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Modular forms, deformation of punctured

spheres, and extensions of symmetric

tensor representations

Gabriele Bogo

Let X = H/Γ be an n-punctured sphere, n > 3. We introduce
and study n− 3 deformation operators on the space of modular
forms M∗(Γ) based on the classical theory of uniformizing dif-
ferential equations and accessory parameters. When restricting to
modular functions, we recover a construction in Teichmüller the-
ory related to the deformation of the complex structure of X. We
describe the deformation operators in terms of derivations with re-
spect to Eichler integrals of weight-four cusp forms, and in terms of
vector-valued modular forms attached to extensions of symmetric
tensor representations.

Introduction

Elliptic modular forms arise as solutions of linear differential equations re-
lated to the uniformization of hyperbolic Riemann surfaces. Consider for
instance the weight one modular form f ∈ M1(Γ1(6))

(1) f(q) = 1 + 3q + 3q2 + 3q3 + 3q4 + · · · , q = e2πiτ , τ ∈ H

that plays a role in Apery’s proof of the irrationality of ζ(2) [2]. It is obtained
as f(q) = y(t) ◦ t(q) where y(t) is the holomorphic solution with y(0) = 1 of
the Fuchsian differential equation

(2)
d

dt

(
t(t− 1)(t− 1/9)

d

dt

)
y(t) + (t− ρ)y(t) = 0

with ρ = 1/3, and t(q) is a Hauptmodul for Γ1(6). The differential equa-
tion (2) is associated to the uniformization of the four-punctured sphere P1 ∖

{∞, 1, 0, 1/9}; the parameter ρ is called accessory parameter.
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For every choice of the accessory parameter ρ, let {yρ(t), ŷρ(t)} be a
Frobenius basis of solutions of (2). If Qρ := exp(ŷρ(t)/yρ(t)), one can con-
struct a Q-expansion of the form

(3) fρ(Q) = yρ(t) ◦ tρ(Q), tρ(Q) := Qρ(t)
−1

where tρ(Q) is the compositional inverse of Qρ(t). A consequence of uni-
formization theory is that when ρ = 1/3 the function fρ(Q) is precisely f(q)
in (1).

We make use of the dependence of fq(Q) on the accessory parameter ρ
to define a “deformation” (the choice of the name will be explained later) of
the Fourier expansion of f(q) by

∂0f(q) :=
∂fρ(Q)

∂ρ

∣∣∣
ρ=1/3

= 9q +
153

2
q2 + 105q3 +

543

4
q4(4)

+
36057

200
q5 − 17607

200
q6 + · · · .

By looking at the above coefficients one realizes that ∂0f can be written as

∂0f(q) =
(
1 + 3q + 3q2 + 3q3 + · · ·

)(
9q − 9

q

2

2
− 3q3 +

9

4
q4 + · · ·

)

+ 2
(
9q − 9

4
q2 − q3 +

9

16
q4 + · · ·

)(
3q + 6q2 + 9q3 + 12q4 + · · ·

)

= f(q)h̃′(q) + 2h̃(q)f ′(q)

where h(q) = 9q − 18q2 − 27q3 + · · · ∈ S4(Γ1(6)), h̃(q) = 9q − 9/2q2 −
3q3 + · · · is the Eichler integral of h, and ′ = q d

dq .

More generally, let X = H/Γ be an n-punctured sphere, n ≥ 3. The
classical theory of uniformization attaches to X a family of second-
order Fuchsian differential equations depending on n− 3 accessory parame-
ters ρ0, . . . , ρn−4. As in (3), one can construct a Q-expansion fρ(Q) for any
choice of the accessory parameters ρ = (ρ0, . . . , ρn−4). As follows from the
uniformization theorem, there exists a unique value ρF of these parameters,
called the Fuchsian value, that makes fρF (q) the Fourier expansion at a
cusp of a modular form on the uniformizing Fuchsian group Γ. Analogously
to (4), for every i = 0, . . . , n− 4 one can consider the derivative ∂fρ(Q)/∂ρi
and then specialize ρ to the Fuchsian value ρF in order to define a new holo-
morphic function on H. This operation extends to a differential operator ∂i
on the space of modular forms M∗(Γ).

In this paper we study the deformation operators ∂i and characterize
them in three ways. We summarize our results in the following theorem.
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Theorem. Let H/Γ be isomorphic to an n-punctured sphere n ≥ 4, and
let g ∈ Mk(Γ).

1) There exist a basis {h0, . . . , hn−4} of S4(Γ) such that

∂ig = kgh̃′i + 2h̃ig
′ = [g, h̃i]1 , i = 0, . . . , n− 4 ,

where h̃i is the Eichler integral of the cusp form hi and [ , ]1 is the first
Rankin-Cohen bracket.

2) Let t be a Hauptmodul for Γ and let νi be the harmonic Beltrami dif-
ferential dual to the cusp form hi. Let ε > 0 be such that ∥ενi∥∞ < 1
and let Γενi be the group obtained by conjugating Γ by a quasiconfor-
mal solution of the Beltrami equation associated to ενi. If tενi is a
Hauptmodul for Γενi, then

∂it = 4
∂tενi

∂ε̄

∣∣∣
ε=0

.

3) The i-th deformation operator ∂i induces a map

→

∂ i : Mk(Γ) → Mk(Γ, v
hi

0,2) , g 7→
→

∂ ig :=




∂ig
τ2g′ + 2τg
τg′ + g

g′


 ,

from the space of weight k modular forms to the space of weight k
vector-valued modular forms with respect to an extension vhi

0,2 of sym-
metric tensor representations v0 and v2 of dimension 1 and 3 respec-
tively.

In Section 1 we collect some basic facts on classical uniformization
and modular forms, symmetric tensor representations, their extensions, and
vector-valued modular forms. In Section 2 we define the deformation oper-
ators. Part 1 of the theorem is proven in Sections 2.1 and 2.2; the proof is
based on the theory of differential equations. Section 2.3 contains the proof
of the second statement and some background in Teichmüller theory. The
result on vector-valued modular forms, which follows from the proof of the
first point, can be found in Section 2.4. The last section 2.5 contains some
final remarks and open questions.
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1. Uniformization, differential equations, symmetric tensor

representations

In this section we recall some basic facts and fix notation.

1.1. Uniformization and accessory parameters

To an n-punctured sphere X = P1 ∖ {a1, . . . , an−1 = 0, an = ∞}, n ≥ 3, one
can attach a family of second-order Fuchsian differential equations

(5) LX :=
d

dt

(
P (t)

d

dt

)
+

n−3∑

i=0

ρit
i , P (t) :=

n−i∏

j=1

(t− aj)

depending on n− 3 parameters ρ0, . . . , ρn−4 called accessory parameters.
The value of the parameter ρn−3 = (n/2− 1)2 is fixed to make the singular
point at ∞ regular singular and for every choice of ρ1, . . . , ρn−3 all finite
singular points are regular with local exponents (0, 0).

This family of differential equations is classically related to the Fuchsian
uniformization of X [? ]. From the uniformization theorem it follows that
there is a unique choice of the parameters ρ = (ρ0, . . . , ρn−4) such that the
ratio of linearly independent solutions of (5) lifts to a biholomorphic map
between the universal covering of X and the upper half-plane H. This map
gives a universal covering of X. We call this special choice of parameters
the Fuchsian value and denote it ρF . In this special case, the monodromy
group Γ of (5) is the Deck group of the universal covering H → X. This
implies that Γ ⊂ SL2(R) is a Fuchsian group, i.e., discrete and cofinite. A
consequence is that a holomorphic solution of (5) in the case ρ = ρF lifts
to a holomorphic function on H that is a (k-th root of a weight k) modular
form on Γ. More details and examples can be found in Chapter 5 of Zagier’s
exposition in [4].

For every choice of ρ in (5) one can construct some power series from a
Frobenius basis of solutions {yρ(t), ŷρ(t)} at t = 0:

Qρ(t) := exp(ŷρ(t)/yρ(t)) =

∞∑

s=1

Qs(ρ)t
s ,(6)

tρ(Q) := Qρ(t)
−1 =

∞∑

s=1

ts(ρ)Q
s ,(7)

fρ(Q) := yρ(tρ(Q)) =

∞∑

s=0

fs(ρ)Q
s ,(8)
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where tρ(Q) is the compositional inverse of Qρ(t). In all the above
power series the coefficients are polynomials in the accessory parameters.
As recalled in the previous paragraph, if τ ∈ H, when ρ = ρF we have
that ŷρF (t)/yρF (t) = 2πiτ + λ for some λ ∈ C. Consequently

QρF (t) = e2πiτ+λ = c · q, q = e2πiτ , τ ∈ H ,

and

(9) t(τ) := tρF (cq), f(τ) := fρF (cq)

are holomorphic functions on H. More precisely, t(τ) is a Hauptmodul for Γ
and f(τ) is a root of a modular form. It turns out that f is the square root of
a weight two modular form with all its zeros concentrated in the cusp x where
the Hauptmodul t has its unique pole. This implies that every g ∈ M2k(Γ)
can be written as f2k times a polynomial in t (a proof of the last two claims
can be found in the appendix of [3]).

In the following we will assume that f is itself a modular form, i.e.,
that f ∈ M1(Γ); this is not always the case, for instance if −I ∈ Γ, but
this assumption makes the exposition smoother and we do not lose much
in terms of generality. In particular, if f ∈ M1(Γ) then every g ∈ Mk(Γ) is
of the form g = fkR(t) for some polynomial R ∈ C[t]. The reader can check
that all the statements in the next sections can easily be adapted to the
more general case f2 ∈ M2(Γ).

1.2. Symmetric tensor representations and extensions

Closely related to the differential equations solved by modular form are cer-
tain representations of the Fuchsian group Γ. Let r ≥ 0 and Vr := Symr(C2)
and let vr : SL2(R) → GL(Vr) be the representation defined by

vr(γ)

(
z1
z2

)r
=

(
γ

(
z1
z2

))r

for every γ ∈ SL2(R), where

(
z1
z2

)r
:= t

(
zr1, z

r−1
1 z2, . . . , z1z

r−1
2 , zr2

)
∈ C

r+1 .

We denote by Mk(Γ, vr), Sk(Γ, vr) the space of holomorphic vector-valued
modular forms (VVMFs for short) and vector-valued cusp forms with respect
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to the representation vr. These VVMFs are strictly related to quasimodular
forms; as Kuga-Shimura [6] and Choie-Lee [5] showed, there is an isomor-
phism

Mk(Γ, vr) ≃ ⊕r
s=0Mk+r−2s(Γ) ≃ M̃r+k(Γ)

(≤r) ,(10)

for every k, r ≥ 0 ,

where M̃r+k(Γ)
(≤r) denotes the space of quasimodular forms of weight r + k

and depth ≤ r. The reader may consult [5] for a proof of this result involving
Rankin-Cohen brackets, and as a reference for symmetric tensor representa-
tions and modular forms.

We will be interested in extensions of symmetric tensor representa-
tions, i.e., elements of Ext1Γ(vl, vr) for some l, r ≥ 0. We can describe the
space Ext1Γ(vl, vr) in terms of quasimodular forms and VVMFs as follows.
From the identity Ext1Γ(vl, vr) = H1(Γ, vl ⊗ vr), together with the Clebsch-
Gordan decomposition of vl ⊗ vr and the classical Eichler-Shimura isomor-
phism one can prove that, if r ≤ l,

(11) 0 −→
r⊕

s=0

Ml+r+2−2s(Γ) −→ Ext1Γ(vl, vr) −→
r⊕

s=0

Sl+r+2−2s(Γ) −→ 0

is a short exact sequence. Together with (10) this implies that

0 −→ Ml+2(Γ, vr) −→ Ext1Γ(vl, vr) −→ Sl+2(Γ, vr) −→ 0

is exact.
If vl,r is an extension of vr by vl we denote by Mk(Γ, vl,r) the space of

holomorphic modular forms with respect to the representation vl,r. Examples
of these VVMFs have been studied, among other things, in a recent paper
by Mertens and Raum [7].

2. Deformation operators

Let Γ ⊂ SL2(R) be a torsion-free genus zero Fuchsian group, t : H/Γ → X
a Hauptmodul and let f ∈ M1(Γ) be the modular solution of the dif-
ferential equation (5) in the case ρ = ρF . Recall from the last section
that f = fρ(q)|ρ=ρF , t = tρ(q)|ρ=ρF where

fρ(q) =

∞∑

n=0

fn(ρ)q
n, tρ(q) =

∞∑

n=0

tn(ρ)q
n, ρ = (ρ0, . . . , ρn−4)
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and ρF is the Fuchsian parameter. For i = 0, . . . , n− 4 we consider the par-
tial derivatives

∂fρ(q)

∂ρi
:=

∞∑

n=0

∂fn(ρ)

∂ρi
qn,

∂tρ(q)

∂ρi
:=

∞∑

n=0

∂tn(ρ)

∂ρi
qn .

Recall from the discussion in Section 1.1 that every g ∈ Mk(Γ) is of the
form g = fkR(t) where R ∈ C[t].

Definition 1. Let k ≥ 0 and g ∈ Mk(Γ), g = fkR(t). For i = 0, . . . , n− 4,
define the i-th deformation ∂ig of g by

∂ig(q) :=
∂fρ(q)R

(
tρ(q)

)

∂ρi

∣∣∣∣
ρ=ρF

.

For every i = 0, . . . , n− 4,, the i−th deformation operator ∂i defines a
derivation on the space of modular forms. It can be described in terms of the
first Rankin-Cohen bracket and Eichler integrals of weight four cusp forms
as follows.

Theorem 1. Let H/Γ be isomorphic to an n-punctured sphere, and let g ∈
Mk(Γ). There exist a basis {h0, . . . , hn−4} of S4(Γ) such that

∂ig = kgh̃′i + 2h̃ig
′ = [g, h̃i]1 , i = 0, . . . , n− 4 ,

where h̃i denotes the Eichler integral of the cusp form hi.

The proof of the theorem is given in the next two subsections. We study
first the effect of the partial derivation ∂/∂ρi on the solution yρ(t) of the
differential equation (5); it turns out that ∂yρ(t)/∂ρi satisfies a higher-order
Fuchsian differential equation whose shape depends on i. The solutions of
these higher-order ODEs have an integral representation in terms of the
function yρ(t). Second, we show that these solutions give rise to Eichler
integrals of cusp forms (and higher iterated integrals of modular objects) as
functions on the universal covering H.

2.1. Deformation of differential equations

Proposition 1. Let {yρ(t), ŷρ(t)} be a fundamental system of solution
of (5). Then for every i = 0, . . . , n− 4 and r ≥ 0, the functions

∂ryρ(t)

∂ρri

∣∣∣
ρ=ρF

,
∂rŷρ(t)

∂ρri

∣∣∣
ρ=ρF
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are solutions of an order 2(r + 1) Fuchsian differential equation with
the same singular points as (5). The associated monodromy represen-
tation : π1(X,x0) → GL2(r+1)(C) is an iterated extension of representa-
tions π1(X,x0) → Γ ⊂ SL2(R).

The first claim of the theorem is independent on the choice of the acces-
sory parameters. In fact, a more general result holds.

Proposition 2. Let {yρ, ŷρ} be a fundamental system of solutions of (5).
Then for every i = 0, . . . , n− 4 and r ≥ 0 the functions ∂ryρ(t)/∂ρ

r
i

and ∂rŷρ(t)/∂ρ
r
i satisfy an order 2(r + 1) Fuchsian differential equation with

the same singular points as (5).

Proof. We work with a Frobenius basis of solutions {yρ(t), ŷρ(t) =
log(t)yρ(t) + ỹρ(t)} near the regular singular point t = 0. Consider the de-
formed Fuchsian operator

(12) LX,ϵ :=
d

dt

(
P (t)

d

dt

)
+

n−3∑

i=0

(ρi + ϵi)t
i

where ρn−3 = (1− n/2)2 as before and ϵn−3 = 0. We do not deform ρn−3 in
order to preserve the regular singularity at ∞.

Let m := n− 4 and let

As(ρ, ϵ) :=
∑

j∈Zm
≥0

A(j)
s (ρ)ϵj , ϵj := ϵj00 · · · ϵjmm ,

be the solution of the homogeneous recursion associated to the differential
operator LX,ϵ with initial values (A3−n, . . . , A−1, A0) = (0, . . . , 0, 1). Finally,
consider the power series

Φj(ρ, t) :=

∞∑

s=0

A(j)
s (ρ)ts, Φ(ρ, ϵ, t) :=

∑

j∈Zm
≥0

Φj(ρ, t)ϵ
j .

We have the following identity

(13)

(
∂

∂ϵi
− ∂

∂ρi

)
Φ(ρ, ϵ, t) = 0 ,
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which can be proved from the definition of the deformed operator LX,ϵ. In
fact, the linear recursion associated to (12) is of the form

P̂n−2(s)As+1(ρ, ϵ) =

n−3∑

i=0

Pi(s, ρ, ϵ)As−i(ρ, ϵ),(14)

Pi(s, ρ, ϵ) := ρi + ϵi + P̂i(s)

where P̂i(s), i = 0, . . . , n− 2 is a quadratic polynomial in s that does not
depend on ρ, ϵ and P̂n−2(s) = (s+ 1)2

∏n−2
j=1 (−aj). By induction on s we see

that

P̂n−2(s)
∂As+1(ρ, ϵ)

∂ρi0
= As−i0(ρ, ϵ) +

n−3∑

i=0

Pi(s, ρ, ϵ)
∂As−i(ρ, ϵ)

∂ρi0

= P̂n−2(s)
∂As+1(ρ, ϵ)

∂ϵi0
,

which immediately implies (13). In particular, we get

∂Φ(j0,...,ji,...,jm)(ρ, t)

∂ρi
= (ji + 1)Φ(j0,...,ji+1,...,jm)(ρ, t) .

By applying the above identity r times to the function Φ(0,...,0)(ρ, t) = yρ(t)
we find

∂ryρ(t)

∂ρri
=

∂rΦ0(ρ, t)

∂ρri
= (r + 1)!Φ(0,...0,r,0,...,0)(ρ, t) .

This shows that ∂/∂ρi acts on Φj(ρ, t) by raising the i-th index. On the other
hand, the Fuchsian operator LX acts by lowering the indices of Φj(ρ, t). In
fact, from the definition of LX,ϵ we see that

(15) LXΦ(ρ, ϵ, t) = −Φ(ρ, ϵ, t)

m∑

i=0

ϵit
i ,

which implies

−LXΦ(j0,...,jk,...,jm)(ρ, t) = Φ(j0−1,...,jk,...,jm)(ρ, t)(16)

+ · · ·+ tmΦ(j0,...,jk,...,jm−1)(ρ, t) .

The idea is to contrast the action of ∂/∂ρi (raising indices) by applying
the differential operator LX (lowering indices) but, as we see from (16),
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some powers of t appear. To deal with this, we introduce new second-order
differential operators LX,r, r ≥ 1 by

(17) LX,r
(
trY
)
= tr+1LX

(
Y
)
, r ≥ 1 .

It is easy to see that LX,r is a Fuchsian operator with the same sin-
gular points as L for every r ≥ 1 (but not with the same local expo-
nents). It follows immediately from (17) and (15) that LX,r

(
trΦ(ρ, ϵ, t)

)
=

−Φ(ρ, ϵ, t)
∑m

i=0 ϵit
i+r+1 and in particular

−LX,r
(
trΦ(j0,...,jm)(ρ, t)

)

tr+1
(18)

= Φ(j0−1,j1,...,jm)(ρ, t) + · · ·+ tmΦ(j0,...,jm−1,jm−1)(ρ, t) .

If Φri(ρ, t) denotes the function Φ(0,...,0,r,0,...,0) where the unique non-zero
index r is at the i-th place, from (16) and (18) we conclude that

(19)

{(
Lr+1
X

)
Φri(ρ, t) = 0 i = 0 ,(

LX,r(i+1)−1 ◦ · · · ◦ LX,2i+1 ◦ LX,i ◦ LX
)
Φri(ρ, t) = 0 i = 1, . . . ,m ,

from which the statement for ∂ryρ(t)/∂ρ
r
i = Φri(ρ, t) follows.

The same argument, with the same differential operators, works
for ∂rŷρ(t)/∂ρ

r
i by deforming the recursion giving the coefficients of the

holomorphic part ỹρ(t) of ŷρ(t). □

In order to discuss the monodromy, we need the following lemma.

Lemma 1. Let M1,M2 be linear differential operators with the same set
of singular points in P1 and let M := M2 ◦M1 . The monodromy represen-
tation associated to a fundamental system of solutions of MY = 0 is an
extension of monodromy representations associated to solutions of M1Y = 0
and M2Y = 0 respectively.

Proof. Let D := P1 ∖ {singular points of M1}. Without loss of generality,
we can choose a fundamental system of solution YM of MY = 0 of the form

YM =
(
u0, . . . , uk, v1, . . . , vl

)

where YM1
= (u0, . . . , uk) and YM2

= (M1v1, . . . ,M1vl) are fundamental sys-
tem of solutions of M1Y = 0 and M2Y = 0 respectively. If ρ∗ : π1(D, d0) →
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GL∗∗(C) denotes the monodromy representation associated to Y∗, ∗ =
M,M1,M2, it is easy to verify that the sequence of π1(D, d0)-modules

0 (SM1
, ρ1) (SM , ρ) (SM2

, ρ2) 0 ,
ϕ ψ

where S∗ = Span(Y∗), is exact. □

Proof of Proposition 1. We need only to prove the statement about the mon-
odromy representation. When ρ = ρF a basis of solutions of LXY = 0 is
given locally on the universal covering H by {

√
f, τ

√
f}, where f ∈ M2(Γ)

is a weight two modular form and Γ ⊂ SL2(R) is the Deck group of the
covering H → X. It follows from the definition (17) that for every r ≥ 1 a
basis of solutions of LX,rY = 0 is given locally on H by {tr

√
f, τtr

√
f}, i.e.,

that LX,rY = 0 has (meromorphic) modular solutions.
Equation (19) shows that ∂ryρ(t)/∂ρ

r
i , i = 0, . . . , n− 4, is annihilated

by a composition of the differential operators LX and LX,j , j = 1, . . . , r(i+
1)− 1. It follows from Lemma 1 that the monodromy of the associated
differential equation is an (iterated) extension of monodromy representations
of LX , LX,j . It is a general fact that the monodromy group of a second-order
differential equation with modular solutions in M∗(Γ) is conjugated to Γ (see
Chapter 5 of Zagier’s exposition in [4]). □

Corollary 1. The following recursive formula holds for r ≥ 0, i =
0, . . . , n− 4:

∂r+1yρ(t)

∂ρr+1
i

= yρ(t)

∫ t

0

1

y2ρ(t)P (t)

∫ t1

0

yρ(t2)
∂ryρ(t2)

∂ρri
dt2 dt1 .

Proof. For every holomorphic function u one has

(20) LX

(
yρ(t)

∫ t

0

1

y2ρ(t)P (t)

∫ t1

0

yρ(t2)u(t2) dt2 dt1

)
= u ,

as follows from a straightforward computation. From the definition (17) it
follows moreover that, if i > 0,

LX,r(i+1)−1 ◦ · · · ◦ LX,2i+1 ◦ LX,i ◦ LX(u)(21)

= tr(i+1)LX ◦ LX
ti

◦ LX
ti

◦ · · · ◦ LX
ti︸ ︷︷ ︸

r−1

(u) .
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Now let vi(t) be such that LX,r(i+1)−1 ◦ · · · ◦ LX,2i+1 ◦ LX,i ◦ LX(vi) = 0.
Then the function

(22) wi(t) := yρ(t)

∫ t

0

1

y2ρ(t)P (t)

∫ t1

0

yρ(t2)t
ivi(t2) dt2 dt1

is such that LX,(r+1)(i+1)−1 ◦ · · · ◦ LX,i ◦ LX(wi) = 0 if i ≥ 1. We have in fact

LX,(r+1)(i+1)−1 ◦ · · · ◦ LX,i ◦ LX(wi) = t(r+1)(i+1)LX ◦ LX
ti

◦ · · · ◦ LX
ti︸ ︷︷ ︸

r

(wi)

= t(r+1)(i+1)LX ◦ LX
ti

◦ · · · ◦ LX
ti︸ ︷︷ ︸

r−1

vi(t)t
i

ti
= 0 ,

where the first identity follows from (21), the second identity from (20) and
the definition of wi, and the last identity again from (21) and the assumption
on vi(t).

The analogous statement in the case i = 0, i.e., for solutions of LrXY = 0,
can be proven by using (20).

Proposition 1 implies that ∂r+1yρ
∂ρr+1

i

is the sum of a multiple of wi, with vi

in (22) replaced by ∂ryρ
∂ρri

, and a holomorphic solution of LX,r(i+1)−1 ◦ · · · ◦
LX,2i+1 ◦ LX,i ◦ LX(u) = 0. To prove the corollary we should determine
this linear combination. We do it by looking at the coefficients of the local
expansion in t = 0 of wi(t) and

∂r+1yρ(t)

∂ρr+1

i

.

A closer look to the recursion formula (14) for the coefficients of yρ(t) =

Φ0(ρ, t) =
∑∞

s=0A
(0)
s (ρ)ts reveals that A

(0)
s (ρ) is a polynomial in ρi of de-

gree
⌊

s
i+1

⌋
and that the coefficient of ρri in A

(0)
r(i+1)(ρ) is (−1)nrκ−rr!−2(i+

1)−2r, where κ :=
∏n−2
j=1 aj , as follows from the explicit expression for P̂n−2

given after (14). This implies that the local expansion of ∂r+1yρ
∂ρr+1

i

in t = 0 is

given by

(23)
∂r+1yρ(t)

∂ρr+1
i

=
t(r+1)(i+1)

(r + 1)!2(i+ 1)2(r+1)κr+1(−1)n(r+1)
+O(t(r+1)(i+1)+1) .

On the other hand, from the definition (22) with vi(t) =
∂ryρ
∂ρri

is it easy to see

that the expansion of wi(t) in t = 0 is also of the form (23). Since every other
solution of LX,r(i+1)−1 ◦ · · · ◦ LX,i ◦ LX(u) = 0 contains smaller powers of t
in its local expansion, this concludes the proof of the corollary. □
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2.2. Deformation of modular forms

We complete the proof of Theorem 1. Recall that the Hauptmodul t gives
the identification H/Γ ≃ P1 ∖ {a1, . . . , an−2, an−1 = 0, an = ∞} and that we
denote P (t) :=

∏n−1
j=1 (t− aj).

Proof. The result for a modular form g ∈ Mk(Γ) follows easily from the
computation of ∂if and ∂it since ∂i is a derivation and g = fkR(t). By
definition fρ = yρ

(
tρ(Q)

)
so then

∂if(q) =
∂fρ(Q)

∂ρi
=

∂tρ(Q)

∂ρi

∂yρ(t)

∂t
+

∂yρ(t)

∂ρi
◦ tρ .

We only need to express the above function as a function of Qρ =
exp
(
ŷρ(t)/yρ(t)

)
and then specialize to the Fuchsian value ρ = ρF . In or-

der to do that, consider the change of variable formula

(24)
1

Qρ
dQρ =

κ

P (t)yρ(t)2
dt, κ = (−1)n

n−2∏

j=1

aj .

This identity follows from well-known properties of the Wronskian W (t) of
the differential equation (5), namely W (t) = κ/P (t) and yρ(t)

2dQρ(t)/dt =
W (t).

Consider ∂yρ(t)/∂ρi ◦ tρ(Q). By using Corollary 1 (with r = 0) and (24)
we get

∂yρ(t)

∂ρi
◦ tρ(Q) = fρ(Q)

∫ Q

0

∫ Q1

0
hρ,i(Q2)

dQ2

Q2

dQ1

Q1
,

where hρ,i(Q) = κ−2f4
ρ (Q)tiρ(Q)P (tρ(Q)). If we specialize to the Fuchsian

value ρF we see that hi(τ) := hρF ,i(q) is a weight four cusp form. In fact, it
is of weight four since f is of weight one, it is holomorphic because the pole
of ti is killed by the zeros of f4 (see the end of Section 1.1), and it is zero at
every cusp cj because t(cj) = aj , j = 1, . . . , n, up to reordering the indices
(a different proof that hi(τ) is a cusp form will be given in Section 2.3). This
proves that ∂yρ(t)/∂ρi ◦ tρ(Q)

∣∣
ρ=ρF

= fh̃′i

The relation tρ(Qρ(t)) = t implies

∂tρ(Q)

∂ρi
= −Q

∂tρ(Q)

∂Q
· ∂
(
ŷρ(t)/yρ(t)

)

∂ρi
◦ tρ(Q) .
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Since ŷρ(t)/yρ(t) =
∫ t
0 κ/(y

2
ρ(t1)P (t1)) dt, and by using Corollary 1 and for-

mula (24), we finally get

∂
(
ŷρ(t)/yρ(t)

)

∂ρi
◦ tρ(Q) =

∫ tρ(Q)

0

∂

∂ρi

κ

y2ρ(t1)P (t1)
dt1

= −2

∫ Q

0

∫ Q1

0

∫ Q2

0
hρ,i(Q3)

dQ3

Q3
· · · dQ1

Q1
.

By specializing to the Fuchsian parameter ρF we find that ∂it = 2t′h̃i which,
combined with ∂yρ(t)/∂t ◦ tρ(Q)|ρ=ρF = f ′/t′, concludes the proof. □

The same techniques can be used to show that the higher-order deriva-
tives ∂ri g are described by combinations of iterated integrals of Rankin-
Cohen brackets of g and h. As r grows their modular properties became
weaker, but they may still be of some interest (see the third remark in Sec-
tion 2.5).

2.3. Teichmüller theory

In this section we restrict to the case of modular functions and describe
the deformation operators in terms of the deformations of the underlying
punctured sphere. This gives an alternative explanation for the appearance
of Eichler integrals of weight four cusp forms. We start by recalling few basic
facts about Teichmüller theory.

Let Γ be a Fuchsian group such that H/Γ is isomorphic to a punc-
tured sphere X and let t : H/Γ → X be a Hauptmodul. Let T (Γ) denote
the Teichmüller space of Γ. It is well known that the holomorphic cotangent
space at the point Γ ∈ T (Γ) is the space Q(Γ) = S4(Γ) of quadratic differ-
entials on H/Γ. There exists a linear isomorphism between Q(Γ) and the
space D2(X) of rational functions on Ĉ with at most simple poles at the
finite punctures of X and order O(|z|3) as z → ∞ (see Section 2.5 in [8]).
This map can be explicitly given in terms of the Hauptmodul t by

(25) R(z) 7→ q(τ) := R
(
t(τ)

)
· t′(τ)2 , z ∈ Ĉ, τ ∈ H .

The holomorphic tangent space to T (Γ) at Γ is the space H(Γ) of har-
monic Beltrami differentials. The tangent and cotangent spaces are related



✐

✐

“2-Bogo” — 2024/3/30 — 1:02 — page 1349 — #15
✐

✐

✐

✐

✐

✐

Modular forms and deformation of punctures spheres 1349

by the linear map

(26) Λ∗ : Q(Γ) → H(Γ), q 7→ Im(τ)2q̄(τ) τ ∈ H .

Harmonic Beltrami differentials of bounded norm can be used to describe de-
formations of the punctured sphere X as follows. Let ν ∈ H(Γ) with ∥ν∥∞ <
1 and denote by µν : C → C the measurable function obtained by extend-
ing ν to C by reflection across the real line. Consider the Beltrami differential
equation

(27) fz̄ = µν(z)fz, z ∈ C.

It is well known that (27) has a unique normalized solution fν that is a
homeomorphism of C and fixes the points 0, 1,∞. The restriction of fν to H

is still a homeomorphism by construction and the conjugate group Γν :=
fνΓ (fν)−1 is Fuchsian. It follows that the quotient Xν := H/Γν is a Rie-
mann surface homeomorphic to X (check Ahlfors’s book [1] for more details
and proofs of these statements).

As the above paragraph shows, one may construct deformations of X
starting with a rational function in D2(X) by composing the maps in (25)
and (26) (but this map in general do not give Beltrami differentials with
the required norm). The coefficient of the accessory parameter ρi in the
differential equation (5) in normal form is Ri(t) = ti/P (t) ∈ D2(X). The
quadratic differential associated to Ri via the map (25) is precisely the
cusp form hi(τ) appearing in Theorem (1), as follows from the identity t′ =
P (t)f2κ−2. In this way, using (26), we can associate to every accessory pa-
rameter ρi, i = 0, . . . , n− 3 a harmonic Beltrami differential νi := Λ∗(hi(τ)).
Moreover, ν0, . . . , νn−4 form a basis of H(Γ).

Now fix 0 ≤ i ≤ n− 4 and let 0 ̸= ε ∈ C be such that ∥ενi∥∞ < 1. De-
note by fνi the normalized homeomorphic solution of the Beltrami equa-
tion (27) with µν = µενi . As above, one obtains a Fuchsian group Γi :=
f ενiΓ(f ενi)−1 and an n-punctured sphere Xi := H/Γi. The situation, for ev-
ery i = 0, . . . , n− 4, is summarized in the following diagram

(28)

H
fενi−−−−→ H

t

y
ytενi

X −−−−→
F ενi

Xi

where tενi : H → Xi is a Hauptmodul for Γi normalized by tενi(∞) =
t(∞), tενi(0) = t(0) as follows from the normalization of f ενi .
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It is known ([1],[8]) that F ενi is a quasiconformal map of Riemann su-
faces and is holomorphic in ε, while both f ενi and tενi are real-analytic
non holmorphic functions in ε. In particular, it makes sense to consider the
derivatives of the above functions with respect to ε and ε̄. From a well-
known formula of Ahlfors (see formulae 3.9 and 4.3 in [8]) it follows that,
for 0 ≤ i ≤ n− 4,

(29)
∂tενi

∂ε̄

∣∣∣
ε=0

=
1

2
h̃it .

The right hand-side of (29) resembles the statement of Theorem 1 in the
case of a modular function (weight k=0). The reason is the following.

Theorem 2. Let X be an n-punctured sphere, and let t : H/Γ → X be a
Hauptmodul. For i = 0, . . . , n− 4, let νi = Λ∗(hi) ∈ H(Γ) and let ∂i be the i-
th deformation operator on M∗(Γ). Then

∂it = 4
∂tενi

∂ε̄

∣∣∣
ε=0

.

Proof. Let X = P1 ∖ {a1, . . . , an = ∞}. Fix 0 ≤ i ≤ n− 4, let 0 ̸= ε ∈ C

be such that ∥ενi∥∞ < 1 and consider the n-punctured sphere Xi = P1 ∖

{aενj1 , . . . , a
ενj
n = ∞} where aενij := F ενi(aj), j = 1, . . . , n (see (28)).

To the Fuchsian uniformization of Xi is associated a differential equa-
tion (5) with singular points aενij and accessory parameters ρενi0 , . . . , ρενin−4.
These accessory parameters are continuously differentiable in ε since they
are coefficients of the q-expansion of tενi and this function is real-analytic in
ε. The theorem is a consequence of the identity 4.6 of [8], namely1

(30)
∂ρενij

∂ε̄

∣∣∣
ε=0

=

{
1
4 i = j ,

0 i ̸= j .

The reason is the following. Let tενi(τ) =
∑∞

s=1 t
ενi
s qs be the q-expansion

at ∞ of the normalized Hauptmodul tενi of Γi. If the q-expansion of the
Hauptmodul t of Γ is t(τ) =

∑∞
s=1 ts(ρ, a)q

s , a = (a1, . . . , an−1), then the

1The identity we refer to in [8] is stated for accessory parameters c1, . . . , cn
of a differential equation projectively equivalent to (5). A straightforward com-
putation shows that those are related to the accessory parameters ρ0, . . . , ρn−4

by ci = Rest=αi

(
4
∑

n−4

i=0
ρit

i − P ′′(t)
)
/2P (t). This leads to the identity in (30).
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Fourier coefficients of tενj are of the form

tενjs = ts(ρ
ενj , aενj ) , aενj = (a

ενj
1 , . . . , a

ενj
n−1) .

Now, aενij is holomorphic in ε; this follows from the definition aενij = F ενi(aj)
and the fact that F ενi is holomorphic in ε. This implies that the derivative
of αενij with respect to ε̄ is zero and then

(31)
∂tενi

∂ε̄

∣∣∣
ε=0

=

∞∑

s=1

(
n−4∑

k=0

∂ts(ρ
ενi , aενi)

∂ρενik

∣∣∣
ε=0

∂ρενik

∂ε̄

∣∣∣
ε=0

)
qs.

On the other hand, the action of ∂i on t is, by definition,

(32) ∂it =

∞∑

s=1

∂ts(ρ, a)

∂ρi
qs .

By comparing the q-expansions (31) and (32) and using the identity

∂ts(ρ
ενi , aενi)

∂ρενik

∣∣∣
ε=0

=
∂ts(ρ, a)

∂ρk

∣∣∣
ρ=ρF

, s ≥ 1, k = 0, . . . , n− 4 ,

together with (30), the statement of the theorem follows. □

The above proposition together with (29) gives another proof of Theorem 1
in the case of (meromorphic) modular forms of weight zero.

2.4. Vector-valued modular forms

In this final section we reformulate the results of 2.1 and 2.2 in terms of
vector-valued modular forms. From this perspective, we shall consider two
situations: the action of ∂/∂ρi on the space of solutions of LX and the action
of ∂i on M∗(Γ) induce different maps between spaces of modular forms and
VVMFs attached to certain extensions.

In Section 1.2 we showed that extensions of symmetric tensor repre-
sentations can be described in terms of quasimodular forms. Let h ∈ S4(Γ)
and let ph(γ, τ) := rh,2(γ)τ

2 + rh,1(γ)τ + rh,0(γ) be its period polynomial.
From (11) it follows that h induces extensions [vh0,2] ∈ Ext1Γ(v0, v2) and

[vh1,1] ∈ Ext1Γ(v1, v1). We can describe explicitly a representative of each class
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in terms of ph(γ, τ) as follows

(33) γ =

(
a b
c d

)
7→ vh0,2(γ) =




1 rh,2(γ) rh,1(γ) rh,0(γ)

0 a2 2ab b2

0 ac ad+ bc bd
0 c2 2cd d2


 ,

γ =

(
a b
c d

)
7→ vh1,1(γ) =




a b
c d

γ ·Bh(γ)

0 0
0 0

a b
c d


 ,

Bh(γ) :=

(
rh,1(γ) −2rh,0(γ)
2rh,2(γ) −rh,1(γ)

)
.

The action of ∂/∂ρi on the space of solutions of LX is related to exten-
sions vhi

1,1 of two-dimensional symmetric tensor representations of Γ.

Proposition 3. For every i = 0, . . . , n− 4, r ≥ 0, the deriva-
tive (∂ryρ/∂ρ

r
i ) lifts to a component of a vector-valued modular form

with respect to a r-iterated extension of symmetric tensor representations
of dimension 2. When r = 1 the derivation ∂/∂ρi on yρ(t) induces a map

Mk(Γ) → Mk(Γ, v
hi

1,1), g 7→




τgh̃′i − gh̃i
gh̃′i
τg
g


 ,

for every k ≥ 0, where hi ∈ S4(Γ) is as in Theorem 1.

Proof. The result follows from Proposition 1. Recall that ∂ryρ(t)/∂ρ
r
i is a so-

lution of a Fuchsian equation obtained as the composition of (r + 1) second-
order Fuchsian operators. The vector of solutions of this equation composed
with t(τ) gives a vector of holomorphic functions on H. Its transformation
property follows from the fact that the monodromy of the differential equa-
tion is an iterated extension of symmetric tensor representations.

In the case r = 1, the proof of Theorem 1 shows that ∂yρ(t)/∂ρi lifts

to fh̃′i and a similar computation shows that ∂ŷρ(t)/∂ρi lifts to τfh̃′i − fh̃i.
The modular transformation properties of these functions show that the
extension has to be vhi

1,1. □

The deformation operator ∂i is related to extensions in Ext1Γ(v0, v2).
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Proposition 4. For every i = 0, . . . , n− 4 the i-th deformation operator ∂i
induces a map

→

∂ i : Mk(Γ) = Mk(Γ, v0) → Mk(Γ, v
hi

0,2) g 7→
→

∂ ig :=




∂ig
τ2g′ + 2τg
τg′ + g

g′


 ,

for every k ≥ 0, where hi ∈ S4(Γ) is as in Theorem 1.

Proof. To check that
→

∂ig is a VVMF with respect to vhi

0,2 we split the vector

into the lower part (g′, τg′ + g, τ2g′ + τg)t and the upper part (∂ig) and
check that they transform accordingly under the action of Γ.

The vector (g′, τg′ + g, τ2g′ + τg)t is a weight k VVMF for the symmetric
tensor representation v2 associated to the quasimodular form g′, as Choie-
Lee’s paper [5] or a simple check shows. On the other hand, from Theorem 1
it follows that

∂ig
∣∣
k
γ = [g, h̃i]

∣∣
k
γ = [g, h̃i] + [g, phi

(γ, τ)] ,

and an easy computation shows [g, phi
(γ, τ)] = rhi,2(τ

2g + 2τg) + rhi,1(τg
′ +

g) + rhi,0g
′. By comparing these transformations with the explicit descrip-

tion of vhi

2,0 in (33) the statement follows. □

2.5. Final remarks

1) It should be possible, by considering differential equations of higher
order satisfied by g′ and ∂ig, to prove Proposition 4 by a monodromy
argument like Proposition 3. The reason why the same argument does

not work is related to the appearance of g′ in
→

∂ ig : the non-trivial
depth of this quasimodular form does not permit to reduce to second
order differential equations as happens for modular forms.

2) A related problem is to extend the map
→

∂ i to a map on M∗(Γ, vl)
for every l > 0. It follows from (10) that this is equivalent to define
the deformation operators on quasimodular forms. As quasimodular
forms do not fit into the classical picture of uniformizing differential
equations, they are not a priori related with the accessory parameters.
Nevertheless, by writing quasimodular forms as weight zero VVMFs,
one can argue as in Chapter 5 of [4] and find differential equations
solved by quasimodular forms. If these differential equations are special
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members of a family depending on some parameters, then one can
define deformations with respect to those parameters. This may give

a reasonable way to extend the maps
→

∂ i.

3) By using Corollary 1 it is possible to compute higher deformations ∂ri g
as well as mixed derivatives in terms of iterated integrals of modular
forms. More generally, given a genus zero group Γ with n-cusps it may
be interesting to consider the expansion of a modular form f ∈ M∗(Γ)
around the Fuchsian value of the accessory parameter

f̂(τ) =

∞∑

J∈Zn−4

∂Jf(τ)(ρ− ρF )
J , ∂J := ∂j11 · · · ∂n−4

n−4 ,

and to investigate its modular properties with respect to the usual
action of Γ.
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