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Uniqueness of equivariant harmonic maps

to symmetric spaces and buildings

Georgios Daskalopoulos and Chikako Mese

We prove uniqueness of equivariant harmonic maps into irreducible
symmetric spaces of non-compact type and Bruhat-Tits buildings
associated to isometric actions by Zariski dense subgroups.

1. Introduction

Assume that M and N are Riemannian manifolds, M has finite volume and
N has non-positive sectional curvature. Hartman [Ha] proved the follow-
ing uniqueness result for harmonic maps: Let u : M → N be a finite energy
harmonic map of rank greater at 1 at some point p ∈ M . If N has negative
sectional curvature at u(p), then u is the only harmonic map in its homotopy
class (cf. [Ha, Corollary following (H)]). The second author [Me] generalized
Hartman’s uniqueness result to the case when the target space is a geodesic
metric space X̃ with curvature < 0 in the sense of Alexandrov. On the other
hand, if there exists a 2-plane in Tu(p)N with sectional curvature 0 for all
p ∈ M , then uniqueness fails. For example in the extreme case, when N
is a flat torus, then there exists a family of harmonic maps obtained by
translations of a given harmonic map.

Analogous uniqueness statements hold for equivariant harmonic maps.
More precisely, let ρ : π1(M) → Isom(X̃) be a homomorphism into the isom-
etry group of an NPC space X̃ and f̃ be a ρ-equivariant map (cf. Defini-
tion 2.10). Using the same principle as in the homotopy problem, a finite
energy ρ-equivariant harmonic map ũ : M̃ → X̃ is unique provided ũ has
rank greater than 1 at some point p ∈ M̃ and X̃ has negative curvature at
ũ(p).

In this note, we study uniqueness for equivariant harmonic maps into ir-
reducible symmetric spaces of non-compact type and Bruhat-Tits buildings.
Bruhat-Tits buildings are locally finite simplicial complexes. However, we
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1640 G. Daskalopoulos and C. Mese

conjecture that a similar uniqueness result holds in the case of non-locally
finite thick Euclidean buildings with transitive isometry groups (cf. Re-
mark 3.3). The importance of the latter case is that limits of symmetric
spaces of non-compact type are such Euclidean buildings (cf. [KL1, Theorem
5.2.1]). This is important in the study of the compactification of character
varieties and higher Teichmüller theory.

Symmetric spaces of non-compact type (resp. Euclidean buildings) are
examples of Riemannian manifolds of non-positive sectional curvature (resp.
NPC spaces or complete CAT(0) spaces). Harmonic maps into Riemannian
manifolds of non-positive sectional curvature and NPC spaces have been
important in the study of geometric rigidity problems (e.g. [Si], [Co1], [GS],
[JY], [MSY], [DMV] among many others). The uniqueness of harmonic maps
into symmetric spaces (resp. Euclidean buildings) does not follow from [Ha]
(resp. [Me]) unless X̃ has rank 1 (resp. X̃ is a R-tree). Indeed, every point P
in a rank n symmetric space X̃ (resp. n-dimensional Euclidean building) is
contained in a convex, isometric embedding of Rn. The novelty of this paper
is that the uniqueness is proven, not with the assumption on the curvature
bound as in [Ha] and [Me], but with an assumption on the homomorphism
ρ : π1(M) → Isom(X̃).

The main theorem of this paper is the following:

Theorem 1.1 (Existence and Uniqueness). Let M be a Riemannian
manifold with finite volume, X̃ be an irreducible symmetric space of non-
compact type, and ρ : π1(M) → Isom(X̃) a homomorphism. Assume:

(i) The subgroup ρ(π1(M)) does not fix a point at infinity.

(ii) There exists a finite energy ρ-equivariant map f̃ : M̃ → X̃.

Then there exists a unique finite energy ρ-equivariant harmonic map ũ :
M̃ → X̃.

The same conclusion holds if X̃ is an irreducible Bruhat-Tits building
with the additional assumption that the action of ρ(π1(M)) does not fix a
non-empty closed convex strict subset of X̃.

The existence results for harmonic maps is contained in (e.g. [L], [Do],
[Co1], [GS], [J], [KS2], [KS3]). Thus, the goal of this paper is to prove the
uniqueness assertion in Theorem 1.1.

The assumptions on the subgroup ρ(π1(M)) in Theorem 1.1 are related
to the notion of Zariski dense. Indeed, in either the case when X̃ is a sym-
metric space of non-compact type or a Bruhat-Tits building, if the action of
the subgroup Γ of Isom(X̃) neither fixes a point at infinity nor a non-empty
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Uniqueness of equivariant harmonic maps 1641

closed convex strict subset, then Γ is Zariski dense (cf. [CaMo, Proposi-
tion 2.8]). The converse also holds if X̃ is a symmetric spaces of non-compact
type and rank(X̃) ≥ 2 (cf. [KL2, Theorem 4.1]), but there exist Zariski dense
subgroups that fix a non-empty closed convex strict subset if rank(X̃) = 1
(cf. [Ca, Section 4]).

Remark 1.2. For the case when X̃ = G/K is a symmetric space, Theo-
rem 1.1 may be deduced from the gauge theoretic approach due to Donald-
son [Do] and Corlette [Co2]. Indeed, harmonic maps to symmetric spaces
can be thought of as a solution to Hitchin’s equations and uniqueness follows
along the lines of [Co2, Proposition 2.3]. The point of this paper is to provide
a simple geometric proof of the uniqueness of harmonic maps that works for
Bruhat-Tits buildings as well.

2. Preliminaries

We start with some definitions. We will assume that X̃ is a complete metric
space.

Definition 2.1. A geodesic σ : I → X̃ is a map from an interval I ⊂ R

such that d(σ(s), σ(s+ t)) = |t| for all s, t ∈ I. A geodesic line, geodesic ray
and geodesic segment are geodesics with domain R, [0,∞) and closed interval
[a, b] respectively.

Definition 2.2. Geodesics σ : I → X̃ and σ̂ : I → X̃ are said to be parallel
if there exists a constant C > 0 such that

d(σ(s), σ̂(s)) = C, ∀s ∈ I.

Remark 2.3. Two geodesic rays σ : [0,∞) → X̃ and σ̄ : [0,∞) → X̃ are
asymptotic if there exists a constant C > 0 such that

d(σ(s), σ̄(s)) ≤ C, ∀s ∈ R (resp. ∀s ∈ [0,∞)).

By [BH, II.2.13], the terms parallel geodesic rays and asymptotic geodesic
rays are equivalent.

Definition 2.4. A point at infinity is an asymptotic class of geodesic rays.
We denote by [σ] the asymptotic class containing the geodesic ray σ.
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Definition 2.5. A symmetric space X̃ is a Riemannian manifold such that,
for any P ∈ X̃, there exists SP ∈ Isom(X̃) such that P is an isolated fixed
point of SP and SP ◦ SP is the identity map. The isometry SP is called an
inversion symmetry at P .

Definition 2.6. Given a geodesic line σ : R → X̃ and s ∈ R, the composi-
tion

Ts = Sσ( s

2
) ◦ Sσ(0)

is called a transvection along σ. We have that

Ts+s′ = Ts ◦ Ts′

and {Ts} forms a one-parameter subgroup of Isom(X̃) that act as parallel
transports along σ (cf. [Eb, 2.1.1]).

Definition 2.7 (cf. [BH] Definition 10A.1). A Euclidean building of
dimension n is a piecewise Euclidean simplicial complex X̃ such that:

(1) X̃ is the union of a collection A of subcomplexes A, called apartments,
such that the intrinsic metric dA on A makes (A, dA) isometric to the
Euclidean space R

n and induces the given Euclidean metric on each
simplex.

(2) Any two simplices B and B′ of X are contained in at least one apart-
ment.

(3) Given two apartments A and A′ containing both simplices B and B′,
there is a simplicial isometry from (A, dA) to (A′, dA′) which leaves
both B and B′ pointwise fixed.

Furthermore, will assume

(4) X̃ is an irreducible Bruhat-Tits building.

Definition 2.8. A symmetric space of non-compact type X̃ (resp. a Eu-
clidean building) is said to be irreducible if it is not isometric to a non-trivial
product X̃1 × X̃2 of two symmetric spaces of non-compact type (resp. Eu-
clidean buildings).
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Uniqueness of equivariant harmonic maps 1643

Notation 2.9. Given P,Q ∈ X̃ and s ∈ R, we denote

(1− s)P + sQ

to be the geodesic interpolation between P and Q; i.e. (1− s)P + sQ = σ̄ (δs)
where δ = d(P,Q) and σ̄ : [0, δ] → X̃ is a geodesic segment with σ̄(0) = P
and σ̄(δ) = Q.

Definition 2.10. Let Isom(X̃) be the group of isometries of X̃ and ρ :
π1(M) → Isom(X̃) be a homomorphism from the fundamental group of a
Riemannian manifold M . Let π1(M) act on the universal cover M̃ of M by
deck transformations. A map f̃ : M̃ → X̃ is said to be ρ-equivariant if

f̃(γp) = ρ(γ)f̃(p), ∀γ ∈ π1(M), p ∈ M̃

where we write gP for g ∈ Is(X̃) and P ∈ X̃ instead of g(P ) for simplicity.

If X̃ is a Riemannian manifold, then |df̃ |2 is the norm of the differen-
tial df̃ : TM̃ → TX̃. If X̃ is a NPC space, then |df̃ |2 is the energy density
function in the sense of [KS1]. Either way, if f̃ is ρ-equivariant, then |df̃ |2

is invariant under the action of ρ(γ) for any γ ∈ π1(M), and the energy of
f̃ is defined to be

E f̃ =

∫

M

|df̃ |2dvolM .

3. Proof of Theorem 1.1

The existence results for harmonic maps is contained in (e.g. [L], [Do], [Co1],
[GS], [J], [KS2], [KS3]). Thus, we need to only prove the uniqueness assertion.

3.1. Geodesic interpolation

We assume on the contrary that there exist two distinct ρ-equivariant har-
monic maps

ũ0 : M̃ → X̃ and ũ1 : M̃ → X̃.

Using Notation 2.9, define the geodesic interpolation of ũ0 and ũ1; i.e.

ũs : M̃ → X̃, ũs(q) = (1− s)ũ0(q) + sũ1(q).
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Since ũ0 and ũ1 are ρ-equivariant, ũs is also ρ-equivariant. By the convexity
of energy (cf. [KS1, (2.2vi)]),

Eũs ≤ (1− s)Eũ0 + sEũ1 − s(1− s)

∫

M

|∇d(ũ0, ũ1)|
2dvolM

Lemma 3.1. Scaling if necessary, assume d(ũ0(p0), ũ1(p0)) = 1 for some
point p0 ∈ M̃ . Then, for ũs defined above, we have the following:

• d(ũs(p), ũ1(p)) = 1− s, ∀p ∈ M̃

• |(ũs)∗(V )|2(p) = |(ũ0)∗(V )|2(p), for s ∈ [0, 1], a.e. p ∈ M , a.e. V ∈
TpM̃ .

Proof. Since ũ0 and ũ1 are energy minimizing, we conclude

0 =

∫

M

|∇d(ũ0, ũ1)|
2dvolM(3.1)

Eũs = Eũ0 , ∀s ∈ [0, 1](3.2)

First, (3.1) implies that ∇d(ũ0, ũ1) = 0 a.e. in M̃ . Hence, d(ũ0, ũ1) is
constant; i.e.

(3.3) d(ũ0, ũ1) ≡ 1.

Note that equality (3.2) implies that
(3.4)
|(ũs)∗(V )|2(p) = |(ũ0)∗(V )|2(p), for s ∈ [0, 1], a.e. p ∈ M̃, a.e. V ∈ TpM̃.

Indeed, for {P,Q,R, S} ⊂ X̃, the quadrilateral comparison for NPC spaces
implies

d2(Ps, Qs) ≤ (1− s)d2(P,Q) + sd2(R,S)− s(1− s)(d(P,Q)− d(R,S))2

where Ps = (1− s)P + sS and Qs = (1− s)Q+ sR. Applying the above
inequality with P = ũ0(p), S = ũ1(p), R = ũ1(expp(tV )) and Q =

ũ0(expp(tV )) where t > 0 and V ∈ TpM̃ , dividing by t2 and letting t → 0,
we obtain (cf. [KS1, Theorem 1.9.6])

|(ũs)∗(V )|2(p) ≤ (1− s)|(ũ0)∗(V )|2(p) + s|(ũ1)∗(V )|2(p)

− s(1− s)(|(ũ0)∗(V )|(p)− |(ũ1)∗(V )|(p))2,

a.e. p ∈ M̃, V ∈ TpM̃ .
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Combining this with (3.2), we conclude

|(ũs)∗(V )|2 = (1− s)|(ũ0)∗(V )|2 + s|(ũ1)∗(V )|2

which in turn implies (3.4). □

For each q ∈ M̃ , define the geodesic segment

(3.5) σ̄q : [0, 1] → X̃, σ̄q(s) = ũs(q).

Note that up to this point, we have only used the fact that X̃ is an
NPC space. We will now specialize to the two cases: (i) X̃ is an irreducible
symmetric space of non-compact type and (ii) X̃ is an irreducible Bruhat-
Tits building.

3.2. Symmetric spaces

Throughout this subsection X̃ is an irreducible symmetric space of non-
compact type. For each q ∈ M̃ , extend the geodesic segment σ̄q of (3.5) to
a geodesic line

(3.6) σq : R → X̃.

Let

F : M̃ × R → X̃, F (q, s) = σq(s).

Let ∇F−1

be the induced connection on the vector bundle

(3.7) (T ∗(M × R))⊗k ⊗ F−1TX̃ → M̃ × R.

For each s ∈ [0, 1], let ∇ũ−1

s be the induced connection on the vector bundle

(3.8) (T ∗M)⊗k ⊗ ũ−1
s TX̃ → M̃.

Use the inclusion M̃ → M̃ × {s} and the identity F (·, s) = ũs(·) to identify
(3.8) as a subbundle of (3.7).
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Let s, ∂s denote the standard coordinate and coordinate vector on R.
Let (E1, . . . , En) denote a local orthonormal frame of M̃ . Set

V = dF (∂s) , Xα = dF (Eα) for α = 1, . . . , n

as sections of F−1TX̃. Applying the usual second variation formula of the
energy (e.g. [ES], [Sc]), we obtain

d2

ds2

∣

∣

∣

s=t
Eũs(r) = 2

∫

M̃

n
∑

α=1

(

∥∇F−1

Eα
V ∥2 −

〈

RX̃ (V,Xα)V,Xα

〉)

∣

∣

∣

∣

∣

s=t

dvolM̃

for any t ∈ [0, 1] where RX̃ is the Riemannian curvature operator of X̃.
By (3.2), the left hand side of the above equality is equal to 0. The integrand
on the right hand side is non-positive by the assumption of non-positive
curvature. Thus, we conclude that for any α = 1, . . . , n,

∇F−1

Eα
V ≡ 0(3.9)

〈

RX̃ (V,Xα)V,Xα

〉

≡ 0.(3.10)

From the above, we conclude

(3.11) ∇F−1

∂s
(dũs(Eα)) = ∇F−1

∂s
Xα = 0

and

(3.12) ∇
ũ−1

s

Eβ
∇F−1

∂s
= ∇F−1

∂s
∇

ũ−1

s

Eβ
, ∀β = 1, . . . , n.

Since ∇∂s
Eα = ∇∂s

Eβ = 0, we have

(

∇F−1

∂s
∇ũ−1

s dũs

)

(Eα, Eβ)

= ∇F−1

∂s

(

∇ũ−1

s dũs(Eα, Eβ)
)

−∇ũ−1

s dũs(∇∂s
Eα, Eβ)−∇ũ−1

s dũs(Eα,∇∂s
Eβ)

= ∇F−1

∂s

(

∇
ũ−1

s

Eα
(dũs(Eβ))− dũs(∇Eα

Eβ)
)

= ∇
ũ−1

s

Eα

(

∇F−1

∂s
(dũs(Eβ))

)

−∇F−1

∂s
dũs(∇Eα

Eβ) (by (3.12))

= 0 (by (3.11)).

More generally, we can inductively use (3.12) multiple times to switch the
order of differentiation and apply (3.11) to conclude

(3.13) ∇F−1

∂s

(

∇ũ−1

s · · · ∇ũ−1

s dũs

)

= 0.
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Claim 1. Fix a point p ∈ M̃ and let Ts ∈ Isom(X̃) be the transvection along
σp as in Definition 2.6. Then

ũs = Tsũ0, ∀s ∈ [0, 1].

Proof. For s ∈ [0, 1], define a harmonic map

ṽs : M̃ → X̃, ṽs = Tsũ0.

Define

Φ : M̃ × [0, 1] → X̃, Φ(q, s) = ṽs(q).

Since Ts is a transvection along the geodesic σp,

F (p, s) = ũs(p) = σp(s) = Tsσp(0) = Tsũ0(p) = ṽs(p) = Φ(p, s).

Furthermore, Ts defines a parallel transport along σ̄p, and thus

(3.14) ∇Φ−1

∂s

(

dṽs(Eα)
)

= ∇Φ−1

∂s

(

dTs(dũ0(Eα))
)

= 0 at (p, s), ∀s ∈ (0, 1).

By (3.11) and (3.14), the vector fields dũs(Eα) and dṽs(Eα) are both parallel
along σp(s). Since dũ0(Eα) = dṽ0(Eα) at p, we conclude

dũs(Eα) = dṽs(Eα) at p ∈ M̃, ∀s ∈ [0, 1].

Next, since Ts is an isometry,

∇
v−1

s

Eα

(

dṽs(Eβ)
)

= ∇
v−1

s

Eα

(

dTs ◦ dũ0(Eβ)
)

= ∇X̃
dTs◦dũ0(Eα)

(

dTs ◦ dũ0(Eβ)
)

= dTs

(

∇X̃
dũ0(Eα)

dũ0(Eβ)
)

= dTs

(

∇
u−1

0

Eα
dũ0(Eβ)

)

.

Thus,

∇v−1

s dṽs(Eα, Eβ) = ∇
v−1

s

Eα

(

dṽs(Eβ)
)

− dṽs

(

∇M̃
Eα

Eβ

)

= dTs

(

∇
u−1

0

Eα
dũ0(Eβ)

)

− dTs

(

dũ0(∇
M̃
Eα

Eβ)
)

.

Since Ts defines a parallel transport along σ̄p(s), both vector fields on the
right hand side are parallel along σp(s). Thus,

∇Φ−1

∂s

(

∇v−1

s dṽs(Eα, Eβ)
)

= 0.
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Continuing inductively, we can prove

∇Φ−1

∂s

(

∇ṽ−1

s · · · ∇ṽ−1

s dṽs

)

= 0.

Combined with (3.13) and the fact that ũ0 = ṽ0, we conclude

∇ṽ−1

s · · · ∇ṽ−1

s dṽs = ∇ũ−1

s · · · ∇ũ−1

s dũs at p, ∀s ∈ [0, 1].

In other words, ũs and ṽs agree up to infinitely high order at p which in turn
implies that ũs = ṽs = Tsũ0 by [Sa, Theorem 1]. □

Claim 2. Let p be the point fixed in Claim 1 and let the geodesic ray σq :
[0,∞) → X̃ be the restriction of the geodesic line defined in (3.6). Then

d(σq(s), σp(s)) = δp,q, ∀q ∈ M̃, s ∈ [0,∞)

where δp,q := d(σq(0), σp(0)). In particular, σq is the unique geodesic ray
parallel to σp with value at s = 0 equal to ũ0(q).

Proof. As above, let Ts be the transvection along σp. By Claim 1, ũs(q) =
Tsũ0(q) for s ∈ [0, 1]. Since

Tsũ0(q) = (T 1

2

◦ Ts− 1

2

)ũ0(q) = T 1

2

σq(s−
1

2
), ∀s ∈ [

1

2
,
3

2
],

the restriction of s 7→ Tsũ0(q) to [12 ,
3
2 ] is a geodesic segment. Using an analo-

gous argument, we can inductively show that for any n ∈ N, the restriction to
[n2 ,

n
2 + 1

2 ] of the map s 7→ Tsũ0(q) = (T 1

2

◦ Ts− 1

2

)ũ0(q) is a geodesic segment.

Thus, we conclude that s 7→ Tsũ0(q) is a geodesic ray with Tsũ0(q) = σq(s)
for s ∈ [0, 1]. Since the two geodesic rays s 7→ Tsũ0(q) and s 7→ σq(s) agree
on [0, 1], they are the same geodesic ray. Since Ts is an isometry,

d(σq(s), σp(s)) = d(Tsũ0(q), Tsũ0(p)) = d(ũ0(q), ũ0(p)) = d(σ0(q), σ0(p)).

□

For Q = ũ0(q), let σQ = σq. By Claim 2, there exists map from ũ0(M)
to a family of pairwise parallel geodesic lines given by

Q 7→ σQ.

Since σQ = σq and σρ(γ)Q = σγq are extensions of σ̄q and σ̄γq and

ρ(γ)σ̄q(s) = ρ(γ)ũs(q) = ũs(γq) = σ̄γq(s), ∀s ∈ [0, 1],
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we have

ρ(γ)σQ = σρ(γ)Q, ∀γ ∈ π1(M).

Since σQ and σρ(γ)Q are parallel geodesic rays, we conclude that that

ρ(γ)[σq] = [σq], γ ∈ π1(M).

In other words, ρ(π1(M)) fixes a point at infinity, contradicting assump-
tion (i).

3.3. Euclidean buildings

Throughout this subsection, X̃ is an irreducible Bruhat-Tits building of
dimension n. An open n-dimensional simplex of X̃ will be referred to as a
chamber. An apartment of X̃ is a convex isometric embedding of Rn in X̃.

Let ũs be the geodesic interpolation maps defined in §3.1. The regular
set R(ũs) is the set of all points q ∈ M̃ with the following property: There
exists a neighborhood Uq of q such that ũs(Uq) is contained in an apartment
Aq of X̃.

Theorem 3.2 ([GS] Theorem 6.4). The singular set S(ũs), i.e. the com-
plement of R(ũs), is a closed set of Hausdorff codimension at least 2.

Let R∗(ũs) be the set of points q in R(ũs) such that

(3.15) ∃ ϵ > 0 and a chamber C∗ such that ũs(Bq(ϵ)) ⊂ C̄∗.

After identifying A ≃ R
n, ũs|Uq

is a harmonic map into Euclidean space, and
it follows that the set Uq\R

∗(ũs) is a closed set of dimension at most 1.
For each q ∈ M̃ , let σ̄q(s) = ũs(q) (cf. (3.5)) and denote by Rq the set of

all points s ∈ [0, 1] such that

(3.16) ∃ϵ > 0 and a chamber C such that σ̄q((s− ϵ, s+ ϵ)) ⊂ C̄.

The complement of Rq in [0, 1] is a finite set. Thus, the complement of R∗∗ =
{(q, s) : q ∈ R∗(ũs), s ∈ Rq} in M̃ × [0, 1] is an closed set of measure 0.

Fix (q, s) ∈ R∗∗ and let C, C∗ be the chamber as in (3.15), (3.16) respec-
tively. Let (x1, . . . , xn) be local coordinates in a neighborhood Uq of q ∈ R∗

with coordinate vector fields (∂1, . . . , ∂n). Let A be the apartment containing
ũs(Uq) for all s ∈ [0, 1]. After isometrically identifying A with R

n, let ⟨·, ·⟩
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be the usual inner product defined on A ≃ R
n. Thus, (3.4) with V = ∂α,

implies at q0

s 7→

〈

∂ũs
∂xα

,
∂ũs
∂xα

〉

= constant in [0, 1].

We can differentiate this twice with respect to s to obtain

0 =
∂2

∂s2

〈

∂ũs
∂xα

,
∂ũs
∂xα

〉

= 2

〈

∂

∂xα
∂2ũs
∂s2

,
∂ũs
∂xα

〉

+ 2

〈

∂

∂xα
∂ũs
∂s

,
∂

∂xα
∂ũs
∂s

〉

.

Since σ̄q0 is a geodesic, ∂2ũs

∂s2
(q0) = σ̄′′

q0(s) = 0. Thus,

∂σ̄′
q(s)

∂xα

∣

∣

∣

q=q0
=

∂

∂xα
∂ũs
∂s

(q0) = 0.

Since the choice of α ∈ {1, . . . , n} is arbitrary and R∗ is of full measure in
M̃ × [0, 1], we conclude that the geodesic segments σ̄p and σ̄q are parallel
for any p, q ∈ M̃ ; i.e.

(3.17) d(σ̄p(s), σ̄q(s)) =: δp,q, ∀s ∈ [0, 1]

where δp,q := d(σ̄q(0), σ̄p(0)) = d(ũ0(q), ũ0(p)).
Next note the following:

• (Existence of a geodesic extension) Given a geodesic segment, property
(2) of Definition 2.7 implies that there exists an apartment containing
its endpoints and hence its image. We can thus extend the geodesic
segment to a geodesic line in this apartment.

• (Non-uniqueness of a geodesic extension) Unlike symmetric spaces, the
geodesic extensions are not necessarily unique in a Euclidean building.
Indeed, there may be many apartments containing the endpoints of a
given geodesic segment.

Because of the non-uniqueness of geodesic extensions, the proof for the build-
ing case is slightly different from the symmetric space case as we see below.

We define the sets

(3.18) C0, C1, . . . , Cn

inductively follows. First, let C0 = ũ0(M̃), and then let Cn be the union
of the images of all geodesic segments connecting points of Cn−1. The
ρ(π1(M))-invariance of C0 implies the ρ(π1(M))-invariance of Cn.
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To each Q = ũ0(q) ∈ C0, we assign a geodesic segment σ̄Q = σ̄q
(cf. (3.5)). By (3.17), {σ̄Q}Q∈C0

is a family of pairwise parallel geodesic
segments. Since ũs is ρ-equivariant, the assignment Q 7→ σ̄Q is ρ(π1(M))-
equivariant; i.e. ρ(γ)σ̄Q = σ̄ρ(γ)Q for any Q ∈ C0 and γ ∈ ρ(π1(M)).

For n ∈ N, we inductively define a ρ(π1(M))-equivariant map from Cn

to a family of pairwise parallel geodesic segments as follows: For any pair of
points Q0, Q1 ∈ Cn−1, apply the Flat Quadrilateral Theorem (cf. [BH, 2.11])
with vertices Q0, Q1, P1 := σ̄Q1(1), P0 := σ̄Q0(1) to define a one-parameter
family of parallel geodesic segments σ̄Qt : [0, 1] → X̃ with initial point
Qt = (1− t)Q0 + tQ1 and terminal point Pt = (1− t)P0 + tP1 (cf. (2.9)).
The inductive hypothesis implies that the map Q 7→ σ̄Q defined on Cn

is also ρ(π1(M))-equivariant. The above construction defines a ρ(π1(M))-
equivariant map

Q 7→ σ̄Q

from X̃ to a family of pairwise geodesic segments. Indeed, we are assuming
that the action of ρ(π1(M)) does not fix a non-empty closed convex strict
subset of X̃. Thus,

(3.19) X̃ =

∞
⋃

n=0

Cn

since the right hand side is the convex hull of C0 = ũ0(M̃) and each Cn is
invariant under the action of ρ(π1(M)).

Claim 3. There exists a ρ(π1(M))-equivariant map

Q 7→ σQ : [0,∞) → X̃

from X̃ into a family of pairwise parallel rays; i.e. ρ(γ)σQ = σρ(γ)Q for all
Q ∈ X̃, γ ∈ π1(M) and d(σp(s), σq(s)) = δp,q for all s ∈ [0,∞).

Proof. For Q ∈ X̃, we inductively construct a sequence {Qi} of points in X̃
by first setting Q0 = Q and then defining Qi = σ̄Qi−1(34). Next, let

LQ =

∞
⋃

i=0

IQi

where IQi = σ̄Qi([0, 1]). Therefore, LQ is a union of pairwise parallel
geodesic segments. Thus, {LQ}Q∈X̃ is a family of pairwise parallel geodesic
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rays. Moreover, the ρ(π1(M))-equivariance of the map Q 7→ σ̄Q implies
ρ(γ)σ̄Qi−1(34) = σ̄ρ(γ)Qi−1(34). Thus, if {Qi} is the sequence constructed start-
ing with Q0 = Q, then {ρ(γ)Qi} is the sequence constructed starting with
ρ(γ)Q0 = ρ(γ)Q. We thus conclude

ρ(γ)LQ =

∞
⋃

i=0

ρ(γ)IQi =

∞
⋃

i=0

Iρ(γ)Qi = Lρ(γ)Q.

We are done by letting the geodesic ray σQ : [0,∞) → X̃ be the extension
of the geodesic segment σ̄Q : [0, 1] → X̃ parameterizing LQ. □

Claim 3 implies that ρ(π1(M)) fixes the point [σQ] at infinity. This con-
tradicts assumption (i) and completes the proof.

Remark 3.3 (Generalization to thick Euclidean buildings with
transitive isometry groups). In a forthcoming paper [BDM] by Breiner,
Dees and the second author, we generalize Theorem 3.2 to the cases when
X̃ is a Euclidean building, not necessarily locally finite. From this, we con-
jecture that we can generalize Theorem 1.1.
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