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1. Introduction

Let e(z) := e2πiz and let K(M) denote the best constant such that

∥

M
∑

n=1

ane(nx1 + n2x2)∥L6([0,1]2) ≤ K(M)(

M
∑

n=1

|an|
2)1/2(1.1)

for all sequences of complex numbers {an}
M
n=1. Trivially, K(M) ≤ M1/2.

In 1993, Bourgain in [2] considered, among other things, the size of K(M)
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since (1.1) is associated to the periodic Strichartz inequality for the nonlinear
Schrödinger equation on the torus. He obtained that

(logM)1/6 ≲ K(M) ≤ exp(O(
logM

log logM
))(1.2)

using number theoretic methods, in particular the upper bound follows from
the divisor bound and the lower bound follows from Gauss sums on major
arcs (see also [1] for a precise asymptotic in the case of an = 1 of (1.1)). It is
natural to ask what is the true size of K(M) and whether the gap between
the upper and lower bounds can be closed.

The lower bound has not been improved since [2]. However by im-
proving the upper bound on the decoupling constant for the parabola,
Guth-Maldague-Wang recently in [7] improved the upper bound in (1.2) to
≲ (logM)C for some unspecified but large absolute constant C. Our main
result is that C can be reduced to 2+. More precisely:

Theorem 1.1. For every ε > 0, there exists a constant Cε > 0 such that

K(M) ≤ Cε(logM)2+ε.

Our proof of Theorem 1.1 will rely on a decoupling theorem for the
parabola in Qp. Previous work on studying discrete restriction using de-
coupling relied on proving decoupling theorems over R (see for example
[3, 4, 7, 9]). Here, we will broadly follow the proof in [7] except to efficiently
keep track of the number of logs we will prove a decoupling theorem over Qp

rather than over R. Additionally we will introduce some extra efficiencies to
their argument to decrease the number of logs even further.

Working in Qp has two benefits. First, the Fourier transform of a com-
pactly supported function is also compactly supported and hence this allows
us to rigorously and efficiently apply the uncertainty principle which is just a
heuristic in R. Second, since 6 is even, decoupling in Qp still implies discrete
restriction estimates.

To avoid confusing the p in Qp with the p in Lp norm, henceforth we
will replace the p in Qp with q.

Let q be a fixed odd prime. Let | · | be the q-adic norm associated to Qq.
We omit the dependence of this norm on q. This is a slight abuse of notation
as we will use the same notation for the absolute value on C, as well as the
length of a q-adic interval. However, the meaning of the symbol will be clear
from context. In Section 2, we summarize all relevant facts of Qq that we
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make use of. See Chapters 1 and 2 of [11] and Chapter 1 (in particular
Sections 1 and 4) of [12] for a more complete discussion of analysis on Qq.

For δ ∈ q−N, we write

Ξδ = {(ξ, η) ∈ Q2
q : ξ ∈ Zq, |η − ξ2| ≤ δ}.

For a Schwartz function F : Q2
q → C and an interval τ ⊂ Zq, let Fτ be defined

by xFτ := pF 1τ×Qq
. Our main decoupling theorem is as follows and is the Qq

analogue of Theorem 1.2 of [7].

Theorem 1.2. For every odd prime q and every ε > 0, there exists a con-
stant Cε,q, such that whenever R ∈ q2N and a Schwartz function F : Q2

q → C

has Fourier support contained in Ξ1/R, one has
(1.3)
∫

Q2
q

|F |6 ≤ Cε,q(logR)12+ε(
∑

|τ |=R−1/2

∥Fτ∥
2
L∞(Q2

q)
)2(

∑

|τ |=R−1/2

∥Fτ∥
2
L2(Q2

q)
).

Here the sums on the right hand side are over all intervals τ ⊂ Zq with length
R−1/2.

This theorem is proved in Sections 4-7. We will in fact show this theorem
with ε replaced by 10ε. Since 6 is even, Theorem 1.2 once again immediately
implies Theorem 1.1 (as we prove in Section 3).

The 12 powers of log in (1.3) can be accounted for as follows. Reducing
from (1.3) to the level set estimate (Proposition 6.3) costs 5 logs. They come
from: 3 logs from the Whitney decomposition in Section 5, 1 log from the
number of scales in deriving (6.7), and 1 log from pigeonholing to derive
(6.12). The level set estimate itself costs 7 logs. These come from: 1 log
since we decompose Q2

q into sets Ωk and L in Section 7.3 and (7.6), 2 logs

to control g2k by |ghk |
2 on Ωk in (7.14), and 4 logs from the appearance of λ2

in (7.15) (also see (7.8)).
In addition to efficiencies introduced by working with the uncertainty

principle q-adically, we introduce a Whitney decomposition, much like in
[6], which allows us to more efficiently reduce to a bilinear decoupling prob-
lem. Additionally compared to [7], the ratio between our successive scales
Rk+1/Rk is of size O((logR)ε) rather than in O((logR)12) which allows for
further reductions (we essentially have O(ε−1) times many more scales than
in [7]). Note that (1.3) is not a true Qq analogue of a l2L6 decoupling the-
orem for the parabola. At the cost of a few more logs, a similar argument
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as in Section 5 of [7] would allow us to upgrade to an actual l2L6 decou-
pling theorem, however (1.3) is already enough for discrete restriction for
the parabola.

Since p-adic intervals correspond to residue classes it may be possible
to rewrite the proof of Theorem 1.2 in the language of congruences and
compare it with efficient congruencing [13]. However we do not attempt this
here. For more connections between efficient congruencing and decoupling
see [5, 6, 9, 10].

In this paper we consider decoupling over Qp. However one can also
consider the restriction and Kakeya conjectures over Qp (or alternatively
over more general local fields). We refer the interested reader to [8] and the
references therein for more discussion.

For the rest of the paper, for two positive expressions X and Y , we write
X ≲ Y if X ≤ Cε,qY for some constant Cε,q which is allowed to depend on
ε and q. We write X ∼ Y if X ≲ Y and Y ≲ X. Additionally by writing
f(x) = O(g(x)), we mean |f(x)| ≲ g(x). Finally, we say that f has Fourier
support in Ω if its Fourier transform pf is supported in Ω.

2. Some basic properties of Qq

For convenience we briefly summarize some key relevant facts about Qq.
First, for a prime q, Qq is the completion of the field Q under the q-adic
norm, defined by |0| = 0 and |qab/c| = q−a if a ∈ Z, b, c ∈ Z \ {0} and q is
relatively prime to both b and c. Then Qq can be identified (bijectively) with
the set of all formal series

Qq =







∞
∑

j=k

ajq
j : k ∈ Z, aj ∈ {0, 1, . . . , q − 1} for every j ≥ k







,

and the q-adic norm on Qq satisfies |
∑∞

j=k ajq
j | = q−k if ak ̸= 0.

The q-adic norm obeys the ultrametric inequality |x+ y| ≤ max{|x|, |y|}
with equality when |x| ≠ |y|. We also define the q-adic norm on Q2

q by setting
|(x, y)| = max{|x|, |y|} for (x, y) ∈ Q2

q .
Write Zq = {x ∈ Qq : |x| ≤ 1} for the ring of integers of Qq. This is in

analogy to the real interval [−1, 1]. In analogy to working over R, for a ∈
Zq, we will call sets of the form {ξ ∈ Zq : |ξ − a| ≤ q−b} an interval inside
Zq of length q−b (so the length of an interval coincides with its diameter,
i.e. maximum distance between two points in that interval). Similarly for
(c1, c2) ∈ Q2

q , we will call sets of the form {(x, y) ∈ Q2
q : |x− c1| ≤ q−b, |y −
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c2| ≤ q−b} a square of side length q−b. Note that because the norm on Q2
q

is the maximum q-adic norm of each coordinate, this square is the same as
{(x, y) ∈ Q2

q : |(x, y)− (c1, c2)| ≤ q−b}. Thanks to the ultrametric inequality,
if two squares intersect, then one is contained inside the other; hence two
squares of the same size are either equal or disjoint.

Observe that Zq is a subset of Qq consisting of elements of the form
∑

j≥0 ajq
j where aj ∈ {0, 1, . . . , q − 1}. Since each positive integer has a base

q representation, we may embed N into Zq. Identifying −1 with the element
∑

j≥0(q − 1)qj in Zq then allows us to embed Z into Zq.

Note that if ℓ ∈ N, the intervals {ξ ∈ Zq : |ξ − a| ≤ 1/qℓ} for a =
0, 1, . . . , qℓ − 1 partition Zq into qℓ many disjoint intervals which are pair-
wise disjoint and each pair of intervals are separated by distance at least
q−ℓ+1. To see this, suppose |ξ1 − a| ≤ q−ℓ and |ξ2 − b| ≤ q−ℓ for some a ̸= b.
As |a− b| ≥ q−ℓ+1 and |(ξ1 − ξ2)− (a− b)| ≤ q−ℓ, the equality case of the
ultrametric inequality implies that |ξ1 − ξ2| = |a− b| ≥ q−ℓ+1.

Next, for fixed a ∈ {0, 1, . . . , qℓ − 1}, the interval {ξ ∈ Zq : |ξ − a| ≤
1/qℓ} is exactly the ξ ∈ Zq such that ξ ≡ a (mod qℓ) (meaning q−ℓ(ξ − a) ∈
Zq). This illustrates the connection between q-adic intervals in Qq and
residue classes and both point of views are useful throughout; for instance,
it follows easily now that Zq is the union of these qℓ disjoint intervals.

Finally, let χ be the additive character of Qq that is equal to 1 on Zq

and non-trivial on q−1Zq (up to isomorphism, there is essentially just one,
given by

χ(x) := e
(

−1
∑

j=k

ajq
j
)

if x =

∞
∑

j=k

ajq
j

where aj ∈ {0, . . . , q − 1} for all j). From this, one can define the Fourier

transform for f ∈ L1(Qq) by pf(ξ) :=
∫

Qq
f(x)χ(−ξx) dx for ξ ∈ Qq, where

dx is the Haar measure on Qq, and we have an analogous definition for the
Fourier transform in higher dimensions. The theory of the Fourier transform
in Qq is essentially the same as in R and we refer the interested reader to
[11, 12] for more details. Note that in Qq and in higher dimensions, linear
combinations of indicator functions of intervals and squares play the ana-
logue of Schwartz functions in the real setting. For f, g ∈ L1(Q2

q) ∩ L2(Q2
q),

we have Plancherel’s identity
∫

Q2
q
f g =

∫

Q2
q
f̂ ĝ, which allows one to ex-

tend the Fourier transform to a unitary operator on L2(Q2
q). We also have

zf ∗ g = f̂ ĝ for any integrable f and g on Q2
q , where (f ∗ g)(x) is the convo-

lution
∫

Q2
q
f(x− y)g(y)dy. The inverse Fourier transform will be denoted by
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q·, and we have f =
q̂
f for Schwartz functions f . Henceforth we will only deal

with Schwartz functions on Q2
q ; note Fτ is Schwartz whenever F is Schwartz.

2.1. Basic geometry and the uncertainty principle

The key property about harmonic analysis in Qq is that the Fourier trans-
form of an indicator function of an interval is another indicator function of
an interval. The key lemma is following, for a proof see p.42 of [12].

Lemma 2.1. For ξ ∈ Qq and γ ∈ Z,

­1|x|≤qγ (ξ) =

∫

|x|≤qγ
χ(ξx) dx = qγ(1|ξ|≤q−γ )(ξ).

Another useful geometric fact about Q2
q is that curvature disappears

entirely if one considers the intersection of Ξ1/R with a vertical strip of

width R−1/2.

Lemma 2.2. For any R ∈ q2Z and any interval I ⊂ Qq with length |I| =
R−1/2, the set {(ξ, η) ∈ Q2

q : ξ ∈ I, |η − ξ2| ≤ R−1} coincides with the paral-
lelogram

{(ξ, η) ∈ Q2
q : |ξ − a| ≤ R−1/2, |η − 2aξ + a2| ≤ R−1}

where a is any point in I.

Proof. Let a ∈ I. The ultrametric inequality implies I = {ξ ∈ Qq : |ξ − a| ≤
R−1/2}. Now |η − ξ2| = |η − a2 − 2a(ξ − a)− (ξ − a)2| = |(η − 2aξ + a2)−
(ξ − a)2|. It follows that for ξ ∈ I, i.e. if |ξ − a| ≤ R−1/2, then |η − ξ2| ≤
R−1, if and only if |η − 2aξ + a2| ≤ R−1. □

This motivates the following rigorous q-adic uncertainty prinicple, that
is just a heuristic in R.

Lemma 2.3 (Uncertainty Principle). Let R ∈ q2Z and I ⊂ Qq be an
interval of length |I| = R−1/2. Define the parallelogram

P := {(ξ, η) ∈ Q2
q : ξ ∈ I, |η − ξ2| ≤ R−1}(2.1)

and the dual parallelogram

T := {(x, y) ∈ Q2
q : |x+ 2ay| ≤ R1/2, |y| ≤ R}(2.2)
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where a is any point in I (this is well-defined independent of the choice of
a). Let f be Schwartz and Fourier supported in P . Then |f | is constant on
each translate of T .

Proof. One only needs to prove this for I = Zq, R = 1 and then invoke affine
invariance. Alternatively, and more directly, we have

|1P (x, y) =

∫

|t|≤R−1

∫

|s−a|≤R−1/2

χ(sx+ s2y)χ(ty) ds dt

= χ(ax+ a2y)(

∫

|s|≤R−1/2

χ(s(x+ 2ay) + s2y) ds)R−11|y|≤R

where the last equality is by Lemma 2.1. Since |y| ≤ R, |s2y| ≤ 1 and there-
fore s2y ∈ Zq. As χ is trivial on Zq, after another application of Lemma
2.1, the above expression is equal to R−3/2χ(ax+ a2y)1|x+2ay|≤R1/2,|y|≤R =

R−3/2χ(ax+ a2y)1T .
Suppose (x, y) ∈ (A,B) + T for some (A,B) ∈ Q2

q . Write x = A+ x′ and

y = B + y′ for some (x′, y′) ∈ T . Then since f = f ∗ |1P , we have

(2.3) f(x, y) = R−3/2χ(ax+ a2y)

×

∫

Q2
q

f(z, w)χ(−az − a2w)1T (x
′ +A− z, y′ +B − w) dz dw

Since |x′ + 2ay′| ≤ R1/2, using the ultrametric inequality, |(x′ +A− z) +
2a(y′ +B − w)| ≤ R1/2 if and only if |(A− z) + 2a(B − w)| ≤ R1/2. Simi-
larly, since |y′| ≤ R, |y′ +B − w| ≤ R if and only if |B − w| ≤ R. There-
fore (2.3) is equal to

R−3/2χ(ax+ a2y)

∫

Q2
q

f(z, w)χ(−az − a2w)1T (A− z,B − w) dz dw.

Thus |f(x, y)| is independent of (x, y) ∈ (A,B) + T and therefore |f | is con-
stant on each translate of T (with a constant that depends on f , P , I, and
the particular translate of T ). □

A similar proof as above shows that if f is Fourier supported in a square
of side length L, then |f | is constant on any square of side length L−1.
Furthermore, if f is Fourier supported in a square centered at the origin of
side length L, then f itself is constant on any square of side length L−1.
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In analogy with the real setting, we will say that the parallelogram T
in (2.2) has direction (−2a, 1). These parallelograms T enjoy the following
nice geometric properties.

Lemma 2.4. If R ∈ q2N, I ⊂ Zq is an interval with |I| = R−1/2, and T is
the parallelogram defined by (2.2) (with a ∈ I), then

(a) each translate of T is the union of R1/2 many squares of side length
R1/2;

(b) any two translates of T are either equal or disjoint;

(c) any square of side length R can be partitioned into translates of T .

We write T(I) for the set of all translates of T . Note that (c) implies that
Q2

q can be tiled by translates of T .

Proof. (a) First, we claim that if (x, y) ∈ T , and |(x′, y′)− (x, y)| ≤ R1/2,
then (x′, y′) ∈ T as well. This is because |x′ + 2ay′| = |x+ 2ay + (x′ −
x) + 2a(y′ − y)| ≤ R1/2 if both |x+ 2ay| ≤ R1/2 and |(x′, y′)− (x, y)| ≤
R1/2 (recall |2a| ≤ 1 when a ∈ Zq). Similarly, |y| ≤ R and |y′ − y| ≤ R1/2

implies |y′| ≤ R. This proves the claim. It follows that if (x, y) belongs to
a certain translate of T , then the square of side length R1/2 containing
(x, y) is also contained in the same translate of T .

Now by the ultrametric inequality, two squares of side length R1/2 are
either equal or disjoint. Thus every translate of T is a union of squares
of side lengths R1/2, and volume considerations show that each translate
of T contains R1/2 many such squares.

(b) It suffices to show that if (x, y) + T intersects T , then (x, y) ∈ T (be-
cause then (x, y) + T = T ). But if (x, y) + T and T both contains a point
(x′, y′), then both |(x′ − x) + 2a(y′ − y)| ≤ R1/2 and |x′ + 2ay′| ≤ R1/2,
which implies |x+ 2ay| ≤ R1/2. Similarly, |y′ − y| ≤ R and |y′| ≤ R im-
plies |y| ≤ R. Thus (x, y) ∈ T , as desired.

(c) Write R = q2A for A ≥ 1. It suffices to partition Q = {(x, y) ∈ Q2
q :

|x| ≤ R, |y| ≤ R} into translates of parallelograms Ta := {(x, y) ∈ Q2
q :

|x+ 2ay| ≤ R1/2, |y| ≤ R}.
We first consider the a = 0 case. Let S = {

∑

−2A≤j<−A ajq
j : aj ∈

{0, 1, . . . , q − 1}}. Note that #S = R1/2.
We claim we can tile Q by {(s, 0) + T0 : s ∈ S}. Indeed, for

each (x, y) ∈ Q, we can write x =
∑

−2A≤j<−A xjq
j +

∑

j≥−A xjq
j

for some xj ∈ {0, 1, . . . , q − 1}. As
∑

−2A≤j<−A xjq
j ∈ S,
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x ∈ (
∑

−2A≤j<−A xjq
j , 0) + T0. This shows Q ⊂

⋃

s∈S(s, 0) + T0.
The ultrametric inequality implies that (s, 0) + T0 ⊂ Q for each s ∈ S
and so Q =

⋃

s∈S(s, 0) + T0.
Finally, this union is disjoint as if (x, y) ∈ ((s1, 0) + T0) ∩ ((s2, 0) +

T0), then |s1 − s2| ≤ R1/2 but from the definition of S, |s1 − s2| ≥
qA+1 = R1/2q. Therefore we have partitioned Q into translates of T0.

Next we consider the general case. Let La = ( 1 2a
0 1 ). The ultrametric

inequality gives that La(Q) = Q since |2a| ≤ 1 and for s ∈ S, La((s, 0) +
T0) = (s, 0) + Ta. Therefore we can also partition Q into translates of Ta.

□

Corollary 2.5. Let R ∈ q2N, I ⊂ Zq be an interval with |I| = R−1/2, and f
be a Schwartz function with Fourier support in {(ξ, η) ∈ Q2

q : ξ ∈ I, |η − ξ2| ≤
1/R}. Then there exist constants {cT }T∈T(I) such that

(2.4) |f | =
∑

T∈T(I)

cT 1T .

As a result, |f |2 =
∑

T∈T(I) c
2
T 1T , and

∫

Q2
q

|f |2 =
∑

T∈T(I)

c2T |T |.

Proof. By Lemma 2.3, for every T ∈ T(I), there exists a constant cT so that
|f | = cT on T . By Lemma 2.4(c), T(I) tiles Q2

q . Thus (2.4) holds and the
rest follows easily. □

Lemma 2.6. Suppose R ∈ q2N and a, b ∈ Zq with a ̸= b, let

T = {(x, y) ∈ Q2
q : |x+ 2ay| ≤ R, |y| ≤ R2}

and

T ′ = {(x, y) ∈ Q2
q : |x+ 2by| ≤ R, |y| ≤ R2}.

Then

|T ∩ T ′| ≤
R2

|b− a|
.
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Proof. By redefining x, we may assume that a = 0. Then

T ∩ T ′ = {(x, y) ∈ Q2
q : max(|x|, |x+ 2by|) ≤ R, |y| ≤ R2}

⊂ {(x, y) ∈ Q2
q : |x| ≤ R, |y| ≤ R/|2b|}.

Since q is an odd prime, the claim then follows since the Haar measure is
normalized so that |Zq| = 1. □

3. Theorem 1.2 implies Theorem 1.1

SinceK(M) is trivially increasing, it suffices to show Theorem 1.1 only in the
case when M = qt for some t ∈ N. By using the trivial bound for K(M), we
may also assume that t is sufficiently large (depending only on an absolute
constant). By considering real and imaginary parts, we may also assume
that an is a sequence of real numbers in (1.1).

Let R = M2 = q2t. Choose F such that

pF (ξ, η) =

qt
∑

n=1

an1(n,n2)+B(0,q−10t)(ξ, η)q
20t.

Here we are using the embedding of Z into Zq, and (n, n2) +B(0, q−10t)

denotes the square {(ξ, η) ∈ Q2
q : |(ξ, η)− (n, n2)| ≤ q−10t}. Note that pF is

indeed supported inside Ξ1/R since if |(ξ, η)− (n, n2)| ≤ q−10t for some n ∈
N, then ξ ∈ Zq and

|ξ2 − η| = |(ξ − n)2 + 2n(ξ − n) + n2 − η|

≤ max(|ξ − n|2, |2n||ξ − n|, |n2 − η|).

Since q ≥ 3 is an odd prime, |2n| ≤ 1 and so the above is ≤ q−10t ≤ q−2t.
Inverting the Fourier transform gives that

F (x) =

( qt
∑

n=1

anχ(x1n+ x2n
2)

)

1B(0,q10t)(x).

Similarly, for each τ on the right hand side of (1.3) (with length R−1/2 =
M−1 = q−t), Fτ (x) = anχ(x1n+ x2n

2)1B(0,q10t)(x) where n is the unique ele-
ment in {1, . . . , qt} ∩ τ ; then ∥Fτ∥

2
L∞(Q2

q)
= |an|

2 and ∥Fτ∥
2
L2(Q2

q)
= |an|

2q20t.

The right hand side of (1.3) is then ≲ (logM)12+10εq20t(
∑qt

n=1 |an|
2)3.
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It now remains to show that

∥F∥6L6(Q2
q)
= q20t∥

qt
∑

n=1

ane(nx1 + n2x2)∥
6
L6([0,1]2).(3.1)

This relies on that we are working with L6. Expanding the left hand side
gives

(3.2)

qt
∑

n1,...,n6=1

an1
· · · an6

∫

B(0,q10t)
χ
(

(n1 + n2 + n3 − n4 − n5 − n6)x1

+ (n2
1 + n2

2 + n2
3 − n2

4 − n2
5 − n2

6)x2
)

dx.

Applying Lemma 2.1 gives that the above is equal to

qt
∑

n1,...,n6=1

q20tan1
· · · an6

1|n1+n2+n3−n4−n5−n6|≤q−10t1|n2
1+n2

2+n2
3−n2

4−n2
5−n2

6|≤q−10t .

The statement that (n1, . . . , n6) ∈ {1, . . . , qt}6 are such that

(3.3)
|n1 + n2 + n3 − n4 − n5 − n6| ≤ q−10t,

|n2
1 + n2

2 + n2
3 − n2

4 − n2
5 − n2

6| ≤ q−10t

is equivalent to the statement that (n1, . . . , n6) ∈ {1, . . . , qt}6 are such that

n1 + n2 + n3 − n4 − n5 − n6 ≡ 0 (mod q10t),

n2
1 + n2

2 + n2
3 − n2

4 − n2
5 − n2

6 ≡ 0 (mod q10t).

Since the 1 ≤ ni ≤ qt, n1 + n2 + n3 − n4 − n5 − n6 is an integer between
−3qt and 3qt, while n2

1 + n2
2 + n2

3 − n2
4 − n2

5 − n2
6 is an integer between −3q2t

and 3q2t. Since the only integer ≡ 0 (mod q10t) between −3q2t and 3q2t is
0, (3.3) is true for a given (n1, . . . , n6) ∈ {1, . . . , qt}6 if and only if

n1 + n2 + n3 − n4 − n5 − n6 = 0, n2
1 + n2

2 + n2
3 − n2

4 − n2
5 − n2

6 = 0.

Thus (3.2) is equal to

q20t
qt
∑

n1,...,n6=1

an1
· · · an6

1n1+n2+n3−n4−n5−n6=01n2
1+n2

2+n2
3−n2

4−n2
5−n2

6=0

which in turn is equal to the right hand side of (3.1).
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4. Setting up many scales for the proof of Theorem 1.2

We now set out to prove Theorem 1.2. Fix ε ∈ (0, 1). Let A be an integer
with

1

ε
≤ A ≤

2

ε
.

Henceforth all implicit constants may depend on q, ε and A.
Given R ∈ q2N, choose r ∈ 4N so that

qq
A(r−4)

≤ R < qq
Ar

.

Then qAr ∼ logR and (logR)ε/2 ≲ qr ≲ (logR)ε, so for R sufficiently large
(depending only on q and ε) we have r ∼ log logR. Henceforth we fix a
sufficiently large R, and define

Rk := qkr for k = 0, 1, . . . , N,

where N ∈ N is defined such that

qNr ≤ R < q(N+1)r.

The choice r ∈ 4N ensures that

(4.1) R
−1/2
k ∈ q−2N

for every k. Throughout we write τk for a generic interval inside Zq of length

R
−1/2
k , for k = 0, 1, . . . , N . For instance,

∑

τN
means sums over all intervals

τN ⊂ Zq with |τN | = R
−1/2
N .

Let F : Q2
q → C be Fourier supported in Ξ1/R as in the statement of

Theorem 1.2. In order to establish (1.3), it suffices to prove

(4.2)

∫

Q2
q

|F |6 ≲ (logR)12+9ε(
∑

τN

∥FτN∥
2
L∞(Q2

q)
)2(
∑

τN

∥FτN∥
2
L2(Q2

q)
)

and then trivially decouple from frequency scale R
−1/2
N down to

R−1/2 (note R
−1/2
N /R−1/2 ≤ qr/2 ≲ (logR)ε/2 which implies ∥FτN∥

2
L∞ ≲

(logR)ε/2
∑

|τ |=R−1/2 ∥Fτ∥
2
L∞ and

∑

τN
∥FτN∥

2
L2 =

∑

|τ |=R−1/2 ∥Fτ∥
2
L2 by

Plancherel).
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5. Bilinearization

The proof of Theorem 1.2 relies on the following key bilinear estimate:

Proposition 5.1. Let F be Fourier supported in Ξ1/R. For k =

0, 1, . . . , N − 1, and for intervals τk ⊂ Zq with |τk| = R
−1/2
k , we have

∫

Q2
q

max
τk+1 ̸=τ ′

k+1

τk+1,τ ′

k+1⊂τk

|Fτk+1
Fτ ′

k+1
|3

≲ (logR)9+6ε(
∑

τN⊂τk

∥FτN∥
2
L∞(Q2

q)
)2(

∑

τN⊂τk

∥FτN∥
2
L2(Q2

q)
).

We also need the following Whitney decomposition for Z2
q , which ex-

presses Z2
q into a disjoint union of squares of different scales:

Z2
q = W0 ⊔W1 ⊔ · · · ⊔ WN−1 ⊔WN

where

Wk :=
⊔

τk⊂Zq

⊔

τk+1 ̸=τ ′

k+1

τk+1,τ ′

k+1⊂τk

τk+1 × τ ′k+1 for k = 0, 1, . . . , N − 1

and

WN :=
⊔

τN⊂Zq

τN × τN .

The proof of (4.2), and hence Theorem 1.2 can then be given as follows.
First,

∫

Q2
q

|F |6 =

∫

Q2
q

|F 2|3 =

∫

Q2
q

∣

∣

∣

∑

τN⊂Zq

F 2
τN +

N−1
∑

k=0

∑

τk+1×τ ′

k+1⊂Wk

Fτk+1
Fτ ′

k+1

∣

∣

∣

3

which by the Minkowski inequality is

≤





∑

τN

(

∫

Q2
q

∣

∣

∣
F 2
τN

∣

∣

∣

3
)1/3

+

N−1
∑

k=0

∑

τk+1×τ ′

k+1⊂Wk

(

∫

Q2
q

∣

∣

∣
Fτk+1

Fτ ′

k+1

∣

∣

∣

3
)1/3





3

.

(5.1)
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Hölder’s inequality gives

∑

τN

(

∫

Q2
q

∣

∣

∣
F 2
τN

∣

∣

∣

3
)1/3

=
∑

τN

∥FτN∥
2
L6(Q2

q)
≤
∑

τN

∥FτN∥
2· 2

3

L∞(Q2
q)
∥FτN∥

2· 1
3

L2(Q2
q)

≤ (
∑

τN

∥FτN∥
2
L∞(Q2

q)
)

2

3 (
∑

τN

∥FτN∥
2
L2(Q2

q)
)

1

3 .

In addition, for each fixed τk, the number of (τk+1, τ
′
k+1) with τk+1, τ

′
k+1 ⊂ τk

is ≤ (qr/2)2 ≲ (logR)ε. Together with Proposition 5.1, this shows that for
each k = 0, 1, . . . , N − 1,

∑

τk+1×τ ′

k+1⊂Wk

(

∫

Q2
q

∣

∣

∣
Fτk+1

Fτ ′

k+1

∣

∣

∣

3
)1/3

=
∑

τk

∑

τk+1 ̸=τ ′

k+1

τk+1,τ ′

k+1⊂τk

(

∫

Q2
q

∣

∣

∣
Fτk+1

Fτ ′

k+1

∣

∣

∣

3
)1/3

≲ (logR)3+2ε(logR)ε
∑

τk

(
∑

τN⊂τk

∥FτN∥
2
L∞(Q2

q)
)

2

3 (
∑

τN⊂τk

∥FτN∥
2
L2(Q2

q)
)

1

3

≤ (logR)3+3ε(
∑

τN

∥FτN∥
2
L∞(Q2

q)
)

2

3 (
∑

τN

∥FτN∥
2
L2(Q2

q)
)

1

3

Thus (5.1) is bounded by

N3(logR)9+9ε(
∑

τN

∥FτN∥
2
L∞(Q2

q)
)2(
∑

τN

∥FτN∥
2
L2(Q2

q)
)

which proves (4.2) because N ≲ logR.
Proposition 5.1 can be proved by parabolic rescaling and the proposition

below. That is, we use the next proposition with J = N − k and

(5.2) f(x) := χ(−R
1/2
k ax1 +Rka

2x2)Fτk(R
1/2
k x1 − 2aRkx2, Rkx2)

where a is an arbitrary point in τk. Note that

(5.3) pf(ξ, η) = R
−3/2
k

pFτk(a+R
−1/2
k ξ, a2 + 2aR

−1/2
k ξ +R−1

k η)

is supported on ΞRk/R ⊂ Ξ1/RN−k
.
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Proposition 5.2. Let J = 1, . . . , N and let f be Fourier supported in
Ξ1/RJ

. Then

∫

Q2
q

max
τ1 ̸=τ ′

1

|fτ1fτ ′

1
|3 ≲ (logR)9+6ε(

∑

τJ

∥fτJ∥
2
L∞(Q2

q)
)2(
∑

τJ

∥fτJ∥
2
L2(Q2

q)
).

It remains to prove Proposition 5.2.

6. Broad/Narrow decomposition: Proof of Proposition 5.2

The proof of Proposition 5.2 is via a broad/narrow decomposition. Let J =
1, . . . , N and f be Fourier supported in Ξ1/RJ

. For k = 0, 1, . . . , J − 1, and

for τk ⊂ Zq with |τk| = R
−1/2
k , define

Bτk = {x ∈ Q2
q : |fτk(x)| ≤ (logR)qr/2 max

τk+1 ̸=τ ′

k+1

τk+1,τ ′

k+1⊂τk

|fτk+1
(x)fτ ′

k+1
(x)|1/2

(6.1)

and (
∑

τk+1⊂τk

|fτk+1
(x)|6)1/6 ≤ (logR)qr/2 max

τk+1 ̸=τ ′

k+1

τk+1,τ ′

k+1⊂τk

|fτk+1
(x)fτ ′

k+1
(x)|1/2}.

(6.2)

For x /∈ Bτ0 , we have

(6.3) max
τ1 ̸=τ ′

1

|fτ1(x)fτ ′

1
(x)|3 ≤

q−r/2

(logR)6

∑

τ1

|fτ1(x)|
6.

This is because if x /∈ Bτ0 , then either (6.1) is violated, in which case

max
τ1 ̸=τ ′

1

|fτ1(x)fτ ′

1
(x)|3 ≤

q−3r

(logR)6
|f(x)|6 =

q−3r

(logR)6
|
∑

τ1

fτ1(x)|
6

≤
q−3r

(logR)6
q5r/2

∑

τ1

|fτ1(x)|
6,

or (6.2) is violated, in which case

max
τ1 ̸=τ ′

1

|fτ1(x)fτ ′

1
(x)|3 ≤

q−3r

(logR)6

∑

τ1

|fτ1(x)|
6.
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Either way (6.3) holds. Upon splitting the integral in Proposition 5.2 ac-
cording to whether x ∈ Bτ0 or not, (6.3) allows us to obtain

(6.4)

∫

Q2
q

max
τ1 ̸=τ ′

1

|fτ1fτ ′

1
|3 ≤

∫

Bτ0

max
τ1 ̸=τ ′

1

|fτ1fτ ′

1
|3 +

q−r/2

(logR)6

∑

τ1

∫

Q2
q

|fτ1 |
6.

Now observe that if k = 1, . . . , J − 1 and |τk| = R
−1/2
k , then

(a) for x ∈ Bτk , we have

(6.5) |fτk(x)|
6 ≤ (logR)6q3r max

τk+1,τ ′

k+1⊂τk
τk+1 ̸=τ ′

k+1

|fτk+1
(x)fτ ′

k+1
(x)|3;

(b) for x /∈ Bτk , we have

(6.6) |fτk(x)|
6 ≤ (1− (logR)−1)−6

∑

τk+1⊂τk

|fτk+1
(x)|6.

The estimate (6.5) holds because of (6.1). The proof of (6.6) proceeds via
the Narrow Lemma:

Lemma 6.1 (Narrow Lemma). Fix τk ⊂ Zq with |τk| = R
−1/2
k . Suppose

x satisfies

|fτk(x)| > (logR)qr/2 max
τk+1,τ ′

k+1⊂τk
τk+1 ̸=τ ′

k+1

|fτk+1
(x)fτ ′

k+1
(x)|1/2.

Then there exists a τk+1 ⊂ τk such that

|fτk(x)| ≤ (1− (logR)−1)−1|fτk+1
(x)|.

Indeed, for x /∈ Bτk , either (6.1) fails, in which case the Narrow Lemma
applies, or (6.1) holds but (6.2) fails, in which case

|fτk(x)| ≤ (logR)qr/2 max
τk+1,τ ′

k+1⊂τk
τk+1 ̸=τ ′

k+1

|fτk+1
(x)fτ ′

k+1
(x)|1/2 ≤ (

∑

τk+1⊂τk

|fτk+1
(x)|6)1/6.
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Either way (6.6) holds. From (6.5) and (6.6), we see that for k = 1, . . . , J − 1

and |τk| = R
−1/2
k ,

q−r/2

(logR)6
(1− (logR)−1)−6(k−1)

∫

Q2
q

|fτk |
6

≤ q5r/2(1− (logR)−1)−6(k−1)

∫

Bτk

max
τk+1 ̸=τ ′

k+1

τk+1,τ ′

k+1⊂τk

|fτk+1
fτ ′

k+1
|3

+
q−r/2

(logR)6
(1− (logR)−1)−6k

∑

τk+1⊂τk

∫

Q2
q

|fτk+1
|6.

Summing over τk, we get

q−r/2

(logR)6
(1− (logR)−1)−6(k−1)

∑

τk

∫

Q2
q

|fτk |
6

≤ q5r/2(1− (logR)−1)−6(k−1)
∑

τk

∫

Bτk

max
τk+1 ̸=τ ′

k+1

τk+1,τ ′

k+1⊂τk

|fτk+1
fτ ′

k+1
|3

+
q−r/2

(logR)6
(1− (logR)−1)−6k

∑

τk+1

∫

Q2
q

|fτk+1
|6

for k = 1, . . . , J − 1. We now apply these successively to the right hand side
of (6.4), starting with k = 1 and going all the way up to k = J − 1. Then

∫

Q2
q

max
τ1 ̸=τ ′

1

|fτ1fτ ′

1
|3 ≤

∫

Bτ0

max
τ1 ̸=τ ′

1

|fτ1fτ ′

1
|3

+

J−1
∑

k=1

q5r/2(1− (logR)−1)−6(k−1)
∑

τk

∫

Bτk

max
τk+1 ̸=τ ′

k+1

τk+1,τ ′

k+1⊂τk

|fτk+1
fτ ′

k+1
|3

+
q−r/2

(logR)6
(1− (logR)−1)−6(J−1)

∑

τJ

∫

Q2
q

|fτJ |
6.
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Since J ≤ N ≲ logR, this gives

∫

Q2
q

max
τ1 ̸=τ ′

1

|fτ1fτ ′

1
|3 ≲ q5r/2(logR) max

k=0,...,J−1

∑

τk

∫

Bτk

max
τk+1 ̸=τ ′

k+1

τk+1,τ ′

k+1⊂τk

|fτk+1
fτ ′

k+1
|3

(6.7)

+
q−r/2

(logR)6

∑

τJ

∫

Q2
q

|fτJ |
6.(6.8)

Observe that

(6.9) (6.8) ≲
q−r/2

(logR)6
(
∑

τJ

∥fτJ∥
2
L∞(Q2

q)
)2(
∑

τJ

∥fτJ∥
2
L2(Q2

q)
)

which is much better than what we needed in the conclusion of Proposi-
tion 5.2. Equation (6.7) is controlled by the following proposition:

Proposition 6.2. Let J = 1, . . . , N and let f be Fourier supported in

Ξ1/RJ
. Let k = 0, 1, . . . , J − 1 and τk ⊂ Zq with |τk| = R

−1/2
k . Then

(6.10)

∫

Bτk

max
τk+1 ̸=τ ′

k+1

τk+1,τ ′

k+1⊂τk

|fτk+1
fτ ′

k+1
|3

≲ (logR)8+
7ε

2 (
∑

τJ⊂τk

∥fτJ∥
2
L∞(Q2

q)
)2(
∑

τJ⊂τk

∥fτJ∥
2
L2(Q2

q)
).

Assuming this for the moment, we see that (6.7) is bounded by

(6.7) ≲ q5r/2(logR)1+8+ 7ε

2 max
k=0,...,J−1

∑

τk

(
∑

τJ⊂τk

∥fτJ∥
2
L∞(Q2

q)
)2(
∑

τJ⊂τk

∥fτJ∥
2
L2(Q2

q)
)

≲ (logR)9+6ε(
∑

τJ

∥fτJ∥
2
L∞(Q2

q)
)2(
∑

τJ

∥fτJ∥
2
L2(Q2

q)
).

(Recall q5r/2 ≤ (logR)5ε/2.) Together with (6.9) we finish the proof of Propo-
sition 5.2. It remains to prove Lemma 6.1 and Proposition 6.2.

Proof of Lemma 6.1. Let τ∗k+1 be the τk+1 ⊂ τk such that

max
τk+1⊂τk

|fτk+1
(x)| = |fτ∗

k+1
(x)|.

For τk+1 ⊂ τk such that τk+1 ̸= τ∗k+1, note that

|fτk+1
(x)| ≤ |fτk+1

(x)fτ∗

k+1
(x)|1/2 < (logR)−1q−r/2|fτk(x)|.
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Therefore

|fτ∗

k+1
(x)| = |fτk(x)−

∑

τk+1 ̸=τ∗

k+1

fτk+1
(x)|

≥ (1−#{τk+1 : τk+1 ⊂ τk, τk+1 ̸= τ∗k+1}(logR)−1q−r/2)|fτk(x)|

≥ (1− (logR)−1)|fτk(x)|.
□

To prove Proposition 6.2, we need the following level set estimate.

Proposition 6.3. Let J = 1, . . . , N and let f be with Fourier support in
Ξ1/RJ

. For α > 0, let

Uα(f) := {x ∈ Q2
q : max

τ1 ̸=τ ′

1

|fτ1(x)fτ ′

1
(x)|1/2 ∼ α

and (
∑

τ1

|fτ1(x)|
6)1/6 ≲ (logR)qr/2α}.

Then

α6|Uα(f)| ≲ (logR)7+
7ε

2 (
∑

τJ

∥fτJ∥
2
L∞(Q2

q)
)2(
∑

τJ

∥fτJ∥
2
L2(Q2

q)
)

where the implied constant is independent of f and α.

Proof of Proposition 6.2. By the same rescaling as in (5.2)-(5.3), it suffices
to prove (6.10) for k = 0. For a given J0 = 1, 2, . . . , N and k0 = 1, 2, . . . , J0 −
1, the case of (k, J) = (k0, J0) in (6.10) follows from the case (k, J) = (0, J0 −
k0). Note also that in this rescaling, it is important that in the definition
of Bτk we have the condition x ∈ Q2

q in (6.1) rather than a smaller spatial
region.

Now to prove (6.10) for k = 0, for each square QR
1/2
J

⊂ Q2
q of side length

R
1/2
J , we estimate

(6.11)

∫

B∩Q
R

1/2
J

max
τ1 ̸=τ ′

1

|fτ1(x)fτ ′

1
(x)|3

where we write B := Bτ0 for brevity. Let

Bsmall(QR
1/2
J

) := {x ∈ B ∩QR
1/2
J

:

max
τ1 ̸=τ ′

1

|fτ1(x)fτ ′

1
(x)|1/2 ≤ R−1/2max

τJ
∥fτJ∥L∞(Q

R
1/2
J

)}
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and partition (B ∩QR
1/2
J

) \ Bsmall(QR
1/2
J

) into O(logR) sets where

max
τ1 ̸=τ ′

1

|fτ1(x)fτ ′

1
(x)|1/2 ∼ α and

R−1/2max
τJ

∥fτJ∥L∞(Q
R

1/2
J

) ≤ α ≤ Rmax
τJ

∥fτJ∥L∞(Q
R

1/2
J

).

By pigeonholing, there exists an α∗ such that

(6.11) ≲ RJR
−3max

τJ
∥fτJ∥

6
L∞(Q

R
1/2
J

) + (logR)α6
∗|QR

1/2
J

∩ Uα∗
(f)|.(6.12)

But by the uncertainty principle (see discussion after Lemma 2.3), |fτJ | is
constant on QR

1/2
J

, so

∥fτJ∥
2
L∞(Q

R
1/2
J

) = R−1
J ∥fτJ∥

2
L2(Q

R
1/2
J

) ≤ ∥fτJ∥
2
L2(Q

R
1/2
J

).

Thus

max
τJ

∥fτJ∥
6
L∞(Q

R
1/2
J

) ≤ max
τJ

∥fτJ∥
4
L∞(Q2

q)
∥fτJ∥

2
L2(Q

R
1/2
J

)

≤ (
∑

τJ

∥fτJ∥
2
L∞(Q2

q)
)2
∑

τJ

∥fτJ∥
2
L2(Q

R
1/2
J

).

Plugging this back into (6.12), and summing over QR
1/2
J

, we obtain

∫

B
max
τ1 ̸=τ ′

1

|fτ1(x)fτ ′

1
(x)|3

≲ RJR
−3(
∑

τJ

∥fτJ∥
2
L∞(Q2

q)
)2
∑

τJ

∥fτJ∥
2
L2(Q2

q)
+ (logR)α6

∗|Uα∗
(f)|

≲ (logR)8+
7ε

2 (
∑

τJ

∥fτJ∥
2
L∞(Q2

q)
)2
∑

τJ

∥fτJ∥
2
L2(Q2

q)

where the last inequality is a consequence of Proposition 6.3. This finishes
our proof. □

The rest of the argument goes into proving Proposition 6.3.
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7. High/Low decomposition: Proof of Proposition 6.3

7.1. Square functions and pruning of wave packets

Fix J = 1, . . . , N and fix f with Fourier support in Ξ1/RJ
. For x ∈ Q2

q and
λ to be chosen later (see (7.8)), define

gJ(x) :=
∑

τJ

|fτJ (x)|
2 =

∑

τJ

∑

TJ∈T(τJ)

|(1TJ
fτJ )(x)|

2

fJ(x) :=
∑

τJ

∑

TJ∈T(τJ)
∥1TJ

fτJ ∥L∞(Q2
q)≤λ

(1TJ
fτJ )(x)

and for k = J − 1, J − 2, . . . , 1, define

gk(x) :=
∑

τk

|(fk+1,τk)(x)|
2 =

∑

τk

∑

Tk∈T(τk)

|(1Tk
fk+1,τk)(x)|

2

fk(x) :=
∑

τk

∑

Tk∈T(τk)
∥1Tk

fk+1,τk
∥L∞(Q2

q)≤λ

(1Tk
fk+1,τk)(x).

Note that the Fourier support of gk is contained in a R
−1/2
k square cen-

tered at the origin and hence gk is constant on squares of side length R
1/2
k .

Additionally by definition of the fk,

|fk,τk | ≤ |fk+1,τk |(7.1)

and so
∫

Q2
q

|fk|
2 =

∑

τk

∫

Q2
q

|fk,τk |
2 ≤

∑

τk

∫

Q2
q

|fk+1,τk |
2 =

∫

Q2
q

|fk+1|
2,

where in the last step we applied L2 orthogonality. Therefore

∫

Q2
q

|f1|
2 ≤

∫

Q2
q

|f2|
2 ≤ · · · ≤

∫

Q2
q

|fJ |
2 ≤

∫

Q2
q

|f |2.(7.2)

This matches the intuition that when passing from fJ to f1 we are throw-
ing away wave packets and therefore at least at the L2 level, we have a
monotonicity relation as above.
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7.2. High and low lemmas

For k = 1, . . . , J − 1, define

glk = gk ∗R
−1
k+11B(0,R

1/2
k+1)

and ghk = gk − glk.

Note that gk (and ghk ) is Fourier supported on the union of {|ξ| ≤ R
−1/2
k , |η −

2αξ| ≤ R−1
k } where {α} is a collection of points chosen from {τk}, with one

α for each τk. Additionally, observe that since

R−1
k+1

p1B(0,R
1/2
k+1)

= 1B(0,R
−1/2
k+1 )(7.3)

we have pglk = pgk1B(0,R
−1/2
k+1 ) and so glk is just the restriction of gk to frequencies

less than R
−1/2
k+1 . By definition of gk and glk, both are nonnegative functions.

Lemma 7.1 (Low Lemma). For k = 1, . . . , J − 1, we have glk ≤ gk+1.

Proof of Lemma 7.1. We have

glk = gk ∗R
−1
k+11B(0,R

1/2
k+1)

(7.4)

=
∑

τk

∑

τk+1,τ ′

k+1⊂τk

(fk+1,τk+1
fk+1,τ ′

k+1
) ∗R−1

k+11B(0,R
1/2
k+1)

.

Taking a Fourier transform we see that

(fk+1,τk+1
fk+1,τ ′

k+1
) ∗R−1

k+11B(0,R
1/2
k+1)

=

{

|fk+1,τk+1
|2 ∗R−1

k+11B(0,R
1/2
k+1)

if τk+1 = τ ′k+1

0 otherwise

=

{

|fk+1,τk+1
|2 if τk+1 = τ ′k+1

0 otherwise

where the last equality is because of (7.3) and that |fk+1,τk+1
|2 is Fourier

supported in B(0, R
−1/2
k+1 ). Thus (7.4) is equal to

∑

τk+1

|fk+1,τk+1
|2 ≤

∑

τk+1

|fk+2,τk+1
|2 = gk+1

by (7.1). Here if k = J − 1, we interpret fk+2 to mean f . □
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Lemma 7.2 (High Lemma). For k = 1, . . . , J − 1,

∫

Q2
q

|ghk |
2 ≤ qr/2

∑

τk

∫

Q2
q

|fk+1,τk |
4.

Proof of Lemma 7.2. It suffices to partition Q2
q into squares with side length

Rk+1 and prove the estimate on each such square. Fix an arbitrary square
B ⊂ Q2

q of side length Rk+1. We have by Plancherel,

∫

B
|ghk |

2 =

∫

xghk (
xghk ∗ x1B).

Since ghk is Fourier supported outside B(0, R
−1/2
k+1 ) and 1B is Fourier sup-

ported in B(0, R−1
k+1),

xghk ∗ x1B is supported in B(0, R
−1/2
k ) \B(0, R

−1/2
k+1 ) by

the ultrametric inequality. Therefore the above is equal to

∑

τk

∫

B(0,R
−1/2
k )\B(0,R

−1/2
k+1 )

(|fk+1,τk |
2)∧
∑

τ ′

k

((|fk+1,τ ′

k
|2)∧ ∗ x1B).(7.5)

We claim that for each τk, the Fourier support of |fk+1,τk |
2 outside

B(0, R
−1/2
k+1 ) only intersects qr/2 many Fourier supports of the |fk+1,τ ′

k
|2 out-

side B(0, R
−1/2
k+1 ).

Indeed, suppose there exists (ξ, η) such that max{|ξ|, |η|} > R
−1/2
k+1 and

|ξ| ≤ R
−1/2
k , |η − 2αξ|, |η − 2α′ξ| ≤ R−1

k

for some α ∈ τk and α′ ∈ τ ′k. Then

|2(α− α′)ξ| ≤ R−1
k ,

and so if |ξ| > R
−1/2
k+1 , then

|α− α′| ≤ R−1
k /R

−1/2
k+1 = R

−1/2
k qr/2.

Else |ξ| < R
−1/2
k+1 and |η| > R

−1/2
k+1 , which implies |η − 2αξ| =

max{|η|, |2αξ|} > R
−1/2
k+1 , contradicting |η − 2αξ| ≤ R−1

k if k ≥ 1. So

|α− α′| ≤ R
−1/2
k qr/2, the number of overlaps is just qr/2 times.
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Thus we have

∑

τk

∫

B(0,R
−1/2
k )\B(0,R

−1/2
k+1 )

(|fk+1,τk |
2)∧

∑

τ ′

k:d(τk,τ
′

k)≤R
−1/2
k qr/2

(|fk+1,τ ′

k
|2)∧ ∗ x1B

=
∑

τk

∫

B
|fk+1,τk |

2 ∗ (q1B(0,R
−1/2
k ) −

q1B(0,R
−1/2
k ))

∑

τ ′

k:d(τk,τ
′

k)≤R
−1/2
k qr/2

|fk+1,τ ′

k
|2

≤
∑

τk

∫

B
|fk+1,τk |

2
∑

τ ′

k:d(τk,τ
′

k)≤R
−1/2
k qr/2

|fk+1,τ ′

k
|2

where in the last inequality we have used that |fk+1,τk |
2 ∗ q1B(0,R

−1/2
k ) =

|fk+1,τk |
2, q1B(0,R

−1/2
k+1 ) is nonnegative, and that the convolution of two non-

negative functions is also nonnegative. Applying Cauchy-Schwarz then gives
that (7.5) is

≤ qr/2
∑

τk

∫

B
|fk+1,τk |

4

and summing over all B ⊂ Q2
q of side length Rk+1 then completes the proof.

□

7.3. Decomposition into high and low sets

Let

ΩJ−1 = {x ∈ Q2
q : gJ−1(x) ≤ (logR)ghJ−1(x)}

For k = J − 2, J − 3, . . . , 1, define

Ωk = {x ∈ Q2
q \ (Ωk+1 ∪ · · · ∪ ΩJ−1) : gk(x) ≤ (logR)ghk (x)}

Finally,

L = Q2
q \ (Ω1 ∪ · · · ∪ ΩJ−1).

Note that gk is constant on squares of size R
1/2
k . By definition, glk is

constant on squares of size R
1/2
k+1 > R

1/2
k . Therefore ghk is also constant on

squares of size R
1/2
k .

One can view the construction of the Ωk as follows. Partition Q2
q first

into squares of size R
1/2
J−1. Then ΩJ−1 is a union of those squares on which

gJ−1(x) ≤ (logR)ghJ−1(x) where here we have used that both gJ−1 and ghJ−1

are constant on each such square of size R
1/2
J−1.
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Next, partition each of the remaining squares not chosen to be part of

ΩJ−1 into squares of size R
1/2
J−2. From these squares of size R

1/2
J−2, ΩJ−2 is

the union of those squares on which gJ−2(x) ≤ (logR)ghJ−2(x). Repeat this
until we have defined Ω1 after which we call the remaining set L (which can

be written as the union of squares of size R
1/2
1 ).

To prove Proposition 6.3, note that

α6|Uα(f)| ≤ α6|Uα(f) ∩ L|+

J−1
∑

k=1

α6|Uα(f) ∩ Ωk|.(7.6)

In view of the definition of the set Uα(f), to control the right hand side,
we need to understand the size of maxτ1 ̸=τ ′

1
|fτ1(x)fτ ′

1
(x)| on Ωk (for k =

1, . . . , J − 1) and on L. We do so in the next section, and then use it to
bound the right hand side of (7.6).

7.4. Approximation by pruned wave packets

Lemma 7.3. Let k = 1, 2, . . . , J − 1 and |τ | ≥ R
−1/2
k . Then for x ∈ Q2

q,

|
∑

τk⊂τ

fk+1,τk(x)−
∑

τk⊂τ

fk,τk(x)| ≤ λ−1gk(x).

Proof of Lemma 7.3. Fix x ∈ Q2
q . We have

|
∑

τk⊂τ

fk+1,τk(x)−
∑

τk⊂τ

fk,τk(x)| = |
∑

τk⊂τ

∑

Tk∈T(τk)
∥1Tk

fk+1,τk
∥L∞(Q2

q)>λ

(1Tk
fk+1,τk)(x)|

≤
∑

τk⊂τ

∑

Tk∈T(τk)
∥1Tk

fk+1,τk
∥L∞(Q2

q)>λ

|(1Tk
fk+1,τk)(x)|.(7.7)

For each τk, there exists exactly a parallelogram Tk(x) depending on x in
T(τk) such that x ∈ Tk(x). If for this parallelogram, ∥1Tk(x)fk+1,τk∥L∞(Q2

q)
≤

λ, then the inner sum for this particular τk in (7.7) is equal to 0. Otherwise,

|(1Tk
fk+1,τk)(x)| ≤

∥1Tk(x)fk+1,τk∥
2
L∞(Q2

q)

λ
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and hence

∑

Tk∈T(τk)
∥1Tk

fk+1,τk
∥L∞(Q2

q)>λ

|(1Tk
fk+1,τk)(x)| ≤ λ−1∥1Tk(x)fk+1,τk∥

2
L∞(Q2

q)
.

Since |fk+1,τk | is constant on Tk(x), ∥1Tk(x)fk+1,τk∥
2
L∞(Q2

q)
=

|(1Tk(x)fk+1,τk)(x)|
2 and so (7.7) is

≤ λ−1
∑

τk⊂τ

∑

Tk∈T(τk)
∥1Tk

fk+1,τk
∥L∞(Q2

q)>λ

|(1Tk
fk+1,τk)(x)|

2 ≤ λ−1gk(x)

which completes the proof of the lemma. □

Lemma 7.4. Let k = 1, 2, . . . , J − 1 and |τ | ≥ R
−1/2
k . Then for x ∈ Ωk,

|fτ (x)−
∑

τk⊂τ

fk+1,τk(x)| ≲ λ−1 logR

log logR
∥gJ∥L∞(Q2

q)
.

Proof of Lemma 7.4. Fix x ∈ Ωk. Since
∑

τk⊂τ fτk = fτ =
∑

τk−1⊂τ fτk−1
, we

have

|fτ (x)−
∑

τk⊂τ

fk+1,τk(x)| ≤ |fτ (x)−
∑

τJ⊂τ

fJ,τJ (x)|

+

J−1
∑

j=k+1

|
∑

τj⊂τ

fj+1,τj (x)−
∑

τj⊂τ

fj,τj (x)|

≤ λ−1
J
∑

j=k+1

gj(x)

by Lemma 7.3 (by how fJ is defined, the fτ −
∑

τJ⊂τ fJ,τJ term is controlled
by the same proof as in Lemma 7.3).

To control this sum, we now use the definition of Ωk. The low lemma
gives

gj(x) = glj(x) + ghj (x) ≤ gj+1(x) + ghj (x).

Since x ∈ Ωk, for j = k + 1, . . . , J − 1, this is then ≤ gj+1(x) +
(logR)−1gj(x) and hence

gj(x) ≤ (1− (logR)−1)−1gj+1(x).
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Therefore for j = k + 1, . . . , J − 1,

gj(x) ≤ (1− (logR)−1)−(J−j)∥gJ∥L∞(Q2
q)
.

Thus

λ−1
J
∑

j=k+1

gj(x) ≤ λ−1∥gJ∥L∞(Q2
q)

J
∑

j=k+1

(1− (logR)−1)−(J−j)

≲ λ−1 logR

log logR
∥gJ∥L∞(Q2

q)

which completes the proof of Lemma 7.4. □

Note that the above proof also works for x ∈ L and we obtain the same
conclusion.

Now choose

λ := (logR)2qr/2
∥gJ∥L∞(Q2

q)

α
.(7.8)

We can write the conclusion of Lemma 7.4 as for x ∈ Ωk and |τ | ≥ R
−1/2
k ,

we have

fτ (x) = fk+1,τ (x) +O((logR)−1q−r/2(log logR)−1α)

and so for x ∈ Ωk and τ1, τ
′
1 disjoint intervals of length R

−1/2
1 ,

|fτ1(x)fτ ′

1
(x)| = |fk+1,τ1(x)fk+1,τ ′

1
(x)|

+O

(

α

(logR)qr/2 log logR
(|fτ1(x)|+ |fτ ′

1
(x)|) +

α2

(logR)2qr(log logR)2

)

.

Since x ∈ Uα(f), we control the |fτ1(x)| and |fτ ′

1
(x)| by the l6 sum over all

such τ1 caps and thus by (logR)qr/2α. This gives that for x ∈ Uα(f) ∩ Ωk,

|fτ1(x)fτ ′

1
(x)| = |fk+1,τ1(x)fk+1,τ ′

1
(x)|+O(

α2

log logR
).

This implies for x ∈ Uα(f) ∩ Ωk and R sufficiently large,

max
τ1 ̸=τ ′

1

|fτ1(x)fτ ′

1
(x)|2 ≲ max

τ1 ̸=τ ′

1

|fk+1,τ1(x)fk+1,τ ′

1
(x)|2
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which gives

α4|Uα(f) ∩ Ωk| ≲ ∥max
τ1 ̸=τ ′

1

|fk+1,τ1(x)fk+1,τ ′

1
(x)|1/2∥4L4(Uα(f)∩Ωk)

.(7.9)

Similarly, Lemma 7.3 with k = 1 implies |f2,τ1(x)− f1,τ1(x)| ≤ λ−1g1(x)
and the beginning of the proof of Lemma 7.4 implies |fτ1(x)− f2,τ1(x)| ≤

λ−1
∑J

j=2 gj(x). Following the proof of Lemma 7.4 and the choice of λ in (7.8)
shows that for x ∈ L,

fτ1(x) = f1,τ1(x) +O((logR)−1q−r/2(log logR)−1α)

from which following the same reasoning as in the Ωk case, we obtain that

α6|Uα(f) ∩ L| ≲ ∥max
τ1 ̸=τ ′

1

|f1,τ1(x)f1,τ ′

1
(x)|1/2∥6L6(Uα(f)∩L)

.(7.10)

In light of (7.6), it remains to estimate the right hand sides of (7.9)
and (7.10).

7.5. Estimating α6|Uα(f) ∩ Ωk| for k = 1, . . . , J − 1

We first recall the following bilinear restriction theorem whose proof we defer
to the end of this section.

Lemma 7.5 (Bilinear restriction). Suppose δ ∈ q−2N, and for i = 1, 2,
fi is a function on Q2

q whose Fourier support is contained in {(ξ, η) : ξ ∈
Ii, |η − ξ2| ≤ δ}, where I1, I2 are intervals in Zq (not necessarily of the same
length) separated by a distance κ. Assume

(7.11) κ ≥ δ1/2.

Then

(7.12)

∫

Q2
q

|f1f2|
2 ≤

δ2

κ

∫

Q2
q

|f1|
2

∫

Q2
q

|f2|
2.

Fix k = 1, 2, . . . , J − 1 below. Then (7.9) is bounded by

(7.13)
∑

τ1 ̸=τ ′

1

∫

Ωk

|fk+1,τ1fk+1,τ ′

1
|2.

Since gk and ghk are constant on squares of side length R
1/2
k , we may partition

Ωk into squares Q of side length R
1/2
k , and integrate on each such Q before we
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sum over Q. If k ≥ 2, then the Fourier supports of fk+1,τ11Q and fk+1,τ ′

1
1Q

are contained in ΞR
−1/2
k

, while the distance between τ1 and τ ′1 is > R
−1/2
1 .

Since R
−1/2
1 ≥ (R

−1/2
k )1/2 and (4.1) holds, the hypothesis of Lemma 7.5 is

satisfied with κ = R
−1/2
1 and δ = R

−1/2
k . From (7.12), we then obtain

∫

Q
|fk+1,τ1fk+1,τ ′

1
|2 ≤

(R
−1/2
k )2

R
−1/2
1

∫

Q
|fk+1,τ1 |

2

∫

Q
|fk+1,τ ′

1
|2

=
qr/2

|Q|

∫

Q
|fk+1,τ1 |

2

∫

Q
|fk+1,τ ′

1
|2.

The same inequality holds for k = 1, because then |fk+1,τ1 | and |fk+1,τ ′

1
|

are constants on squares of side length R
1/2
1 . Thus in either case, (7.13) is

controlled by

∑

Q∈P
R

1/2
k

(Ωk)

∑

τ1 ̸=τ ′

1

∫

Q
|fk+1,τ1fk+1,τ ′

1
|2

≤ qr/2
∑

Q∈P
R

1/2
k

(Ωk)

1

|Q|

∑

τ1 ̸=τ ′

1

∫

Q
|fk+1,τ1 |

2

∫

Q
|fk+1,τ ′

1
|2

≤ qr/2
∑

Q∈P
R

1/2
k

(Ωk)

1

|Q|
(
∑

τ1

∫

Q
|fk+1,τ1 |

2)2

where here PR
1/2
k

(Ωk) denotes the partition of Ωk into squares of side length

R
1/2
k . Since Q has side length R

1/2
k , Plancherel and the definition of gk then

controls this by

qr/2
∑

Q∈P
R

1/2
k

(Ωk)

1

|Q|
(
∑

τk

∫

Q
|fk+1,τk |

2)2

= qr/2
∑

Q∈P
R

1/2
k

(Ωk)

1

|Q|
(

∫

Q
gk)

2 = qr/2
∫

Ωk

g2k

where the last equality is because gk is constant on squares of size R
1/2
k .

Therefore we have shown that

α4|Uα(f) ∩ Ωk| ≲ qr/2
∫

Ωk

g2k.
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Using that we are in Ωk and applying the high lemma, this is controlled by

(logR)2qr/2
∫

Ωk

|ghk |
2 ≤ (logR)2qr

∑

τk

∫

Q2
q

|fk+1,τk |
4(7.14)

Write fk+1,τk =
∑

τk+1⊂τk
fk+1,τk+1

. Note that the sum has R
−1/2
k /R

−1/2
k+1

terms. Using Hölder’s inequality, we further obtain that

(7.14) ≤ (logR)2qr(
R

−1/2
k

R
−1/2
k+1

)3
∑

τk+1

∫

Q2
q

|fk+1,τk+1
|4

= (logR)2q5r/2
∑

τk+1

∫

Q2
q

|fk+1,τk+1
|4

= (logR)2q5r/2
∑

τk+1

∫

Q2
q

∑

Tk+1∈T(τk+1)
∥1Tk+1

fk+2,τk+1
∥L∞(Q2

q)≤λ

|1Tk+1
fk+2,τk+1

|4

where in the last equality we have used that each x ∈ Q2
q is contained in

exactly one Tk+1 ∈ T(τk+1). Here we have also used the convention that if
k = J − 1, then fk+2 is just f . Applying the definition of fk+1 shows that
this is

≤ (logR)2q5r/2λ2
∑

τk+1

∫

Q2
q

|fk+2,τk+1
|2(7.15)

= (logR)2q5r/2λ2

∫

Q2
q

|fk+2|
2 ≤ (logR)2q5r/2λ2

∫

Q2
q

|f |2

where the last inequality is by (7.2). Using (7.8) then shows that we have
proved

α4|Uα(f) ∩ Ωk| ≲ (logR)6q7r/2α−2∥gJ∥
2
L∞(Q2

q)

∫

Q2
q

|f |2.

It follows that

α6|Uα(f) ∩ Ωk| ≲ (logR)6q7r/2(
∑

τJ

∥fτJ∥
2
L∞(Q2

q)
)2
∑

τJ

∥fτJ∥
2
L2(Q2

q)
.(7.16)
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7.6. Estimating α6|Uα(f) ∩ L|

The right hand side of (7.10) is

≤

∫

L
(
∑

τ1

|f1,τ1 |
2)3 ≤

∫

L
(
∑

τ1

|f2,τ1 |
2)3 =

∫

L
g21
∑

τ1

|f2,τ1 |
2(7.17)

where the second inequality is by (7.1). For x ∈ L and k = 1, . . . , J − 1, we
have

gk(x) ≤ (1− (logR)−1)−1gk+1(x)

so

g1(x) ≲
∑

τJ

|fτJ (x)|
2.

Therefore this and (7.2) shows that (7.17) is

≲ (
∑

τJ

∥fτJ∥
2
L∞(Q2

q)
)2
∫

Q2
q

|f |2.

It follows that

α6|Uα(f) ∩ L| ≲ (
∑

τJ

∥fτJ∥
2
L∞(Q2

q)
)2
∑

τJ

∥fτJ∥
2
L2(Q2

q)
.(7.18)

Finally, we may sum (7.16) over k = 1, . . . , J − 1 with (7.18). Since J ≤
N ≲ logR, this concludes the proof of Proposition 6.3, modulo the proof of
Lemma 7.5.

7.7. Proof of Lemma 7.5

Decompose

fi =
∑

θi⊂Ii
|θi|=δ1/2

fi,θi .

Then by Plancherel,

∫

Q2
q

|f1f2|
2 =

∑

θ1,θ′

1,θ2,θ
′

2

∫

Q2
q

f1,θ1f2,θ2 · f1,θ′

1
f2,θ′

2

=
∑

θ1,θ′

1,θ2,θ
′

2

∫

Q2
q

( yf1,θ1 ∗
yf2,θ2) · (

yf1,θ′

1
∗ yf2,θ′

2
).
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For the last integral to be non-zero, the support of yf1,θ1 ∗
yf2,θ2 must inter-

sect the support of yf1,θ′

1
∗ yf2,θ′

2
. Thus we can find (ξi, ηi), i = 1, 2, 3, 4 such

that ξ1 + ξ2 = ξ3 + ξ4 and η1 + η2 = η3 + η4 where |ηi − ξ2i | ≤ δ and ξ1 ∈ θ1,
ξ2 ∈ θ2, ξ3 ∈ θ′1, and ξ4 ∈ θ′2. Hence by the ultrametric inequality, for this
(ξ1, . . . , ξ4), we have

ξ1 + ξ2 − (ξ3 + ξ4) = 0(7.19)

|ξ21 + ξ22 − (ξ23 + ξ24)| ≤ δ.(7.20)

From (7.19), we have ξ1 − ξ4 = −(ξ2 − ξ3), so we see from (7.20) that

|ξ1 − ξ4||ξ1 + ξ4 − (ξ2 + ξ3)| ≤ δ.

But (7.19) also implies ξ1 + ξ4 − (ξ2 + ξ3) = 2(ξ1 − ξ3). Since q is an odd
prime, we have

|ξ1 − ξ4||ξ1 − ξ3| ≤ δ.

Since |ξ1 − ξ4| ≥ κ, this shows

|ξ1 − ξ3| ≤
δ

κ
.

If δ/κ ≤ δ1/2, i.e. (7.11) holds, then |ξ1 − ξ3| ≤ δ1/2. Since θ1 and θ′1 are
intervals of length δ1/2 and two q-adic intervals of the same length are either
disjoint or equal, we must have θ1 = θ′1. Using (7.19) again then implies
θ2 = θ′2.

This shows
∫

Q2
q

|f1f2|
2 =

∑

θ1,θ2

∫

Q2
q

| yf1,θ1 ∗
yf2,θ2 |

2 =
∑

θ1,θ2

∫

Q2
q

|f1,θ1 |
2|f2,θ2 |

2.

Now for i = 1, 2, we may expand

|fi,θi |
2 =

∑

Ti∈T(θi)

|cTi
|21Ti

as in Corollary 2.5, so that
∑

Ti∈T(θi)
|cTi

|2|Ti| =
∫

Q2
q
|fi,θi |

2. Thus

∫

Q2
q

|f1,θ1 |
2|f2,θ2 |

2 =

∫

Q2
q

∑

T1∈T(θ1)

|cT1
|21T1

∑

T2∈T(θ2)

|cT2
|21T2

=
∑

T1∈T(θ1)

∑

T2∈T(θ2)

|cT1
|2|cT2

|2|T1 ∩ T2|
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Using the definition of κ, and Lemma 2.6, we see that

|T1 ∩ T2| ≤ δ−1/2 ·
δ−1/2

κ
=

δ2

κ
|T1||T2| for all T1 ∈ T(θ1), T2 ∈ T(θ2),

so
∫

Q2
q

|f1,θ1 |
2|f2,θ2 |

2 ≤
δ2

κ

∫

Q2
q

|f1,θ1 |
2

∫

Q2
q

|f2,θ2 |
2.

Summing over θ1 and θ2 on both sides, we yield

∫

Q2
q

|f1f2|
2 ≤

δ2

κ

∫

Q2
q

|f1|
2

∫

Q2
q

|f2|
2,

as desired.
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