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Partial data inverse problems for

nonlinear magnetic Schrödinger equations

Ru-Yu Lai and Ting Zhou

We prove that the knowledge of the Dirichlet-to-Neumann map,
measured on a part of the boundary of a bounded domain
in R

n, n ≥ 2, can uniquely determine, in a nonlinear magnetic
Schrödinger equation, the vector-valued magnetic potential and
the scalar electric potential, both being nonlinear in the solution.

1. Introduction

We investigate an inverse boundary value problem for the nonlinear magnetic
Schrödinger equations. Let Ω ⊂ Rn, n ≥ 2 be an open connected bounded
domain with smooth boundary ∂Ω, we consider the boundary value problem

(D +A(x, u))2 u+ q(x, u) = 0 in Ω,(1.1)

with the boundary condition u = f on ∂Ω. Here the vector-valued function
A = (A1, . . . , An) is the nonlinear magnetic potential, modeling the effect
of an external magnetic field, the scalar function q represents the nonlinear
electric potential and D denotes −i∇x. The Dirichlet-to-Neumann (DN)
map for the equation is defined by

ΛA,q : W
2−1/p,p(∂Ω) → W 1−1/p,p(∂Ω),(1.2)

f 7→ ν · (∇u+ iA(x, u)u) |∂Ω,

where ν is the unit outer normal to ∂Ω.
The type of inverse boundary value problem was first formulated by

Calderón [2] for the linear condituctivity equation ∇ · γ(x)∇u = 0 when
he sought to determine the electrical conductivity γ(x) of a medium by
making boundary measurements of electric voltage and current. The unique
determination was proved in [40] in dimension n ≥ 3 by solving the prob-
lem of determining an electric potential q(x) in a Schrödinger operator
−∆+ q from the boundary Dirichlet and Neumann data. Since then, the
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inverse problem has been extensively studied in various generalized cases.
The inverse boundary value problem for the linear magnetic Schrödinger
equation, where A(x, z) = A(x) and q(x, z) = q(x), has been considered in
[3, 6, 8, 11, 13, 14, 16, 23, 27, 36, 37] and the references therein. Specifi-
cally, due to a gauge invariance, one can only expect to recover uniquely the
magnetic field curlA and q from the boundary DN-map.

In dealing with the inverse problems for nonlinear PDEs, a standard ap-
proach based on the first order linearization of the DN-map was introduced
to identify the linear reaction from the medium, then the full nonlinear
medium for certain cases. See for instance [15, 17, 18, 20, 21, 39] for the
demonstration of the approach in solving the inverse problems for certain
semilinear, quasilinear elliptic equations and parabolic equations. Recently
the higher order linearization of the DN-map has been applied in deter-
mining the full nonlinearity of the medium for several different equations.
The method was successfully applied to solve inverse problems for nonlinear
hyperbolic equations on the spacetime [26], where in contrast the underly-
ing problems for linear hyperbolic equations are still open, see also [5, 33]
and the references therein. In particular, the second order linearization of
the nonlinear boundary map was studied in [4, 22, 38, 39] for nonlinear
elliptic equations. Moreover, this higher order linearization technique was
also applied to study elliptic equations with power-type nonlinearities, see
[10, 24, 25, 28, 30, 31, 34, 35]. A demonstration of the method can be found in
[1] on nonlinear Maxwell’s equations, in [29] on nonlinear kinetic equations,
and in [32] on semilinear wave equations.

Given a semilinear elliptic PDE whose leading term is the Laplacian
operator, we apply the higher order linearization of the DN-map with
respect to the small perturbation around the zero solution. The knowledge
of the DN-map, measured partially or completely on the boundary, deter-
mines an integral of the product of the m-th order term of the nonlinear
parameter and m+ 1 harmonic functions or their derivatives. A density
argument of the products of harmonic functions or their derivatives is
crucial in proving the uniqueness of the m-th order term. For the inverse
problem of the linear equation with DN-map measured only on part of
the boundary, the density of the product of harmonic functions, which
vanish on a closed proper subset of the boundary, was first shown in
[7]. More specifically, in [7], this density argument relies on a Runge
type approximation result and an idea of propagating exponential decay
estimates for FBI transforms by the use of maximum principle as in
the Kashiwara’s watermelon theorem. In [25, 30], this density argument
was directly used, along with unique continuation and the maximum
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principle, to show unique determination of a potential function q(x) in a
model equation −∆u+ q(x)u2 = 0 or in a more general equation of the
form −∆u+ V (x, u) = 0, assuming partial data. The argument in [7] was
then generalized in [24] where the authors of [24] proved the density of
the products of the gradients of two harmonic functions, which vanish
on part of the boundary, and then use it to show the unique determina-
tion of a nonlinear potential q(x) in the equation −∆u+ q(x)(∇u · ∇u) = 0.

1.1. Problem setup and strategy

In this paper, the main objective is to determine the nonlinear vector po-
tential A(x, z) and the scalar potential q(x, z) in (1.1) from the boundary
DN-map (1.2). We briefly state our strategy using the higher order lineariza-
tion technique as follows.

Suppose that two sets of potentials (A1, q1) and (A2, q2) satisfy

(1.3) the map C∋z 7→Aj(·, z) is holomorphic with values in W 1,∞(Ω;Cn),

(1.4) the map C ∋ z 7→ qj(·, z) is holomorphic with values in L∞(Ω;C),

and

Aj(x, 0) = 0, qj(x, 0) = ∂zqj(x, 0) = 0(1.5)

for j = 1, 2. We have that the potentials admit the following expansions:

Aj(x, z) =

∞∑

k=0

∂k
zA(x, 0)

zk

k!
, qj(x, z) =

∞∑

k=0

∂k
z q(x, 0)

zk

k!
.

Fixing a positive integer m ≥ 1, let εk be small positive numbers and
fk ∈ W 2−1/p,p(∂Ω) for k = 1, . . . ,m. We denote ε := (ε1, . . . , εm) and

uj := uj(x; ε), j = 1, 2

to be the unique small solution of the Dirichlet problem
{

(D +Aj(x, uj))
2uj + qj(x, uj) = 0 in Ω,

uj = ε1f1 + . . .+ εmfm on ∂Ω.
(1.6)

We establish the well-posedness for this Dirichlet problem with small data in
the Appendix and the DN-map is thus well-defined. Moreover, by Theorem 2
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we know that the finite difference uj/εk is bounded in W 2,p(Ω) (the bound
is independent of ε), hence uj is differentiable in εk and the derivatives
satisfy the linearized Laplace equation. (See for example, [19, 38] for a more
detailed exposition.) By expanding uj in the small perturbation parameter
εk and noting that uj(x; 0) ≡ 0 due to the well-posedness, we have that the
first order term

vj,k := ∂εkuj |ε=0

is indeed a harmonic function in Ω satisfying vj,k|∂Ω = fk for k = 1, . . . ,m,
j = 1, 2.

Remark 1. 1) We point out that in this setup, we have harmonic func-
tions v1,k = v2,k for k = 1, . . . ,m in Ω since they agree on the whole
boundary.

2) In other cases, the domain Ω might have unknown geometrical features.
For example, if there is an unknown inclusion or obstacle embedded in
Ω, or if the part of the boundary where we cannot measure the DN-map
has an unknown geometry, then we would have uj to be the solutions
to the magnetic Schrödinger equation in Ωj associated with Aj and qj
for j = 1, 2. This implies that v1,k and v2,k are harmonic functions in
potentially different domains Ωj. These scenarios are discussed in [30]
for elliptic equations, where one can show under certain assumptions,
using unique continuation, that the domains in above examples are
indeed identical.

3) In this paper, we focus on the case where the domain is known to be
Ω. For the partial data inverse problems, we assume that the subsets
of the boundary: Γ1 and Γ2, be where Dirichlet data and Neumann
data are measured respectively. By the definition of the partial DN-
map in (1.11), we have the harmonic function vj,k = ∂εkuj |ε=0, j = 1, 2
satisfying the boundary condition

v1,k|∂Ω = v2,k|∂Ω = fk with supp(fk) ⊂ Γ1.

Therefore, in the partial data setting, we still have v1,k = v2,k in Ω,
hence we simply denote

vk := vj,k for k = 1, . . . ,m

from this point on.
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To reconstruct A(x, z) and q(x, z), it is sufficient to consider the unique
determination of ∂zA(x, 0), ∂2

zA(x, 0), . . . and ∂2
zq(x, 0), ∂

3
zq(x, 0), . . . in Ω

due to (1.5). The proof is based on induction steps and is sketched as follows.
We start with the second order linearization. Let m = 2 and denote

wj := ∂ε1∂ε2uj |ε=0.

Then wj is the solution to the problem

−∆wj +Q
(2)
j (v1, v2) = 0 in Ω, wj |∂Ω = 0,(1.7)

where vk = vj,k for k = 1, 2, as discussed in Remark 1, and

Q
(2)
j (v1, v2) := 3∂zAj(x, 0) · (v1Dv2 + v2Dv1)(1.8)

+ 2Dx · ∂zAj(x, 0)v1v2 + ∂2
zqj(x, 0)v1v2,

defined in (2.4). Assume that the DN-maps associated to (A1, q1) and
(A2, q2) are identical. We will obtain the integral identity

∫

Ω

(
Q

(2)
1 (v1, v2)−Q

(2)
2 (v1, v2)

)
v3 dx = 0,

where v3 is a third harmonic function in Ω with certain boundary condition.
One can see that the integral involves several complicated terms of products
of harmonic functions and their gradients, as well as mixtures of the vector
and scalar potentials, unlike the cases studied in [24, 30].

In the spirit of [7, 24], one can potentially use the corrected harmonic
exponentials

v(x, ζ) = e
−ix·ζ

h + w(x, ζ), ζ ∈ C
n, ζ · ζ = 0

that vanishes on a closed proper subset of the boundary, the idea of propagat-
ing exponential decay estimates for FBI transforms and a proper version of
Runge-type approximation, to prove an improved density result. However,
the exponential decay propagation is difficult to derive for the associated
FBI type transform of the vector-valued potential (multiplied by the com-
plex phase). Another major difficulty comes from the entanglement of A and
q in the mixture of terms.

Instead, we combine the previously established density result in [7] and
the corrected harmonic exponentials together to obtain the local uniqueness
of the potentials. Then we conduct the local-to-global step, as in the previous
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work, using the H1 Runge-type approximation. Our key step relies on a
transport equation for the harmonic functions, which helps decouple the
potentials.

The argument can be easily generalized to the case m > 2 by induction.

1.2. Main result

Let us present our main result where we show that partial data on the
boundary is sufficient to uniquely determine the nonlinear potentials in the
magnetic Schrödinger equation. Meanwhile, for the completeness of the pa-
per, we also provide a separate proof for the situation with full data in the
Appendix.

Let Ω ⊂ Rn be an open connected bounded domain with smooth bound-
ary ∂Ω. Let u be the solution to the boundary value problem for the magnetic
Schrödinger equation with nonlinearity:

{
(D +A(x, u))2 u+ q(x, u) = 0 in Ω,
u = f on ∂Ω,

(1.9)

where A(x, z) ∈ W 1,∞(Ω× C;Cn) and q(x, z) ∈ L∞(Ω× C;C) are both C∞

in z, and D := −i∇. Assume that A and q satisfy (1.3)-(1.5). We will show
that the Dirichlet problem (1.9) has a unique solution u ∈ W 2,p(Ω) for suffi-
ciently small boundary condition f ∈ W 2−1/p,p(∂Ω) where p > n. It is clear
that the equation (1.9) with f = 0 admits the zero solution u = 0. Then the
full boundary DN-map for such small functions is defined by

ΛA,q : W
2−1/p,p(∂Ω) → W 1−1/p,p(∂Ω),(1.10)

f 7→ ν · (∇u+ iA(x, u)u) |∂Ω,

where ν is the unit outer normal to ∂Ω. We also define the partial bound-
ary DN-map as follows. Let Γ1,Γ2 ⊂ ∂Ω be two arbitrary, nonempty open
subsets. Then the partial boundary DN-map is defined by

ΛΓ1,Γ2

A,q (f) = ΛA,q(f)|Γ2
(1.11)

for all f ∈ W 2−1/p,p(∂Ω) with supp(f) ⊂ Γ1.

Theorem 1. Let Ω ⊂ Rn, n ≥ 2 be an open connected bounded domain with
C∞ boundary ∂Ω and let Γ1,Γ2 ⊂ ∂Ω be arbitrary nonempty open subsets of
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∂Ω. Suppose that two sets of coefficients (A1, q1) and (A2, q2) satisfy (1.3)–
(1.5) and

ν · ∂k
zA1(x, 0) = ν · ∂k

zA2(x, 0) on Γ1 ∩ Γ2 for k ≥ 1.

Let ΛΓ1,Γ2

Aj ,qj
be the above partial boundary DN-map associated to (Aj , qj)

for j = 1, 2. Suppose that ΛΓ1,Γ2

A1,q1
(f) = ΛΓ1,Γ2

A2,q2
(f) for any f ∈ W 2−1/p,p(∂Ω),

n < p < ∞ with supp(f) ⊂ Γ1 and ∥f∥W 2−1/p,p(∂Ω) < δ, where δ > 0 is a suf-
ficiently small constant. Then

A1 = A2 and q1 = q2 in Ω.

Remark 2. When Γ1 = Γ2 = ∂Ω, this is the uniqueness result for the in-
verse problem with full boundary data. In particular, it can be shown by a
separate and direct method as seen in the Appendix.

We comment here due to the assumption (1.5), the first order lineariza-
tion of the DN-map provides boundary measurements of the harmonic func-
tions in Ω. As commented in Remark 1, we could adopt the argument in
[30] to show the unique determination of obstacles embedded in Ω or the
unknown geometry of the inaccessible part of the boundary.

Another important observation is that our result shows that there is no
gauge invariance for this problem.

The paper is organized as follows. The higher order linearization tech-
nique is detailed in Section 2 and the crucial integral identity is also derived
there. Then the proof of Theorem 1 is given in Section 3. The well-posedness
for the boundary value problem of the nonlinear magnetic Schrödinger
equation is established in Appendix A. Finally, an alternative proof of the
uniqueness of potentials with full boundary measurements is provided in
Appendix B.

2. The higher order linearization

In this section, we use the higher order linearization approach to derive
a key integral identity encoding the information of the discrepancy of the
potentials A and q, as stated in Proposition 2. We start by considering the
m = 2 case and then extend it to the higher order terms by induction steps.

For m ≥ 2, let ε := (ε1, . . . , εm) with εk > 0 and let fk ∈ W 2−1/p,p(∂Ω)
with supp(fk) ⊂ Γ1, k = 1, . . . ,m. Under the assumptions of Theorem 1, the
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boundary value problem
{

(D +Aj(x, u))
2uj + qj(x, uj) = 0 in Ω,

uj = ε1f1 + . . .+ εmfm on ∂Ω,
(2.1)

admits a unique solution uj = uj(x; ε) for |ε| small enough.

2.1. For m = 2 case

We recall the condition (1.5). Given the boundary condition f = ε1f1 + ε2f2
with supp(fk) ⊂ Γ1 for small enough |ε|, following the steps described in the
introduction, the first order linearization of (2.1) around the zero solution
uj(x; 0) = 0 gives that vj,k := ∂εkuj(x; ε)|ε=0, k = 1, 2, is harmonic function
satisfying

(2.2) −∆vj,k = 0 in Ω, vj,k|∂Ω = fk.

This indeed implies that

vk := v1,k = v2,k in Ω.

Next we perform the second order linearization, then it gives that the func-
tion

wj := ∂ε1∂ε2uj(x; ε)|ε=0

is the solution to

(2.3) −∆wj +Q(2)(v1, v2) = 0 in Ω, wj |∂Ω = 0,

where

Q(2)(v1, v2) := 3∂zAj(x, 0) · (v1Dv2 + v2Dv1)(2.4)

+ 2Dx · ∂zAj(x, 0)v1v2 + ∂2
zqj(x, 0)v1v2,

with the partial Dx meaning the derivative with respect to the first variable
of Aj(x, u). Then the O(ε1ε2) term in the expansion of the DN-map is

(2.5) ∂ε1∂ε2 |ε=0[Λ
Γ1,Γ2

Aj ,qj
(ε1f1 + ε2f2)] = (∂νwj + 2iν · ∂zAj(x, 0)f1f2) |Γ2

.

Remark 3. Since vk ∈ W 2,p(Ω), Sobolev embedding theorem implies that
vk ∈ C1,α(Ω), 0 < α < 1. Note that C1,α(Ω) is an algebra under pointwise
multiplication. Therefore, f1f2 = v1v2|∂Ω ∈ C1,α(∂Ω). Combining it with
∂νwj ∈ Cα(∂Ω), the right-hand side of (2.5) is at least in L∞(∂Ω).
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We then have the integral identity in the m = 2 case.

Proposition 1. Let Ω ⊂ Rn, n ≥ 2 be an open connected bounded domain
with C∞ boundary ∂Ω and let Γ1,Γ2 ⊂ ∂Ω be arbitrary nonempty open sub-
sets of ∂Ω. Given two sets of potentials (A1, q1) and (A2, q2) that satisfy the
conditions (1.3)-(1.5) and

ν · ∂zA1(x, 0) = ν · ∂zA2(x, 0) on Γ1 ∩ Γ2,

we then have that if ΛΓ1,Γ2

A1,q1
= ΛΓ1,Γ2

A2,q2
(for small boundary data), then for any

harmonic functions v1, v2, v3 with

supp(v1|∂Ω), supp(v2|∂Ω) ⊂ Γ1 and supp(v3|∂Ω) ⊂ Γ2,

we have

(2.6)

∫

Ω

(
Q

(2)
1 (v1, v2)−Q

(2)
2 (v1, v2)

)
v3 dx = 0,

where Q
(2)
j (v1, v2) is given by (2.4) with A, q replaced by Aj , qj for j = 1, 2.

Proof. Let v1 and v2 be harmonic functions with boundary conditions
fk := vk|∂Ω and supp(fk) ⊂ Γ1 for k = 1, 2. From the fact that ΛΓ1,Γ2

A1,q1
(ε1f1 +

ε2f2) = ΛΓ1,Γ2

A2,q2
(ε1f1 + ε2f2) for small ε = (ε1, ε2), we have that

∂νw1 + 2iν · ∂zA1(x, 0)f1f2 = ∂νw2 + 2iν · ∂zA2(x, 0)f1f2 on Γ2,

where w1, w2 are solutions to

(2.7) −∆wj +Q
(2)
j (v1, v2) = 0 in Ω, wj |∂Ω = 0.

Since supp(f1), supp(f2) ⊂ Γ1 and ν · ∂zA1(x, 0) = ν · ∂zA2(x, 0) on Γ1 ∩ Γ2,
one has

ν · ∂zA1(x, 0)f1f2 = ν · ∂zA2(x, 0)f1f2 on Γ2,

which leads to

∂νw1|Γ2
= ∂νw2|Γ2

.

Multiplying (2.7) by any harmonic function v3 in Ω with supp(v3|∂Ω) ⊂ Γ2

and applying Green’s formula, we then derive that
∫

Ω

(
Q

(2)
1 (v1, v2)−Q

(2)
2 (v1, v2)

)
v3 dx =

∫

∂Ω\Γ2

(∂νw1 − ∂νw2)v3 dS = 0.

Thus, the proof is complete. □
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2.2. Induction steps in m ≥ 2.

Let m ≥ 2 and suppose that

∂k
zA1(x, 0) = ∂k

zA2(x, 0) for k = 1, . . . ,m− 2,

∂k
z q1(x, 0) = ∂k

z q2(x, 0) for k = 2, . . . ,m− 1.

Combining the base case (1.5), we have that

(2.8) ∂k
zA1(x, 0) = ∂k

zA2(x, 0) for k = 0, . . . ,m− 2,

and

(2.9) ∂k
z q1(x, 0) = ∂k

z q2(x, 0) for k = 0, . . . ,m− 1.

Let ε = (ε1, . . . , εm) with small enough εk > 0 and let fk ∈ W 2−1/p,p(∂Ω)
with supp(fk) ⊂ Γ1 for k = 1, . . . ,m. Again, from Theorem 2, there exists a
unique small solution uj = uj(x; ε) to the problem

{
(D +Aj(x, uj))

2uj + qj(x, uj) = 0 in Ω,
uj = ε1f1 + . . .+ εmfm on ∂Ω,

(2.10)

for j = 1, 2.
Generally, for any positive integer m ≥ 2, we define the function

Qm
j (v1, . . . , vm) by

Q
(m)
j (v1, . . . , vm) := (m+ 1)∂m−1

z Aj(x, 0) ·D(v1 . . . vm)(2.11)

+m(Dx · ∂
m−1
z Aj(x, 0))v1 . . . vm

+ ∂m
z qj(x, 0)v1 . . . vm.

The general integral identity is summarized in the following proposition:

Proposition 2. Let (A1, q1) and (A2, q2) satisfy the conditions (1.3)–(1.5).
Moreover, suppose for m ≥ 2, (2.8) and (2.9) are satisfied and

(2.12) ν · ∂m−1
z A1(x, 0) = ν · ∂m−1

z A2(x, 0) on Γ1 ∩ Γ2

holds. If ΛΓ1,Γ2

A1,q1
= ΛΓ1,Γ2

A2,q2
for small data, then for any harmonic functions

v1, . . . , vm+1 satisfying

supp(v1|∂Ω), . . . , supp(vm|∂Ω) ⊂ Γ1 and supp(vm+1|∂Ω) ⊂ Γ2,
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we have
∫

Ω

(
Q

(m)
1 (v1, . . . , vm)−Q

(m)
2 (v1, . . . , vm)

)
vm+1 dx = 0.(2.13)

Before proving Proposition 2, we first need to look more closely at the
derivative of uj with respect to ε, which is stated in Lemma 1.

We start with defining the notation Ek for 1 ≤ k ≤ m to be a product
of k distinct operators of the form ∂εi and setting ε = 0. For example, for
distinct numbers 1 ≤ ℓ1, ℓ2, . . . , ℓk ≤ m, we have that ∂εℓ1∂εℓ2 . . . ∂εℓku|ε=0 is
a representative of Eku.

Lemma 1. Suppose that (2.8) and (2.9) hold. Let uj be the solution to
(2.10). For any 1 ≤ k < m, then we have

Eku1 = Eku2.

Proof. To demonstrate this for k = 1, we apply ∂εi , 1 ≤ i ≤ m, to the equa-
tion (2.10) for uj and set ε = 0. As before we find ∂εiuj |ε=0 satisfies the
linear equation

∆∂εiuj |ε=0 = 0,

with boundary condition (∂εiuj |ε=0)|∂Ω = fi. Since this holds for j = 1, 2,
we conclude that E1u1 = E1u2.

Now we proceed by the induction argument. Suppose that

(2.14) Eiu1 = Eiu2

holds for any Ei with 1 ≤ i < k, and we want to show Eku1 = Eku2. Without
loss of generality, we consider the operator

Ek = ∂ε1 . . . ∂εk |ε=0.

By applying Ek to (2.10), we have

0 = −∆Ekuj +Ψk(uj , Aj , qj),

where the term Ψk is defined by

Ψk(uj , Aj , qj) := Ψk(E1uj , . . . , Ek−1uj , ∂
1
zAj(x, 0), . . . ,

∂k−1
z Aj(x, 0), ∂

2
zqj(x, 0), . . . , ∂

k
z qj(x, 0))

and contains derivatives of order at most k − 1 in uj , derivatives of order at
most k − 1 in Aj , and derivatives of order at most k in qj with respect to the
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variable z. Since k < m, we have k ≤ m− 1 and k − 1 ≤ m− 2. Therefore
combining (2.8), (2.9), and (2.14), we have

Ψk(u1, A1, q1) = Ψk(u2, A2, q2).

Therefore the conclusion is that

−∆(Eku1) = −∆(Eku2).

Moreover, Eku1 and Eku2 share the same boundary condition, then one can
conclude

Eku1 = Eku2

as desired. □

Proof of Proposition 2. For the given harmonic functions v1, . . . , vm, whose
boundary traces are supported on Γ1, we consider the solution uj to (2.10)
with fk = vk|∂Ω (k = 1, . . . ,m). It is not hard to see by Lemma 1 that
∂εku1|ε=0 = ∂εku2|ε=0 = vk.

Applying the operator ∂ε1 . . . ∂εm |ε=0 to (2.10), we get

0 = −∆(∂ε1 . . . ∂εmuj |ε=0)

+ (m+ 1)∂m−1
z Aj(x, 0) ·D(v1 . . . vm) +m(Dx · ∂

m−1
z Aj(x, 0))v1 . . . vm

+ ∂m
z qj(x, 0)v1 . . . vm +Rm(uj , Aj , qj).

Here the remaining term Rm contains derivatives of order at most m− 1 in
uj , at most m− 2 in Aj(x, 0), and at most m− 1 in qj(x, 0) with respect to
z variable. For j = 1, 2, if we write

ϕj := ∂ε1 . . . ∂εmuj |ε=0

and use the notation introduced in (2.11), then we can write this as

∆ϕj = Q
(m)
j (v1, . . . , vm) +Rm(uj , Aj , qj) in Ω, ϕj |∂Ω = 0.

From Lemma 1 (Eℓu1 = Eℓu2, 1 ≤ ℓ < m) and the assumptions on Aj and
qj , we see that

Rm(u1, A1, q1) = Rm(u2, A2, q2).

Therefore if we subtract the equation for j = 2 from the equation for j = 1,
we get

∆(ϕ1 − ϕ2) = Q
(m)
1 (v1, . . . , vm)−Q

(m)
2 (v1, . . . , vm).
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From the equality of the DN-maps ΛΓ1,Γ2

A1,q1
= ΛΓ1,Γ2

A2,q2
, Lemma 1 (Eku1 = Eku2,

1 ≤ k < m), and the condition (2.12), we can easily derive

(2.15) ∂νϕ1|Γ2
= ∂νϕ2|Γ2

.

Now let vm+1 be harmonic and supp(vm+1|∂Ω) ⊂ Γ2, and consider the inte-
gral ∫

Ω
∆(ϕ1 − ϕ2)vm+1 dx.

Similar to the case m = 2 discussed in the proof of Proposition 1, by per-
forming the integration by parts, we get

∫

Ω
∆(ϕ1 − ϕ2)vm+1 dx =

∫

Ω
(ϕ1 − ϕ2)∆vm+1 dx = 0,

with no boundary terms, thanks to the equality (2.15), ϕ1|∂Ω = ϕ2|∂Ω = 0
and supp(vm+1|∂Ω) ⊂ Γ2. This gives us

∫

Ω

(
Q

(m)
1 (v1, . . . , vm)−Q

(m)
2 (v1, . . . , vm)

)
vm+1 dx = 0.

This finishes the proof. □

From Proposition 1 and Proposition 2, we have proved that the inte-
gral identity (2.13) holds for m ≥ 2. In the next section, we will focus on
extracting the information about potentials A and q from this identity.

3. Proof of Theorem 1

3.1. A key lemma

We will see below that by using the integral identity (2.13) in Proposition 2
and the density result in Theorem 1.1 in [7], we can derive a much simpler
identity that will be the key component to show the desired uniqueness
result.

To this end, we first simplify the notations by denoting the discrepancy
in ∂m−1

z A1 and ∂m−1
z A2 as

Ãm−1(x) := ∂m−1
z A2(x, 0)− ∂m−1

z A1(x, 0),

and also denoting the discrepancy in ∂m
z q1 and ∂m

z q2 as

q̃m(x) := ∂m
z q2(x, 0)− ∂m

z q1(x, 0).
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By applying the integration by parts and the boundary condition ν ·
∂m−1
z A1(x, 0) = ν · ∂m−1

z A2(x, 0), the identity in Proposition 2 now becomes

0 =

∫

Ω

(
Q

(m)
2 (v1, . . . , vm)−Q

(m)
1 (v1, . . . , vm)

)
vm+1 dx

=

∫

Ω

(
− (D · Ãm−1)vm+1 − (m+ 1)(Ãm−1 ·Dvm+1) + q̃mvm+1

)
v1 . . . vm dx

for harmonic functions v1, . . . , vm+1 such that

supp(v1|∂Ω), . . . , supp(vm|∂Ω) ⊂ Γ1 and supp(vm+1|∂Ω) ⊂ Γ2.

We then have the following result by using the density of the product of
harmonic functions in L1 space.

Lemma 2. Suppose that the conditions in Proposition 2 hold and harmonic
functions v3, . . . , vm have nontrivial boundary data. Then the following iden-
tity holds:

(3.1) −(D · Ãm−1)vm+1 − (m+ 1)(Ãm−1 ·Dvm+1) + q̃mvm+1 = 0

almost everywhere (a.e.) in Ω for m ≥ 2.

Proof. When m = 2, we apply Theorem 1.1 in [7], stating that the set of
products v1v2 of harmonic functions in C∞(Ω) that vanish on a closed proper
subset Γ̃ of ∂Ω is dense in L1(Ω). We immediately obtain

−(D · Ã1)v3 − 3(Ã1 ·Dv3) + q̃2v3 = 0

a.e. in Ω.
For m > 2, we also apply Theorem 1.1 in [7] to obtain

(
−(D · Ãm−1)vm+1 − (m+ 1)(Ãm−1 ·Dvm+1) + q̃mvm+1

)
v3 . . . vm = 0

a.e. in Ω. By the fact that
⋃m

j=3 v
−1
j (0) has measure zero, we then have (3.1)

for any m > 2. □
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For simplicity of notations, for m ≥ 2, we recast (3.1) as the following
transport equation,

F (x) ·Dvm+1 + g(x)vm+1 = 0,(3.2)

where

F (x) := −(m+ 1)Ãm−1(x), g(x) := −(D · Ãm−1)(x) + q̃m(x).(3.3)

3.2. Uniqueness result

The proof of Theorem 1 relies heavily on the following result, that is, Propo-
sition 3 below: if the equation

F (x) ·Dvm+1 + g(x)vm+1 = 0 in Ω

holds for all harmonic functions vm+1 ∈ C∞(Ω) with supp(vm+1|∂Ω) ⊂ Γ2 ⊂
∂Ω, then F = 0 and g = 0 in Ω. It is clear that the identity F = 0 = g implies
Ãm−1 = 0 = q̃m. Thus, the uniqueness of the potentials follows immediately.

The key strategy is to first show that F and g vanish locally, that is,
F (x) and g(x) vanish a.e. in a neighborhood of a point x0 ∈ Γ2. Next we
extend this local result to the global one. The detailed argument is stated
in the proof of Proposition 3.

To begin, we first construct the harmonic function vm+1 as in [7]. With-
out loss of generality, we let x0 = 0, the tangent plane to ∂Ω at x0 be given
by x1 = 0 and

Ω ⊂ {x ∈ R
n : |x+ e1| < 1}, Γ̃2 := ∂Ω\Γ2 = {x ∈ ∂Ω : x1 ≤ −2c}

for some constant c > 0. Here

ej = (0, . . . , 0, 1, 0, . . . , 0)

with the jth component equals to 1.

Remark 4. We comment here that one can apply a transformation to
achieve above conditions for the domain (or by the conformal mapping in
[7] for non-convex domains). More specifically, given the transformation



✐

✐

“10-Lai” — 2024/4/25 — 15:42 — page 1550 — #16
✐

✐

✐

✐

✐

✐

1550 R.-Y. Lai and T. Zhou

T : Ω̃ → Ω, x = T (y), the transport equation

F (x) ·Dv + g(x)v = 0 in Ω

becomes

F̃ (y) ·

(
∂y

∂x

)T

Dyṽ + g̃(y)ṽ = 0 in Ω̃,

where

ṽ(y) = v ◦ T (y), F̃ (y) = F ◦ T (y), g̃(y) = g ◦ T (y).

It is not hard to see that with the transformation satisfying det
(
∂y
∂x

)
̸= 0

a.e., we have that
(
∂y
∂x

)T
F̃ (y) = 0 and g̃(y) = 0 in Ω̃ implies that F (x) = 0

and g(x) = 0 in Ω.

For ζ ∈ Cn such that ζ · ζ = 0 and a cut-off function χ ∈ C∞
0 (Rn) such

that χ = 1 on Γ̃2 and supp(χ) ⊂ {x ∈ Rn : x1 ≤ −c}, we consider the har-
monic function

vm+1(x, ζ) = e−ix·ζ/h + w̃(x, ζ), h > 0,(3.4)

with vm+1|Γ̃2

= 0, where w̃ is the solution to the Dirichlet problem

{
∆w̃ = 0 in Ω,

w̃|∂Ω = −
(
e−ix·ζ/hχ

)
|∂Ω.

Then it is clear to see

∥w̃∥H1(Ω) ≤ C∥e−ix·ζ/hχ∥H1/2(∂Ω) ≤ C(1 + h−1|ζ|)1/2e
1

h
HK(Im ζ),

where HK is the supporting function of the compact subset K = supp(χ) ∩
∂Ω of the boundary and is defined by

HK(d⃗) = sup
x∈K

x · d⃗, for d⃗ ∈ R
n.

In particular, from the property of χ, one can further derive that when
Im ζ1 ≥ 0,

∥w̃∥H1(Ω) ≤ C(1 + h−1|ζ|)1/2e−
c

h
Im ζ1e

1

h
| Im ζ′|,

where ζ = (ζ1, ζ
′) with ζ ′ being the (n− 1) dimensional coordinate vector.
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Similarly, we can also derive that for any α ∈ Zn
+, the remainder function

w̃ satisfies

∥∂αw̃∥H1(Ω) ≤ C∥∂α(e−ix·ζ/hχ)|∂Ω∥H1/2(∂Ω)

≤ C(1 + h−1|ζ|)(1+|α|)/2e−
c

h
Im ζ1e

1

h
| Im ζ′|,

which gives the upper bound of w̃ ∈ H |α|+1(Ω). By the Sobolev embedding
theorem [9], when |α| − [n2 ]− 1 ≥ 0, one has

∥w̃∥C1(Ω) ≤ C(1 + h−1|ζ|)(1+|α|)/2e−
c

h
Im ζ1e

1

h
| Im ζ′|.(3.5)

Now we are ready to show the following proposition.

Proposition 3. Let Ω ⊂ Rn, n ≥ 2 be an open bounded connected set with
smooth boundary and Γ2 be an open nonempty proper subset of ∂Ω. De-
note Γ̃2 = ∂Ω\Γ2. Let F ∈ L∞(Ω;Cn) and g ∈ L∞(Ω;C). Suppose for all
harmonic functions vm+1 ∈ C∞(Ω) with supp(vm+1|∂Ω) ⊂ Γ2 such that

F (x) ·Dvm+1(x) + g(x)vm+1(x) = 0 a.e. in Ω.(3.6)

Then we have F = 0 and g = 0 a.e. in Ω.

Remark 5. We remark here that in the full data setting (Γ2 = ∂Ω), an
individual proof of this proposition can be found in Appendix B.

Proof. Step 1: Local result. As discussed above, we take x0 = 0 ∈ Γ2 with-
out loss of generality. Substituting vm+1 defined in (3.4) with nontrivial
boundary data vm+1|∂Ω ̸= 0 into (3.6), we obtain

F (x) · ζ = hF (x) ·Dw̃eix·ζ/h + hg(x) + hg(x)w̃eix·ζ/h.(3.7)

Let ζ = (i, 1, 0, . . . , 0)T . Then for all x ∈ Ω such that x1 > −c, we have from
the above estimates (3.5) for w̃ that

|w̃(x)eix·ζ/h|,

|Dw̃(x)eix·ζ/h| ≤ Ce−
x1

h
Im ζ1(1 + h−1|ζ|)(1+|α|)/2e−

c

h
Im ζ1e

1

h
| Im ζ′|.

When h → 0, this implies that the right-hand side of (3.7)

hF (x) ·Dw̃eix·ζ/h + hg(x) + hg(x)w̃eix·ζ/h
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vanishes. Hence F (x) · ζ = 0, at every point x ∈ Ω with x1 > −c, i.e., in
a neighborhood of x0 = 0. Similarly, by choosing ζ ′ = (i,−1, 0, . . . , 0)T in-
stead, we can derive that F (x) · ζ ′ = 0. These two identities F (x) · ζ = 0 and
F (x) · ζ ′ = 0 indicate the first two components of F (x) indeed vanish.

Furthermore, by choosing other

ζ = ie1 + ej for j = 3, . . . , n,

one can show that the other components of F (x) vanish too, which implies
that F = 0. Thus, we can also obtain that g = 0 from the equation (3.6) and
the fact that v−1

m+1(0) has measure zero. Finally we have derived that F = 0
and g = 0 in a neighborhood of every point x0 ∈ Γ2 provided that (3.6) hold
for all harmonic functions vm+1 with boundary data that is supported in Γ2.

Step 2: Global result. To extend the local result to any point x1 of Ω, we
take a point x0 ∈ Γ2 and let θ : [0, 1] → Ω be a C1 curve joining x0 and x1
such that θ(0) = x0 and θ′(0) is the inner normal to ∂Ω at x0, and θ(t) ∈ Ω
for t ∈ (0, 1]. We set

Θε(t) = {x ∈ Ω : d(x, θ([0, t])) ≤ ε},

a closed neighborhood of the curve θ(s), s ∈ [0, t]. Let

I = {t ∈ [0, 1] : F = 0, g = 0 a.e. on Θε(t) ∩ Ω}.

The above local result indicates that 0 ∈ I if ε > 0 is small enough. Moreover,
it is clear that I is a closed subset of [0, 1]. If we can further show that I
is also open, then we can get I = [0, 1], which further implies that x1 /∈
supp(F ) ∪ supp(g). Since x1 is an arbitrary point in Ω, we then have F = 0
and g = 0 in Ω. This will complete the proof of the global result.

To show that I is open in [0, 1], we take t ∈ I and ε > 0 small enough
so that ∂Θε(t) ∩ ∂Ω ⊂ Γ2. It is easy to see that the set Ω\Θε(t) can be
smoothed out into an open subset Ω1 of Ω with smooth boundary so that

Ω1 ⊃ Ω\Θε(t), ∂Ω ∩ ∂Ω1 ⊃ Γ̃2.

We further augment the set Ω by smoothing out the set Ω ∪B(x0, ε
′)

with 0 < ε′ ≪ ε sufficiently small, into an open set Ω2 so that

∂Ω2 ∩ ∂Ω ⊃ ∂Ω ∩ ∂Ω1 = ∂Ω1 ∩ ∂Ω2 ⊃ Γ̃2.
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Now we let G2 be the Green kernel associated to the open set Ω2 and

−∆yG2(x, y) = δ(x− y) in Ω2, G2(x, y)|∂Ω2
= 0.

We consider the function

Φ(x; y) := F (y) ·DyG2(x, y) + g(y)G2(x, y), y ∈ Ω1, x ∈ Ω2\Ω1.

It is clear that Φ(x; y) is harmonic in x on Ω2\Ω1 for a fixed y ∈ Ω1. Since
F (y) = 0 and g(y) = 0 for y ∈ Θε(t) ∩ Ω, we can extend Φ(x; y) by zero to
y ∈ Ω. When x ∈ Ω2\Ω, the Green function G2(x, y) is a harmonic function
in y on Ω with G2(x, ·)|Γ̃2

= 0. By (3.6), we have

Φ(x; y) = 0, for a.e. y ∈ Ω, x ∈ Ω2\Ω.

Since Φ(x; y) is harmonic in x on Ω2\Ω1 and the set Ω2 \ Ω1 is connected,
by the unique continuation, we then have

Φ(x; y) = 0, for a.e. y ∈ Ω1, x ∈ Ω2\Ω1.

By Lemma 2.2 of [24] (H1-density), we have that for any v ∈ C∞(Ω1)
harmonic with v|∂Ω1∩∂Ω2

= 0 and arbitrary small ϵ > 0, there exists a ∈
C∞(Ω2) with supp(a) ⊂ Ω2\Ω1 such that

∥∥∥∥v(y)−
∫

Ω2

G2(x, y)a(x) dx

∥∥∥∥
H1(Ω1)

< ϵ.

We multiply Φ(x; y) by a(x) and then integrate it with respect to x on Ω2.
We obtain

F (y) ·Dy

∫

Ω2

G2(x, y)a(x) dx+ g(y)

∫

Ω2

G2(x, y)a(x) dx = 0, a.e. y ∈ Ω1,

and, moreover, we can derive that

∥F ·Dv + gv∥L2(Ω1)

≤

∥∥∥∥F ·D

∫

Ω2

G2(x, ·)a(x) dx+ g

∫

Ω2

G2(x, ·)a(x) dx

∥∥∥∥
L2(Ω1)

+ Cϵ = Cϵ

for arbitrary small ε > 0. This implies that

F ·Dv + gv = 0 a.e. in Ω1
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for v ∈ C∞(Ω1) harmonic with v|∂Ω1∩∂Ω2
= 0. By the above local result

in Step 1, we then have F = 0 and g = 0 in an open neighborhood of
∂Ω1 \ (∂Ω1 ∩ ∂Ω2) and this implies that F and g vanish on a slightly larger
neighborhood Θε(t

′), t′ > t of the curve. This proves that I is open, hence
completes the proof. □

Proof of Theorem 1. From Proposition 2, we have the integral identity holds
for m = 2. By applying Lemma 2, Proposition 3 and (3.3), we have F =
0, g = 0, which implies that

∂zA1(x, 0) = ∂zA2(x, 0), ∂2
zq1(x, 0) = ∂2

zq2(x, 0).

Given any integer m > 2, by induction argument, suppose that for k =
2, . . . ,m− 1, the following are true:

∂k−1
z A1(x, 0) = ∂k−1

z A2(x, 0), ∂k
z q2(x, 0) = ∂k

z q1(x, 0).

We want to show that ∂m−1
z A1(x, 0) = ∂m−1

z A2(x, 0) and ∂m
z q1(x, 0) =

∂m
z q2(x, 0) also hold.

From above, we have known that Aj and qj satisfy the conditions (2.8)
and (2.9) and thus we can apply Proposition 2 to get the integral (2.13) for
such m > 2. Applying Lemma 2 and Proposition 3 again, we then derive
that F = 0, g = 0, which gives

0 = ∂m−1
z A2(x, 0)− ∂m−1

z A1(x, 0)

and

0 = ∂m
z q2(x, 0)− ∂m

z q1(x, 0).

Therefore, we complete the proof of Theorem 1. □

Appendix A. Well-posedness of the nonlinear magnetic

Schrödinger equation

In this section, we prove that the boundary value problem (1.9) is well-posed
if the small boundary data is given. The analysis is based on the contraction
mapping principle.

Theorem 2 (Well-posedness). Let A(x, z) and q(x, z) satisfy (1.3)–
(1.4). Moreover, suppose that q(x, 0) = 0 and 0 is not a Dirichlet eigenvalue
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of the linear operator

L0 := (D +A(x, 0))2 + ∂zq(x, 0).

Then there exists a small constant ε > 0 such that for any ∥f∥W 2−1/p,p(∂Ω) ≤
ε, the boundary value problem

{
(D +A(x, u))2 u+ q(x, u) = 0 in Ω,
u = f on ∂Ω,

(A.1)

admits a unique solution u ∈ W 2,p(Ω). Moreover, there exists a constant
C > 0 independent of f such that

∥u∥W 2,p(Ω) ≤ C∥f∥W 2−1/p,p(∂Ω).(A.2)

Proof. We will use contraction mapping principle to show the existence of
solution to (1.9).

Step 1: Linearization. First, for A(x, z) and q(x, z) satisfying (1.3)–(1.4),
we use the Taylor formulas

A(x, z) = A(x, 0) +Ar(x, z)z,

q(x, z) = ∂zq(x, 0)z + qr(x, z)z
2,

where we denote

Ar(x, z) :=

∫ 1

0
∂zA(x, tz) dt, qr(x, z) :=

∫ 1

0
∂2
zq(x, tz)(1− t) dt.

Given f ∈ W 2−1/p,p(∂Ω) for p ∈ (n,+∞), by Theorem 9.15 of [12], there
exists a unique solution u0 ∈ W 2,p(Ω) to the Dirichlet problem

{
L0u0 := (D +A(x, 0))2u0 + ∂zq(x, 0)u0 = 0 in Ω,
u0 = f on ∂Ω.

(A.3)

Moreover, we have

∥u0∥W 2,p(Ω) ≤ C∥f∥W 2−1/p,p(∂Ω).

(This can be obtained by extending f to a W 2,p(Ω) function and apply
Lemma 9.17 of [12] to the equation for the difference of the solution and the
extended function.)
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Thus, if u is a solution to (1.9) we have the remainder function v :=
u− u0 satisfying the following problem

(A.4) L0v = F(v), v|∂Ω = 0,

where

F(v) :=− (D +A(x, 0)) ·
[
Ar(x, u0 + v)(u0 + v)2

]

−Ar(x, u0 + v)(u0 + v) · (D +A(x, 0)) (u0 + v)

−Ar(x, u0 + v)2(u0 + v)3 − qr(x, u0 + v)(u0 + v)2.

By Theorem 9.15 in [12] again, for F ∈ Lp(Ω), there exists a unique solution
ũ ∈ W 2,p(Ω) ∩W 1,p

0 (Ω) to the equation L0ũ = F ∈ Lp(Ω) in Ω with trivial
boundary data. We denote the solution operator by

L−1
0 : Lp(Ω) → W 2,p(Ω) ∩W 1,p

0 (Ω),

which is the continuous operator F 7→ ũ and thus L−1
0 (F ) is the solution to

L0ũ = F ∈ Lp(Ω) in Ω with trivial boundary condition. Therefore, we are
looking for the unique fixed point v of L−1

0 ◦ F .

Step 2: A contraction map. In what follows, we will show that L−1
0 ◦ F

is indeed a contraction map on a suitable subset Xδ of W 2,p(Ω) ∩W 1,p
0 (Ω).

Here we denote the set Xδ for 1 > δ > 0 by

Xδ := {v ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) | ∥v∥W 2,p(Ω) ≤ δ}.

We first show that (L−1
0 ◦ F)(Xδ) ⊂ Xδ. Recalling that, by the Sobolev

embedding theorem, we have W 2,p(Ω) →֒ C1(Ω) if p > n. For v ∈ Xδ, we
have v, u0 ∈ C1(Ω) since v, u0 ∈ W 2,p(Ω). Thus we have that Ar(x, u0(x) +
v(x)) and qr(x, u0(x) + v(x)) are both bounded in Ω. Moreover, since

D · [Ar(x, u0(x) + v(x))] =

∫ 1

0
Dx · ∂zA(x, t(u0 + v)) dt(A.5)

+

∫ 1

0
t∂2

zA(x, t(u0 + v)) dt ·D(u0 + v),

one can derive that

∥F(v)∥Lp(Ω) ≤ C∥u0 + v∥C1(Ω)∥u0 + v∥Lp(Ω)

≤ C∥u0 + v∥2W 2,p(Ω) ≤ C(∥u0∥
2
W 2,p(Ω) + ∥v∥2W 2,p(Ω)).
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This implies that, for ∥f∥W 2−1/p,p(∂Ω) < ε and p > n, one has

∥L−1
0 (F(v))∥W 2,p(Ω) ≤ C∥F(v)∥Lp(Ω)(A.6)

≤ C(∥f∥2W 2−1/p,p(∂Ω) + ∥v∥2W 2,p(Ω))

≤ C(ε2 + δ2).

Therefore, for ε and δ small enough, the operator L−1
0 ◦ F maps Xδ into

itself.
Next we show that L−1

0 ◦ F is a contraction on Xδ. To this end, we take
v1, v2 ∈ Xδ and consider

∥L−1
0 ◦ F(v1)− L−1

0 ◦ F(v2)∥W 2,p(Ω) = ∥L−1
0 (F(v1)−F(v2))∥W 2,p(Ω)

≤ C∥F(v1)−F(v2)∥Lp(Ω).

In addition, we rewrite

−F(v) = D · (Ar(x, u0 + v))(u0 + v)2 + 3(Ar(x, u0 + v) ·D(u0 + v))(u0 + v)

+ 2A(x, 0) ·Ar(x, u0 + v)(u0 + v)2 +Ar(x, u0 + v)2(u0 + v)3

+ qr(x, u0 + v)(u0 + v)2.

Thus, F(v2)−F(v1) is the sum of the following two terms

I = D · (Ar(x, u0 + v1))[(u0 + v1)
2 − (u0 + v2)

2]

+ 3Ar(x, u0 + v1) · [D(u0 + v1)(u0 + v1)−D(u0 + v2)(u0 + v2)]

+ 2A(x, 0) ·Ar(x, u0 + v1)[(u0 + v1)
2 − (u0 + v2)

2]

+Ar(x, u0 + v1)
2[(u0 + v1)

3 − (u0 + v2)
3]

+ qr(x, u0 + v1)[(u0 + v1)
2 − (u0 + v2)

2],

II = [D · (Ar(x, u0 + v1))−D · (Ar(x, u0 + v2))](u0 + v2)
2

+ 3(Ar(x, u0 + v1)−Ar(x, u0 + v2)) ·D(u0 + v2)(u0 + v2)

+ 2A(x, 0) · [Ar(x, u0 + v1)−Ar(x, u0 + v2)](u0 + v2)
2

+ [Ar(x, u0 + v1)
2 −Ar(x, u0 + v2)

2](u0 + v2)
3

+ (qr(x, u0 + v1)− qr(x, u0 + v2))(u0 + v2)
2.

For the first term, we obtain

∥I∥Lp(Ω) ≤ C
{
(∥u0∥C1(Ω) + ∥v1∥C1(Ω) + ∥v2∥C1(Ω))∥v1 − v2∥Lp(Ω)

+ (∥u0∥Lp(Ω) + ∥v1∥Lp(Ω) + ∥v2∥Lp(Ω))∥v1 − v2∥C1(Ω)

}

≤ C(∥u0∥W 2,p(Ω) + ∥v1∥W 2,p(Ω) + ∥v2∥W 2,p(Ω))∥v1 − v2∥W 2,p(Ω)

≤ C(ε+ δ)∥v1 − v2∥W 2,p(Ω).



✐

✐

“10-Lai” — 2024/4/25 — 15:42 — page 1558 — #24
✐

✐

✐

✐

✐

✐

1558 R.-Y. Lai and T. Zhou

For II, we have

∥II∥Lp(Ω) ≤ C∥u0 + v2∥
2
C1(Ω)

{
∥D · [Ar(x, u0 + v1)]−D · [Ar(x, u0 + v2)]∥Lp(Ω)

+ ∥Ar(x, u0 + v1)−Ar(x, u0 + v2)∥Lp(Ω)

+ ∥qr(x, u0 + v1)− qr(x, u0 + v2)∥Lp(Ω)

}
.

By (A.5) and that D · ∂zA(x, z), ∂2
zA(x, z), ∂zA(x, z) and ∂2

zq(x, z) are all
Lipschitz in z (where the Lipschitz constants are independent of x by the
boundedness of ∂k

zA and ∂k
z q), we obtain

∥II∥Lp(Ω) ≤ C∥u0 + v2∥
2
C1(Ω)∥v1 − v2∥W 1,p(Ω) ≤ C(ε2 + δ2)∥v1 − v2∥W 2,p(Ω).

Combining above estimates together, we obtain

∥F(v1)−F(v2)∥Lp(Ω) ≤ C(δ + ε+ δ2 + ε2)∥v1 − v2∥W 2,p(Ω).

Therefore, L−1
0 ◦ F is a contraction on Xδ for ε and δ small enough. Using

the contraction mapping theorem, there exists a unique fixed point v ∈ Xδ

of L−1
0 ◦ F , namely,

(L−1
0 ◦ F)(v) = v,

and hence v solves (A.4). Substituting the fixed point v into the second
inequality of (A.6), we then have

∥v∥W 2,p(Ω) ≤ C(ε∥f∥W 2−1/p,p(∂Ω) + δ∥v∥W 2,p(Ω)).

For δ small enough, this gives

∥v∥W 2,p(Ω) ≤ C∥f∥W 2−1/p,p(∂Ω).

Finally, we obtain u = u0 + v ∈ W 2,p(Ω) which solves (1.9) and satisfies

∥u∥W 2,p(Ω) ≤ C∥f∥W 2−1/p,p(∂Ω).

□

Appendix B. An alternative proof of the full boundary

data result

In this section, we provide a separate proof to show that the nonlinear
potentials can be uniquely recovered when the boundary data are given on
the whole boundary.
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Proof of Theorem 1 (when Γ1 = Γ2 = ∂Ω). We will begin by reproving
Proposition 3 here when Γ2 = ∂Ω. From identity (3.2), we substitute har-
monic function

vm+1 = eζ·x,

into (3.2), where ζ ∈ Cn satisfy ζ · ζ = 0. Then we have

F (x) · ζ + g(x) = 0.(B.1)

Since ζ is arbitrary with ζ · ζ = 0, we can take

ζ = he1 + ihej

for j = 2, . . . , n and h ∈ R. We then obtain from (B.1) that

F (x) · (e1 + iej) = 0(B.2)

as h → ∞. Similarly, we can take

ζ ′ = he1 − ihej ,

then we have

F (x) · (e1 − iej) = 0.(B.3)

Adding these two equations (B.2) and (B.3) together, we get

F (x) · e1 = 0,

which implies the first component of F vanishes. Following similar argument
as above, we can then conclude F = 0 in Ω. Thus, from (3.2), we can also
derive g = 0 if we have known F = 0.

Finally, by following a similar argument as in the Proof of Theorem 1 for
the partial data setting in Section 3, we obtain the uniqueness result with
complete data. □
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