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1. Introduction

Let e(z) := €*™* and let K (M) denote the best constant such that

M M
(1.1) 1Y " ane(nay + na2) | s o2y < KM |an|?)?
n=1 n=1

for all sequences of complex numbers {a,}M ,. Trivially, K (M) < M2,
In 1993, Bourgain in [2] considered, among other things, the size of K (M)
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since (|1.1)) is associated to the periodic Strichartz inequality for the nonlinear
Schrodinger equation on the torus. He obtained that

log M

i 1/6 < < o7
12) (o )"0 5 K () < exp(O( 8

)

using number theoretic methods, in particular the upper bound follows from
the divisor bound and the lower bound follows from Gauss sums on major
arcs (see also [1] for a precise asymptotic in the case of a, = 1 of (L.1))). It is
natural to ask what is the true size of K (M) and whether the gap between
the upper and lower bounds can be closed.

The lower bound has not been improved since [2]. However by im-
proving the upper bound on the decoupling constant for the parabola,
Guth-Maldague-Wang recently in [7] improved the upper bound in (1.2)) to
< (log M€ for some unspecified but large absolute constant C'. Our main
result is that C can be reduced to 24. More precisely:

Theorem 1.1. For every € > 0, there exists a constant C. > 0 such that
K(M) < C.(log M)**=.

Our proof of Theorem 1.1 will rely on a decoupling theorem for the
parabola in Q. Previous work on studying discrete restriction using de-
coupling relied on proving decoupling theorems over R (see for example
[3, 4L 7, [9]). Here, we will broadly follow the proof in [7] except to efficiently
keep track of the number of logs we will prove a decoupling theorem over Q,
rather than over R. Additionally we will introduce some extra efficiencies to
their argument to decrease the number of logs even further.

Working in @, has two benefits. First, the Fourier transform of a com-
pactly supported function is also compactly supported and hence this allows
us to rigorously and efficiently apply the uncertainty principle which is just a
heuristic in R. Second, since 6 is even, decoupling in Q,, still implies discrete
restriction estimates.

To avoid confusing the p in Q, with the p in L” norm, henceforth we
will replace the p in Q, with q.

Let g be a fixed odd prime. Let | - | be the g-adic norm associated to Q.
We omit the dependence of this norm on ¢. This is a slight abuse of notation
as we will use the same notation for the absolute value on C, as well as the
length of a g-adic interval. However, the meaning of the symbol will be clear
from context. In Section 2, we summarize all relevant facts of Q, that we
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make use of. See Chapters 1 and 2 of [11] and Chapter 1 (in particular
Sections 1 and 4) of [I2] for a more complete discussion of analysis on Q.
For 6 € ¢V, we write

Es={(&n) € Q2: € € Zg,In— €| < 6}

For a Schwartz function F' : Q2 — C and an interval 7 C Z, let F- be defined

by F; := F 1rx@,- Our main decoupling theorem is as follows and is the Q,
analogue of Theorem 1.2 of [7].

Theorem 1.2. For every odd prime q and every € > 0, there exists a con-
stant Cy 4, such that whenever R € ¢ and a Schwartz function F: Qg - C
has Fourier support contained in =y/gr, one has

(1.3)

Q2|F|6§Ce,q(10gR)12+€( D IF @) D IF 7))
q rl=R-/2 [rl=R-/2

Here the sums on the right hand side are over all intervals T C Zg with length

R™1/2,

This theorem is proved in Sections 4-7. We will in fact show this theorem
with e replaced by 10e. Since 6 is even, Theorem 1.2 once again immediately
implies Theorem 1.1 (as we prove in Section 3).

The 12 powers of log in can be accounted for as follows. Reducing
from to the level set estimate (Proposition 6.3) costs 5 logs. They come
from: 3 logs from the Whitney decomposition in Section 5, 1 log from the
number of scales in deriving , and 1 log from pigeonholing to derive
(6.12). The level set estimate itself costs 7 logs. These come from: 1 log
since we decompose Q2 into sets Qk and L in Section 7.3 and . 2 logs
to control gk by |g |2 on 2 in , and 4 logs from the appearance of \?
in (7.15)) (also see (7.8)).

In addition to efﬁciencies introduced by working with the uncertainty
principle g¢-adically, we introduce a Whitney decomposition, much like in
[6], which allows us to more efficiently reduce to a bilinear decoupling prob-
lem. Additionally compared to [7], the ratio between our successive scales
Rp11/ Ry is of size O((log R)?) rather than in O((log R)'?) which allows for
further reductions (we essentially have O(e~!) times many more scales than
in [7]). Note that is not a true Q, analogue of a I?L® decoupling the-
orem for the parabola. At the cost of a few more logs, a similar argument



1378 S. Guo, Z. K. Li, and P.-L. Yung

as in Section 5 of [7] would allow us to upgrade to an actual I2L° decou-
pling theorem, however is already enough for discrete restriction for
the parabola.

Since p-adic intervals correspond to residue classes it may be possible
to rewrite the proof of Theorem 1.2 in the language of congruences and
compare it with efficient congruencing [13]. However we do not attempt this
here. For more connections between efficient congruencing and decoupling
see [Bl [6l 91 10].

In this paper we consider decoupling over Q,. However one can also
consider the restriction and Kakeya conjectures over Q, (or alternatively
over more general local fields). We refer the interested reader to [8] and the
references therein for more discussion.

For the rest of the paper, for two positive expressions X and Y, we write
X SYif X <C.,Y for some constant C. , which is allowed to depend on
e and q. We write X ~Y if X <Y and Y < X. Additionally by writing
f(z) = O(g(x)), we mean |f(x)| < g(z). Finally, we say that f has Fourier
support in € if its Fourier transform f is supported in €.

2. Some basic properties of Q,

For convenience we briefly summarize some key relevant facts about Q.
First, for a prime ¢, Qg is the completion of the field Q under the g-adic
norm, defined by |0| =0 and |¢®b/c| =q¢ * if a € Z, b,c € Z\ {0} and ¢ is
relatively prime to both b and c¢. Then Q, can be identified (bijectively) with
the set of all formal series

o0

qu Zajqj: keZ,a, €{0,1,...,q— 1} for every j > k 5,
j=k

and the g-adic norm on Q, satisfies | Zj’;k a;jq’| = g *ifay #0.

The g-adic norm obeys the ultrametric inequality |z + y| < max{|x|, |y|}
with equality when [z| # [y|. We also define the g-adic norm on QZ by setting
()] = max{lal, |y} for (z,y) € QZ.

Write Zg = {x € Qq : |z| < 1} for the ring of integers of Q,. This is in
analogy to the real interval [—1, 1]. In analogy to working over R, for a €
Zy, we will call sets of the form {¢ € Z, : |¢€ — a| < ¢7°} an interval inside
Zq of length ¢ (so the length of an interval coincides with its diameter,
i.e. maximum distance between two points in that interval). Similarly for
(c1,¢2) € QZ, we will call sets of the form {(z,y) € Q2 : |z — 1| < 7%, |y —
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ca| < ¢} a square of side length ¢~°. Note that because the norm on Qg
is the maximum g-adic norm of each coordinate, this square is the same as
{(z,y) € Qg |(z,y) — (c1,¢2)| < ¢7°}. Thanks to the ultrametric inequality,
if two squares intersect, then one is contained inside the other; hence two
squares of the same size are either equal or disjoint.

Observe that Z, is a subset of @, consisting of elements of the form
Ej>0 ajq’ where aj € {0,1,...,q — 1}. Since each positive integer has a base
q representation, we may embed N into Z,. Identifying —1 with the element
> jsola — 1)¢’ in Z, then allows us to embed Z into Z,.

Note that if £€N, the intervals {€ €Z,:|€ —a| <1/¢'} for a=
0,1,...,¢" — 1 partition Z4 into ¢’ many disjoint intervals which are pair-
wise disjoint and each pair of intervals are separated by distance at least
q~“*1. To see this, suppose [&; — a| < ¢~¢ and |& — b] < ¢ ¢ for some a # b.
As |a—b| > ¢ and [(& — &) — (a — b)| < ¢, the equality case of the
ultrametric inequality implies that |&; — &| = |a — b] > ¢4+,

Next, for fixed a € {0,1,...,¢" — 1}, the interval {£ € Z,:|¢ —a| <
1/q"} is exactly the ¢ € Z, such that £ = a (mod ¢*) (meaning ¢~ *(¢ — a) €
Zg). This illustrates the connection between g-adic intervals in Q, and
residue classes and both point of views are useful throughout; for instance,
it follows easily now that Z, is the union of these ¢¢ disjoint intervals.

Finally, let x be the additive character of QQ; that is equal to 1 on Z,
and non-trivial on qiqu (up to isomorphism, there is essentially just one,
given by

-1 o]
x(x) = e(Zajqj) if x = Zajqj
j=k j=k

where a; € {0,...,q — 1} for all j). From this, one can define the Fourier

~

transform for f € L'(Q,) by f(&) = qu f(z)x(=&z) dx for € € Qg, where
dx is the Haar measure on Qg, and we have an analogous definition for the
Fourier transform in higher dimensions. The theory of the Fourier transform
in Qg is essentially the same as in R and we refer the interested reader to
[11), 12] for more details. Note that in @, and in higher dimensions, linear
combinations of indicator functions of intervals and squares play the ana-
logue of Schwartz functions in the real setting. For f,g € Ll((@g) N LQ(Qg),
we have Plancherel’s identity fQ2 fg= f@2 {9, which allows one to ex-
tend the Fourier transform to a u;itary opérator on L? (Qg). We also have
f/*\g = f§ for any integrable f and g on Qg, where (f * g)(x) is the convo-
lution ng f(x —y)g(y)dy. The inverse Fourier transform will be denoted by
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<, and we have f = f for Schwartz functions f. Henceforth we will only deal
with Schwartz functions on Qg; note F- is Schwartz whenever F is Schwartz.

2.1. Basic geometry and the uncertainty principle

The key property about harmonic analysis in Q, is that the Fourier trans-
form of an indicator function of an interval is another indicator function of
an interval. The key lemma is following, for a proof see p.42 of [12].

Lemma 2.1. For { € Q, and v € Z,
i © = [ x(€n)do = 0" (Lgy )(©).
|z|<q

Another useful geometric fact about Qg is that curvature disappears
entirely if one considers the intersection of Z;/zr with a vertical strip of
width R™1/2.

Lemma 2.2. For any R € ¢°Z and any interval I C Qg with length |I| =
RY2, the set {(&,n) € Q2: ¢ € 1,|n— & < R} coincides with the paral-
lelogram

{(&,m) € Q2 |¢ —a| <R Y2 | —2a +a® < R7Y}
where a is any point in I.

Proof. Let a € I. The ultrametric inequality implies I = {{ € Qq: [{ — a] <
R™12}. Now | — €| = |n—a® — 2a(6 — a) — (£ — a)?| = |(n — 2a{ + @) —
(€ — a)?|. Tt follows that for £ € I, i.e. if |¢ —a| < R™'/2, then |5 —£%] <
R~ if and only if |n — 2a¢ + a?| < R7L. O

This motivates the following rigorous g-adic uncertainty prinicple, that
is just a heuristic in R.

Lemma 2.3 (Uncertainty Principle). Let R € ¢°* and I C Q, be an
interval of length |I| = R='/2. Define the parallelogram

(2.1) P={¢(neQ:tcln-¢& <R}
and the dual parallelogram

(2.2) T:={(z,y) € Q2: |z + 2ay| < RV%,|y| < R}
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where a is any point in I (this is well-defined independent of the choice of
a). Let f be Schwartz and Fourier supported in P. Then |f| is constant on
each translate of T'.

Proof. One only needs to prove this for I = Z,, R = 1 and then invoke affine
invariance. Alternatively, and more directly, we have

Tp(z,y) = / / x(sz + s*y)x(ty) ds dt
t<R-1 J|s—al<R-1/2

=[xl 2a) 4 5% ds) Ry

where the last equality is by Lemma 2.1. Since |y| < R, |s?y| < 1 and there-
fore s%y € Zgq. As x is trivial on Zg,, after another application of Lemma
2.1, the above expression is equal to R‘3/2x(aa: + a2y)1‘x+2ay‘SRl/2’|y‘§R =
R™32x(ax + a®y)17.

Suppose (x,y) € (A, B) 4+ T for some (A, B) € Q2. Write z = A + 2’ and
y = B+ for some (2/,y') € T. Then since f = f % Lp, we have

(23) f(z.y) = R x(az + %)
X / f(z,w)x(—az — a®>w)lp(a’ + A— 2,y + B —w)dzdw
Q

Since |z’ 4 2ay’| < RY/?, using the ultrametric inequality, |(z/ + A — 2) +
2a(y + B — w)| < RY? if and only if |(A — 2) + 2a(B — w)| < RY/?. Simi-
larly, since || < R, |y + B —w| < R if and only if |B —w| < R. There-
fore is equal to

R™3?x(az + a®y) f(z,w)x(—az — a®>w)1lr(A — 2, B — w) dz dw.
Q7

Thus |f(x,y)| is independent of (z,y) € (A4, B) + T and therefore | f| is con-
stant on each translate of 7' (with a constant that depends on f, P, I, and
the particular translate of 7). O

A similar proof as above shows that if f is Fourier supported in a square
of side length L, then |f| is constant on any square of side length L~!.
Furthermore, if f is Fourier supported in a square centered at the origin of
side length L, then f itself is constant on any square of side length L.
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In analogy with the real setting, we will say that the parallelogram T
in (2.2)) has direction (—2a, 1). These parallelograms 7" enjoy the following
nice geometric properties.

Lemma 2.4. If R€ ¢®™, I C Z, is an interval with |I| = R™V2, and T is
the parallelogram defined by (2.2)) (with a € I), then

(a) each translate of T is the union of RY? many squares of side length
R1/2,'

(b) any two translates of T are either equal or disjoint;

(c) any square of side length R can be partitioned into translates of T.

We write T(I) for the set of all translates of T. Note that (c) implies that
Qg can be tiled by translates of T.

Proof. (a) First, we claim that if (z,y) € T, and |(2/,9) — (z,9)| < R'/?,
then (2/,y’) € T as well. This is because |z’ + 2ay/| = |z + 2ay + (2’ —
z) + 2a(y’ —y)| < RY? if both |z + 2ay| < RY? and |(2',y') — (z,y)| <
RY2 (vecall |2a| < 1 when a € Z,). Similarly, |y| < Rand |y’ — y| < RY/?
implies |y’| < R. This proves the claim. It follows that if (x, y) belongs to
a certain translate of T', then the square of side length R'/? containing
(z,y) is also contained in the same translate of T'.

Now by the ultrametric inequality, two squares of side length RY/? are
either equal or disjoint. Thus every translate of 7" is a union of squares
of side lengths R'/?, and volume considerations show that each translate
of T' contains R'/2 many such squares.

(b) Tt suffices to show that if (z,y)+ T intersects T', then (x,y) € T (be-
cause then (z,y) + T = T). But if (z,y) + T and T both contains a point
(2/,4/), then both |(z' — z) + 2a(y’ — y)| < R'/? and |2’ + 2ay/| < R'/?,
which implies |z + 2ay| < R'/2. Similarly, |y — y| < R and |y/| < R im-
plies |y| < R. Thus (z,y) € T, as desired.

(c) Write R = ¢?4 for A>1. It suffices to partition Q = {(z,y)
|z| < R, |y| < R} into translates of parallelograms T, := {(z,y)
|z + 2ay| < R'2,|y| < R}.
We first consider the a =0 case. Let S ={}_ 54, 4 ajq’ s aj €
{0,1,...,q — 1}}. Note that #S = RY/2, -
We claim we can tile @ by {(s,0)+Tp:s € S}. Indeed, for
each (z,y) € Q, we can write = = Z—2A§j<—A zi¢’ + ZjZ—A ziq’
for some zj €{0,1,...,¢ —1}. As Y oa<jc—aTid’ €S,

EQ;:
€Qy:
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€ (D _gacjcn 2jq’,0) +Tp. This shows Q C U,eq(s,0)+ Tp.
The ultrametric inequality implies that (s,0) + Ty C @ for each s € S
and so Q = (J,cq(5,0) + Tp.

Finally, this union is disjoint as if (z,y) € ((s1,0) + Tb) N ((s2,0) +
Ty), then [s; — s3] < RY? but from the definition of S, |s; — so| >

¢At1 = R1/2¢. Therefore we have partitioned Q into translates of Tj.

Next we consider the general case. Let L, = ({ %*). The ultrametric

inequality gives that L,(Q) = @ since |2a] < 1 and for s € S, L,((s,0) +
To) = (s,0) 4+ T,. Therefore we can also partition @ into translates of Tj,.
U

Corollary 2.5. Let Rec ¢*N, I C Zq be an interval with |I| = R™1/2 and f
be a Schwartz function with Fourier support in {(§,n) € Qg: cecln—¢€%<
1/R}. Then there exist constants {cr}rer(r) such that

(2'4) ’f| = Z crlr.

TET(I)

As a result, |f|* = oTeT(n) 1y, and

a TeT(I)

Proof. By Lemma 2.3, for every T € T(I), there exists a constant ¢y so that
|f| = ¢r on T. By Lemma 2.4(c), T(I) tiles Q3. Thus (2.4) holds and the
rest follows easily. O

Lemma 2.6. Suppose R € ¢* and a,b € Z, with a # b, let
T={(r,y) € Qg : |z +2ay| < R, |y| < R}
and
T ={(z,y) € Q} : |z +2by| < R, |y| < R*}.

Then
2

TNT| < )
| |_|b—a|
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Proof. By redefining x, we may assume that « = 0. Then

TAT = {(2,y) € Q2 : max(|al, |z + 2by]) < R, |y| < B}
C {(w,y) € Q2 2] < R.ly| < R/|2b]}.

Since ¢ is an odd prime, the claim then follows since the Haar measure is
normalized so that |Z,| = 1. O

3. Theorem 1.2 implies Theorem 1.1

Since K (M) is trivially increasing, it suffices to show Theorem 1.1 only in the
case when M = ¢! for some t € N. By using the trivial bound for K (M), we
may also assume that ¢ is sufficiently large (depending only on an absolute
constant). By considering real and imaginary parts, we may also assume
that a, is a sequence of real numbers in .

Let R = M? = ¢**. Choose F such that

t

q

ﬁ(& 77) - Z anl(n,n2)+B(07q‘10t)(§7 U)qz()t-

n=1

Here we are using the embedding of Z into Z,, and (n,n?) + B(0,q %)
denotes the square {(&,7n) € Qg: 1(&,1) — (n,n?)] < ¢ 1%}, Note that F is
indeed supported inside =5 since if [(§,7) — (n, n?)| < ¢ 10 for some n €
N, then £ € Z4; and

€2 =l = (§ = n)* +2n(§ — n) +n® — 1
< max(|¢ — n|%, 12n][¢ — n|, |n?* — 7).

Since ¢ > 3 is an odd prime, |2n| < 1 and so the above is < ¢~10¢ < g2,

Inverting the Fourier transform gives that

t

q
Z anpx(xin + :U2n2)> 1B(0,q101)(7)-

n=1

F(z) = <

Similarly, for each 7 on the right hand side of (T.3) (with length R~1/? =
Mt =q"), Fr(z) = anx(z1n + 22n?)1 (g gior)(x) where n is the unique ele-
ment in {1,...,¢'} N 7; then ||FTH%OO(Q3) = |an|? and ||F7-H%2(Q3) = |a,|?¢?".

The right hand side of (L.3)) is then < (log M)?2+10e420¢( 3::1 lan|?)3.
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It now remains to show that

t

q
(3.1) HFH%G(Qg) = ¢ ane(nay +n22o)l[Gogo -

n=1

This relies on that we are working with LS. Expanding the left hand side
gives

t

q
(3.2) Z Up, Qg / X((n1 +n2 + ng — ng — ns — ng)z1

ni,...,ne=1

+ (nf +n3 +nj —ni —ni —ng)xs) dr.
Applying Lemma 2.1 gives that the above is equal to

qt,

20t
§ g Qp, *Ang 1|n1+n2+n37n47n57n6\gq—lot 1|nf+n§+n§7nﬁfn§7n§\Sq—m" .

nl,...,nﬁzl

The statement that (ny,...,n6) € {1,...,¢"}° are such that

(3.3) In1 + na + n3 — ng —ns —ng| < q~'%,
' [ni +n3 +n5 —ni—ng —ngl < g
is equivalent to the statement that (ni,...,ng) € {1,...,q"}% are such that
ny+ng+ng—ng—ns—ng=0 (mod qut),

2 2

n?4+n3+n3—n?—ni-n2=0 (mod ¢'%).

Since the 1 < n; < ¢', n1 +no +n3 —ng —ns —ng is an integer between
—3¢" and 3¢!, while n} + n3 + n% — n3 — n? — n2 is an integer between —3¢*
and 3¢*. Since the only integer =0 (mod ¢'%) between —3¢* and 3¢* is

0, (3.3) is true for a given (n1,...,ng) € {1,...,¢"}° if and only if

2 2 2 2 2 2
ny+ng+n3—ng—ns—ng=0, ni+ny;+nz—nj—ng—ng=0.

Thus (3.2)) is equal to

t

q

20t
q E Qn, * " Ong 1n1+TL2+TL3*n4*n5*na=01n§+n§+n§—n§—n§—n§:0

Ny,...,neg=1

which in turn is equal to the right hand side of (3.1)).
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4. Setting up many scales for the proof of Theorem 1.2

We now set out to prove Theorem 1.2. Fix ¢ € (0,1). Let A be an integer
with

<A<

m | =
(LI )

Henceforth all implicit constants may depend on ¢, € and A.
Given R € ¢*N, choose r € 4N so that

A(r—4) Ar
""" <R<¢?".

Then ¢ ~ log R and (log R)*/? < ¢" < (log R), so for R sufficiently large
(depending only on ¢ and €) we have r ~ loglog R. Henceforth we fix a
sufficiently large R, and define

Ry :=¢" fork=0,1,...,N,
where IV € N is defined such that

qu <R< q(NJrl)r‘

The choice r € 4N ensures that

(4.1) R\ eq ™

for every k. Throughout we write 73 for a generic interval inside Z, of length

R,;l/ 2, for k=0,1,..., N. For instance, ZTN means sums over all intervals
—-1/2

TN C Zg with |Tn| = Ry
Let F': Qg — C be Fourier supported in =;,p as in the statement of
Theorem 1.2. In order to establish ((1.3)), it suffices to prove

(42) /@ PP S (log R)ZF05 (Y 1P 3 g2 P(D 1P 5

and then trivially decouple from frequency scale R]_Vl/ > down to
R~Y2 (note RZ_\,l/Q/R*l/2 < ¢"/? < (log R)*/? which implies ||Fr |2~ <

(log R)2 32 g [ Fr e and 30, [1FryllFe = X mporse 1F2 172 by
Plancherel).
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5. Bilinearization

The proof of Theorem 1.2 relies on the following key bilinear estimate:

Proposition 5.1. Let F be Fourier supported in Zi/r. For k=
0,1,...,N —1, and for intervals 7, C Zq with |13,| = R,;l/Q, we have

/ max |FT,€+1FT,Q+1 |3
Q

’
2 Tk+17£Tk+1
q
Tk+1,7'12+1 CTg

S (log RY*F( Y 1Fryll2ege)( D I1FryllEege))-
TN CTk TN CT

We also need the following Whitney decomposition for Zg, which ex-
presses ZZ into a disjoint union of squares of different scales:

ZgZWOLlwll_l-”l_lWN_lLlWN
where

we= U U

TCLq Trt17Thi

’
Th41,T41CTk

Tk+1><7']/€+1 fork=0,1,...,N -1

and

wh = |_| TN X TN.

TN CZyq

The proof of (4.2)), and hence Theorem 1.2 can then be given as follows.
First,

N-1
/QQIF’G:/QJF2‘3:/2 ZF3N+Z Z F. .  Fo ’

Tk+1
q TNCZq

k+1
k=0 Thk41 XT]:HJCW}C

which by the Minkowski inequality is

(5.1)

<= (L,

F.  F

3 /3 N-1
) 5 T Ul

k=0 Tr4+1 XT]::+1 CWk

3
3) 1/3
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Hoélder’s inequality gives

>(/,

1/3
3
FTQN ) Z HFTNHL6 (@2) < Z HFTN”Loo (Q2) HFTN||L2(Q2

1
ZHFTNIILM @) ZIIFTNHLz @)

In addition, for each fixed 7%, the number of (741,75, 1) with 741,71, C 7
is < (qT/Q)2 < (log R)¢. Together with Proposition 5.1, this shows that for
each k=0,1,...,N — 1,

1/3
3
2 (/@3 P i, )

Thk+1 XT];+1CW]C

£ 5 (frral)

Tk+1 ch+1
Tk Th41F iy

’
Th4+1,Ti41 CTh

S (log R (log R)* Y (D I Fryllimge)® ( D IFruliogge)®

Tr TNCTk TN CTk

< (log R*(> HFTNH%oo(@g))E(Z 1l 22gz))

TN

Thus (5.1)) is bounded by

N3(og R)*T () || Fr, H%m(@gﬂ?(Z 1Fr 22 03))

TN

which proves (4.2) because N < log R.
Proposition 5.1 can be proved by parabolic rescaling and the proposition
below. That is, we use the next proposition with J = N — k and

(5.2) f(z) = X(—R;lgmafﬁl + Rpa’xy) Fy, (Ri/zl‘l — 2aRyw2, Rixo)
where a is an arbitrary point in 7. Note that

(53)  f(&n) = R,PE (a+ Ry %€, a® + 2aR, 7€ + Ry ')

is supported on Eg, /r C E1/R,_,-
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Proposition 5.2. Let J=1,...,N and let f be Fourier supported in
Ei/r,- Then

maX
Q2 T F£T]

il S Qog RPN 1fr, 17w 2> (D s 1))

TJ
It remains to prove Proposition 5.2.
6. Broad/Narrow decomposition: Proof of Proposition 5.2
The proof of Proposition 5.2 is via a broad /narrow decomposition. Let J =

., N and f be Fourier supported in Zy/g,. For k =0,1,...,J — 1, and
for 7, C Zq with |1%| = R,:lm, define

(6.1)
By = {r € Qp: [fn (@) < (log R)g"?  max  |fr,, (@) frr,, (@)?
el
(6.2)
and (30 fa @)V < Qog g/ max | fru, (2), (@)7),
Tr+1CTh k1

Tk,+1,7—;;+1c7'k
For = ¢ B;,, we have

fr/2

(6:3) max |fr, () fry (@) < logRGZ\fﬁ

This is because if = ¢ B, then either (6.1]) is violated, in which case

—3

q—37"
2127)_i|f7'1( ) fr (@) < (logR)(S’f( z)|® = (10gR)6|;f7'1(x) ¢
q73r v
(10gR)6q5 2;fn(fﬁ)’6,

or (6.2) is violated, in which case

IN

max | f, () @) < o GZ\fﬁ
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Either way (6.3) holds. Upon splitting the integral in Proposition 5.2 ac-
cording to whether x € B;, or not, (6.3) allows us to obtain

6.4
R 2

—r/2
T 3 </ T 3 1 / T 6-
Indul’ < | maxlin g +(10gR)6; !

Now observe that if k =1,...,J — 1 and |7%| = R;l/Q, then

(a) for z € B;,, we have

(6.5) [fr(@)® < (log R)°™  max_ | fr.,(2)fr,, ()%

‘rk+1,7',§+1 CTr
!
Tk+17£7—k+1

(b) for = ¢ B,,_, we have

(6.6) fr@)® < (1= (Qog R0 > |fr, (@)%

Tr4+1CTk

The estimate (6.5)) holds because of (6.1). The proof of proceeds via

the Narrow Lemma:

Lemma 6.1 (Narrow Lemma). Fiz 1, C Z, with |1| = R;l/Q. Suppose
T satisfies

(@) > (log R)g"/?  max | fr,, () fr  (2)]'/2

Tht15Thr1 CTh
’
Tk+17é‘rk+1

Then there exists a Tx+1 C T such that
|fr(@)] < (1= (og R) ™) fr, ().

Indeed, for x ¢ B, , either (6.1)) fails, in which case the Narrow Lemma
applies, or (6.1 holds but (6.2) fails, in which case

Fru@)] < (Qog R)g"?  max | frp, (@) fr, @12 <03 [ (@)Y

’
Te+1,Tk41

TR Te+1CTk
Tk+17é7-k+l
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Either way holds. From (/6.5]) and , we see that fork =1,...,J —1

and |7,| = R, /%,

q7T/2 6(k—1 6
Tog !~ (o8 ) / | fr.]
< q57"/2( (logR) ) 6k= 1)/ max |f7—k+1fTI; 1’3
B. Th41 7 Th1 i
Tht1,Th41CTh
Jrﬂ(lf(log}z)—l)‘ﬁk > / | friea |
(log RS T

Te+1CTk q
Summing over 7, we get

—r/2

Tog e~ (o8 70” “Z/ ol

5r/2 —6(k—1) 3
<q r/ ( (log R ( E / - mji(l |f7’k+1 fT];+1 ’
+17 Tkt
Tk+1,T,Q+1CTk

(1— (log R)™ GkZ/ ka_H

Tk+1 q

qfr/2

* llog R

fork=1,...,J — 1. We now apply these successively to the right hand side
of (6.4), starting with £ = 1 and going all the way up to k = J — 1. Then

Qzﬂr'nii(|fﬁf7-l / max\fﬁf.rl
1 1

+Zq57./2 IOgR —6(k—1) Z/ ma}x; |ka+1fT,;+1’3

Tht 17T
Tlc+1 ,T;Q+1 CTx

(1 (log R)™1)~80~ ”Z / Fnlf.

qfr/2

* (log R)6
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Since J < N < log R, this gives

(6.7)

max | fr [ ™

o 8 5T/2(10gR max Z/ max ‘fm+1 fTéH ‘3

’
Tk+17£7—k+1
Tk+177',i+1CTk

—r/2

(6.8) logR E Z/ | fry 1.

Observe that

(6.9) < (q_

2 2 2)

which is much better than what we needed in the conclusion of Proposi-
tion 5.2. Equation (6.7)) is controlled by the following proposition:

Proposition 6.2. Let J=1,...,N and let f be Fourier supported in
Sy, Let k=0,1,....J =1 and 7, C Zy with |r| = R, "/*. Then

(6.10) /B max  |frs S P

/
Tk+13£7k+1
Tk41 ,TéJrl CTr

S 0g R F (Y Ifeallfe@p)( X 1 lEa@)

TyCTk TsCTk
Assuming this for the moment, we see that (6.7]) is bounded by
Te
6.7) ,Scz“r”"/z(logR)HB+ _max Z o i)Y IfnllFege)

T TJjCTk T7CTx

< (log B)*05(3 Hme%oo(Qg) Qs lea)

TJ

(Recall ¢°/2 < (log R)**/2.) Together with we finish the proof of Propo-

sition 5.2. It remains to prove Lemma 6.1 and Proposition 6.2.

Proof of Lemma 6.1. Let 7;;, | be the 7,41 C 7% such that

max ‘f7k+l( )| = |f7'1j+1(l‘)|'

Tr+1CTk

For 7441 C 74 such that 741 # 77, , note that

o @) < s @) e, (@) < (log R) g2 fr ().
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Therefore

i @] =1fn(@) = D0 fra (@)

Tht17Thi1
> (1= #{Tht1 : Tt C T Tit1 # Trg1 J(log R) 7L q™"/2) | fr (@)
>

(1~ (log B) ™)\ fr(2)]. 0

To prove Proposition 6.2, we need the following level set estimate.

Proposition 6.3. Let J=1,...,N and let f be with Fourier support in
Ei/Rr,- For a >0, let

Ualf) = {w € Q7 : max | fr, (@) (2)] "/ ~ @

and (Y |f7,(2)])"0 < (log R)q"*a}.

Then

a¥lUa(F)| S (og B F (3 1132 i I3y

TJ

where the implied constant is independent of f and a.

Proof of Proposition 6.2. By the same rescaling as in —, it suffices
toprovefork = 0. Foragiven Jy=1,2,...,Nand kg =1,2,...,Jp —
1, the case of (k, J) = (ko, Jo) in follows from the case (k, J) = (0, Jo —
ko). Note also that in this rescaling, it is important that in the definition
of B;, we have the condition z € Q?] in (6.1) rather than a smaller spatial
region.

Now to prove (6.10) for k = 0, for each square Q p1/> C Qg of side length

1/2 .
R J/ , we estimate

(6.11) / max | fr, () f (z)?
BNQ, 1/ TIFT]
J
where we write B := B, for brevity. Let

BSmall(QRb/Z) = {1‘ ebBn QR1J/2 :

max |fr, () fr; ()] ? < R™V2 max||fr, ll=(@,. )}

T1F#T
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and partition (BN Q z12) \ Bsman(Q z1/2) into O(log R) sets where
J J

max |fr (#) (@) /2 ~ @ and

—1/2
R max (1 fr, (@, ) < 0 < Rmax £, Q-

By pigeonholing, there exists an . such that

(6.12) (6.11) < RJR_?’HEJ‘X ”fTJH%OO(QRl/z) + (log R)aleR;/Q N Ua. (I

But by the uncertainty principle (see discussion after Lemma 2.3), |f.,| is

constant on @ p1/2, S0
J
13 = B3 e, < MnliBao
J J J
Thus

6 4 2
max HfTJHL‘X’(QRlJ/Q) < max anHLoo(@g)HmeL?(QRb/z)

TJ

< (Z | f, ||2L°°(@?1))2 Z 1f ||%2(QR1/2)'

Plugging this back into (6.12), and summing over @ />, we obtain
J

ma | fr, (2) (@)

BTl T1

SRIRP QY rllim ) D Il 72(ge) + (log R)al|Ua. (f)]

< (g R)*T5 (Y Il ae)® Do Mo 7o)

TJ

where the last inequality is a consequence of Proposition 6.3. This finishes

our proof.

The rest of the argument goes into proving Proposition 6.3.

0
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7. High/Low decomposition: Proof of Proposition 6.3
7.1. Square functions and pruning of wave packets

Fix J=1,...,N and fix f with Fourier support in =y ,p,. For x € @g and
A to be chosen later (see (7.8))), define

:Z|fn Z Z (I, fr,)(z )|

T Ty ET(TJ)

Z > 1z, fr,)(x)

TJET(’TJ)
||1TJfTJ||L°°(@g SA

and for k=J—1,J —2,...,1, define

Z’ fk+1 Tk Z Z 1kak+177k)(x>‘2

T TRET(Tk)

fk(-x) — Z Z (1kak+1,7'k>($)'
Tk TkET(Tk)
17 frt1.mp [l oo @2) SA

1/2

Note that the Fourier support of gy is contained in a R, '" square cen-

tered at the origin and hence g is constant on squares of side length Rl/ 2

Additionally by definition of the f,

(7.1) | fem| < | fra1m]

and so
/rm? Z/ fim <Z/ frsiml? /yfk+1|

where in the last step we applied L? orthogonality. Therefore

(7.2) /@g\fﬂzs/(%\f2|2§---s/%|fjw2s/@ 72

This matches the intuition that when passing from f; to fi we are throw-
ing away wave packets and therefore at least at the L? level, we have a
monotonicity relation as above.
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7.2. High and low lemmas
For k=1,...,J — 1, define

I — h !
9k = 9k * RkillB(o,R;ﬁ) and g = gk — G-

Note that gj (and g?) is Fourier supported on the union of {|¢| < R_l/2 ln —

20¢| < R; '} where {a} is a collection of points chosen from {4}, w1th one
« for each 7. Additionally, observe that since

~

1 —
(7.3) Rienilpomiz) = Laom)

we have g}f =gl and so gfC is just the restriction of g; to frequencies

B(0,R; 11"
less than Rki{ By definition of g; and gL, both are nonnegative functions.

Lemma 7.1 (Low Lemma). Fork=1,...,J —1, we have gfg < Gkt1-

Proof of Lemma 7.1. We have

l -1
(74) gk = gk * Rk+llB(O R;/fl)
- Z Z (Pt Frria,) * Bl B(O,R}%)"

Tk Trt1,The1CTh

Taking a Fourier transform we see that

(fk+1 JTh41 fk+1 Tk+1) * Rk+1 B(0, Ri/fl

k+1

3 _ /
- |fk+1,rk+1| * Rk+1 B(O,R./? if 7o = Tha1
0 otherwise

2 : /
_ ’fk+177-k+1‘ if Tk+1 — Tk+1
0 otherwise

where the last equality is because of (7.3)) and that |fyi1r,,,|? is Fourier
supported in B(0, R, 1/2) Thus (7.4)) is equal to

Z |fk+177—k+1|2 < Z |fk+277—k+1‘2 = gk+1

Tk+1 Tk+1

by (7.1). Here if k = J — 1, we interpret fx o to mean f. O
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Lemma 7.2 (High Lemma). Fork=1,...,J—1,
[k <3 [ttt
Qi Tk Q3

Proof of Lemma 7.2. It suffices to partition Qg into squares with side length
Ry41 and prove the estimate on each such square. Fix an arbitrary square
B C Qg of side length Rj.1. We have by Plancherel,

/ b2 = [ ghgh + 1),

Since gk is Fourier supported outside B(0, Rki{z) and 1p is Fourier sup-

ported in B(0, Rk+1) gy * 15 is supported in B(0, R_l/z) \ B(0, R,:if) by
the ultrametric inequality. Therefore the above is equal to

SCID Y IR [ereu B SRR

k1 ) T

We claim that for each 7, the Fourier support of | fk+1,rk’2 outside

r/2 out-

B(0, Rki{ ) only intersects ¢
side B(0, Rk+{ ).
~1/2

Indeed, suppose there exists (£,7) such that max{[¢|, ||} > R, " and

many Fourier supports of the | fr11.7[?

€l < R,

~1
N —2a€|,|n — 2d¢| < Ry
for some « € 73, and o/ € 7;. Then
2(a — )¢ < R,

and so if |¢] > Ry 11’ then

’06—0/’ < Rlzl/R_l/Q _R—1/2 r/2

k+1
El R.?  and R.!?,  which  impli — 2a€] =
se  [§]<R,\" an In| > R,,}\", which implies [|n—2a¢| =
max{|7n|, |2af|} > R,:if, contradicting |n — 20| < R;;b if k>1. So
o —d| < R, /247/2  the number of overlaps is just ¢"/? times.
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Thus we have

3 / TP (fesrn )+ T3
7 BOR\BO.R L)

s i d(Te, ) <Ry g2

= Z /B ‘fk—i—l,m‘z * (13(013;1/2) - 1B(0,R;1/2)) Z |fk+1,712|2
Tk

(T, Tl ) <Ry g2

< Z/ | frsrm | > | fet1,m2 ]
Tk B

Tl;!d(Tk7T,;)§R;1/2qr/2

where in tvhe last inequality we have used that | fk+1’7-k‘2*\]fB(0’R,:1/2) =

| fet1m )2 Lp0,r-1/7) 18 nonnegative, and that the convolution of two non-
IR NS

negative functions is also nonnegative. Applying Cauchy-Schwarz then gives

that (7.5)) is
<y /B Ferrml?

and summing over all B C Qg of side length Rj1 then completes the proof.
O

7.3. Decomposition into high and low sets

Let
Q1 ={z€Q}: gs1(x) < (log R)gj_, ()}
For k=J—-2,J—3,...,1, define

Q= {z € Q) \ (Uy1U---UQy1): gi(z) < (log R)gp(2)}

Finally,
L=Q2\ (2 U---UQ;y).

Note that g; is constant on squares of size R,lc/ 2, By definition, gé is

. 1/2 1/2 .
constant on squares of size Rk{&—l > Rk/ . Therefore gZ is also constant on
. 1/2
squares of size R;’".

One can view the construction of the €2, as follows. Partition Qg first

. . 1/2 . . .
into squares of size R J/_ - Then ©;_ is a union of those squares on which

g—1(z) < (log R)g"_|(z) where here we have used that both g;_; and g% ,

. 1/2
are constant on each such square of size R L/f 1-
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Next, partition each of the remaining squares not chosen to be part of
Q) ;_1 into squares of size R}/_Q 5. From these squares of size R},/_Q 5, 172 is
the union of those squares on which g;_o(z) < (log R)g" _,(z). Repeat this
until we have defined ; after which we call the remaining set L (which can
1/2
be written as the union of squares of size R;"").
To prove Proposition 6.3, note that

J—1
(7.6) aSUa(f)] < aOUa(f) N LI+ D a®|Ual(f) N %l.
k=1

In view of the definition of the set U,(f), to control the right hand side,
we need to understand the size of max,, 4. |fr, (x)fr (2)| on Q (for k=
1,...,J—1) and on L. We do so in the next section, and then use it to
bound the right hand side of .

7.4. Approximation by pruned wave packets

Lemma 7.3. Letk=1,2,...,J —1 and |7| > R,;l/z. Then for x € Qg,

1> frrn (@) = D frn (@) < A ge(a).

TLCT T CT

Proof of Lemma 7.5. Fix x € @g. We have

I forin (@) = Y e @) =1) > (17, fos1,m) (@)]

TR CT TR CT T CT TLeT(T)
17, fit1,my [l oo @2)>A

(7.7) <> > (A1, frs1m) (@)

TeCT TLET(Tk)
||1Tk fk+117'k ”L‘X’(Qg)>>\

For each 7, there exists exactly a parallelogram T (z) depending on z in
T(7x) such that « € Ty (x). If for this parallelogram, [|17, ) fi+1,7 | 2= (@2) <
A, then the inner sum for this particular 7 in ((7.7)) is equal to 0. Otherwise,

H 1ﬁ(x)fk+1,fk ”%oo(@y)
‘(1kak’+1,7'k)(x)‘ < \ :
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and hence

Z |y frr1m) ()] < )\_1|]17k(x)fk+1,mH%m(@’;ﬁ)'
TkET(Tk)
Illkak+1ka”L°°(Qg)>A

Since  |fit1,7] is constant on = Ti(z), ||177€($)fk+177k ||%M(Q3) =

|(17; () frt1,m ) ()] and so (7.7) is
g )\_1 Z Z |(1kak+1,Tk)($)|2 S )\_lgk(l')

T CT T €T(T1)
||1Tk frt1,7p, HLOO(@E)>>\

which completes the proof of the lemma. [l

1/2

Lemma 7.4. Letk=1,2,...,J =1 and|7| > R_"'". Then for x € Q,

_1 logR
17 2
| fr (2 ;%;_fk+1rk < 10g10gl{H9JHLw(QQ-

Proof of Lemma 7.4. Fixx € Q. Since . fro = fr=>__ . fr_,, we
have

1fr(2) = Y frrin (@) S U fr(2) = > for, (@

T, CT TCT
+ Z | Zf]+171 Zf]77-_]
j=k+1 7,CT T, CT
J
—1
<A g
j=k+1

by Lemma 7.3 (by how f; is defined, the fr — >~ fj., term is controlled
by the same proof as in Lemma 7.3).
To control this sum, we now use the definition of €. The low lemma
gives
9j(x) = gi(x) + g} (z) < gj1(z) + g} ().
Since x€Q, for j=k+1,...,J—1, this is then <gj1(z)+
(log R)~'gj(z) and hence

gi(x) < (1 = (log B) ™) gj41(x)-
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Therefore for j =k +1,...,J —1,

g5(x) < (1= (log ) ™)~ g ll 1~ (q2).-

Thus
J J |
A Z gj(x) < )‘71H9J||L°0(Q3) Z (1 — (logR)~H~(/=9)
Jj=k+1 =kt
_q1 logR
< 175> s
~ loglogR”g‘]HL (Q2)
which completes the proof of Lemma 7.4. 0

Note that the above proof also works for x € L and we obtain the same
conclusion.
Now choose

g2 19l
@),

(7.8) A= (log R

We can write the conclusion of Lemma 7.4 as for = € Q and |7| > R,:l/Q,

we have

f-(2) = frr1,-(2) + O((log R)~'q""/*(loglog R) " ax)

and so for z € Qi and 71, 7{ disjoint intervals of length Rl_l/ 2,

| fri (@) fr (@) = [ frr1,m (@) frrr,rg ()]

a a?
* O((log R)q"/?log logR(|le @1+ 1z @)+ (log R)2q" (loglog R)2>'

Since x € U,(f), we control the |f-, ()| and |f (x)| by the I° sum over all
such 71 caps and thus by (log R)q"/2c. This gives that for 2 € Uy (f) N Q,

a2

@ @) = it @) frrin @)+ O

).
This implies for z € U, (f) N Q and R sufficiently large,

max | fr, () fr; (2)* S max | foy1.7, () forr7 ()
TI#ET] TIF£T]
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which gives
(79  *Ua(f) Nl | bpn | frt1,m (@) for1,m (x)|1/2||i4(Ua(f)ﬂQk)'

Similarly, Lemma 7.3 with k = 1 implies | fo.r, (%) — fir,(7)] < A 1g1 ()
and the beginning of the proof of Lemma 7.4 implies |f;, (x) — fo (z)] <
A1 2512 gj(x). Following the proof of Lemma 7.4 and the choice of A in ([7.8])
shows that for x € L,

fri(@) = fiz(2) + O((log R)~'q~"*(loglog R) ')

from which following the same reasoning as in the {2 case, we obtain that
(7.10) Q®|Ua(f) NI| S || max | fir, (@) fr,m @) 21 s, (0
TIF#T] &

In light of ([7.6), it remains to estimate the right hand sides of ([7.9))
and (7.10).

7.5. Estimating a®|Uy(f) N Q| for k=1,...,J — 1

We first recall the following bilinear restriction theorem whose proof we defer
to the end of this section.

Lemma 7.5 (Bilinear restriction). Suppose 6 € ¢, and for i = 1,2,
fi is a function on Qg whose Fourier support is contained in {(&,n): £ €
L, |n — €| < 8}, where Iy, Is are intervals in Z, (not necessarily of the same
length) separated by a distance k. Assume

(7.11) K> 642,

Then

2 62 2 2
(7.12) /@g |fifal” < n/@g | f1] /Qg | fal*.

Fix k=1,2,...,J — 1 below. Then (7.9)) is bounded by

(7.13) Z /Q | frestm forrm .

TIF#T]

/2

Since g and g,}j are constant on squares of side length R,lg , we may partition

Q. into squares @ of side length R,lg/ 2, and integrate on each such ) before we
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sum over Q. If k¥ > 2, then the Fourier supports of fi11-,1¢ and fry1.1¢
are contained in = R-1/25 while the distance between 71 and 71 is > Ry
Since R;1/2 > (R,;l??)l/2 and ( . holds, the hypothesis of Lemma 7.5 is
satisfied with k = Rl_l/ and § = R, 12 From , we then obtain

1/2
R_1/2 /‘fk+1‘rl| /’fk+1T1

= |Q‘/|fk:+1n| /’fkﬂfl

The same inequality holds for k& =1, because then |fry1r| and |fri1 -

are constants on squares of side length R}/ ?. Thus in either case, ([7.13)) is
controlled by

| /\

/Q | Frtt,m fos1,m

Z Z / | Frttim Srs1r

QEP 1/2(Q )T1§é7'1

<q7? Ql Z/’flﬁ-lﬁ’ /\fk+1712

QEP 1/2 ()

< T‘/2 / -
<gq \Q! | 1,7 |

QEP 1/2 ()

where here Ppi/2(§2;) denotes the partition of €, into squares of side length
k

R,lc/ % Since @ has side length RIIC/ 2, Plancherel and the definition of g; then
controls this by

qr/2 ‘Q| Z/ |fk:-|—17';C

QEP 1/2 (%)

_ /2 L 2 _ /2 2
q > |Q’(/ng) q /ngk

QEP, 1/2(C%)
k

where the last equality is because g is constant on squares of size R, 12,
Therefore we have shown that

AU (F) N ) < g2 / g

1978
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Using that we are in €} and applying the high lemma, this is controlled by
(114)  (logR)%"” /Q g% < (og R)2¢" Y /Q Nfiran

—-1/2

. ~1/2
Write fr417, = ZTk+1CTk fr+1,7.,,- Note that the sum has R, / /R,

terms. Using Holder’s inequality, we further obtain that

~1/2

. R
(7.14) < (log R)?*q (Rlil/Q)S 2/2 \fk+1,rk+1|4
k+1 Th+1 a

- (log R)qur/z Z /2 ‘fk+1,7’k+1‘4

Thk+1 q
2 5r/2 4
= (lOg R) q v/ Z /2 Z ‘1Tk+1fk+2,7'k,+1
o ¥ Tit1€ET(Tht1)

||1Tk+1 Srr2,m 0 ”LO"(Qg)S/\

where in the last equality we have used that each z € Qg is contained in
exactly one Tgyq € T(7x41). Here we have also used the convention that if
k=J—1, then fr.o is just f. Applying the definition of f;,1 shows that
this is

(7.15) < (log R)’¢"/2X* ) / 2 | frsoimen |

Thk+41 q

= Qo B0 [ [fical < Qo RPN [ 5P

where the last inequality is by (7.2)). Using ([7.8) then shows that we have
proved

U N 5 (g B 20 2os e [ 107

It follows that

(7.16)  a®|Ua(f) Nl S (Qog B)°a™ (D Il frullFm ) D I1frs 722

TJ TJ
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7.6. Estimating a®|U,(f) N L|

The right hand side of (7.10) is

717 < / (1 finl?)? < / (3 o 2)? = / ES fonl?

where the second inequality is by (7.1). Forz € Land k=1,...,J —

have
gr(x) < (1= (log R) ™) g1 ()

gi(@) S 1fr (@)

TJ

Therefore this and (7.2 shows that (7.17) is
(il |19

It follows that

(718) WUl L] S (X e g S s B

1405

1, we

Finally, we may sum (7.16]) over k = 1,...,J — 1 with ([7.18]). Since J <
N <log R, this concludes the proof of Proposition 6.3, modulo the proof of

Lemma 7.5.
7.7. Proof of Lemma 7.5

Decompose

fi= > fio.

0:,CI;
16./=5"

Then by Plancherel,
/ \fifal? = Z / f1.6, f2,0, - f1.67 2,0,
RE 01.01.,02,05 7 %

= S | (Fop # Fen) - (Frgy * Jog)-

01791)02705 Qg
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For the last mtegral to be non-zero, the support of f1 O, * f2 g9, must inter-
sect the support of f1 o) * f2 g,- Thus we can find (&, 7;), i = 1,2, 3,4 such
that & + & = &34 & and n1 + np = 13 + 4 where |n; — £2] < 6 and & € 61,
& € 09, &3 € 0], and & € 6. Hence by the ultrametric inequality, for this

(&1,...,&4), we have

(7.19) S +&—(&+&4)=0
(7.20) GG+ -G+ <o

From (7.19)), we have § — & = — (&2 — &3), so we see from ([7.20]) that
& —&ll& + & — (&L + &) <

But (7.19) also implies & + & — (§2 + &3) = 2(&1 — &3). Since ¢ is an odd

prime, we have

161 — &al|&1 — &3] < 0.

Since |£1 — &4| > K, this shows

&1 — & < ﬁ
K

If §/k <82 ie. holds, then |&; — &] < §'/2. Since #; and 6 are
intervals of length 6'/? and two ¢-adic intervals of the same length are either
disjoint or equal, we must have #; = 0. Using again then implies
Oy = 6S,.

This shows

/|f1fz|2 Z/ |Fro, * foa|* = Z/2|f1,91|2|f2,92|2.

01 .05 01,0, 7 Q4

Now for i = 1,2, we may expand

\fio* =

> len s,

T,€T(6;)

as in Corollary 2.5, so that 37 cp( il = Jgo | fip [ Thus

/ Fro P o = / 3 rchrlTl S lenffn,

Q7 T,€T(0 T>€T(02)

> Z ler, [*ler, [P|Ty N Ty

T1€T(601) T>€T(02)
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Using the definition of x, and Lemma 2.6, we see that

5—1/2 52
—_— = ;’T1HT2| for all T7 € T(el), T e T(QQ),

52
/ FroPlfaa? < & / o, / Faonl?.
Q2 K Jez Q2

Summing over 61 and 62 on both sides, we yield

62
/|f1f2|2§/ |f1|2/ | fol?,
Q2 kJez Q2

|T1 ﬁTg’ < 571/2 .

SO

as desired.
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