.1] shows one can

define the complex V • with V i = 0 for i > l and diV • : V i → W̃ i → V i+1

such that there is a quasi-isomorphism ϕ• : V • → F•. It is easy to verify that
W̃ i =W i := ker(U i → U i+1). Then we have the surjection U j−1 = F j−1 ⊕
V j →W j for any j which implies the surjectivity in the condition (ii) by
the definition of V •. □

Remark 5.4. Using the similar argument in the proof of [27, Lemma 2.1],
the condition (i) in Lemma 5.3 corresponding to the condition (∗) in [27,
Lemma 2.1] implies that there are bijective canonical homorphisms for any
c > 0 as follows

Hc(Hom•(V •,F•)) → ExtcXB
(V •,F•).

And the condition (ii) in Lemma 5.3 corresponding to the condition (L0) in
[27, Lemma 2.1] shows that the canonical homomorphisms

Hc(Hom•(V •, V •)) → Hc(Hom•(V •,F•))

are surjective for c ≥ 0 and bijective for c > 0.

Then, we have

Theorem 5.5. Let [(F , φ)] be a point in the moduli space M s
X/k(F0, P, δ).

Let φ̌A : F0 ⊗k A→ FA be a morphism over XA = X ×Spec k SpecA extend-

ing φ, where FA is a coherent sheaf flat over A. Let I• = {F0
φ
−→ F} and

I•A = {F0 ⊗k A
φ̌A
−−→ FA} be the complexes concentrated in degree 0 and 1.
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Then for a given small extension 0 → I → A′ σ
−→ A→ 0, there is an element

ω(I•A) ∈ Ext2(I•, I• ⊗ I)

such that there exists a flat extension of φ̌A over XA′ if and only if
ω(I•A) = 0. If ω(I•A) = 0, then the space of extensions form a torsor under
Ext1(I•, I• ⊗ I).

Proof. Notice that the bounded complex we consider here is a two-term
complex I•A with I• = I•A ⊗ k from a stable pair (FA, φ̌A) and the isomor-
phic relations in Definition 2.40 is contained in the equivalent relations in [27,
Definition 0.1]. Following the similar argument in the proof of [27, Propo-
sition 2.3] and using Lemma 5.3 and Remark 5.4 to show that the space of
extensions is pseudo-torsor under Ext1(I•, I• ⊗ I). The proof is completed
by using the similar argument in the proof of [25, Corollary 3.4] or [35,
Corollary 3.2.12] to show it is actually a torsor under Ext1(I•, I• ⊗ I). □

Actually, the above result can be generalized to the case of a square zero
extension as follows.

Theorem 5.6. Let [(F , φ)] be a point in the moduli space M s
X/k(F0, P, δ).

Let φ̌A : F0 ⊗k A→ FA be a morphism over XA = X ×Spec k SpecA extend-

ing φ, where FA is a coherent sheaf flat over A. Let I•A = {F0 ⊗k A
φ̌A
−−→ FA}

be the complex concentrated on degree 0 and 1. Then for a given square zero
extension 0 → I → A′ → A→ 0, there is an element

ω(I•A) ∈ Ext2(I•A, I
•
A ⊗ I)

such that there exists a flat extension of φ̌A over XA′ if and only if
ω(I•A) = 0. If ω(I•A) = 0, then the space of extensions form a torsor under
Ext1(I•A, I

•
A ⊗ I).

Proof. Notice that since I2 = 0, we have a quasi-isomorphism V • → I•A
such that (V • ⊗ I → I•A ⊗ I, V •) satisfies conditions (i) and (ii) in Lemma
5.3 (with B replaced by A), which will be used to replace the case of
the restriction to the closed fiber in the proof of [27, Proposition 2.3] in
the following argument. By Remark 5.4, we have H i(Hom•(V •, V • ⊗ I)) ∼=
Exti(I•A, I

•
A ⊗ I) for i ≥ 1. Let d̃iV • : Li ⊗ p∗XA′ ,XE ⊗ p∗XA′ ,Xπ

∗OX(−mi) →

Li+1 ⊗ p∗XA′ ,XE ⊗ p∗XA′ ,Xπ
∗OX(−mi+1) be a lift of morphism diV • : Li ⊗

p∗XA,X
E ⊗ p∗XA,X

π∗OX(−mi) → Li+1 ⊗ p∗XA,X
E ⊗ p∗XA,X

π∗OX(−mi+1). Since

V • = (V •, diV •) is a complex and I2 = 0, the image of ϱi := d̃i+1
V • ◦ d̃iV •
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is in (Li+2 ⊗ p∗XA′ ,XE ⊗ p∗XA′ ,Xπ
∗OX(−mi+2))⊗ I. This yields an element

ω(I•A) ∈ H2(Hom•(V •, V • ⊗ I)) ∼= Ext2(I•A, I
•
A ⊗ I). Again, the proof is

completed by following the similar argument in the proof of [27, Propo-
sition 2.3] for the pseudo-torsor result and then using the one of [25, Corol-
lary 3.4] or [35, Corollary 3.2.12] for the torsor result. □

Remark 5.7. The first order or infinitesimal deformation theory of the
complex I• is governed by Hom(I•,F) and Ext1(I•,F) by Theorem 5.1, or
Ext1(I•, I•) and Ext2(I•, I•) by Theorem 5.5. As in [53, Section 2.1], there
is a map for i = 0, 1

Exti(I•,F) → Exti+1(I•, I•)

obtained by applying the functor Hom(I•, ·) to the following distinguished
triangle

F [−1] → I• → F0 → F .

5.2. Virtual fundamental classes

In this subsection, assume that F0 is torsion free and polynomials δ, P satisfy
deg δ ≥ deg P = 1. Assume that k = C. In order to prove the existence of
virtual fundamental classes, it suffices to provide a perfect obstruction theory
in the sense of [9, 34]. We will consider some cases of dimension two and
three. We begin with the following result.

Lemma 5.8. Let X be a smooth projective Deligne-Mumford stack of di-
mension 2 over C. Let [(F , φ)] be a point in the moduli space M s

X/C(F0, P, δ)

and I• = {F0
φ
−→ F} be the complex concentrated in degree 0 and 1. Then we

have

Exti(I•,F) = 0, if i ̸= 0, 1.

Proof. Follow the similar argument in the proof of [36, Lemma 6.1] and
apply Serre duality in [12, Theorem B.7]. □

Let M̂ s :=M s
X/C(F0, P, δ) be the moduli space of δ-stable pairs. By The-

orem 4.24, there is a universal δ-stable pair which determines a universal
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complex

I• = {OX×M̂s → F} ∈ Db(X × M̂ s)

where F is flat over M̂ s. Let πM̂s : X × M̂ s → M̂ s and π̂X : X × M̂ s → X
be the natural projections. As in [36, Section 6], due to Theorem 5.1, we
will consider computing the following complex

RπM̂s∗RHom(I•,F)

to obtain the deformation sheaf Def and the obstruction sheaf Obs. To
resolve I• by a finite complex of locally free sheaves, we need the following
generalization of [12, Lemma B.3].

Lemma 5.9. Let X be a smooth projective Deligne-Mumford stack of di-
mension d over C with a moduli scheme π : X → X and a polarization
(E ,OX(1)). For any bounded complex N • of coherent sheaves on X , there
is a bounded complex W • of locally free sheaves of finite rank, which is
of the form W i =Wi ⊗ E ⊗ π∗OX(−mi), such that W • → N • is a quasi-
isomorphism where Wi is a vector space and mi is an integer sufficiently
large for any i ∈ Z.

Proof. We combine the argument in the proof of [27, Proposition 1.1] with
the finite resolution property in [12, Lemma B.3]. Let l1 and l2 be inte-
gers such that N i = 0 for i > l1 and i < l2 where l1 ≥ l2. Choose an inte-
ger ml1 sufficiently large such that Ŵ l1 := Ŵl1 ⊗ E ⊗ π∗OX(−ml1) → N l1

is surjective where Ŵl1 := H0(X,π∗HomOX
(E ,N l1)(ml1)). Set K

l1 := N l1

and K l1−1 := ker(N l1−1 ⊕ Ŵ l1 → N l1), then we have the following quasi-
isomorphism of complexes

{N l2 → · · · → N l1−1 → K l1−1 → Ŵ l1}
∼
−→ {N l2 → · · · → N l1−1 → N l1−1 → N l1}

Suppose that Ki and Ŵ i+1 are defined for i ≥ c. For Kc, we choose
a sufficiently large integer mc such that Ŵ c := Ŵc ⊗ E ⊗ π∗OX(−mc) →
Kc is surjective where Ŵc := H0(X,π∗HomOX

(E ,Kc)(mc)). Set Kc−1 :=

ker(N c−1 ⊕ Ŵ c → Kc). By induction, we have the complex Ŵ • = (Ŵ i, di
Ŵ •

)

defined by Ŵ i = Ŵi ⊗ E ⊗ π∗OX(−mi) for i ≤ l1 and Ŵ
i = 0 for i > l1 with

di
Ŵ •

: Ŵ i → Ki → Ŵ i+1. Then we have a quasi-isomorphism Ŵ • → N •.
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Since N i = 0 for i < l2, we have Ki = ker(Ŵ i+1 → Ki+1) and then there
is a locally free resolution for K l2−1 as follows

· · · → Ŵ l2−2 → Ŵ l2−1 → K l2−1 → 0.

Since K l2−1 is a coherent sheaf on the smooth projective Deligne-Mumford
stack X , then there exists an integer l3 ≤ l2 − 1 such that K l3−1 :=

ker(Ŵ l3
d
l3

Ŵ•

−−→ Ŵ l3+1) is locally free of finite rank by [12, Lemma B.3] or
[17, Theorem 5.1.30]. Then we have a quasi-isomorphism

{· · · 0 → K l3−1 → Ŵ l3 → · · · → Ŵ l1 → 0 · · · }
∼
−→ N •

Since the morphism K l3−1 ⊗ E∨ ⊗ π∗OX(ml3) → Ŵl3 ⊗OX of locally free
sheaves is injective, one can choose a vector space Wl3−1 such that K l3−1 ∼=
Wl3−1 ⊗ E ⊗ π∗OX(−ml3). The proof is completed by setting

W l3−1 :=Wl3−1 ⊗ E ⊗ π∗OX(−ml3);

W i := Ŵ i, if l3 ≤ i ≤ l1; W i := 0, otherwise.

□

The locally free resolution for any bounded complex of coherent sheaves in
Lemma 5.9 is called very negative if each mi is chosen very large. We show
the following results generalizing [12, Lemmas B.4, B.5 and Proposition B.6]
and Serre duality in [12, Theorem B.7], which are useful in our arguments.

Lemma 5.10. Let X be a smooth projective Deligne-Mumford stack of di-
mension d over C. Let M•, N • and H• be bounded complexes of coherent
sheaves on X . Then we have the following functorial isomorphisms

RHom•
X (M

•,N •)
L

⊗H• ∼= RHom•
X (M

•,N •
L

⊗H•)

RHom•
X (M

•
L

⊗H•,N •) ∼= RHom•
X (M

•, RHom•
X (H

•,N •))

HomDb(X )(M
•
L

⊗(H•)∨,N •) ∼= HomDb(X )(M
•,N • ⊗H•)

HomDb(X )(M
•
L

⊗H•,N •) ∼= HomDb(X )(M
•,N • ⊗ (H•)∨)

where (H•)∨ = RHom•
X (H

•,OX ) satisfying (H•)∨∨ ∼= H•.

Proof. The proof follows from Lemma 5.9 and the techniques used in the
proofs of [6, Propositions A.86, A.87, A.88]. □
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Lemma 5.11. Let p : X → SpecC be a smooth projective Delinge-Mumford
stack of dimension d. Let M• and N • be bounded complexes of coherent
sheaves on X . Then we have

Exti(M•,N •) ∼= Extd−i(N •,M• ⊗ ωX )
∨.

where ωX is the canonical line bundle of X .

Proof. It follows from the similar argument in the proof of [12, Theorem B.7]
by using Serre duality for Deligne-Mumford stacks in [43, Corollary 2.10 and
Theorem 2.22] and Lemma 5.10. □

Since M̂ s =M ss
X/C(F0, P, δ) is a projective scheme by Theorem 4.24

and Lemma 2.24, one can resolve F and I• by finite complexes P • and
J• of locally free sheaves respectively by Lemma 5.9, and hence G• :=
RHom(RHom(I•,F),OX×M̂s) is a bounded complex of coherent sheaves.
Again we take a finite complex Q• of very negative locally free sheaves re-
solving G• by Lemma 5.9, then by Lemma 5.10 we have

RπM̂s∗RHom(I•,F) ∼= RπM̂s∗(Q
•)∨ ∼= πM̂s∗(Q

•)∨

which is a finite complex of locally free sheaves since Q• is very negative.
Denote this complex by D•. Together with Lemma 5.8, following the similar
argument in [36, Section 6], one has a short exact sequence on M̂ s

0 → Def → D̃0 → D̃1 → Obs→ 0.

where D̃0 and D̃1 are locally free sheaves. This implies the obstruction theory
is perfect in the sense of [9, 34]. Then we have the following stacky version
of [36, Theorem 1.3].

Theorem 5.12. Let X be a smooth projective Deligne-Mumford stack of
dimension 2 over C. Let F0 be a torsion free sheaf and deg δ ≥ deg P =
1. Then the moduli space M s

X/C(F0, P, δ) of δ-stable pairs admits a virtual
fundamental class.

Next, we will concentrate on investigating the existence of virtual fun-
damental classes for some special case of dimension three. We start with the
following

Lemma 5.13. Let X be a smooth projective Deligne-Mumford stack of di-
mension 3 over C. Let [(F , φ)] be a point in the moduli space M s

X/C(F0, P, δ)
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and I• = {F0
φ
−→ F} be the complex concentrated in degree 0 and 1. Then we

have

Exti(I•,F) = 0, if i ̸= 0, 1, 2.

Proof. Follow the similar argument in the proof of Lemma 5.8. □

Remark 5.14. The Ext group Ext2(I•,F) fits into the following short exact
sequence

· · · → Ext1(kerφ,F) → Ext3(cokerφ,F)

→ Ext2(I•,F) → Ext2(kerφ,F) → Ext4(cokerφ,F) = 0.

It seems difficult to prove the vanishness of Ext2(I•,F) even when F0 = OX .

Due to Remark 5.14, in order to define a perfect (two-term) obstruction
theory for the moduli space of δ-stable pairs, we will take the deformation
and obstruction theories obtained in Theorem 5.5 and Theorem 5.6 as an
alternative approach. Assume in addition F0 = OX . In this case, the moduli
space of δ-stable pairs parametrizes the stacky version of PT stable pairs by
Remark 2.27.

Lemma 5.15. Let X be a 3-dimensional smooth projective Deligne-
Mumford stack over C. Assume that [(F , φ)] is a point in the moduli space

M
s
:=M s

X/C(OX , P, δ) and Ī• := {OX
φ
−→ F} is a complex concentrated in

degree 0 and 1. Then we have

Ext≤−1(Ī•, Ī•) = 0 = Ext≤−1(Ī•,OX ) and

Hom(Ī•, Ī•) = OX = Hom(Ī•,OX ).

Proof. Notice that for 1-dimensional pure sheaf F , we have

Hom(F ,OX )⊗ ωX = Hom(F , ωX ) = 0 and

Ext1(F ,OX )⊗ ωX = Ext1(F , ωX ) = 0

by [12, Proposition C.1 and Lemma B.4]. Then Hom(F ,OX ) = 0 =
Ext1(F ,OX ). And the proof is completed by following the similar argument
in the proofs of [53, Lemma 1.15 and Lemma 1.20]. □
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The similar argument for the proof of [53, Proposition 1.21] shows that a

point [(F , φ)] in M
s
can be taken as an object Ī• = {OX

φ
−→ F} in Db(X ).

It follows from Lemma 5.15 and the local-to-global spectral sequence that

Ext≤−1(Ī•, Ī•) = 0 and Hom(Ī•, Ī•) = C.

By Remark 5.7, the first order or infinitesimal deformation theory of the
complex Ī• is governed by Ext1(Ī•, Ī•) and Ext2(Ī•, Ī•). Now, we have the
following result on traceless Ext groups Ext•(Ī•, Ī•)0 (see [63, Section 3] for
the definition of the trace map).

Lemma 5.16. Let X be a 3-dimensional smooth projective Deligne-
Mumford stack over C. Assume that [(F , φ)] is a point in the moduli space

M
s
and Ī• = {OX

φ
−→ F} is a complex concentrated in degree 0 and 1. Then

we have

Exti(Ī•, Ī•)0 = 0 if i ̸= 1, 2.

Proof. It remains to show that Ext3(Ī•, Ī•)0 = 0. By Lemma 5.15 and
Lemma 5.10, we have

Ext≤−1(Ī•, Ī• ⊗ ωX ) = 0; Hom(Ī•, Ī• ⊗ ωX ) ∼= ωX

Using the local-to-global spectral sequence, we have

Hom(Ī•, Ī• ⊗ ωX ) ∼= H0(ωX )

By Lemma 5.11, we have

Ext3(Ī•, Ī•) ∼= H3(OX )

which implies Ext3(Ī•, Ī•)0 = 0. □

Next, we follow the similar argument in [20, 25, 53, 68] to construct a perfect
obstruction theory with fixed determinant forM

s
. SinceM

s
is a fine moduli

space, there is a universal complex

Ī• = {OX×M
s → F} ∈ Db(X ×M

s
).

where F is flat over M
s
. Let πMs : X ×M

s
→M

s
and πX : X ×M

s
→ X

be the projections. Since M
s
is a projective scheme by Theorem 4.24 and
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Lemma 2.24, we take a finite complex of locally free sheaves A• resolving Ī•

such that

RHom(Ī•, Ī•) ∼= (A•)∨ ⊗A• ∼= OX×M
s ⊕ ((A•)∨ ⊗A•)0.

As in [53, Section 2.3] or [25, Section 4.2], we have RHom(Ī•, Ī•) ∼= OX×M
s ⊕

RHom(Ī•, Ī•)0 and RHom(Ī•, Ī•)0 ∼= ((A•)∨ ⊗A•)0. Let LX×M
s be the trun-

cated cotangent complex (two-term complex quasi-isomorphic to the trun-
cation τ≥−1L•

X×M
s of Illusie’s cotangent complex L•

X×M
s , see also [25, Def-

inition 2.1]), we have the truncated Atiyah class of Ī•

At(Ī•) ∈ Ext1(Ī•, Ī• ⊗ LX×M
s)

Composing the map Ī• → Ī• ⊗ LX×M
s [1] with the projection LX×M

s →
π∗
M

sLMs and restricting to the traceless part of RHom(Ī•, Ī•), we have a
class in

Ext1(RHom(Ī•, Ī•)0, π∗MsLMs).

Tensoring the map RHom(Ī•, Ī•)0 → π∗
M

sLMs [1] with π∗XωX , together with
smooth Serre duality in [43, Theorem 2.22], we have

RHom(Ī•, Ī•)0 ⊗ π∗XωX → π∗
M

sLMs ⊗ π∗XωX [1] = π!
M

sLMs [−2].

By Serre duality for Deligne-Mumford stacks in [43, Corollary 2.10], we have

Φ : E• := RπMs
∗(RHom(Ī•, Ī•)0 ⊗ π∗XωX )[2] → LMs .

Theorem 5.17. In the notation of [9], the map Φ is a perfect obstruction
theory for M

s
.

Proof. We combine the argument in the proof of [25, Theorem 4.1] and
the one in [68, Theorem 6.2]. Let T → T be an extension of k-schemes with
ideal sheaf J such that J2 = 0 and g : T →M

s
be a morphism of k-schemes.

An element ω(g) ∈ Ext1(g∗LMs , J) is given by composing the natural map
g∗LMs → LT with the truncated Kodaira-Spencer class of T ⊂ T

κ(T/T ) ∈ Ext1(LT , J).

The composition of ω(g) with g∗Φ gives an element

Φ∗ω(g) ∈ Ext1(g∗E•, J).
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By the argument in the proof of [9, Theorem 4.5], to show that Φ is an
obstruction theory, we should prove that the obstruction Φ∗ω(g) vanishes if
and only if an extension g of g to T exists, and when Φ∗ω(g) = 0 the space
of extensions form a torsor under Ext0(g∗E•, J).

Set ĝ := idX × g : X × T → X ×M
s
and let p : X × T → X and q : X ×

T → T be the natural projections. Then we have

g∗(RπMs
∗(RHom(Ī•, Ī•)0 ⊗ π∗XωX )) ∼= Rq∗(RHom(ĝ∗Ī•, ĝ∗Ī•)0 ⊗ p∗ωX ).

Using Serre duality in [43, Corollary 2.10] for the map q, we have

Φ∗ω(g) ∈ Ext1(Rq∗(RHom(ĝ∗Ī•, ĝ∗Ī•)0 ⊗ p∗ωX )[2], J)

∼= Ext2(ĝ∗Ī•, ĝ∗Ī• ⊗ q∗J)0

and

Ext0(g∗E•, J) ∼= Ext0(Rq∗(RHom(ĝ∗Ī•, ĝ∗Ī•)0 ⊗ p∗ωX )[2], J)

∼= Ext1(ĝ∗Ī•, ĝ∗Ī• ⊗ q∗J)0.

Then the obstruction Φ∗ω(g) is the traceless part of the obstruction class
which is a product of a truncated Atiyah class At(ĝ∗Ī•) in Ext1(ĝ∗Ī•, ĝ∗Ī• ⊗
q∗LT ) and a truncated Kodaira-Spencer class q∗κ(T/T ) in Ext1(q∗LT , q∗J),
that is,

Φ∗ω(g) =
(
(idĝ∗ Ī• ⊗ q∗κ(T/T )) ◦At(ĝ∗Ī•)

)
0

As in the argument of the proof in [9, Theorem 4.5], to prove that Φ is an
obstruction theory we only need to consider the case when both T and T are
affine. The similar argument in [25, Section 3] shows that the obstruction
class to extending ĝ∗Ī• from X × T to X × T defined as a square of the
differential in the proof of Theorem 5.6 (see also [35, Section 3.3]) up to a sign
is exactly the obstruction class which is the product of a truncated Atiyah
class and a truncated Kodaira-Spencer class. Using Lemma 5.9 to resolve the
extension of ĝ∗Ī• on X × T (flat over T ) and its restriction ĝ∗Ī• on X × T , the
similar argument in the proof of [63, Theorem 3.23] shows that the traceless
part is the deformation and obstruction with fixed determinant det(ĝ∗Ī•). By
Theorem 5.6, Φ∗ω(g) = 0 if and only if there is an extension of the complex
ĝ∗Ī• from X × T to X × T , and in that case the space of extensions with
fixed determinant forms a torsor under Ext1(ĝ∗Ī•, ĝ∗Ī• ⊗ q∗J)0. Since M

s
is

a fine moduli space and Ī• is a universal complex, then an extension g of g
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to T exists if and only if ĝ∗Ī• extends from X × T to X × T . Thus Φ is an
obstruction theory by [9, Theorem 4.5].

Next, we will show that the complex RπMs
∗RHom(Ī•, Ī•)0 is quasi-

isomorphic to a perfect 2-term complex of locally free sheaves with ampli-
tude contained in [1, 2]. Since RHom(Ī•, Ī•)0 ∼= ((A•)∨ ⊗A•)0 is a bounded
complex of coherent sheaves, as in the 2-dimensional case, one can take
a finite very negative locally free resolution B• of the bounded complex
RHom(RHom(Ī•, Ī•)0,OX×M

s). Then

RπMs
∗RHom(Ī•, Ī•)0 ∼= RπMs

∗(B
•)∨ ∼= πMs

∗(B
•)∨

is a finite complex of locally free sheaves. Denoted this complex by N•. By
cohomology and base change theorem (cf. [21]) and Lemma 5.16, the complex
N• has cohomology only in degree 1 and 2. By the standard argument in the
proof of [53, Lemma 2.1] or [25, Lemma 4.2] for triming the complex N•, one
can show that RπMs

∗RHom(Ī•, Ī•)0 is quasi-isomorphic to 2-term complex
of locally free sheaves concentrated only in degree 1 and 2. This implies that
RπMs

∗(RHom(Ī•, Ī•)0 ⊗ π∗XωX )[2] is perfect of perfect amplitude contained
in [−1, 0] in the notation of [9]. Then Φ is perfect. □

Corollary 5.18. Let X be a 3-dimensional smooth projective Deligne-
Mumford stack over C. Assume that polynomials δ and P sat-
isfy deg δ ≥ deg P = 1. Then there exists a virtual fundamental class
[M

s
]vir ∈ Avdim(M

s
) of virtual dimension vdim = rk(E•) where M

s
:=

M s
X/C(OX , P, δ) and E

• := RπMs
∗(RHom(Ī•, Ī•)0 ⊗ π∗XωX )[2].

Remark 5.19. Since M
s
is a projective scheme, then it is proper and

[M
s
]vir can be integrated. By Remark 2.27, the intersection theory on [M

s
]vir

actually produces a stacky version of Pandharipande-Thomas theory.

5.3. Orbifold Pandharipande-Thomas theory

In [7], the authors give a definition of orbifold Pandharipande-Thomas in-
variants for Calabi-Yau 3-orbifolds, which are smooth projective Deligne-
Mumford stacks Y with generically trivial stabilizer groups satisfying
ωY

∼= OY and H1(Y,OY) = 0. Compared with their definition empolying
Behrend’s weighted Euler characteristic [8], our apparoach here is to take
integrations against virtual fundamental classes for more general cases. Let
X be a smooth projective Deligne-Mumford stack of dimension 3 over C
with a moduli scheme π : X → X and a polarization (E ,OX(1)). We first
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recall some notation in [7, Section 2]. Let Perf(X ) be the subcategory of
Db(X ) with objects being perfect complexes, that is, those locally isomor-
phic to a bounded complex of locally free sheaves. By Lemma 5.9, we have
Perf(X ) = Db(X ). Define the Euler pairing

χ(F •, G•) =
∑

i

(−1)i dimHom(F •, G•[i])

for any F • ∈ Perf(X ) and G• ∈ Db(X ). The complex G• is called numer-
ically trivial if χ(F •, G•) = 0 for all F • ∈ Perf(X ). Denote by K(X ) =
K(Db(X )) = K(Coh(X )) the Grothendieck group of X . The numerical
Grothendieck group N(X ) is define to be the quotient of K(X ) by the sub-
group generated by numerically trivial complexes. Let Coh≤d(X ) ⊂ Coh(X )
be the subcategory of sheaves supported in dimension at most d. De-
fine N≤d(X ) ⊂ N(X ) as the subgroup generated by classes of sheaves in
Coh≤d(X ). Set Nd(X ) = N≤d(X )/N≤d−1(X ). One can choose a splitting of
N≤1(X ) as follows

N≤1(X ) ∼= N1(X )⊕N0(X ).

Given a class β = (β1, β0) ∈ N≤1(X ) with a sheaf F ∈ Coh≤1(X ) satisfying
[F ] = β where βi ∈ Ni(X ) for i = 0, 1, then the modified Hilbert polynomial
of F is

PE(F)(m) = χ(X ,F ⊗ E∨ ⊗ π∗OX(m)) := l(F) ·m+ deg(F).

where degF = χ(FE(F)). By the definition of numerical Grothendieck
group, PE(F)(m) is independent of the choice of representative F in [F ].
Thus PE(β)(m), l(β) and deg(β) (or χ(FE(β))) are well defined for any class
β ∈ N≤1(X ) and we have PE(β)(m) = l(β) ·m+ deg(β).

Notice that the sheaf F underlying a δ-stable pair (F , φ) is pure of di-
mension one. Consider any fixed nonzero class β ∈ N≤1(X ), we have the
corresponding degree one polynomial PE(β)(m) = P (m). For such a poly-
nomial P , and let δ be a rational polynomial with positive leading co-

efficient and deg δ ≥ 1 = deg P , we have the subfunctor M
(s)s
X/C(OX , β, δ)

of M
(s)s
X/C(OX , P, δ) defined as follows. For any C-scheme S of finite type,

M
(s)s
X/C(OX , β, δ)(S) is the set of isomorphism classes of flat families of

nondegenerate δ-(semi)stable pairs (F , φ) with the fixed numerical class β
parametrized by a scheme S, that is, such a flat family (F , φ) satisfies that
for each point s ∈ S, the pair (Fs, φ|(π∗

XOX )s) is a δ-(semi)stable pair with
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[Fs] = β (hence with the modified Hilbert polynomial Pπ̌∗
sE(Fs) = P where

π̌s : X × Spec(k(s)) → X is the projection). See Definition 4.8 for more de-
tails.

Following the same argument in Section 3 and Section 4 for the func-

tor M
(s)s
X/C(OX , β, δ) and the corresponding δ-(semi)stable pairs with fixed

numerical class β, and noticing Lemma 2.24, one has

Theorem 5.20. Let X be a 3-dimensional smooth projective Deligne-
Mumford stack over C with a moduli scheme π : X → X and a polarization
(E ,OX(1)). Assume 0 ̸= β ∈ N≤1(X ) and the rational polynomial δ satisfy
deg δ ≥ 1. Then there is a projective scheme M

s
β :=M s

X/C(OX , β, δ), which

is a fine moduli space for the moduli functor Ms
X/C(OX , β, δ).

Let π̃Ms

β
: X ×M

s
β →M

s
β and π̃X : X ×M

s
β → X be the projections.

Denote by Ī•β := {OX×M
s

β
→ F} ∈ Db(X ×M

s
β) the universal complex where

F is the universal sheaf on X ×M
s
β . It follows from the same argument in

Section 5.1 and Section 5.2 for the moduli space M
s
β that

Theorem 5.21. In the sense of [9], the map

Φβ : E•
β := Rπ̃Ms

β∗
(RHom(Ī•β , Ī

•
β)0 ⊗ π̃∗XωX )[2] → LMs

β
.

is a perfect obstruction theory for M
s
β :=M s

X/C(OX , β, δ). And there exists a

virtual fundamental class [M
s
β ]

vir ∈ Avdim(M
s
β) of virtual dimension vdim =

rk(E•
β).

Set

SP,δ = {β = [F ] : [(F , φ)] ∈M s
X/C(OX , P, δ)}.

Then we have the following decomposition as a disjoint union

M s
X/C(OX , P, δ) =

∐

β∈SP,δ

M s
X/C(OX , β, δ).

Next, we will follow the similar definition of Donaldson-Thomas invari-
ants in [68, Section 6] to give a stacky version of Pandharipande-Thomas
invariants. We briefly recall some notation and definitions in [65, Section 2
and Appendix A] to define certain Chern character. Let IX be the iner-
tia stack, which is defined to be the fiber product IX := X ×∆,X×X ,∆ X
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where ∆ : X → X ×X is the diagonal map. Its underlying category has ob-
jects of the form Ob(IX ) = {(x, g)|x ∈ Ob(X ), g ∈ AutX (x)}. Then there
is a natural projection π0 : IX → X with the map π0((x, g)) = x on the
level of objects and we have a decomposition of IX as a disjoint union
IX :=

∐
i∈J Xi for some index set J . We also have a canonical involu-

tion ι : IX → IX with the map ι((x, g)) = (x, g−1) on objects. For any
(x, g) ∈ Xi, one has a decomposition of tangent space TxX =

⊕
0≤t<ri

U (t)

where U (t) is an eigenspace with eigenvalue ζtri , 0 ≤ t < ri and ζri = exp(2πiri ).

Define agei :=
1
ri

∑
0≤t<ri

t · dimC U
(t). Similarly, for any vector bundle W

on IX , there exists a decomposition of W as follows

W =
⊕

ζ

W (ζ)

where W (ζ) is an eigenbundle with the eigenvalue ζ.

Definition 5.22. The map ρ : K(IX ) → K(IX )C is defined to be

ρ(W ) :=
∑

ζ

ζW (ζ) ∈ K(IX )C.

Define c̃h : K(X ) → A∗(IX )C to be

c̃h(V ) := ch(ρ(π∗0V ))

where ch is the usual Chern character.

The orbifold or Chen-Ruan cohomology of X (cf. [2, Section 7.3]) is
defined as

A∗
orb(X ) :=

⊕

i

A∗−agei(Xi)

where agei is the degree shift number. Define orbifold Chern character c̃h
orb

:
K(X ) → A∗

orb(X ) as

c̃h
orb

k

∣∣∣∣
Xi

:= c̃hk−agei

∣∣∣∣
Xi

.

For any γ ∈ Alorb(X ), define the operators

c̃h
orb

k+2(γ) : A∗(M
s
β) → A∗−k+1−l(M

s
β)
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to be

c̃h
orb

k+2(γ)(ξ) := π2∗

(
c̃h

orb

k+2(F) · ι
∗π∗1γ ∩ π∗2ξ

)

where F is the universal complex on X ×M
s
β and the maps π1, π2 are

the natural projections from IX ×M
s
β to the first and second factor re-

spectively. The operator c̃h
orb

k+2(γ) has the degree changed as above due
to the identity agei + ageι(i) = dimCX − dimCXi (cf. [16, Lemma 3.2.1]).
To follow the similar definition of Pandharipande-Thomas invariants on
nonsingular projective 3-folds in [54, Section 0.5], we use the notation
M

s
n,β :=M s

X/C(OX , n, β, δ) to denote M
s
β , which is the moduli space of orb-

ifold PT stable pairs with [F ] = β = (β1, β0) ∈ N≤1(X ) and χ(FE(F)) = n
by Remark 2.27.

Definition 5.23. Given γi ∈ A∗
orb(X ), 1 ≤ i ≤ r, define the

Pandharipande-Thomas invariants with descendents as

〈 r∏

i=1

τki(γi)

〉X

n,β

:=

∫

[Ms
X/C(OX ,n,β,δ)]vir

r∏

i=1

c̃h
orb

ki+2(γi)

=

∫

Ms
X/C(OX ,n,β,δ)

r∏

i=1

c̃h
orb

ki+2(γi)([M
s
X/C(OX , n, β, δ)]

vir)

The partition function is defined to be

ZPT,β1

( r∏

i=1

τki(γi)

)
:=

∑

n

〈 r∏

i=1

τki(γi)

〉X

n,β

qn

Remark 5.24. In the proof of Lemma 3.2, we have a short exact sequence
0 → FE(imφ) → FE(F) → FE(cokerφ) → 0, where cokerφ and FE(cokerφ)
are 0-dimensional. Then we have

n = χ(FE(F)) = χ(FE(imφ)) + χ(FE(cokerφ)) ≥ χ(FE(imφ)).

For a fixed β1, we have no idea wheather M
s
n,β is empty for n very neg-

ative. If one can show the boundedness of χ(FE(imφ)) from below, then
ZPT,β1

(∏r
i=1 τki(γi)

)
is a Laurent series in q and hence one can further

study its rationality as the one of PT stable pair invariants (e.g., [10, 48–
50, 64]). Alternatively, one can define the partition function as in [7].

To conclude this section, we consider some special cases as follows. If X is
a 3-dimensional smooth projective Deligne-Mumford stack over C satisfying
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ωX
∼= OX . In this case, using Serre duality for Deligne-Mumford stacks, we

have two isomorphisms

E• θ
−→ E•∨[1]; E•

β

θβ
−→ E•∨

β [1]

satisfying θ∨[1] = θ and θ∨β [1] = θβ . This shows that two perfect obstruction
theories are symmetric in the sense of [8]. Then we have rk(E•) = rk(E•

β) =

0. Then [M s
X/C(OX , P, δ)]

vir and [M s
X/C(OX , β, δ)]

vir are 0-cycles. Let νMs

and νMs

β
be the Behrend’s constructible functions in [8] on M s

X/C(OX , P, δ)

andM s
X/C(OX , β, δ) respectively. SinceM

s
X/C(OX , P, δ) andM

s
X/C(OX , β, δ)

are proper, by [8, Theorem 4.18], we have the following

Definition 5.25. Let X be a smooth projective Deligne-Mumford stack of
dimension 3 satisfying ωX

∼= OX . We define Pandharipande-Thomas invari-
ants of X corresponding to P and β as follows

PT(OX , P, δ) := χ(M s
X/C(OX , P, δ), νMs) = deg([M s

X/C(OX , P, δ)]
vir),

PT(OX , β, δ) := χ(M s
X/C(OX , β, δ), νMs

β
) = deg([M s

X/C(OX , β, δ)]
vir).

Remark 5.26. When X is a 3-dimensional Calabi-Yau orbifold, the invari-
ant PT(OX , β, δ) in the above definition is corresponding to PT(X )β defined
in [7, Section 1 (1.4)].
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Théorie des intersections et théorème de Riemann-Roch, in: Lecture
Notes in Math., vol. 225, Springer-Verlag, Berlin, 1971, Séminaire de
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214, 143 (1993)

[33] J. Li and B. Wu, Good degeneration of Quot-schemes and coherent
systems, Comm. Anal. Geom. 23 (2015), no. 4, 841–921.

[34] J. Li and G. Tian, Virtual moduli cycles and Gromov-Witten invari-
ants of algebraic varieties, J. Amer. Math. Soc. 11 (1998), no. 1, 119–
174.

[35] M. Lieblich, Moduli of complexes on a proper morphism, J. Alg. Geom.
15 (2006), 175–206.

[36] Yinbang Lin,Moduli spaces of stable pairs, Pacific J. Math. 294 (2018),
no. 1, 123–158.

[37] D. Maulik, N. Nekrasov, A. Okounkov and R. Pandharipande,
Gromov-Witten theory and Donaldson-Thomas theory, I, Compos.
Math. 142 (2006), no. 5, 1263–1285.

[38] D. Maulik, N. Nekrasov, A. Okounkov and R. Pandharipande,
Gromov-Witten theory and Donaldson-Thomas theory, II, Compos.
Math. 142 (2006), no. 5, 1286–1304.

[39] D. Maulik and A. Oblomkov, Donaldson-Thomas theory of An × P1,
Compos. Math. 145 (2009), no. 5, 1249–1276.

[40] D. Maulik, A. Oblomkov, A. Okounkov, R. Pandharipande, Gromov-
Witten/Donaldson-Thomas correspondence for toric 3-folds, Invent.
Math. 186 (2011), no. 2, 435–479.

[41] D. Mumford, J. Fogarty, F. Kirwan, Geometric Invariant Theory, third
edition, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) 34,
Springer-Verlag, Berlin 1994.

[42] D. Maulik, R. Pandharipande, and R. Thomas, Curves on K3 surfaces
and modular forms, (with an appendix by A. Pixton), J. Topol. 3
(2010), no. 4, 937–996.

[43] F. Nironi, Moduli spaces of semistable sheaves on projective
Deligne–Mumford stacks, arXiv:0811.1949, (2008).

[44] F. Nironi, Grothendieck duality for Deligne-Mumford stacks, arXiv:
0811.1955, (2008).



✐

✐

“7-Lin” — 2024/3/15 — 0:31 — page 1203 — #73
✐

✐

✐

✐

✐

✐

Moduli spaces of semistable pairs 1203

[45] A. Oblomkov, A. Okounkov and R. Pandharipande, GW/PT descen-
dent correspondence via vertex operators, Communications in Mathe-
matical Physics 2020. no. 374. 1321–1359.

[46] A. Okounkov and R. Pandharipande, The local Donaldson-Thomas
theory of curves, Geom. Topol. 14 (2010), no. 3, 1503–1567.

[47] M. Olsson and J. Starr, Quot functors for Deligne-Mumford stacks,
Comm. Algebra 31 (2003), no. 8, 4069–4096.

[48] R. Pandharipande and A. Pixton, Descendents on local curves: Ratio-
nality, Comp. Math. 149 (2013), 81–124.

[49] R. Pandharipande and A. Pixton, Descendents on local curves: Sta-
tionary theory, in Geometry and arithmetic, 283–307, EMS Ser. Congr.
Rep., Eur. Math. Soc., Zürich, 2012.
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