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1. Introduction

We consider the Cauchy problem for the derivative nonlinear Schrödinger
equation (DNLS) on the real line R:

(1)




i∂tu+ ∂2xu = −i∂x(|u|2u),

u
∣∣
t=0

= u0 ∈ Hs(R), s ≥ 1
2 .

We remark right away that the DNLS is L2 critical, as it is invariant under
the scaling

(2) u(t, x) 7→ uµ(t, x) :=
√
µu(µ2t, µx), µ > 0.

The DNLS equation was introduced by Mio-Ogino-Minami-Takeda and
Mjølhus [21, 22] as a model for studying magnetohydrodynamics, and it
has received a great deal of attention from the mathematics community
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after being shown to be completely integrable by Kaup-Newell [14]. The
infinitely many conserved quantities admitted by the DNLS equation play
an important role in the wellposedness theory. The first three—the mass,
momentum, and energy—are as follows.

M(u) :=

∫

R

|u|2 dx,(3)

P (u) := Im

∫

R

uux dx+
1

2

∫

R

|u|4 dx,(4)

E(u) :=

∫

R

(
|ux|2 −

3

2
Im(|u|2uux) +

1

2
|u|6

)
dx.(5)

Before stating our main result, let us give a very brief review of what
is known about the wellposedness of the DNLS equation. More detailed
overviews can be found, for example, in the introductions of [2], [15], and
[9]. Local wellposedness in Hs(R) for s ≥ 1

2 was proven by Takaoka [27],
improving earlier work [23] by Ozawa. On the other hand, for s < 1

2 , the
uniform continuity of the data-to-solution map fails in Hs(R) [3, 28]. One
can, however, close the 1

2 -derivative gap between the H
1

2 threshold and the
critical space L2(R) by working in more general Fourier-Lebesgue spaces,
c.f. Grünrock [6] and references therein.

A line of results, due to Hayashi-Ozawa [8], Colliander-Keel-Staffilani-
Takaoka-Tao [4], Wu [30], and Guo-Wu [7], establishes global well-posedness
of the DNLS equation in Hs(R) for s ≥ 1

2 , for initial data having mass less
than 4π. Another line (Pelinovsky-Saalmann-Shimabukuro [24], Pelinovsky-
Shimabukuro [25], and Jenkins-Liu-Perry-Sulem [11–13]) uses inverse scat-
tering techniques to establish global wellposedness under stronger regularity
and decay assumptions on the initial data, but without a smallness require-
ment on the mass.

The first and third authors proved in [2] that the DNLS equation is glob-
ally well-posed in Hs(R) for s ≥ 1

2 and that solutions generated from H
1

2

initial data remain bounded inH
1

2 (R) for all time. There have also been some
recent works below the aforementioned s = 1

2 threshold of uniform Hs conti-
nuity with respect to initial data [3, 28]. Klaus-Schippa [18] gave Hs a priori
estimates for 0 < s < 1

2 in the case of small mass, Killip-Ntekoume-Vişan [15]
improved the small mass assumption to 4π and furthermore proved a global
wellposedness result in Hs(R), 1

6 ≤ s < 1
2 , for initial data with mass less

than 4π. Very recently, Harrop-Griffiths, Killip, and Vişan [10] have removed
the small mass assumption both from their Hs a priori bounds, 0 < s < 1

2 ,
as well as from their global wellposedness result in Hs(R) with 1

6 ≤ s < 1
2 .
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Finally, during the review period of the present paper, Harrop-Griffiths, Kil-
lip, Ntekoume, and Vişan [9] have established wellposedness of the DNLS in
L2(R), and consequently in Hs(R) for all s ≥ 0.

In this paper, we are concerned with the global-in-time boundedness of
solutions to the DNLS equation in Hs spaces, s ≥ 1

2 , our goal being to prop-
agate the lower regularity bounds mentioned above to higher regularities.
Our main result is:

Theorem 1.1. Suppose u is a solution to the DNLS equation with initial
data u0 ∈ Hs(R), with s ≥ 1

2 . There exists a finite positive constant C =
C(s, ∥u0∥Hs(R)), such that1

sup
t∈R

∥u(t)∥Hs(R) ≤ C(s, ∥u0∥Hs(R)).

The main idea is to take advantage of the complete integrability of the
equation and to exhibit conserved quantities behaving at leading order as
∥u(t)∥2

Ḣs(R)
which, together with the low regularity bounds of [10], allow to

control the higher Sobolev norms. As in [2], [10], the present work relies
heavily on the conservation of the transmission coefficient for the spectral
problem associated to the DNLS equation. This property has already been
used in many other works; of particular relevance to us are the papers of
Gérard [5], Killip-Vişan-Zhang [17], Killip-Vişan [16], and Koch-Tataru [19],
on the cubic NLS and KdV equations.

Note that by continuity of the flow, and the preservation of the Schwartz
class under the flow, we lose nothing by restricting attention to the Schwartz
class; we will thus work exclusively with Schwartz functions for the remain-
der of the manuscript. We will also suppress the time dependence when it
does not play a role.

One can easily prove Theorem 1.1 in the special case s = 1, using the
conserved quantity E(u). Indeed, simply rearranging (5) yields

∥u∥2
Ḣ1(R)

= E(u)− 1

2
∥u∥6L6(R) +

3

2

∫

R

Im(|u|2uux) dx.

Clearly, the last term can be bounded above in absolute value by
1
2∥u∥2Ḣ1(R)

+ C∥u∥6
L6(R), whence the desired bound follows for example,

from the embedding Ḣ
1

3 (R) →֒ L6(R) and the estimate ∥u(t)∥
H

1
3 (R)

≤
C(∥u0∥H 1

3 (R)
) of [10].

1Let us mention that in the case of s = 1

2
this uniform bound can be also deduced

from the analysis of [2].
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The higher-order Sobolev norms of integer order can be dealt with sim-
ilarly, once we have a formula for the corresponding higher-order conserved
quantities. We will show that for any nonnegative integer ℓ, one of the con-
served quantities is equal to a constant multiple of ∥u∥2

Ḣℓ(R)
, plus terms

which are of lower order. For noninteger s, we will use a sort of ‘generalized
energy’, comparable to ∥u∥2

Ḣs(R)
, that will be defined in terms of the trans-

mission coefficient of the DNLS spectral problem. We sketch presently the
background necessary to define these objects precisely; for more details, see,
for example, [1, 11–14, 20, 25, 29].

The DNLS equation can be obtained as a compatibility condition of the
following system [14]:

∂xψ = U(λ)ψ,
∂tψ = Υ(λ)ψ.

(6)

Here λ ∈ C is a spectral parameter, independent of t and x, and ψ =
ψ(t, x, λ) is C2-valued. The operators U(λ) and Υ(λ) are defined by

U(λ) = −iσ3(λ2 + iλU),

Υ(λ) = −i(2λ4 − λ2|u|2)σ3

+

(
0 2λ3u− λ|u|2u+ iλux

−2λ3u+ λ|u|2u+ iλux 0

)
,

(7)

where

σ3 =

(
1 0
0 −1

)
, U =

(
0 u
u 0

)
.

To be more specific about the sense in which the DNLS is a compatibility
condition, we note that u satisfies the DNLS equation if and only if U and Υ
satisfy the so-called ‘zero-curvature’ representation

∂U
∂t

− ∂Υ

∂x
+ [U ,Υ] = 0.

The first equation of (6) can be written in the form

(8) Lu(λ)ψ := (iσ3∂x − λ2 − iλU)ψ = 0,

which defines the scattering transform associated to the DNLS. Let us denote

Ω+ := {λ ∈ C : Imλ2 > 0}.
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Then given u ∈ S(R) and λ ∈ Ω+, there are unique solutions to (8) (the
“Jöst solutions”) exhibiting the following behavior at ±∞:

ψ−
1 (x, λ) = e−iλ2x

[(
1
0

)
+ o(1)

]
, as x→ −∞,

ψ+
2 (x, λ) = eiλ

2x

[(
0
1

)
+ o(1)

]
, as x→ +∞.

(9)

Finally, we denote by au(λ) the Wronskian of the Jöst solutions defined
above:2

(10) au(λ) = det(ψ−
1 (x, λ), ψ

+
2 (x, λ)).

Using the second equation in (6), it can be shown that au(λ) is time-
independent if u is a solution of (1). Furthermore, au is a holomorphic
function of λ in Ω+, and one may determine the behavior of au at infinity
by transforming (8) into a Zakharov-Shabat spectral problem, linear with
respect to the spectral parameter, c.f. [14], [24]. The equivalence between
the two problems allows us to write

(11) lim
|λ|→∞, λ∈Ω+

au(λ) = e
− i

2
∥u∥2

L2(R) .

For fixed u, we can thus define the logarithm so that

(12) lim
|λ|→∞,λ∈Ω+

ln au(λ) = − i

2
∥u∥2L2(R).

This determines a unique branch for |λ| ≫ 1, which is sufficient for our pur-
poses. Moreover, ln au(λ) admits an asymptotic expansion of the following
form:

(13) ln au(λ) =

∞∑

j=0

Ej(u)

λ2j
as |λ| → ∞, λ ∈ Ω+.

Since au(λ) is time-independent, the quantities Ej(u) are conservation
laws. They are all polynomial in u, u, and their derivatives. Furthermore,
the Ej(u)’s inherit scaling properties from au(λ). That is, for µ > 0, the fact
that auµ

(λ) = au(
λ√
µ
) implies that Ej(uµ) = µjEj(u), for each j ∈ N. The

2The transmission coefficient mentioned earlier is the inverse of au(λ).
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first several of the Ej(u)’s are (up to multiplicative constants) the conserved
quantities (3)–(5) mentioned earlier:

E0(u) = − i

2
∥u∥2L2(R) = − i

2
M(u), E1(u) =

i

4
P (u), E2(u) = − i

8
E(u).

For each ℓ ∈ N∗, the quantity E2ℓ(u) can be used to control ∥u∥2
Ḣℓ(R)

. Let

us define, for ρ positive sufficiently large and L ∈ N,

(14) φL(u, ρ) = Im


ln au(

√
iρ)−

2L+1∑

j=0

Ej(u)

(iρ)j


 .

If u is a solution of the DNLS equation, then φL(u, ρ) is time-independent,
being a sum of time-independent quantities.

In order to establish bounds on the Hs norm of u, for s ≥ 1
2 , we will

show that for large enough R > 0, the quantity
∫∞
R
ρ2s−1φ[s](u, ρ)dρ controls

the Ḣs seminorm of u, in a sense to be made precise later. Here and below,
we use [s] to denote the integer part of a real number s.

Our proof of Theorem 1.1 relies on a good understanding of the structure
of the remainder associated to the expansion (13). Note that when λ2 = iρ,
the imaginary part of this remainder (which is what we really use) is sim-
ply φL(u, ρ). In Section 2, we will introduce a determinant characterization
of au(λ); we use this characterization to formulate a technical statement
(Lemma 2.1 below) on the size of the remainder. Assuming the result of
Lemma 2.1, we will prove Theorem 1.1 at the end of Section 2. Then, in
Section 3, we will prove our technical Lemma, completing the circle of ideas.
Most of the work is contained in this last section.

Before moving on, let us establish a few notational conventions that we
wish to add to the ones introduced above. First of all, we use the following
normalization for the Fourier transform:

f̂(ζ) =
1√
2π

∫

R

e−ixζf(x) dx.

The symbol N will denote the nonnegative integers, and N∗ = N\{0}. We
will use ∥ · ∥2 to denote the Hilbert-Schmidt norm, and ∥ · ∥ will denote
the operator norm on L2(R). And we will use the following shorthand for
derivatives:

D = −i∂x, L0 = iσ3∂x.

Whenever 2 ≤ p <∞, we will use s∗(p) to denote the Sobolev exponent
s∗(p) = 1

2 − 1
p
such that the embedding Hs∗(p)(R) →֒ Lp(R) holds.
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Finally, we set notation for the following subset of Ω+:

Γδ = {λ ∈ Ω+ : δ < arg(λ2) < π − δ}.

This notation will be useful in some of the intermediate steps we use to
prove Theorem 1.1, as our estimates will frequently depend on |λ|2

Imλ2 (which
is ≤ C(δ) on Γδ). However, the value of δ > 0 will be inconsequential for
our final steps, where we will take λ2 to be pure imaginary. Therefore, for
simplicity of presentation, we will fix δ > 0 once and for all and suppress
dependence on δ in all bounds below.

2. Proof of the main result

2.1. The determinant characterization of au(λ)

An important property of au(λ) is the fact that it can be realized as a
perturbation determinant, c.f. [10] (see also [26]):

(15) au(λ)
2 = det(I − Tu(λ)

2),

where

Tu(λ) = iλ(L0 − λ2)−1U, λ ∈ Ω+.

The operator Tu(λ) is Hilbert-Schmidt, with

(16) ∥Tu(λ)∥22 =
|λ|2

Im(λ2)
∥u∥2L2(R).

As a consequence of (15), we may write3

(17) ln au(λ) = −
∞∑

k=1

Tr(Tu(λ)
2k)

2k
, if ∥Tu(λ)∥ < 1.

This series will converge whenever λ ∈ Γδ has large enough modulus; indeed,
using the explicit kernel of (L0 − λ2)−1, it can easily be shown that for

3This series expansion of ln au(λ) is consistent with the definition (12).
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any p > 2, we have

(18) ∥Tu(λ)∥ ≲
|λ|∥u∥Lp(R)

Im(λ2)1−
1

p

, λ ∈ Ω+, u ∈ Lp(R).

In particular4, we can find R0 = R0(∥u∥H 1
3 (R)

) such that ∥Tu(λ)∥ ≤ 1
2 for

all λ ∈ Γδ satisfying |λ|2 ≥ R0. We will fix the notation R0 for use below.
As we shall see later, each term of the series (17) can be expanded in

powers of λ−2:

(19) −Tr(Tu(λ)
2k)

2k
=

∞∑

j=k−1

µj,k(u)

λ2j
.

According to (13) and (17), the Ej(u)’s should then satisfy

(20) Ej(u) =

j+1∑

k=1

µj,k(u).

We will use the following notation for the remainders after truncation of the
expansions (17) and (19):

(21) ln au(λ) = −
2L+2∑

k=1

Tr(Tu(λ)
2k)

2k
+ τ∗L(u, λ), L ∈ N;

− Tr(Tu(λ)
2k)

2k
=

2L+1∑

j=k−1

µj,k(u)

λ2j
+ τkL(u, λ),

k ∈ {1, . . . , 2L+ 2}, L ∈ N.

(22)

The primary difficulty of the proof of Theorem 1.1—and indeed, the subject
of Lemma 2.1—is the understanding of the size and structure of the remain-
der terms τkL(u, λ), and to a lesser extent, the µj,k(u)’s. On the other hand,
for λ ∈ Γδ with large enough modulus, it is easy to bound the τ∗L(u, λ)’s. For

4The choice of the H
1
3 -norm here is essentially arbitrary; one can use any Hs-

norm with 0 < s < 1

2
.
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example, if ∥Tu(λ)∥ ≤ 1
2 , then for 2 < p <∞ and s∗(p) = 1

2 − 1
p
, we have

|τ∗L(u, λ)| =
∣∣∣∣ ln au(λ) +

2L+2∑

k=1

TrT 2k
u (λ)

2k

∣∣∣∣

≤
∞∑

k=2L+3

∥Tu(λ)∥2k−2∥Tu(λ)∥22

≲ ∥Tu(λ)∥4L+4∥Tu(λ)∥22 ≲
∥u∥4L+4

Hs∗(p)(R)
∥u∥2

L2(R)

|λ|(4L+4)(1− 2

p
)

.

(23)

The following table summarizes the various relationships among the
quantities introduced above and will be helpful to keep track of the nu-
merology. More precise information about the µj,k(u)’s and τkL(u, λ)’s will
be provided below.

−TrT 2
u (λ)

2
−TrT 4

u (λ)

4
−TrT 6

u (λ)

6
· · · −TrT 4L+2

u (λ)

4L+ 2
−TrT 4L+4

u (λ)

4L+ 4

µ0,1(u) E0(u)

µ1,1(u)

λ2
µ1,2(u)

λ2
E1(u)

λ2

µ2,1(u)

λ4
µ2,2(u)

λ4
µ2,3(u)

λ4
E2(u)

λ4

...
...

...
. . .

...

µ2L,1(u)

λ4L
µ2L,2(u)

λ4L
µ2L,3(u)

λ4L
· · · µ2L,2L+1(u)

λ4L
E2L(u)

λ4L

µ2L+1,1(u)

λ4L+2

µ2L+1,2(u)

λ4L+2

µ2L+1,3(u)

λ4L+2
· · · µ2L+1,2L+1(u)

λ4L+2

µ2L+1,2L+2(u)

λ4L+2

E2L+1(u)

λ4L+2

τ1L(u, λ) τ2L(u, λ) τ3L(u, λ) · · · τ2L+1
L (u, λ) τ2L+2

L (u, λ) τ∗L(u, λ)

2.2. Structure of the traces

In this section, we record all the information about the traces that we need in
order to prove our main result. We deal first with the easy case of TrTu(λ)

2,
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about which we need more explicit information. A straightforward compu-
tation gives us

(24) TrT 2
u (λ) = 2iλ2

∫

R

|û(ζ)|2
ζ + 2λ2

dζ.

We determine the expansion of TrT 2
u (λ) by simply substituting into (24)

the identity

2λ2

ζ + 2λ2
=

2L+1∑

j=0

(
− ζ

2λ2

)j

+
ζ

ζ + 2λ2

(
ζ

2λ2

)2L+1

, L ∈ N,

to obtain (for all L ∈ N)

−TrT 2
u (λ)

2
=

2L+1∑

j=0

1

λ2j
· i

(−2)j+1

∫

R

ζj |û(ζ)|2dζ
︸ ︷︷ ︸

=:µj,1(u)

− i

4L+1λ4L+2

∫

R

ζ2L+2|û(ζ)|2
ζ + 2λ2

dζ

︸ ︷︷ ︸
=:τ1

L(u,λ)

.

(25)

Now we state our main Lemma, which describes the structure of the
other µj,k(u)’s and τ

k
L(u, λ)’s.

Lemma 2.1. For any k ∈ N∗, L ∈ N, the traces TrT 2k
u (λ) admit the de-

composition (22). The µj,k(u)’s and τkL(u, λ)’s satisfy the properties below,
where for any n ∈ N we denote σ(n) = max{n, 13}.

• Each µj,k(u) is a homogeneous polynomial of degree 2k in u, u, and
their derivatives; it is homogeneous with respect to the natural scaling.
We have

|µ2ℓ,2(u)| ≲ ∥u∥3Hσ(ℓ−1)(R)∥u∥Hℓ(R), ℓ ∈ N
∗,

|µ2ℓ,k(u)| ≲ ∥u∥2kHσ(ℓ−1)(R), ℓ ∈ N
∗, k ∈ {3, . . . , 2ℓ+ 1},

|µ2ℓ+1,k(u)| ≲ ∥u∥2kHℓ(R), ℓ ∈ N
∗, k ∈ {2, . . . , 2ℓ+ 2}.

(26)
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• For |λ|2 > R0, λ ∈ Γδ, we have the following bounds:

|τ2L(u, λ)| ≲α

∥u∥3
Hσ(L)(R)∥u∥HL+α(R)

|λ|4L+2+2α
, L ∈ N, 0 ≤ α < 1;(27)

|τkL(u, λ)| ≲
∥u∥2k

HL(R)

|λ|4L+4
, L ∈ N

∗, k ∈ {3, . . . , 2L+ 2}.(28)

We postpone the proof of the Lemma until Section 3.

2.3. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1, assuming the result of
Lemma 2.1. For s ∈ N∗, the conclusion follows easily from Lemma 2.1, to-
gether with (20), (25), and an induction argument; we provide the details
presently. Actually, the case s = 1 was already proved in the Introduction.
Therefore, let us turn to our inductive hypothesis. For k = 1, . . . , ℓ− 1, we
assume that the following bound holds.

(29) sup
t∈R

∥u(t)∥Hk(R) ≤ C(k, ∥u0∥Hk(R)).

We will prove that the same bound holds with k = ℓ ≥ 2.
First of all, for any integer ℓ ≥ 2, and any time t, we have

∥u(t)∥2
Ḣℓ(R)

= C(ℓ)µ2ℓ,1(u(t)) by (25)

= C(ℓ)

[
E2ℓ(u(t))−

2ℓ+1∑

k=2

µ2ℓ,k(u(t))

]
by (20)

≤ C(ℓ)E2ℓ(u0) +
1

2
∥u(t)∥2

Ḣℓ(R)
+ C(ℓ, ∥u0∥Hℓ−1(R)).

To pass to the last line, we used time-independence of E2ℓ(u(t)), the bounds
(26), and our inductive hypothesis (29) (with k = ℓ− 1). Finally, using that

E2ℓ(u0) =

2ℓ+1∑

k=1

µ2ℓ,k(u0) ≤ C(ℓ, ∥u0∥Hℓ(R)),

we get

sup
t∈R

∥u(t)∥Ḣℓ(R) ≤ C(ℓ, ∥u0∥Hℓ(R)),

which finishes the induction argument, and thus the proof of Theorem 1.1
for s ∈ N∗.
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It remains to consider the situation where s /∈ N∗. We start by recording
the characterization of φL(u, ρ) in terms of the remainders τkL(u,

√
iρ), and

we also set notation for the quadratic part of φL(u, ρ). We also note that
the case L = 0 is included in the definition.

φL(u, ρ) = Im


ln au(

√
iρ)−

2L+1∑

j=0

Ej(u)

(iρ)j


(30)

= Im

[
2L+2∑

k=1

τkL(u,
√
iρ) + τ∗L(u,

√
iρ)

]
, L ∈ N,

φL,0(u, ρ) = Im τ1L(u,
√
iρ) =

(−1)L

22L+1ρ2L

∫

R

ζ2L+2|û(ζ)|2
ζ2 + 4ρ2

dζ, L ∈ N.(31)

The conclusion of Theorem 1.1 for noninteger s ≥ 1
2 will be deduced from

the following two Lemmas.

Lemma 2.2. Suppose u ∈ S(R), s > 0, s /∈ N∗, and R > 0. Then the fol-
lowing comparison holds.

(32)

∫

R+

ρ2s−1|φ[s],0(u, ρ)|dρ ≲s ∥u∥2Ḣs(R)

≲s

∫ ∞

R

ρ2s−1|φ[s],0(u, ρ)|dρ+R2(s−[s])∥u∥2
Ḣ [s](R)

.

Proof. Let us define the function fν : R → R, for 0 < ν < 1, by fν(z) =
|z|2ν−1

1+z2 . Note that fν ∈ L1(R) for this range of ν.
We make a direct substitution of the formula (31) into the integral∫∞

R
ρ2s−1|φ[s],0(u, ρ)|dρ, then we switch the order of integration. Continu-

ing the computation yields

∫ ∞

R

ρ2s−1|φ[s],0(u, ρ)|dρ =
1

22[s]+1

∫

R

ζ2[s]+2|û(ζ)|2
∫ ∞

R

ρ2(s−[s])−1

ζ2 + 4ρ2
dρ dζ

=
1

22s+1

∫

R

|ζ|2s|û(ζ)|2
∫ ∞

2R

|ζ|

fs−[s](z) dz dζ

=
1

4s+1
∥fs−[s]∥L1(R)∥u∥2Ḣs(R)

− 1

2

∫

R

∣∣∣∣
ζ

2

∣∣∣∣
2s

|û(ζ)|2
∫ 2R

|ζ|

0
fs−[s](z) dz dζ.
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We estimate the second term on the right by means of the trivial replace-
ment 1

1+z2 ≤ 1:

1

2

∫

R

∣∣∣∣
ζ

2

∣∣∣∣
2s

|û(ζ)|2
∫ 2R

|ζ|

0
fs−[s](z) dz dζ

≤ 1

2

∫

R

∣∣∣∣
ζ

2

∣∣∣∣
2s

|û(ζ)|2
∫ 2R

|ζ|

0
z2(s−[s])−1 dz dζ

=
R2(s−[s])

s− [s]
·
∥u∥2

Ḣ [s](R)

4[s]+1
.

The comparison (32) follows. □

Lemma 2.3. Suppose u ∈ S(R), s > 0, s /∈ N∗. Denoting β =

max{[s], s+[s]+1
4([s]+1) ,

1
3}, we have

(33) |φ[s](u, ρ)− φ[s],0(u, ρ)| ≤
C(s, ∥u∥Hβ(R))

ρs+[s]+1
(∥u∥Hs(R) + 1), ∀ρ ≥ R0,

where R0 = R0(∥u∥H 1
3 (R)

) is defined as in Section 2.1.

Proof. Choose p > 2 to solve 2([s] + 1)(1− 2
p
) = s+ [s] + 1. (Note that

s∗(p) = s+[s]+1
4([s]+1) for this choice of p.) Then for ρ > R0, we have

|φ[s](u, ρ)− φ[s],0(u, ρ)| ≤
2[s]+2∑

k=2

|τk[s](u,
√
iρ)|+ |τ∗[s](u,

√
iρ)| by (30), (31)

≤ C(s)

[∥u∥3
Hβ(R)∥u∥Hs(R)

ρs+[s]+1
+

2[s]+2∑

k=3

∥u∥2k
H [s](R)

ρ2[s]+2
+

∥u∥4[s]+4
Hs∗(p)(R)

∥u∥2
L2(R)

ρ(2[s]+2)(1− 2

p
)

]
by (27), (28), (23)

≤
C(s, ∥u∥Hβ(R))

ρs+[s]+1
(∥u∥Hs(R) + 1).

In the second line, we understand the sum over k to be empty if [s] = 0. □

The conclusion of Theorem 1.1 for noninteger s ≥ 1
2 follows from Lem-

mas 2.2 and 2.3, the time-independence of the quantity φ[s](u, ρ) for solutions
of the DNLS equation, and the bound

(34) sup
t∈R

∥u(t)∥Hβ(R) ≤ C(β, ∥u0∥Hβ(R)),
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where β = max{[s], s+[s]+1
4([s]+1) ,

1
3} is as in the statement of Lemma 2.3. The

bound (34) follows from our induction argument if s > 1 and from the result
of Harrop-Griffiths, Killip, and Vişan [10] if 1

2 ≤ s < 1.
Let us give the remaining details of the proof of Theorem 1.1 presently.

We choose R0 = R0(∥u0∥H 1
3 (R)

) as in Section 2.1, so that ∥Tu(t)(λ)∥ ≤ 1
2

for all λ ∈ Γδ with |λ|2 ≥ R0, for all t ≥ 0. The fact that we may take R0 to
be independent of time is once again a consequence of the a priori bounds
from [10] (in particular, the uniform bound on the H

1

3 norm). Now, for any
t ∈ R, we have

∥u(t)∥2
Ḣs(R)

≲s

∫ ∞

R0

ρ2s−1|φ[s],0(u(t), ρ)|dρ+R
2(s−[s])
0 ∥u(t)∥2H [s](R)

≤ C(s)

∫ ∞

R0

ρ2s−1|φ[s](u(t), ρ)|dρ+ C(s,R0, ∥u(t)∥Hβ(R))(∥u(t)∥Hs(R) + 1)

≤ C(s)

∫ ∞

R0

ρ2s−1|φ[s](u0, ρ)|dρ+ C(s, ∥u0∥Hs(R))(∥u(t)∥Hs(R) + 1)

≤ 1

2
∥u(t)∥2Hs(R) + C(s, ∥u0∥Hs(R)),

which establishes the desired conclusion. Note that the first line in the cal-
culation above is simply the upper bound in Lemma 2.2. To pass from the
first line to the second, we use Lemma 2.3, followed by the lower bound of
Lemma 2.2. We use (34) and the time independence of φ[s](u(t), ρ) to pass
to the third line. Finally, we justify the last line by noting that

∫ ∞

R0

ρ2s−1|φ[s](u0, ρ)|dρ ≲s C(s, ∥u0∥Hs(R)),

which follows from an application of Lemma 2.3, followed by the lower bound
in Lemma 2.2.

3. Proof of Lemma 2.1

3.1. Outline of the proof

In this section, we expand each Tr(T 2k
u (λ)) in powers of λ−2, up to a specified

order, and we establish bounds on the remainders, in order to prove our key
Lemma 2.1. In Section 3.2, we consider the case L = 0, which is easy to
treat explicitly but does not fit naturally into our argument for the other
cases. When L ≥ 1, we follow the strategy of [5], deducing the expansions
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of the traces from the expansion of the resolvent Lu(λ)
−1. The relationship

between Tu(λ) and Lu(λ) is the following:

(35) Lu(λ) = (L0 − λ2)(I − Tu(λ)).

Therefore,

(36)

Lu(λ)
−1 = (I − Tu(λ))

−1(L0 − λ2)−1

=

∞∑

n=0

Tu(λ)
n(L0 − λ2)−1

︸ ︷︷ ︸
=:Rn

, ∥Tu(λ)∥ < 1.

The point is that

(37) T 2k
u (λ) = iλR2k−1U.

Thus, the part of L−1
u (λ) that is of relevance to us is R2k−1, i.e., the term in

the expansion (36) that is homogeneous of degree 2k − 1 in u, u. In partic-
ular, we seek an expansion of λR2k−1 in powers of λ−2, up to order λ4L+2

for a given L ∈ N∗, and a good understanding of the remainder term.
Our strategy will be to examine the symbol R(x, ζ) of the pseudod-

ifferential operator Lu(λ)
−1. In Section 3.3, we will expand the diagonal

and antidiagonal parts Rd(x, ζ) and Ra(x, ζ) of R(x, ζ) in powers of λ−2,
determining recursively the form of each term of the expansion. Homogene-
ity considerations will then give us the desired expansion of λR2k−1 (and
thus of TrT 2k

u (λ)) in powers of λ−2. In Section 3.4, we identify the µj,k(u)’s
from (22) and separate them from the remainder term. In Section 3.5 we
estimate the remainder term, finishing the proof of the Lemma. The final
Section 3.6 consists of the proof by induction of a technical result stated in
Section 3.3.1, on the form of the terms of the expansions for Rd and Ra.

3.2. Case L = 0

Let us note first of all that the desired decomposition in the case L = 0 reads

ln au(λ) = [µ0,1(u) + λ−2µ1,1(u) + τ10 (u, λ)︸ ︷︷ ︸
=− 1

2
TrT 2

u(λ)

]

+ [λ−2µ1,2(u) + τ20 (u, λ)︸ ︷︷ ︸
=− 1

4
TrT 4

u(λ)

] + τ∗0 (u, λ).
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(See the table in Section 2.1.) As we have already treated TrT 2
u (λ) and

τ∗0 (u, λ), it remains to understand the term −1
4 TrT

4
u (λ). Recall first of all

that the formula for µ1,2(u) can be read off from the known expression for
E1(u) =

i
4P (u). In particular, µ1,2(u) must be equal to i

8∥u∥4L4(R), the part

of E1(u) which is quartic in u. Next, we decompose T 4
u (λ) more explicitly, in

order to identify and estimate τ20 (u, λ). A computation (the details of which
are contained, for instance, in [2]) tells us that

TrT 4
u (λ) = i(2λ2)2

∫

R

u(x)
(
(D + 2λ2)−1u(x)

)2
(D − 2λ2)−1u(x) dx.

Then, making a few simple manipulations, we can bring the right side of the
equation above into the following form.

TrT 4
u (λ) =

i

−2λ2

∫

R

u(x)

[
u(x)− (D + 2λ2)−1Du(x)

]2

×
[
u(x)− (D − 2λ2)−1Du(x)

]
dx

= − i

2λ2

[ ∫

R

|u(x)|4 dx−
∫

R

|u|2u(x)(D − 2λ2)−1Du(x) dx

− 2

∫

R

|u|2u(x)(D + 2λ2)−1Du(x) dx

+ 2

∫

R

|u(x)|2(D + 2λ2)−1Du(x)(D − 2λ2)−1Du(x) dx

+

∫

R

((D + 2λ2)−1Du(x))2u(x)2 dx

−
∫

R

u(x)((D + 2λ2)−1Du(x))2((D − 2λ2)−1Du(x)) dx

]

= − 4

λ2
µ1,2(u)− 4τ20 (u, λ).

To estimate τ20 (u, λ), we use the following simple Lemma, the proof of
which we omit.

Lemma 3.1. The following estimates hold, for λ ∈ Γδ.

• If 0 ≤ α1 ≤ α2 ≤ 1, then

(38)
∥∥(D ± 2λ2)−1Du

∥∥
Ḣα1 (R)

≲α2−α1

∥u∥Ḣα2 (R)

(2 Im(λ2))α2−α1
, ∀u ∈ Hα2(R).
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• If 2 ≤ p <∞, then

(39)
∥∥(D ± 2λ2)−1Du

∥∥
Lp(R)

≲p ∥u∥Hs∗(p)(R), ∀u ∈ Hs∗(p)(R).

We estimate one of the terms defining τ20 (u, λ) explicitly; the others can
be dealt with in an entirely similar way.

∣∣∣∣
1

λ2

∫

R

u(x)((D + 2λ2)−1Du(x))2((D − 2λ2)−1Du(x)) dx

∣∣∣∣

≤ 1

|λ|2 ∥u∥L6(R)∥(D + 2λ2)−1Du∥2L6(R)∥(D − 2λ2)−1Du∥L2(R)

≲α

∥u∥3
H

1
3 (R)

∥u∥Hα(R)

|λ|2+2α
.

We conclude that τ20 (u, λ) satisfies the required bound, finishing the
case L = 0.

3.3. Expanding the resolvent

3.3.1. Formal expansion of Ra and Rd. As stated above, for L ≥ 1
we seek an expansion of the symbol of L−1

u (λ), in powers of λ−2. That is,
we seek to understand R(x, ζ) in the expression

(40) L−1
u (λ)f =

1√
2π

∫
dζeixζR(x, ζ)f̂(ζ).

The identity Lu(λ)R(x,D) = I implies

(41) iσ3∂xR(x, ζ)− (ζσ3 + λ2)R(x, ζ)− iλU(x)R(x, ζ) = I.

Introducing the new variable p = ζ
λ2 , this reads

(42) iσ3∂xR(x, ζ)− λ2(pσ3 + 1)R(x, ζ)− iλU(x)R(x, ζ) = I.

We split R into its diagonal and antidiagonal parts Rd and Ra, respec-
tively,

R(x, ζ) = Rd(x, ζ) +Ra(x, ζ),

and we also split equation (42) accordingly:

(43) iσ3∂xR
d(x, ζ)− λ2(pσ3 + 1)Rd(x, ζ)− iλU(x)Ra(x, ζ) = I;
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(44) iσ3∂xR
a(x, ζ)− λ2(pσ3 + 1)Ra(x, ζ)− iλU(x)Rd(x, ζ) = 0.

Next, we expand5 R, and thus Rd and Ra, in inverse powers of λ2:

Rd(x, ζ) =
∑

k≥0

1

λ2+2k
Rd

k(x, p), Ra(x, ζ) =
∑

k≥0

1

λ3+2k
Ra

k(x, p).

We rewrite (43) and (44) in expanded form:

I = −(pσ3 + 1)Rd
0 +

∞∑

k=1

iσ3∂xR
d
k−1 − (pσ3 + 1)Rd

k − iURa
k−1

λ2k
;(45)

0 = −(pσ3 + 1)Ra
0 − iURd

0 +

∞∑

k=1

iσ3∂xR
a
k−1 − (pσ3 + 1)Ra

k − iURd
k

λ2k
.(46)

We thus obtain the recursive system (47)–(49) below.

(47) Rd
0(x, p) = −pσ3 − 1

p2 − 1
, Ra

0(x, p) = − iU

p2 − 1
,

(48)
Rd

k(x, p) =
1

p2 − 1

[
− iURa

k−1(x, p) + i∂xR
d
k−1(x, p)σ3

]
(pσ3 − 1),

k ≥ 1,

Ra
k(x, p) =

1

p2 − 1

[
iURd

k(x, p) + i∂xR
a
k−1(x, p)σ3

]
(pσ3 + 1)

=
1

p2 − 1

[
U2Ra

k−1(x, p)− U∂xR
d
k−1(x, p)σ3

+ i∂xR
a
k−1(x, p)σ3(pσ3+1)

]
,

k ≥ 1.(49)

We used the formula for Rd
k(x, p) to pass to the second line in the formula

for Ra
k(x, p). We also used several times the fact that σ3A = −Aσ3 for any

antidiagonal matrix.
We use the computations above to clarify the form of the Rd

k’s and R
a
k’s;

the precise statement is contained in the following Lemma.

5We refer to [5] for the semiclassical interpretation of these expansions.
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Lemma 3.2. The Rd
k’s and Ra

k’s take the following form:

Rd
k(x, p) =

k∑

r=1

Rd
k,r(x, p), k ≥ 1,(50)

Ra
k(x, p) =

k∑

r=0

Ra
k,r(x, p), k ≥ 0,(51)

where the entries of the Rd
k,r’s and Ra

k,r’s are homogeneous polynomials of
degrees 2r and 2r + 1, respectively, in u, u, and their derivatives. More specif-
ically, setting Qγ = ∂γ1

x U · · · ∂γn
x U , for γ ∈ Nn, we have

Rd
k,r(x, p) =

1

(p2 − 1)k+1

∑

γ∈N2r

|γ|=k−r

Qγ(x)P|γ|(p)(pσ3 − 1),(52)

Ra
k,r(x, p) =

1

(p2 − 1)k+1

∑

γ∈N2r+1

|γ|=k−r

Qγ(x)P|γ|(p).(53)

Here and below we use the notation Pn to denote any diagonal matrix whose
diagonal entries are polynomials in p having degree at most n.

We postpone the proof of this Lemma until Section 3.6, so as not to
interrupt the flow of ideas.

3.3.2. The truncated expansion, and a formula for R2m−1. For a
fixed N ∈ N∗, we set the following notation. (Later we will set N = 2L.)

R(N)(x, p) =

N∑

k=0

Rd
k(x, p)

λ2+2k

︸ ︷︷ ︸
=:R

(N)
d (x,p)

+

N−1∑

k=0

Ra
k(x, p)

λ3+2k

︸ ︷︷ ︸
=:R

(N)
a (x,p)

=
Rd

0(x, p)

λ2︸ ︷︷ ︸
=:R

(N)
d,0 (x,p)

+

N∑

r=1

N∑

k=r

Rd
k,r(x, p)

λ2+2k

︸ ︷︷ ︸
=:R

(N)
d,r (x,p)

+

N−1∑

r=0

N−1∑

k=r

Ra
k,r(x, p)

λ3+2k

︸ ︷︷ ︸
=:R

(N)
a,r (x,p)

.

(54)

The symbol R(N)(x, p) is a truncated expansion of R(x, p) in inverse

powers of λ, having diagonal and antidiagonal parts R
(N)
d , R

(N)
a , respectively.

The point of this definition is that, using Lemma 3.2, we know that R
(N)
d,r
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is homogeneous of degree 2r in u, u, and their derivatives, while R
(N)
a,r is

homogeneous of degree 2r + 1 in these quantities. Expanding R(N) according
to (54) and applying the recursive identities (45)–(46), we see that R(N)(x, p)
satisfies

[iσ3∂x − λ2(pσ3 + 1)− iλU(x)]R(N)(x, p) = I + Y (N)(x, p),

where Y (N)(x, p) = Y
(N)
d (x, p) + Y

(N)
a (x, p),

Y
(N)
d (x, p) =

1

λ2+2N
iσ3(∂xR

d
N )(x, p),

Y (N)
a (x, p) = − 1

λ1+2N
Ra

N (x, p)(pσ3 − 1).

This implies

(55) L−1
u (λ) = R(N)(x, λ−2D)− L−1

u (λ)Y (N)(x, λ−2D).

Recall that R2m−1 is the term in the expansion (36) which is homoge-
neous of order 2m− 1 in u, u, and their derivatives. On the other hand,

the portion of R(N) which is of this homogeneity is precisely R
(N)
a,m−1. Com-

bining these considerations with (55), we see that R2m−1 is the difference

between R
(N)
a,m−1 and the part of L−1

u (λ)Y (N)(x, λ−2D) that is homogeneous
of degree 2m− 1 in u, u, and their derivatives. Using the expansion (36) to
isolate this part, we obtain:

R2m−1 = R
(N)
a,m−1(x, λ

−2D)

− 1

λ2+2N

∑

k+r′=m−1
k≥0, 1≤r′≤N

Tu(λ)
2k+1(L0 − λ2)−1(L0R

d
N,r′)(x, λ

−2D)

− 1

λ1+2N

∑

k+r′=m−1
k≥0, 0≤r′≤N

Tu(λ)
2k(L0 − λ2)−1Ra

N,r′(x, λ
−2D)(λ−2L0 + 1).

(56)
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3.4. Extracting the µj,m(u)’s

Combining (56) with (37), (54), and pulling out inverse powers of λ, we easily
find the following formula for TrT 2m

u (λ) with m ≥ 2, truncated at N = 2L.

Tr(T 2m
u (λ)) =

2L−1∑

j=m−1

1

λ2j+2
Tr[iURa

j,m−1(x, λ
−2D)]

+
∑

k+r=m−1
k≥0, 1≤r≤2L

(−1)k

λ4L+4+2k
Tr

[
(U(λ−2L0 − 1)−1)2k+2(L0R

d
2L,r)(x, λ

−2D)
]

+
∑

k+r=m−1
k≥0, 0≤r≤2L

i(−1)k+1

λ4L+2+2k
Tr

[
(U(λ−2L0 − 1)−1)2k+1Ra

2L,r(x, λ
−2D)(λ−2L0 + 1)

]
.

(57)

We will refer to the three sums above as I, II, and III, respectively.
We now identify the coefficients µj,m(u)’s and verify that they satisfy

the properties claimed in Lemma 2.1. The claimed homogeneity properties
will be clear from the formulas that we derive below; we will just need to
verify the bounds (26). The latter are also straightforward to verify but will
require us to use the structure of the Rd

k,r’s and R
a
k,r’s from (52)–(53).

The first sum has the form

−2m

2L−1∑

j=m−1

µj,m(u)

λ2j

with

µj,m(u) = − i

2mλ2
Tr

[
URa

j,m−1(x, λ
−2D)

]

= − i

4mπ

∑

γ∈N2m−1

|γ|=j−(m−1)

Tr

[∫
U(x)Qγ(x) dx

∫
P|γ|(

ζ
λ2 )

(( ζ
λ2 )2 − 1)j+1

dζ

λ2

]
.

(58)

Note that ‘Tr’ denotes an operator trace in the first line, whereas it
refers to the 2× 2 matrix trace in the second and third lines. We will use
the notation ‘Tr’ similarly in what follows without further comment.
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Since λ is presumed to lie in Γδ, a comparison of the degrees in the
numerator and denominator ensures that the integrals over ζ are finite and
their values are independent of λ.

The integrals over x are all of the form
∫
U∂γ1

x U · · · ∂γ2m−1
x U dx, with |γ| = j − (m− 1).

Integrating by parts repeatedly allows us to bring each of these into a form
where as few derivatives as possible fall on any single U , namely

∑

η∈N2m

|η|=j−(m−1)

cη

∫
∂η1
x U · · · ∂η2m

x U dx,

where cη = 0 unless

max{η1, . . . , η2m} ≤
{

1
2(j − (m− 1)), if j − (m− 1) is even,
1
2(j − (m− 1) + 1), otherwise.

Using this form of the integral over x, we now establish bounds on µj,m(u)
according to m and the parity of j. In each case below, ℓ is a strictly positive
integer.

• If j = 2ℓ is even and m = 2, then there are 2ℓ− 1 derivatives; thus

|µ2ℓ,2(u)| ≲ ∥u∥Hℓ(R)∥u∥3Hσ(ℓ−1)(R),

where we recall the notation σ(n) = max{n, 13}.
• If j = 2ℓ is even and m ≥ 3, then there are at most 2(ℓ− 1) total
derivatives. This establishes the following bounds

|µ2,3(u)| ≲ ∥u∥6
H

1
3 (R)

,

|µ2ℓ,m(u)| ≲ ∥u∥2mHℓ−1(R), ℓ ≥ 2, m ∈ {3, . . . , 2ℓ+ 1}.

• If j = 2ℓ+ 1 is odd and m ≥ 2, then there are at most 2ℓ derivatives,
so that we have |µ2ℓ+1,m(u)| ≲ ∥u∥2m

Hℓ(R).

Let us remark that the formula (58) determines µj,m(u) for all m ≥ 2
and all j ≥ m− 1, not just for those µj,m(u)’s that appear in the sum I.
Therefore, the above bounds on the µj,m(u)’s complete our proof of the
estimates (26). However, in order to determine the remainders τmL (u, λ), we
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still need to extract µ2L,m(u) and µ2L+1,m(u) from the sums II and III. To
this end, we remove the parts of II and III which are of order λ−4L and
λ−4L−2; these will correspond to µ2L,m(u) and µ2L+1,m(u), respectively. We
deal first with µ2L,m(u); the only term expected to be relevant is the k = 0
term in III, namely

(59) − i

λ4L+2
Tr

[
U(λ−2L0 − 1)−1Ra

2L,m−1(x, λ
−2D)(λ−2L0 + 1)

]
.

To extract the part of this expression that is really of order λ−4L, we com-
mute the operator (λ−2L0 − 1)−1 with Ra

2L,m−1(x, λ
−2D). We will have to do

something similar several times below, so let us pause to write down a more
general formula. Let A denote an antidiagonal operator with symbol A(x, ζ)
and similarly let B denote a diagonal operator with symbol B(x, ζ). Then a
simple application of the product rule gives the following operator identities.

A(L0 + λ2)−1 = −(L0 − λ2)−1A+ (L0 − λ2)−1(L0A)(L0 + λ2)−1;(60)

B(L0 − λ2)−1 = (L0 − λ2)−1B + (L0 − λ2)−1(L0B)(L0 − λ2)−1.(61)

Using (60) with A = Ra
2L,m−1, the expression (59) becomes

−2mµ2L,mλ−4L

︷ ︸︸ ︷
i

λ4L+2
Tr

[
URa

2L,m−1(x, λ
−2D)

]

− i

λ4L+4
Tr

[
U(λ−2L0 − 1)−1(L0R

a
2L,m−1)(x, λ

−2D)
]
.

(62)

To extract µ2L+1,m(u), we need to determine the part of II and III that
is of order 2L+ 1 in λ−2. There are three quantities we need to consider:

• The second term in (62):

(63) − i

λ4L+4
Tr

[
U(λ−2L0 − 1)−1(L0R

a
2L,m−1)(x, λ

−2D)
]

• The k = 0 term in II:

(64)
1

λ4L+4
Tr

[
(U(λ−2L0 − 1)−1)2(L0R

d
2L,m−1)(x, λ

−2D)
]

• The k = 1 term in III:

(65)
i

λ4L+4
Tr

[
(U(λ−2L0 − 1)−1)3Ra

2L,m−2(x, λ
−2D)(λ−2L0 + 1)

]
.
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We deal with each of these in turn, denoting their contributions to µ2L+1,m

by µ
(1)
2L+1,m, µ

(2)
2L+1,m, and µ

(3)
2L+1,m, respectively. To put (63) in the desired

form, we simply apply (60) again, this time with A = L0R
a
2L,m−1. The result

is

i

λ4L+4
Tr

[
U(L0R

a
2L,m−1)(x, λ

−2D)(λ−2L0 + 1)−1
]

− i

λ4L+6
Tr

[
U(λ−2L0 − 1)−1(D2Ra

2L,m−1)(x, λ
−2D)(λ−2L0 + 1)−1

]
.

(66)

Thus

µ
(1)
2L+1,m = − i

2mλ2
Tr

[
U(L0R

a
2L,m−1)(x, λ

−2D)(λ−2L0 + 1)−1
]
.

Next, we look at (64). We perform two commutations, using A = U
in (60) (with λ2 replaced by −λ2), then B = U2 in (61), to obtain

[U(λ−2L0 − 1)−1]2 = −(λ−4D2 − 1)−1U2

+ λ−2(λ−2L0 + 1)−1(L0U)(λ−2L0 − 1)−1U(λ−2L0 − 1)−1

− λ−2(λ−4D2 − 1)−1(L0U
2)(λ−2L0 − 1)−1.

(67)

Substituting this into (64) yields

− 1

λ4L+4
Tr

[
U2(L0R

d
2L,m−1)(x, λ

−2D)(λ−4D2 − 1)−1
]

+
1

λ4L+6
Tr

[
(λ−2L0 + 1)−1(L0U)(λ−2L0 − 1)−1U

× (λ−2L0 − 1)−1(L0R
d
2L,m−1)(x, λ

−2D)
]

− 1

λ4L+6
Tr

[
(λ−4D2 − 1)−1(L0U

2)(λ−2L0 − 1)−1(L0R
d
2L,m−1)(x, λ

−2D)
]
.

(68)

We take

µ
(2)
2L+1,m =

1

2mλ2
Tr

[
U2(L0R

d
2L,m−1)(x, λ

−2D)(λ−4D2 − 1)−1
]
.
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Finally, we look at (65). Proceeding as in (67) but commuting one more
time, we get

(λ−2L0 + 1)[U(λ−2L0 − 1)−1]3

= (λ−4D2 − 1)−1U3

+ λ−2(L0U)(λ−2L0 − 1)−1U(λ−2L0 − 1)−1U(λ−2L0 − 1)−1

− λ−2(λ−2L0 − 1)−1(L0U
2)(λ−2L0 − 1)−1U(λ−2L0 − 1)−1

− λ−2(λ−4D2 − 1)−1(L0U
3)(λ−2L0 − 1)−1.

Substituting the above into (65) yields

i

λ4L+4
Tr

[
U3Ra

2L,m−2(x, λ
−2D)(λ−4D2 − 1)−1

]

+
i

λ4L+6
Tr

[
(L0U)(λ−2L0 − 1)−1U(λ−2L0 − 1)−1U

× (λ−2L0 − 1)−1Ra
2L,m−2(x, λ

−2D)
]

− i

λ4L+6
Tr

[
(λ−2L0 − 1)−1(L0U

2)(λ−2L0 − 1)−1U

× (λ−2L0 − 1)−1Ra
2L,m−2(x, λ

−2D)
]

− i

λ4L+6
Tr

[
(λ−4D2 − 1)−1(L0U

3)(λ−2L0 − 1)−1Ra
2L,m−2(x, λ

−2D)
]
.

(69)

Thus

µ
(3)
2L+1,m = − i

2mλ2
Tr

[
U3Ra

2L,m−2(x, λ
−2D)(λ−4D2 − 1)−1

]
.

In view of (49), we have

Ra
2L+1(x, λ

−2D) = (L0R
a
2L)(x, λ

−2D)(λ−2L0 + 1)−1

+ iU(L0R
d
2L)(x, λ

−2D)(λ−4D2 − 1)−1

+ U2Ra
2L(x, λ

−2D)(λ−4D2 − 1)−1,

and therefore,

Ra
2L+1,m−1(x, λ

−2D) = (L0R
a
2L,m−1)(x, λ

−2D)(λ−2L0 + 1)−1

+ iU(L0R
d
2L,m−1)(x, λ

−2D)(λ−4D2 − 1)−1

+ U2Ra
2L,m−2(x, λ

−2D)(λ−4D2 − 1)−1,
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which confirms that

µ
(1)
2L+1,m + µ

(2)
2L+1,m + µ

(3)
2L+1,m = µ2L+1,m

with µ2L+1,m defined in (58).

3.5. Estimating the remainder

The final step of the proof is to estimate the remainder terms, which we
group together into τmL (u, λ). This expression is a sum of the following terms:

• The k ≥ 1 terms of II and the k ≥ 2 terms of III, where II and III
denote (as above) the second and third sums in the decomposition (57).
We refer to these as the ‘Type 1’ remainder terms. Note that our
assumptions on k force m to be at least 3 for all Type 1 terms.

• The terms in (66), (68), and (69) where λ−4L−6 appears (six terms
total). We refer to these as the ‘Type 2’ remainder terms.

3.5.1. Type 1 remainder terms. We begin with the two sums. We want
to show that the following expression is bounded by ∥u∥2m

HL(R):

∑

k+r=m−1
k≥1, 1≤r≤2L

(−1)k

λ2k
Tr

[
(U(λ−2L0 − 1)−1)2k+2(L0R

d
2L,r)(x, λ

−2D)
]

+
∑

k+r=m−1
k≥2, 0≤r≤2L

i(−1)k+1

λ2(k−1)
Tr

[
(U(λ−2L0 − 1)−1)2k+1Ra

2L,r(x, λ
−2D)(λ−2L0 + 1)

]
.

(70)

By virtue of (52), we can write

(L0R
d
2L,r)(x, p) =

1

(p2 − 1)2L+1

∑

γ∈N2r

|γ|=2L−r+1

Qγ(x)P|γ|(p).

Thus, the traces in the first sum in (70) may be written as a sum of terms
of the form

Tr
[
(U(λ−2L0 − 1)−1)2k+2Qγ(x)P2L−r+1(λ

−2D)(λ−4D2 − 1)−2L−1
]

(71)

with γ ∈ N2r, |γ| = 2L− r + 1 ≤ 2L. Integrating by parts repeatedly in the
above expression until no derivative of order larger than L falls on any
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single U , we rewrite the expression (71) as a sum of terms of the form

Tr
[
(∂η1

x U)(x)(λ−2L0 − 1)−1 . . . (∂η2k+2
x U)(x)(λ−2L0 − 1)−1Qγ(x)

× P2L−r+1(λ
−2D)(λ−4D2 − 1)−2L−1

]
,

with η = (η1, . . . η2k+2) ∈ N2k+2, γ = (γ1, . . . , γ2r) ∈ N2r satisfying |η|+
|γ| = 2L− r + 1 and max

p,q
(ηp, γq) ≤ L. Thus, the expression (71) can be

bounded by |λ|2∥u∥2m
HL(R), and therefore the first sum in (70) by ∥u∥2m

HL(R).

We deal with the second sum in (70) in essentially the same way. Invok-
ing (53), we may write

Ra
2L,r(x, λ

−2D)(λ−2L0 + 1)

=
∑

γ∈N2r+1

|γ|=2L−r

Qγ(x)P|γ|+1(λ
−2D)(λ−4D2 − 1)−2L−1.

Thus

Tr
[
(U(λ−2L0 − 1)−1)2k+1Ra

2L,r(x, λ
−2D)(λ−2L0 + 1)

]

is a sum of terms of the form

(72) Tr
[
(U(λ−2L0 − 1)−1)2k+1Qγ(x)P2L−r+1(λ

−2D)(λ−4D2 − 1)−2L−1
]
,

where γ ∈ N2r+1 with |γ| = 2L− r ≤ 2L. As before, we integrate by parts
repeatedly to rewrite the expression (72) as a sum of terms of the form

Tr
[
(∂η1

x U)(x)(λ−2L0 − 1)−1 . . . (∂η2k+1
x U)(x)(λ−2L0 − 1)−1Qγ(x)

× P2L−r+1(λ
−2D)(λ−4D2 − 1)−2L−1

]
,

with η = (η1, . . . η2k+1) ∈ N2k+1, γ = (γ1, . . . , γ2r+1) ∈ N2r+1 satisfying |η|+
|γ| = 2L− r and max

p,q
(ηp, γq) ≤ L. This allows us to bound (72) by

|λ|2∥u∥2m
HL(R), thus completing the desired estimates on the Type 1 remainder

terms.

3.5.2. Type 2 remainder terms. We now deal with the Type 2 re-
mainder terms (the terms in (66), (68), and (69) where λ−4L−6 appears).
When m ≥ 3, the total number of derivatives falling on the U ’s is 2L; there-
fore we can bound all these terms by |λ|−4L−4∥u∥2m

HL(R) by arguing exactly
as we did for the Type 1 terms. To complete the proof of Lemma 2.1, it thus
remains to consider the Type 2 remainder terms with m = 2. In this case,
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some of the U ’s appear to be overloaded with derivatives, and we need an ad-
ditional estimate. We state the following Lemma in terms of the ‘overloaded’
part of the Type 2 remainder term from (66), but the same manipulations
will yield the bound we need for the other Type 2 remainders.

Lemma 3.3. The following estimate holds, for any j ∈ N and all α ∈ [0, 1].

(73) ∥(L0 + λ2)−1Dj+1U(L0 − λ2)−1∥2 ≤ C(α)|λ|−1−2α∥u∥Hj+α(R).

Proof. Denoting T = (L0 + λ2)−1Dj+1U(L0 − λ2)−1, we readily compute as
follows:

∥T∥22 =
1

π

∫∫ |D̂j+1u(ζ1 − ζ2)|2
|ζ1 − λ2|2|ζ2 − λ2|2dζ1dζ2

=
1

π

∫
|ζ1|2|D̂ju(ζ1)|2

(∫
dζ2

|ζ1 + ζ2 − λ2|2|ζ2 − λ2|2
)
dζ1

=
2

Imλ2

∫ |ζ1|2|D̂ju(ζ1)|2
|ζ1 + 2i Imλ2|2dζ1 ≤ C(α)|λ|−2−4α∥u∥2Hj+α(R).

This completes the proof. □

With the above Lemma at our disposal, we now return to the estimation
of the Type 2 remainder terms for m = 2; we deal first with the one that ap-
pears in (66). Omitting the prefactor −i

λ4L+6 , the quantity under consideration
is

Tr
[
U(λ−2L0 − 1)−1(D2Ra

2L,1)(x, λ
−2D)(λ−2L0 + 1)−1

]
,

which we write as

(74) Tr
[
(λ−2L0 + 1)−1(D2U)(λ−2L0 − 1)−1Ra

2L,1(x, λ
−2D)

]
.

Proceeding as we did for the Type 1 terms, we rewrite this expression as a
sum of terms of the form

(75) Tr
[
(λ−2L0 + 1)−1(Dη+2U)(λ−2L0 − 1)−1Qγ(x)

× P2L−1(λ
−2D)(λ−4D2 − 1)−2L−1],

with η ∈ N, γ = (γ1, γ2, γ3) ∈ N3, η + |γ| = 2L− 1, η ≤ L− 1, and
max(γ1, γ2, γ3) ≤ L. The expression (75) can be bounded by

∥(λ−2L0 + 1)−1(Dη+2U)(λ−2L0 − 1)−1∥2
× ∥Qγ(x)P2L−1(λ

−2D)(λ−4D2 − 1)−2L−1∥2.
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By virtue of Lemma 3.3, the above can bounded in turn by

C(α)|λ|4−2α∥u∥HL+α(R)∥u∥3HL(R),

for any α ∈ [0, 1].
The next quantity we treat is the third term in (68); we want to estimate

Tr
[
(λ−2L0 − 1)−1(L0U

2)(λ−2L0 − 1)−1(L0R
d
2L,1)(x, λ

−2D)(λ−2L0 + 1)−1
]
.

After an integration by parts we are left with the expression

−Tr
[
(λ−2L0 − 1)−1(D2U2)(λ−2L0 − 1)−1Rd

2L,1(x, λ
−2D)(λ−2L0 + 1)−1

]
.

that can be treated in exactly the same way as (74). We note only the
modification to Lemma 3.3 that we use, namely

∥(L0 − λ2)−1(DL+1U2)(L0 − λ2)−1∥2 ≲α |λ|−1−2α∥U2∥HL+α(R)

≲α |λ|−1−2α∥u∥HL+α(R)∥u∥HL(R).

We next consider the second term in (68):

Tr
[
(λ−2L0 + 1)−1(L0U)(λ−2L0 − 1)−1U(λ−2L0 − 1)−1(L0R

d
2L,1)(x, λ

−2D)
]
,

where as usual we have suppressed the prefactor λ−4L−6. We start by rewrit-
ing it as the sum

− Tr
[
(λ−2L0 + 1)−1(D2U)(λ−2L0 − 1)−1U

× (λ−2L0 − 1)−1Rd
2L,1(x, λ

−2D)
]

+Tr
[
(λ−2L0 + 1)−1(L0U)(λ−2L0 − 1)−1(L0U)

× (λ−2L0 − 1)−1Rd
2L,1(x, λ

−2D)
]
.

(76)

For the first term here we proceed exactly as before: substituting (52) and
integrating by parts we rewrite it as a sum of expressions of the form

Tr
[
(λ−2L0 + 1)−1(Dη1+2U)(λ−2L0 − 1)−1(Dη2U)(λ−2L0 − 1)−1Qγ(x)

× P2L(λ
−2D)(λ−4D2 − 1)−2L−1],
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with η = (η1, η2) ∈ N2, γ = (γ1, γ2) ∈ N2, |η|+ |γ| = 2L− 1, max(η1, η2) ≤
L− 1, and max(γ1, γ2) ≤ L. We estimate the above by

∥(λ−2L0 + 1)−1(Dη1+2U)(λ−2L0 − 1)−1∥2∥(Dη2U)(λ−2L0 − 1)−1∥
× ∥Qγ(x)P2L(λ

−2D)(λ−4D2 − 1)−2L−1∥2,

which can in turn be bounded by

C(α)|λ|4−2α∥u∥HL+α(R)∥u∥3HL(R).

To treat the second term in (76) we distinguish the cases L = 1 and
L ≥ 2. In the case of L = 1 we estimate this expression by

∥(λ−2L0 + 1)−1(L0U)∥2∥(λ−2L0 − 1)−1(L0U)∥
× ∥(λ−2L0 − 1)−1Rd

2L,1(x, λ
−2D)∥2

≲ |λ|2+
2

p ∥u∥3H1(R)∥Du∥Lp(R), 2 ≤ p ≤ ∞.

Putting σ = α
2 ∈ [0, 12 [ and choosing p such that σ = 1

2 − 1
p
, we get the bound

|λ|3−2σ∥u∥3H1(R)∥u∥H1+σ(R) ≤ |λ|4−2α∥u∥3H1(R)∥u∥H1+α(R).

If L ≥ 2, we can proceed as for the Type 1 remainder terms and bound
the second term in (76) by |λ|2∥u∥4

HL(R). This finishes our considerations of

Type 2 remainder terms coming from (68).
The last group of Type 2 remainder terms comes from (69). Omitting

the common prefactor, the quantity of interest is

Tr
[
(L0U)(λ−2L0 − 1)−1U(λ−2L0 − 1)−1U

× (λ−2L0 − 1)−1Ra
2L,0(x, λ

−2D)
]

− Tr
[
(λ−2L0 − 1)−1(L0U

2)(λ−2L0 − 1)−1U

× (λ−2L0 − 1)−1Ra
2L,0(x, λ

−2D)
]

− Tr
[
(λ−4D2 − 1)−1(L0U

3)(λ−2L0 − 1)−1Ra
2L,0(x, λ

−2D)
]
,

(77)

where Ra
2L,0(x, p) = ∂2Lx U(x)P2L(p)(p

2 − 1)−2L−1. No new ideas are involved
in the estimation of these terms; we simply integrate by parts L− 1 times to
keep L+ 1 derivatives on U coming from Ra

2L,0 and then apply Lemma 3.3.
We omit the remaining details for these terms. Having now established the
required bounds on the remainder |τmL (u, λ)|, we have completed the proof
of Lemma 2.1, modulo the proof of Lemma 3.2 below.
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3.6. Proof of Lemma 3.2

We argue by induction. The base cases are easy to verify explicitly:

Ra
0(x, p) =

1

p2 − 1
· U(−i) = Ra

0,0(x, p)

Rd
1(x, p) =

1

(p2 − 1)2
· U2 · (−1) · (pσ3 − 1) = Rd

1,1(x, p).

Using (48)–(49) along with our inductive hypothesis, we may write,
for k ≥ 1,

Rd
k(x, p) =

1

(p2 − 1)k+1

[ k−1∑

r=0

∑

γ∈N2r+1

|γ|=(k−1)−r

−iUQγ(x)P|γ|(p)

+

k−1∑

r=1

∑

γ∈N2r

|γ|=(k−1)−r

i∂xQγ(x)P|γ|(p)(pσ3 − 1)σ3

]
(pσ3 − 1).

We check that the inner sums (together with the common factors (p2 −
1)−k−1 and (pσ3 − 1)) can be absorbed into Rd

k,r+1(x, p) and Rd
k,r(x, p),

respectively.

• When γ ∈ N2r+1 and |γ| = (k − 1)− r, the term iUQγ(x)P|γ|(p) can

be absorbed into Rd
k,r+1(x, p):

– First, UQγ = Q(0,γ), with (0, γ) ∈ N2(r+1) and |(0, γ)| = |γ| = k −
(r + 1).

– Second, degP|γ|(p) ≤ (k − 1)− r = k − (r + 1).

• When γ∈N2r and |γ|=(k−1)−r, the term ∂xQγ(x)P|γ|(p)(pσ3−1)σ3
can be absorbed into Rd

k,r(x, p):
– First, ∂xQγ is a sum of Qγ′ ’s, with |γ′| = |γ|+ 1 = k − r;
– Second, degP|γ|(p)(pσ3 − 1) ≤ [(k − 1)− r] + 1 = k − r.

The formula for Ra
k(x, p) may be verified in exactly the same way. We

write
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Ra
k(x, p) =

1

(p2 − 1)k+1

×
[ k−1∑

r=0

∑

γ∈N2r+1

|γ|=(k−1)−r

U2Qγ(x)P|γ|(p) + i∂xQγ(x)P|γ|(p)σ3(pσ3 + 1)

−
k−1∑

r=1

∑

η∈N2r

|η|=(k−1)−r

U∂xQη(x)P|η|(p)(pσ3 − 1)σ3

]
.

As above, we perform the routine verifications of the numerology as follows.

• When γ ∈ N2r+1 and |γ| = (k − 1)− r, the term U2Qγ(x)P|γ|(x) can
be absorbed into Ra

k,r+1(x, p):

– First,we note that U2Qγ = Q(0,0,γ), with (0, 0, γ) ∈ N2(r+1)+1,
|(0, 0, γ)| = |γ| = k − (r + 1);

– Second, degP|γ|(p) ≤ (k − 1)− r = k − (r + 1).

• When γ ∈ N2r+1 and |γ| = (k − 1)− r, the
term i∂xQγ(x)P|γ|(p)σ3(pσ3 + 1) can be absorbed into Ra

k,r(x, p).

When η ∈ N2r and |η| = (k − 1)− r, the same is true
of U∂xQη(x)P|η|(p)(pσ3 − 1)σ3.
– First, ∂xQγ and U∂xQη are sums of Qγ′ ’s, with γ′ ∈ N2r+1

and |γ′| = k − r.
– Second, P|γ|(p)σ3(pσ3 + 1) and P|η|(p)(pσ3 − 1)σ3 have degree at

most k − r.
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