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Finiteness of non-constant maps over a

number field

Ariyan Javanpeykar

Motivated by the intermediate Lang conjectures on hyperbolic-
ity and rational points, we prove new finiteness results for non-
constant morphisms from a fixed variety to a fixed variety defined
over a number field by applying Faltings’s finiteness results to mod-
uli spaces of maps.

1. Introduction

We prove finiteness results motivated by Lang’s intermediate conjectures
[EJR, §2]; these conjectures generalize Lang’s conjectures [Lan86] and relate
the notion of being of general type to the behaviour of rational points. The
main idea of this note is to apply Faltings’s arithmetic finiteness results
(formerly Mordell’s conjecture and the Mordell-Lang conjecture) to moduli
spaces of maps (i.e., Hom-schemes).

We work with the following conventions. IfK is a field, a variety overK is
a geometrically integral quasi-projective scheme over K. Moreover, a surface
over K is a two-dimensional variety and a curve over K is a one-dimensional
variety over K. If V is a variety over K and L/K is a field extension, we let
VL denote V ×SpecK SpecL. Also, if f : V 99K X is a rational map, we let
f(V ) denote the image of the locus of determinacy of f .

Recall that a variety X over C is Brody hyperbolic if every holomorphic
map C → Xan is constant, where Xan denotes the complex-analytic space
associated to X. Our first result says, in particular, that a Brody hyperbolic
projective surface admits only finitely many non-constant maps defined over
a fixed number field from a given variety.

Theorem 1.1. Let X be a projective surface over a finitely generated field
K of characteristic zero such that there is an embedding K → C with XC

Brody hyperbolic. Then, for every finitely generated extension L/K and every
variety V over L, the set of non-constant rational maps f : V 99K XL over
L is finite.
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Note that the analogous statement over algebraically closed fields fails,
so that the assumption that K is finitely generated can not be dropped in
Theorem 1.1. For example, if C is a smooth projective curve of genus at
least two over C and X = C × C, then the set of non-constant morphisms
C → X is (obviously) infinite.

Since a smooth projective variety over C with ample cotangent bundle
is Brody hyperbolic, we directly obtain the following finiteness result.

Theorem 1.2. Let X be a smooth projective surface over a finitely gener-
ated field K of characteristic zero such that Ω1

X is ample. Then, for every
finitely generated extension L/K and every variety V over L, the set of
non-constant rational maps f : V 99K XL over L is finite.

Our next result establishes a similar finiteness result for certain surfaces
of general type. The surfaces we will consider are neither Brody hyperbolic
nor have ample cotangent bundle, so that we can not appeal to the above re-
sults. On the other hand, the surfaces we consider are ”pseudo-algebraically
hyperbolic” [Jav20, Definition 9.2], and it turns out that this suffices to
prove a similar finiteness result.

Theorem 1.3. Let X be a smooth projective surface of general type with
c21(TX) > c2(TX) over a finitely generated field K of characteristic zero.
Then, there is a proper closed subset Z ⊂ X such that, for every finitely gen-
erated extension L/K and every variety V over L, the set of non-constant
rational maps f : V 99K XL over L with f(V ) ̸⊂ ZL is finite.

One can not take Z to be the empty set in Theorem 1.3. Indeed, there
exists a smooth projective surface of general type with c21(TX) > c2(TX)
which contains rational curves. The subset Z in Theorem 1.3 will forcefully
contain these rational curves. In fact, the subset Z can be taken to be the
union of images of non-constant maps E → XK , where E runs over all elliptic
curves over K.

To prove the above three results we rely on two abstract results (The-
orems 1.4 and 1.5 below). These results may be considered as the main
technical results of this note.

Before we state our results, we introduce notation for Hom-schemes
and also take the opportunity to briefly recall some fundamental proper-
ties of such schemes. Namely, for X and Y projective schemes over a field
k, Grothendieck proved that the set-valued functor

Sch/kop → Sets
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which associates to a k-scheme T the set IsomT (XT , YT ) of isomor-
phisms XT → YT over T is representable by a locally finite type k-scheme
Homk(X,Y ); Grothendieck’s proof uses the existence of Hilbert schemes
[Gro62] (see also [Nit05, Theorem 6.6] for a proof). We will refer to
Homk(X,Y ) as the moduli space (or: Hom-scheme) of morphisms from X
to Y ; note that the set of k-points Homk(X,Y )(k) of Homk(X,Y ) is the set
of morphisms from X to Y over k. Since the Hom-scheme Homk(X,Y ) is an
open subscheme of the Hilbert scheme HilbX×kY/k of X ×k Y , it is a count-
able disjoint union of quasi-projective schemes over k (indexed by Hilbert
polynomials). We stress that Homk(X,Y ) might not be quasi-projective, as
it might have infinitely many connected components (e.g., Homk(P

1
k,P

1
k)).

We define Homc
k(X,Y ) ⊂ Homk(X,Y ) to be the subscheme parametriz-

ing the constant maps fromX to Y . Note that this subscheme of Homk(X,Y )
is isomorphic to Y . We let Homnc

k (X,Y ) be the moduli space of non-
constant morphisms from X to Y , and note that this is the complement
of Homc

k(X,Y ). Finally, if Z ⊂ Y is a closed subscheme, then the natural
morphism Homk(X,Z) → Homk(X,Y ) is a closed immersion. The scheme
Homk(X,Y ) \Homk(X,Z) parametrizes morphisms f : X → Y such that
f(X) ̸⊂ Z.

We can now state the first main technical result.

Theorem 1.4. Let X be a projective surface over an algebraically closed
field k of characteristic zero and let Z ⊊ X be a proper closed subset.

Assume that, for every curve C over k, every c in C(k), and every x in
X(k) \ Z(k), the set of morphisms f : C → X with f(c) = x is finite.

If C is a smooth projective curve over k and H is a positive-dimensional
irreducible (reduced) component of the scheme Homnc

k (C,X) \Homk(C,Z),
then H is birational to a smooth projective curve of genus at least two over k.

Note that this result is concerned with the structure of the moduli space
of maps from a curve to a ”pseudo-geometrically hyperbolic” projective sur-
face [Jav20, Definition 11.2].

The proof of Theorem 1.4 relies on Kobayashi-Ochiai’s finiteness theorem
for dominant maps from a variety to a variety of general type (Theorem 2.1).
We apply it to the (a priori infinitely many) evaluation maps with domain
the moduli space of maps from a curve C to X to control its dimension.

Our second technical result requires a slightly stronger, but conjecturally
equivalent assumption (see (8) and (9) in [Jav20, Conjecture 12.1]), and
provides an arithmetic finiteness conclusion.
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Theorem 1.5. Let X be a projective surface over a finitely generated field
K of characteristic zero and let Z ⊊ X be a proper closed subset.

Assume that there is an embedding K → C such that, for every smooth
projective curve C over C, the scheme HomC(C,XC) \HomC(C,ZC) is of
finite type over C.

Then, for every finitely generated field extension L/K and every variety
V over L, the set of non-constant rational maps f : V 99K XL with f(V ) ̸⊂
ZL is finite.

Using the terminology of [Jav20] and [EJR], Theorem 1.5 implies that,
if XC is 1-bounded modulo ZC over C, then X is p-Mordellic modulo Z for
every p > 0.

Our proof of Theorem 1.5 relies on Faltings’s theorem (formerly
Mordell’s conjecture) and Theorem 1.4. In fact, we apply Faltings’s theo-
rem to the moduli space of non-constant maps from V to X in the case that
dimV = 1. We then use a cutting argument to prove the desired finiteness
statement for all varieties (by induction on the dimension of V ). Here, it
is imperative that Theorem 1.4 holds over all finitely generated fields of
characteristic zero, and does not involve any restriction to number fields.

We stress that no arithmetic methods are employed in our proofs. The
main observation is simply that using known arithmetic finiteness results
(due to Faltings) and algebro-geometric arguments, one can obtain finite-
ness results on non-constant rational maps V 99K X defined over a finitely
generated field of characteristic zero.

As already explained above, all of our results (except for Theorem 1.4)
rely on Faltings’s finiteness theorems for curves (i.e., Mordell’s conjecture).
By exploiting Faltings’s finiteness theorem for closed subvarieties of abelian
varieties (i.e., the Mordell-Lang conjecture), we can also obtain new finite-
ness results for ramified covers of simple abelian varieties.

More precisely, our final result is concerned with rational points on finite
surjective ramified covers π : X → A of an abelian variety A over a finitely
generated field K of characteristic zero with X a normal variety over K.
As explained in the introduction of [CDJ+], Lang’s conjecture implies that
the set of K-rational points X(K) on such a variety X is not dense in X.
Moreover, if A is assumed to be simple, then Lang’s conjecture even predicts
that X(K) is finite. Neither of these conjectures are currently known. (On
the positive side, in [CDJ+] it was shown that X has ”fewer” points than
the abelian variety it covers. More precisely: if A(K) is dense, then A(K) \
π(X(K)) is still dense.)
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Our final result provides a bit of evidence for Lang’s prediction for ram-
ified covers of simple abelian varieties.

Theorem 1.6. Let A be a geometrically simple abelian variety over a
finitely generated field K of characteristic zero, and let X → A be a finite
surjective non-étale morphism with X a normal variety over K. Then, for
every finite extension L/K and every variety V over L, the set of non-
constant rational maps f : V 99K XL over L is finite.

Note that, in Theorem 1.6, we do not assume the variety X to be two-
dimensional. Nonetheless, the arguments used to prove Theorem 1.6 are
similar to the arguments used to prove Theorems 1.4 and 1.5.

We emphasize that, in our results above, we do not prove finiteness of
”L-points on X”, but rather finiteness of ”L-curves on X” (and L-surfaces,
L-threefolds, etc.). This is, as noted above, quite natural from the perspec-
tive of Lang’s conjectures on intermediate (pseudo-)hyperbolicity; see [EJR,
§2]. It also fits in well with predictions made by the “Persistence Conjecture”
(see Remark 2.6).

Acknowledgements. We thank the referee for several useful comments.

2. Proof of Theorems 1.4 and 1.5

We will use Kobayashi-Ochiai’s finiteness theorem [Kob98, Theorem 7.6.1].

Theorem 2.1 (Kobayashi-Ochiai). Let k be an algebraically closed field
of characteristic zero. If X is a projective variety of general type over k and
Y is a projective variety over k, then the set of dominant rational maps
Y 99K X is finite.

We now prove our first technical result.

Proof of Theorem 1.4. Our assumption says that X is pseudo-geometrically
hyperbolic [Jav20, Definition 11.2]. In particular, since dimX = 2, by com-
bining [JX, Proposition 5.4] and [JX, Lemma 3.23], it follows that X is of
general type.

As in the statement of the theorem, let H be a positive-dimensional
irreducible (reduced) component of the scheme Homnc

k (C,X) \Homk(C,Z).
Then, since every connected component of Homk(C,X) is quasi-projective,
the irreducible scheme H is quasi-projective over k.
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For c in C, let evc : H → X be the evaluation-at-c map. By our assump-
tion, this morphism has finite fibres over X \ Z. Now, let c be in C be such
that evc(H) ̸⊂ Z. (Note that such a point exists. Indeed, otherwise, the im-
age of every f in H would be contained in Z, contradicting the definition of
H.) In particular, for this choice of c, the morphism evc is generically finite
onto its image, so that dimH ≤ dimX = 2. We claim that dimH = 1. To
prove our claim, we argue by contradiction.

Suppose that dimH = 2. Then, for every c in C, since evc is generically
finite onto its image, the morphism evc : H → X is dominant. Thus, since X
is of general type, by Kobayashi-Ochiai’s finiteness theorem (Theorem 2.1),
the set {evc : H → X | c ∈ C(k)} is finite. This implies that every f in H
is constant, contradicting the fact that H is contained in the moduli space
of non-constant maps from C to X. This shows that dimH ≤ 1. Since H is
positive-dimensional by assumption, we conclude that H is an irreducible
reduced (possibly singular and non-proper) curve over k.

Again, let c in C(k) be such that evc(H) ̸⊂ Z. Let H be the smooth
projective model of H. Then, as H is smooth and one-dimensional, we have
that evc : H → X induces a morphism ev′c : H → X. Now, since ev′c : H →
X does not map H into Z, it follows that H has genus at least two. Indeed,
every curve of genus at most one mapping non-trivially to X maps into
Z by our assumption that X is geometrically hyperbolic modulo Z. This
concludes the proof. □

To prove Theorem 1.5, we require several lemmas.

Lemma 2.2 (Pseudo-groupless). Let X be a projective variety over a
field K of characteristic zero, and let Z ⊂ X be a proper closed subset. Sup-
pose that, for every finitely generated field extension L/K and every curve C
over L, the set of non-constant morphisms f : C → XL with f(C) ̸⊂ ZL is
finite. Then, for every abelian variety A over K, every non-constant rational
map A 99K XK factors over ZK .

Proof. We argue by contradiction. Replacing K by a finite field extension if
necessary, there is an abelian variety A over K, a dense open U ⊂ A whose
complement A \ U is of codimension at least two in A, and a non-constant
morphism U → X over K. Let L/K be a finitely generated field extension
and let C ⊂ UL be a smooth curve such that, for every n > 0, we have [n]C ⊂
U . (Such a field extension L and curve C in UL exist since the codimension
of A \ U is at least two in A.) Then, the morphism fn : C → XL given by
c 7→ f(nc) is a well-defined morphism. Note that the sequence of morphisms
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fn is an infinite sequence of pairwise distinct non-constant morphisms from
C to XL with fn(C) ̸⊂ ZL. This contradicts our assumption. □

Lemma 2.3. Let X be a projective surface over a field K of characteris-
tic zero, and let Z ⊂ X be a proper closed subset. Suppose that, for every
finitely generated field extension L/K and every curve C over L, the set
of non-constant morphisms f : C → XL with f(C) ̸⊂ ZL is finite. Then the
following statements hold.

1) The projective variety X is of general type.

2) If V is a smooth projective variety over K and f : V 99K X is a non-
constant non-dominant rational map whose image does not lie in Z,
then f extends (uniquely) to a morphism V → X.

Proof. By Lemma 2.2, for every abelian variety A over K, every rational
map A 99K XK factors over ZK . Therefore, since X is two-dimensional (by
assumption), it follows that X is of general type (use [JX, Corollary 3.17]
and [JX, Lemma 3.23]). This proves the first statement.

To prove the second statement, let U ⊂ V be a dense open subset such
that f is regular on U . Let C := f(U) be the (Zariski-)closure of the image
of U . Note that C is a (geometrically integral) projective curve over K (since
V 99K X is non-dominant and non-constant). Since f does not factor over
Z, we have that C ⊂ X does not lie in Z, so that the normalization of C
is a smooth projective curve of genus at least one. (Here we use that every
non-constant morphism P1

K
→ XK factors over ZK .) Now, since C does not

contain any rational curves, by [JK, §3], the rational map V 99K C extends
to a morphism V → C. This concludes the proof. □

Lemma 2.4. Let X be a projective surface over a field K of characteristic
zero, and let Z ⊂ X be a proper closed subset.

Suppose that, for every finitely generated field extension L/K and every
smooth projective curve C over L, the set of non-constant morphisms f :
C → XL with f(C) ̸⊂ ZL is finite.

Then, for every finitely generated field extension M/K and every variety
V over M , the set of non-constant rational maps g : V 99K XM with g(V ) ̸⊂
ZM is finite.

Proof. We may assume that M = K, and that V is a smooth projective
variety over K. To prove the lemma, we argue by induction on dimV .
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If dimV = 1, let V be a smooth projective model for V . Then, every
rational map V 99K X extends uniquely to a morphism V → X. Therefore,
the finiteness statement holds by assumption.

Assume that dimV > 1. Suppose that fi : V 99K X with i ∈ N are pair-
wise distinct non-constant rational maps over K. Since X is of general type
(by Lemma 2.3.(1)), we can apply the theorem of Kobayashi-Ochiai (The-
orem 2.1) to conclude that all but finitely many of the morphisms fi are
non-dominant. Thus, discarding finitely many of the fi if necessary, each
fi : V 99K X is a non-constant non-dominant rational map whose image does
not lie in Z. Therefore, by Lemma 2.3.(2), each fi : V 99K X extends to a
morphism fi : V → X.

Let K ⊂ k be an uncountable algebraically closed field extension. For
each i and j, let V i,j = {P ∈ X(k) | fi(P ) ̸= fj(P )}. Also, for each i, let
∆i := f−1

i (Z), and let ∆0
i be its complement. Since k is uncountable, there

exists a point P ∈ X(k) in the countable intersection of non-empty open
subsets

(∩i ̸=jV
i,j) ∩ (∩i∆

0
i ).

Let H ⊂ Vk be a smooth irreducible ample divisor containing P . There is
a finitely generated field extension L/K such that P and H ⊂ Vk can be
defined over L, i.e., the point P lies in V (L) and there is a smooth irreducible
ample divisor H ⊂ VL containing P . Define gi := fi|H : H → X to be the
restriction of fi to H. Note that gi(P ) = fi(P ) ̸= fj(P ) = gj(P ), so that
the morphisms gi are pairwise distinct. Also, since P ∈ ∆0

i , we have that
gi(H) ̸⊂ ZL.

Note that, for each i, the morphism gi : H 99K X is non-constant. To
prove this, suppose that gi(H) = {p}. Choose q ̸= p in gi(V ) \ Z and note
that the (positive-dimensional) fibre Vq does not intersect H. This contra-
dicts the ampleness of H. Thus, the sequence (gi : H → XL) is an infinite
sequence of pairwise distinct non-constant morphisms with gi(H) ̸⊂ ZL; this
contradicts the induction hypothesis and concludes the proof. □

Proof of Theorem 1.5. By assumption, there is an embedding K → C such
that, for every smooth projective curve C over C, the scheme HomC(C,XC) \
HomC(C,ZC) is of finite type over C.

Note that ZC contains all rational curves of XC. Indeed, if there
was a rational curve P1

C
→ XC not factoring over ZC, then the scheme

HomC(P
1
C
, XC) \HomC(P

1
C
, ZC) would have infinitely many connected com-

ponents, contradicting the fact that the latter scheme is of finite type. (The
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existence of infinitely many components follows from the existence of self-
maps of degree > 1 on P1

C
.) It follows from a standard specialization argu-

ment (Lefschetz principle) that, for every algebraically closed field k con-
taining k, the subset Zk ⊂ Xk contains all rational curves of Xk.

A standard specialization argument also shows that our assumption per-
sists over all algebraically closed fields of characteristic zero (Lefschetz prin-
ciple). More precisely, for every algebraically closed field k containing K,
for every smooth projective curve C over k, the scheme Homk(C,Xk) \
Homk(C,Zk) is of finite type over k; we refer the reader to [BJK, §9] for
details.

By Mori’s bend-and-break [Deb01, Proposition 3.1], for any algebraically
closed field k containing K, for any smooth projective curve C over k, ev-
ery c in C(k), and every x in X(k) \ Z(k), the set of pointed morphisms
(C, c) → (Xk, x) is finite. Indeed, if this set were infinite, then we would
have an infinite sequence of pointed maps (C, c) → (Xk, x) of bounded de-
gree (as Homk(C,Xk) \Homk(C,Zk) is of finite type over k), so that there
is a rational curve passing through x. Since x ̸∈ Zk, this contradicts the fact
that Zk contains all rational curves of Xk.

By Theorem 1.4, for every algebraically closed field k containing K
and every smooth projective curve C over k, we have that every positive-
dimensional irreducible component of

Homnc
k (C,Xk}) \Homk(C,Zk)

is birational to a smooth projective curve of genus at least two over k.
Let L/K be a finitely generated field extension, let k be an algebraically

closed field containing L, and let C be a smooth projective curve over L.
To conclude the proof, by Lemma 2.4, it suffices to show that the set of
non-constant morphisms f : C → XL with f(C) ̸⊂ ZL is finite.

To do so, note that, since Homnc
k (Ck, Xk) \Homk(Ck, Zk) is of finite

type, the scheme M := Homnc
L (C,XL) \Homk(C,ZL) is of finite type over

L. In particular, since (the reduced closed subscheme of) every positive-
dimensional irreducible component of Mk is birational to a smooth projec-
tive curve of genus at least two, it follows from Faltings’s theorem [Fal84]
that the set M(L) of non-constant morphisms f : C → XL with f(C) ̸⊂ ZL

is finite, as required. □

The three applications stated in the introduction are now obtained
by combining Theorem 1.5 with well-known theorems of Bogomolov and
Kobayashi.
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Proof of Theorem 1.1. Let K → C be an embedding such that XC is Brody
hyperbolic. Then, XC is 1-bounded over C; see [Kob98, Theorem 5.3.9].
Thus, the statement follows from Theorem 1.5 (with ”Z = ∅”). □

Proof of Theorem 1.2. Let K → C be an embedding. If Ω1
X is ample, then

Ω1
XC

is ample. In particular, the variety XC is Brody hyperbolic [Kob98,
Theorem 3.6.21], so that the statement follows from Theorem 1.1. □

Proof of Theorem 1.3. As in the statement of the theorem, let X be a
smooth projective surface over K with c21 > c2. Let K → C be an embed-
ding. Then, by Bogomolov’s theorem [Bog77], there is a proper closed subset
Z ⊂ XC such that, for every smooth projective curve C over C, the scheme
HomC(C,XC) \HomC(C,Z) is of finite type. (Equivalently, the degree of a
morphism f : C → X with f(C) ̸⊂ Z is bounded by a constant depending
only on X,Z,C.) Therefore, the statement follows from Theorem 1.5. □

Remark 2.5. We can apply Theorem 1.5 to any pseudo-algebraically hy-
perbolic projective surface. For example, if X is a projective normal surface
of general type which has maximal Albanese dimension, then X is pseudo-
algebraically hyperbolic by [Yam15] (see [JR, Theorem 3.9] for details). One
can also apply Theorem 1.5 to two-dimensional complete subvarieties of cer-
tain locally symmetric varieties.

Remark 2.6 (Persistence Conjecture). Let X be a projective variety
over a number field K such that, for every finite extension L/K, the set of
L-rational points X(L) is finite. Lang asked [Lan86, p. 202] whether X(M)
is finite for every finitely generated extension M/K; this question probably
has a positive answer and is formulated as the “Persistence Conjecture” in
[BJK, Conjecture 1.15]. Our finiteness results in this note are also motivated
by the Persistence Conjecture. To explain this, consider a projective surface
X over a number field K such that XC is Brody hyperbolic with respect to
some embedding K → C. Recall that such varieties X over K are conjec-
tured to have only finitely many L-points for each finite extension L/K. In
[Jav21, Theorem 1.7] it is shown that, if X(L) is finite for every number field
L/K, then X(M) is finite for every finitely generated field extension M/K
(so that Lang’s conjecture has a positive answer in this case). Although the
finiteness of X(L) is currently not known for number fields L, our result
(Theorem 1.1) verifies that, for M/K a finitely generated extension of pos-
itive transcendence degree, the subset of ”non-constant” elements of X(M)
is finite, as predicted by the Persistence Conjecture.
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3. Ramified covers

Let k be an algebraically closed field of characteristic zero. Let X be a
projective variety of general type over k. Lang conjectured that X is pseudo-
Mordellic over k, i.e., there exists a proper closed subset ∆ ⊊ X such that,
for every finitely generated subfield K ⊂ k and every model X for X over
K, the set X (K) \∆ is finite.

Assuming X embeds into an abelian variety, this conjecture (commonly
referred to as the Mordell-Lang conjecture) was proven by Faltings [Fal91].
Faltings proved a more precise result. In fact, if X is a closed subvariety
of an abelian variety A over k, we define the special locus Sp(X) of X to
be the union of the translates of positive-dimensional abelian subvarieties
of A contained in X. By work of Kawamata and Ueno [Kaw80, Uen75], the
subset Sp(X) is a closed subset of X and X is of general type if and only
if Sp(X) ̸= X. Faltings proved that X is Mordellic modulo Sp(X), i.e., for
every finitely generated field K contained in k and every model X for X
over K, the set X (K) \ Sp(X) is finite.

Faltings’s more precise result implies that every proper closed subvariety
of a simple abelian variety is Mordellic (because the special locus of any such
subvariety is obviously empty). We will use this consequence of Faltings’s
work in the following form in our proof of Theorem 1.6.

Proposition 3.1 (Faltings). Let A be a simple abelian variety over an
algebraically closed field k of characteristic zero, and let H → A be a finite
morphism of schemes. If dimH < dimA, then H is Mordellic over k, i.e.,
for every finitely generated subfield K ⊂ k and every model X for X over
K, the set X (K) is finite.

Proof. Let H ′ be the image of H → A. Note that dimH ′ = dimH < dimA.
(In particular, the morphism H → A is not surjective.) Thus, by Faltings’s
theorem, since dimH ′ < dimA and A is simple, the projective variety H ′ is
Mordellic over k. Since H is finite over H ′ and H ′ is Mordellic, we conclude
that H itself is Mordellic. □

Proof of Theorem 1.6. Let k = K be an algebraic closure of K. Since Xk

is an integral normal projective variety and Xk → Ak is a non-étale finite
surjective morphism, by [Yam15], the projective variety Xk is algebraically
hyperbolic over k (as defined by [Dem97], see also [JK]). Now, let L/K and V
be as in the statement of the theorem, and fix an embedding L → k. To prove
the desired finiteness statement, we may and do assume that V is a smooth
projective variety over L. Since Xk has no rational curves, every rational
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map V 99K XL extends (uniquely) to a morphism V → XL; see [JK, §3].
By [JK, Theorem 1.9], the scheme H := Homnc

k (Vk, Xk) parametrizing non-
constant morphisms from Vk to Xk is a projective algebraically hyperbolic
scheme of dimension at most dimX − 1 = dimA− 1. Also, given v in V ,
the evaluation morphism evv : H → X has finite fibres [JK, Theorem 1.8], so
that (by projectivity), the evaluation morphism evv is a finite morphism (see,
for example, [Sta15, Tag 01WG]). In particular, the composed morphism
H → X → A is finite, so that H is a Mordellic projective scheme over k
by Faltings’s theorem (Proposition 3.1). This implies the desired finiteness
statement. □
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