Uniqueness of equivariant harmonic maps to symmetric spaces and buildings

Georgios Daskalopoulos and Chikako Mese

We prove uniqueness of equivariant harmonic maps into irreducible symmetric spaces of non-compact type and Bruhat-Tits buildings associated to isometric actions by Zariski dense subgroups.

1. Introduction

Assume that M and N are Riemannian manifolds, M has finite volume and N has non-positive sectional curvature. Hartman [Ha] proved the following uniqueness result for harmonic maps: Let $u: M \to N$ be a finite energy harmonic map of rank greater at 1 at some point $p \in M$. If N has negative sectional curvature at u(p), then u is the only harmonic map in its homotopy class (cf. [Ha, Corollary following (H)]). The second author [Me] generalized Hartman's uniqueness result to the case when the target space is a geodesic metric space \tilde{X} with curvature < 0 in the sense of Alexandrov. On the other hand, if there exists a 2-plane in $T_{u(p)}N$ with sectional curvature 0 for all $p \in M$, then uniqueness fails. For example in the extreme case, when N is a flat torus, then there exists a family of harmonic maps obtained by translations of a given harmonic map.

Analogous uniqueness statements hold for equivariant harmonic maps. More precisely, let $\rho : \pi_1(M) \to \mathsf{lsom}(\tilde{X})$ be a homomorphism into the isometry group of an NPC space \tilde{X} and \tilde{f} be a ρ -equivariant map (cf. Definition 2.10). Using the same principle as in the homotopy problem, a finite energy ρ -equivariant harmonic map $\tilde{u} : \tilde{M} \to \tilde{X}$ is unique provided \tilde{u} has rank greater than 1 at some point $p \in \tilde{M}$ and \tilde{X} has negative curvature at $\tilde{u}(p)$.

In this note, we study uniqueness for equivariant harmonic maps into irreducible symmetric spaces of non-compact type and Bruhat-Tits buildings. Bruhat-Tits buildings are locally finite simplicial complexes. However, we

GD supported in part by NSF DMS-2105226, CM supported in part by NSF DMS-2005406 and DMS-2304697.

conjecture that a similar uniqueness result holds in the case of non-locally finite thick Euclidean buildings with transitive isometry groups (cf. Remark 3.3). The importance of the latter case is that limits of symmetric spaces of non-compact type are such Euclidean buildings (cf. [KL1, Theorem 5.2.1]). This is important in the study of the compactification of character varieties and higher Teichmüller theory.

Symmetric spaces of non-compact type (resp. Euclidean buildings) are examples of Riemannian manifolds of non-positive sectional curvature (resp. NPC spaces or complete CAT(0) spaces). Harmonic maps into Riemannian manifolds of non-positive sectional curvature and NPC spaces have been important in the study of geometric rigidity problems (e.g. [Si], [Co1], [GS], [JY], [MSY], [DMV] among many others). The uniqueness of harmonic maps into symmetric spaces (resp. Euclidean buildings) does not follow from [Ha] (resp. [Me]) unless \tilde{X} has rank 1 (resp. \tilde{X} is a \mathbb{R} -tree). Indeed, every point Pin a rank n symmetric space \tilde{X} (resp. n-dimensional Euclidean building) is contained in a convex, isometric embedding of \mathbb{R}^n . The novelty of this paper is that the uniqueness is proven, not with the assumption on the curvature bound as in [Ha] and [Me], but with an assumption on the homomorphism $\rho: \pi_1(M) \to \operatorname{Isom}(\tilde{X})$.

The main theorem of this paper is the following:

Theorem 1.1 (Existence and Uniqueness). Let M be a Riemannian manifold with finite volume, \tilde{X} be an irreducible symmetric space of noncompact type, and $\rho : \pi_1(M) \to \text{lsom}(\tilde{X})$ a homomorphism. Assume:

- (i) The subgroup $\rho(\pi_1(M))$ does not fix a point at infinity.
- (ii) There exists a finite energy ρ -equivariant map $\tilde{f}: \tilde{M} \to \tilde{X}$.

Then there exists a unique finite energy ρ -equivariant harmonic map \tilde{u} : $\tilde{M} \to \tilde{X}$.

The same conclusion holds if \tilde{X} is an irreducible Bruhat-Tits building with the additional assumption that the action of $\rho(\pi_1(M))$ does not fix a non-empty closed convex strict subset of \tilde{X} .

The existence results for harmonic maps is contained in (e.g. [L], [Do], [Co1], [GS], [J], [KS2], [KS3]). Thus, the goal of this paper is to prove the uniqueness assertion in Theorem 1.1.

The assumptions on the subgroup $\rho(\pi_1(M))$ in Theorem 1.1 are related to the notion of Zariski dense. Indeed, in either the case when \tilde{X} is a symmetric space of non-compact type or a Bruhat-Tits building, if the action of the subgroup Γ of $\mathsf{Isom}(\tilde{X})$ neither fixes a point at infinity nor a non-empty

closed convex strict subset, then Γ is Zariski dense (cf. [CaMo, Proposition 2.8]). The converse also holds if \tilde{X} is a symmetric spaces of non-compact type and $\operatorname{rank}(\tilde{X}) \geq 2$ (cf. [KL2, Theorem 4.1]), but there exist Zariski dense subgroups that fix a non-empty closed convex strict subset if $\operatorname{rank}(\tilde{X}) = 1$ (cf. [Ca, Section 4]).

Remark 1.2. For the case when $\tilde{X} = G/K$ is a symmetric space, Theorem 1.1 may be deduced from the gauge theoretic approach due to Donaldson [Do] and Corlette [Co2]. Indeed, harmonic maps to symmetric spaces can be thought of as a solution to Hitchin's equations and uniqueness follows along the lines of [Co2, Proposition 2.3]. The point of this paper is to provide a simple geometric proof of the uniqueness of harmonic maps that works for Bruhat-Tits buildings as well.

2. Preliminaries

We start with some definitions. We will assume that \tilde{X} is a complete metric space.

Definition 2.1. A geodesic $\sigma : I \to \tilde{X}$ is a map from an interval $I \subset \mathbb{R}$ such that $d(\sigma(s), \sigma(s+t)) = |t|$ for all $s, t \in I$. A geodesic line, geodesic ray and geodesic segment are geodesics with domain \mathbb{R} , $[0, \infty)$ and closed interval [a, b] respectively.

Definition 2.2. Geodesics $\sigma: I \to \tilde{X}$ and $\hat{\sigma}: I \to \tilde{X}$ are said to be parallel if there exists a constant C > 0 such that

$$d(\sigma(s), \hat{\sigma}(s)) = C, \ \forall s \in I.$$

Remark 2.3. Two geodesic rays $\sigma : [0, \infty) \to \tilde{X}$ and $\bar{\sigma} : [0, \infty) \to \tilde{X}$ are asymptotic if there exists a constant C > 0 such that

$$d(\sigma(s), \bar{\sigma}(s)) \le C, \ \forall s \in \mathbb{R} \ (resp. \ \forall s \in [0, \infty)).$$

By [BH, II.2.13], the terms parallel geodesic rays and asymptotic geodesic rays are equivalent.

Definition 2.4. A point at infinity is an asymptotic class of geodesic rays. We denote by $[\sigma]$ the asymptotic class containing the geodesic ray σ . **Definition 2.5.** A symmetric space \tilde{X} is a Riemannian manifold such that, for any $P \in \tilde{X}$, there exists $S_P \in \text{Isom}(\tilde{X})$ such that P is an isolated fixed point of S_P and $S_P \circ S_P$ is the identity map. The isometry S_P is called an inversion symmetry at P.

Definition 2.6. Given a geodesic line $\sigma : \mathbb{R} \to \tilde{X}$ and $s \in \mathbb{R}$, the composition

$$T_s = S_{\sigma(\frac{s}{2})} \circ S_{\sigma(0)}$$

is called a transvection along σ . We have that

$$T_{s+s'} = T_s \circ T_{s'}$$

and $\{T_s\}$ forms a one-parameter subgroup of $\mathsf{Isom}(\tilde{X})$ that act as parallel transports along σ (cf. [Eb, 2.1.1]).

Definition 2.7 (cf. [BH] Definition 10A.1). A Euclidean building of dimension n is a piecewise Euclidean simplicial complex \tilde{X} such that:

- X is the union of a collection A of subcomplexes A, called apartments, such that the intrinsic metric d_A on A makes (A, d_A) isometric to the Euclidean space ℝⁿ and induces the given Euclidean metric on each simplex.
- (2) Any two simplices B and B' of X are contained in at least one apartment.
- (3) Given two apartments A and A' containing both simplices B and B', there is a simplicial isometry from (A, d_A) to $(A', d_{A'})$ which leaves both B and B' pointwise fixed.

Furthermore, will assume

(4) \tilde{X} is an irreducible Bruhat-Tits building.

Definition 2.8. A symmetric space of non-compact type \tilde{X} (resp. a Euclidean building) is said to be irreducible if it is not isometric to a non-trivial product $\tilde{X}_1 \times \tilde{X}_2$ of two symmetric spaces of non-compact type (resp. Euclidean buildings).

Notation 2.9. Given $P, Q \in \tilde{X}$ and $s \in \mathbb{R}$, we denote

$$(1-s)P + sQ$$

to be the geodesic interpolation between P and Q; i.e. $(1-s)P + sQ = \bar{\sigma}(\delta s)$ where $\delta = d(P,Q)$ and $\bar{\sigma} : [0,\delta] \to \tilde{X}$ is a geodesic segment with $\bar{\sigma}(0) = P$ and $\bar{\sigma}(\delta) = Q$.

Definition 2.10. Let $\mathsf{Isom}(\tilde{X})$ be the group of isometries of \tilde{X} and ρ : $\pi_1(M) \to \mathsf{Isom}(\tilde{X})$ be a homomorphism from the fundamental group of a Riemannian manifold M. Let $\pi_1(M)$ act on the universal cover \tilde{M} of M by deck transformations. A map $\tilde{f}: \tilde{M} \to \tilde{X}$ is said to be ρ -equivariant if

$$\tilde{f}(\gamma p) = \rho(\gamma)\tilde{f}(p), \quad \forall \gamma \in \pi_1(M), \ p \in \tilde{M}$$

where we write gP for $g \in Is(\tilde{X})$ and $P \in \tilde{X}$ instead of g(P) for simplicity.

If \tilde{X} is a Riemannian manifold, then $|d\tilde{f}|^2$ is the norm of the differential $d\tilde{f}: T\tilde{M} \to T\tilde{X}$. If \tilde{X} is a NPC space, then $|d\tilde{f}|^2$ is the energy density function in the sense of [KS1]. Either way, if \tilde{f} is ρ -equivariant, then $|d\tilde{f}|^2$ is invariant under the action of $\rho(\gamma)$ for any $\gamma \in \pi_1(M)$, and the energy of \tilde{f} is defined to be

$$E^{\tilde{f}} = \int_M |d\tilde{f}|^2 d\mathrm{vol}_M.$$

3. Proof of Theorem 1.1

The existence results for harmonic maps is contained in (e.g. [L], [Do], [Co1], [GS], [J], [KS2], [KS3]). Thus, we need to only prove the uniqueness assertion.

3.1. Geodesic interpolation

We assume on the contrary that there exist two distinct ρ -equivariant harmonic maps

$$\tilde{u}_0: \tilde{M} \to \tilde{X} \text{ and } \tilde{u}_1: \tilde{M} \to \tilde{X}.$$

Using Notation 2.9, define the geodesic interpolation of \tilde{u}_0 and \tilde{u}_1 ; i.e.

$$\tilde{u}_s: \tilde{M} \to \tilde{X}, \quad \tilde{u}_s(q) = (1-s)\tilde{u}_0(q) + s\tilde{u}_1(q).$$

Since \tilde{u}_0 and \tilde{u}_1 are ρ -equivariant, \tilde{u}_s is also ρ -equivariant. By the convexity of energy (cf. [KS1, (2.2vi)]),

$$E^{\tilde{u}_s} \le (1-s)E^{\tilde{u}_0} + sE^{\tilde{u}_1} - s(1-s)\int_M |\nabla d(\tilde{u}_0, \tilde{u}_1)|^2 d\mathrm{vol}_M$$

Lemma 3.1. Scaling if necessary, assume $d(\tilde{u}_0(p_0), \tilde{u}_1(p_0)) = 1$ for some point $p_0 \in \tilde{M}$. Then, for \tilde{u}_s defined above, we have the following:

- $d(\tilde{u}_s(p), \tilde{u}_1(p)) = 1 s, \ \forall p \in \tilde{M}$
- $|(\tilde{u}_s)_*(V)|^2(p) = |(\tilde{u}_0)_*(V)|^2(p)$, for $s \in [0,1]$, a.e. $p \in M$, a.e. $V \in T_p \tilde{M}$.

Proof. Since \tilde{u}_0 and \tilde{u}_1 are energy minimizing, we conclude

(3.1)
$$0 = \int_{M} |\nabla d(\tilde{u}_0, \tilde{u}_1)|^2 d\mathrm{vol}_M$$

$$(3.2) E^{\tilde{u}_s} = E^{\tilde{u}_0}, \quad \forall s \in [0,1]$$

First, (3.1) implies that $\nabla d(\tilde{u}_0, \tilde{u}_1) = 0$ a.e. in \tilde{M} . Hence, $d(\tilde{u}_0, \tilde{u}_1)$ is constant; i.e.

$$(3.3) d(\tilde{u}_0, \tilde{u}_1) \equiv 1$$

Note that equality (3.2) implies that (3.4)

$$|(\tilde{u}_s)_*(V)|^2(p) = |(\tilde{u}_0)_*(V)|^2(p)$$
, for $s \in [0, 1]$, a.e. $p \in \tilde{M}$, a.e. $V \in T_p \tilde{M}$.

Indeed, for $\{P, Q, R, S\} \subset \tilde{X}$, the quadrilateral comparison for NPC spaces implies

$$d^{2}(P_{s}, Q_{s}) \leq (1-s)d^{2}(P, Q) + sd^{2}(R, S) - s(1-s)(d(P, Q) - d(R, S))^{2}$$

where $P_s = (1-s)P + sS$ and $Q_s = (1-s)Q + sR$. Applying the above inequality with $P = \tilde{u}_0(p)$, $S = \tilde{u}_1(p)$, $R = \tilde{u}_1(\exp_p(tV))$ and $Q = \tilde{u}_0(\exp_p(tV))$ where t > 0 and $V \in T_p \tilde{M}$, dividing by t^2 and letting $t \to 0$, we obtain (cf. [KS1, Theorem 1.9.6])

$$\begin{split} |(\tilde{u}_s)_*(V)|^2(p) &\leq (1-s)|(\tilde{u}_0)_*(V)|^2(p) + s|(\tilde{u}_1)_*(V)|^2(p) \\ &- s(1-s)(|(\tilde{u}_0)_*(V)|(p) - |(\tilde{u}_1)_*(V)|(p))^2, \\ \text{a.e. } p &\in \tilde{M}, V \in T_p\tilde{M}. \end{split}$$

Combining this with (3.2), we conclude

$$|(\tilde{u}_s)_*(V)|^2 = (1-s)|(\tilde{u}_0)_*(V)|^2 + s|(\tilde{u}_1)_*(V)|^2$$

which in turn implies (3.4).

For each $q \in \tilde{M}$, define the geodesic segment

(3.5)
$$\bar{\sigma}_q: [0,1] \to \tilde{X}, \quad \bar{\sigma}_q(s) = \tilde{u}_s(q).$$

Note that up to this point, we have only used the fact that \tilde{X} is an NPC space. We will now specialize to the two cases: (i) \tilde{X} is an irreducible symmetric space of non-compact type and (ii) \tilde{X} is an irreducible Bruhat-Tits building.

3.2. Symmetric spaces

Throughout this subsection \tilde{X} is an irreducible symmetric space of noncompact type. For each $q \in \tilde{M}$, extend the geodesic segment $\bar{\sigma}_q$ of (3.5) to a geodesic line

(3.6)
$$\sigma_q : \mathbb{R} \to X.$$

Let

$$F: \tilde{M} \times \mathbb{R} \to \tilde{X}, \quad F(q,s) = \sigma_q(s).$$

Let $\nabla^{F^{-1}}$ be the induced connection on the vector bundle

(3.7)
$$(T^*(M \times \mathbb{R}))^{\otimes k} \otimes F^{-1}T\tilde{X} \to \tilde{M} \times \mathbb{R}.$$

For each $s \in [0,1]$, let $\nabla^{\tilde{u}_s^{-1}}$ be the induced connection on the vector bundle

(3.8)
$$(T^*M)^{\otimes k} \otimes \tilde{u}_s^{-1}T\tilde{X} \to \tilde{M}.$$

Use the inclusion $\tilde{M} \to \tilde{M} \times \{s\}$ and the identity $F(\cdot, s) = \tilde{u}_s(\cdot)$ to identify (3.8) as a subbundle of (3.7).

1645

Let s, ∂_s denote the standard coordinate and coordinate vector on \mathbb{R} . Let (E_1, \ldots, E_n) denote a local orthonormal frame of \tilde{M} . Set

$$V = dF(\partial_s), \quad X_{\alpha} = dF(E_{\alpha}) \text{ for } \alpha = 1, \dots, n$$

as sections of $F^{-1}T\tilde{X}$. Applying the usual second variation formula of the energy (e.g. [ES], [Sc]), we obtain

$$\frac{d^2}{ds^2}\Big|_{s=t} E^{\tilde{u}_s}(r) = 2\int_{\tilde{M}} \sum_{\alpha=1}^n \left(\|\nabla_{E_\alpha}^{F^{-1}}V\|^2 - \left\langle R^{\tilde{X}}\left(V, X_\alpha\right)V, X_\alpha\right\rangle \right) \Big|_{s=t} d\operatorname{vol}_{\tilde{M}}$$

for any $t \in [0, 1]$ where $R^{\tilde{X}}$ is the Riemannian curvature operator of \tilde{X} . By (3.2), the left hand side of the above equality is equal to 0. The integrand on the right hand side is non-positive by the assumption of non-positive curvature. Thus, we conclude that for any $\alpha = 1, \ldots, n$,

(3.9)
$$\nabla_{E_{\alpha}}^{F^{-1}}V \equiv 0$$

(3.10)
$$\left\langle R^{\tilde{X}}(V, X_{\alpha}) V, X_{\alpha} \right\rangle \equiv 0.$$

From the above, we conclude

(3.11)
$$\nabla_{\partial_s}^{F^{-1}}(d\tilde{u}_s(E_\alpha)) = \nabla_{\partial_s}^{F^{-1}}X_\alpha = 0$$

and

(3.12)
$$\nabla_{E_{\beta}}^{\tilde{u}_{s}^{-1}} \nabla_{\partial_{s}}^{F^{-1}} = \nabla_{\partial_{s}}^{F^{-1}} \nabla_{E_{\beta}}^{\tilde{u}_{s}^{-1}}, \ \forall \beta = 1, \dots, n.$$

Since $\nabla_{\partial_s} E_{\alpha} = \nabla_{\partial_s} E_{\beta} = 0$, we have

$$\begin{split} & \left(\nabla_{\partial_s}^{F^{-1}} \nabla^{\tilde{u}_s^{-1}} d\tilde{u}_s\right) (E_\alpha, E_\beta) \\ &= \nabla_{\partial_s}^{F^{-1}} \left(\nabla^{\tilde{u}_s^{-1}} d\tilde{u}_s(E_\alpha, E_\beta)\right) - \nabla^{\tilde{u}_s^{-1}} d\tilde{u}_s(\nabla_{\partial_s} E_\alpha, E_\beta) - \nabla^{\tilde{u}_s^{-1}} d\tilde{u}_s(E_\alpha, \nabla_{\partial_s} E_\beta) \\ &= \nabla_{\partial_s}^{F^{-1}} \left(\nabla_{E_\alpha}^{\tilde{u}_s^{-1}} (d\tilde{u}_s(E_\beta)) - d\tilde{u}_s(\nabla_{E_\alpha} E_\beta)\right) \\ &= \nabla_{E_\alpha}^{\tilde{u}_s^{-1}} \left(\nabla_{\partial_s}^{F^{-1}} (d\tilde{u}_s(E_\beta))\right) - \nabla_{\partial_s}^{F^{-1}} d\tilde{u}_s(\nabla_{E_\alpha} E_\beta) \quad (\text{by (3.12)}) \\ &= 0 \quad (\text{by (3.11)}). \end{split}$$

More generally, we can inductively use (3.12) multiple times to switch the order of differentiation and apply (3.11) to conclude

(3.13)
$$\nabla_{\partial_s}^{F^{-1}} \left(\nabla^{\tilde{u}_s^{-1}} \cdots \nabla^{\tilde{u}_s^{-1}} d\tilde{u}_s \right) = 0.$$

Claim 1. Fix a point $p \in \tilde{M}$ and let $T_s \in Isom(\tilde{X})$ be the transvection along σ_p as in Definition 2.6. Then

$$\tilde{u}_s = T_s \tilde{u}_0, \quad \forall s \in [0, 1].$$

Proof. For $s \in [0, 1]$, define a harmonic map

$$\tilde{v}_s: \tilde{M} \to \tilde{X}, \quad \tilde{v}_s = T_s \tilde{u}_0.$$

Define

$$\Phi: \tilde{M} \times [0,1] \to \tilde{X}, \quad \Phi(q,s) = \tilde{v}_s(q).$$

Since T_s is a transvection along the geodesic σ_p ,

$$F(p,s) = \tilde{u}_s(p) = \sigma_p(s) = T_s \sigma_p(0) = T_s \tilde{u}_0(p) = \tilde{v}_s(p) = \Phi(p,s).$$

Furthermore, T_s defines a parallel transport along $\bar{\sigma}_p$, and thus

(3.14)
$$\nabla_{\partial_s}^{\Phi^{-1}} \left(d\tilde{v}_s(E_\alpha) \right) = \nabla_{\partial_s}^{\Phi^{-1}} \left(dT_s(d\tilde{u}_0(E_\alpha)) \right) = 0 \text{ at } (p,s), \ \forall s \in (0,1).$$

By (3.11) and (3.14), the vector fields $d\tilde{u}_s(E_\alpha)$ and $d\tilde{v}_s(E_\alpha)$ are both parallel along $\sigma_p(s)$. Since $d\tilde{u}_0(E_\alpha) = d\tilde{v}_0(E_\alpha)$ at p, we conclude

$$d\tilde{u}_s(E_\alpha) = d\tilde{v}_s(E_\alpha)$$
 at $p \in \tilde{M}, \ \forall s \in [0,1].$

Next, since T_s is an isometry,

$$\nabla_{E_{\alpha}}^{v_{s}^{-1}} \left(d\tilde{v}_{s}(E_{\beta}) \right) = \nabla_{E_{\alpha}}^{v_{s}^{-1}} \left(dT_{s} \circ d\tilde{u}_{0}(E_{\beta}) \right)$$
$$= \nabla_{dT_{s} \circ d\tilde{u}_{0}(E_{\alpha})}^{\tilde{X}} \left(dT_{s} \circ d\tilde{u}_{0}(E_{\beta}) \right)$$
$$= dT_{s} \left(\nabla_{d\tilde{u}_{0}(E_{\alpha})}^{\tilde{X}} d\tilde{u}_{0}(E_{\beta}) \right)$$
$$= dT_{s} \left(\nabla_{E_{\alpha}}^{u_{0}^{-1}} d\tilde{u}_{0}(E_{\beta}) \right).$$

Thus,

$$\nabla^{v_s^{-1}} d\tilde{v}_s(E_\alpha, E_\beta) = \nabla^{v_s^{-1}}_{E_\alpha} \left(d\tilde{v}_s(E_\beta) \right) - d\tilde{v}_s \left(\nabla^{\tilde{M}}_{E_\alpha} E_\beta \right)$$
$$= dT_s \left(\nabla^{u_0^{-1}}_{E_\alpha} d\tilde{u}_0(E_\beta) \right) - dT_s \left(d\tilde{u}_0(\nabla^{\tilde{M}}_{E_\alpha} E_\beta) \right).$$

Since T_s defines a parallel transport along $\bar{\sigma}_p(s)$, both vector fields on the right are parallel along $\sigma_p(s)$. Thus,

$$\nabla_{\partial_s}^{\Phi^{-1}} \left(\nabla^{v_s^{-1}} d\tilde{v}_s(E_\alpha, E_\beta) \right) = 0.$$

Continuing inductively, we can prove

$$\nabla_{\partial_s}^{\Phi^{-1}} \left(\nabla^{\tilde{v}_s^{-1}} \cdots \nabla^{\tilde{v}_s^{-1}} d\tilde{v}_s \right) = 0.$$

Combined with (3.13) and the fact that $\tilde{u}_0 = \tilde{v}_0$, we conclude

$$\nabla^{\tilde{v}_s^{-1}}\cdots\nabla^{\tilde{v}_s^{-1}}d\tilde{v}_s=\nabla^{\tilde{u}_s^{-1}}\cdots\nabla^{\tilde{u}_s^{-1}}d\tilde{u}_s \text{ at } p, \ \forall s\in[0,1].$$

In other words, \tilde{u}_s and \tilde{v}_s agree up to infinitely high order at p which in turn implies that $\tilde{u}_s = \tilde{v}_s = T_s \tilde{u}_0$ by [Sa, Theorem 1].

Claim 2. Let p be the point fixed in Claim 1 and let the geodesic ray σ_q : $[0,\infty) \to \tilde{X}$ be the restriction of the geodesic line defined in (3.6). Then

$$d(\sigma_q(s), \sigma_p(s)) = \delta_{p,q}, \quad \forall q \in M, \ s \in [0, \infty)$$

where $\delta_{p,q} := d(\sigma_q(0), \sigma_p(0))$. In particular, σ_q is the unique geodesic ray parallel to σ_p with value at s = 0 equal to $\tilde{u}_0(q)$.

Proof. As above, let T_s be the transvection along σ_p . By Claim 1, $\tilde{u}_s(q) = T_s \tilde{u}_0(q)$ for $s \in [0, 1]$. Since

$$T_s \tilde{u}_0(q) = (T_{\frac{1}{2}} \circ T_{s-\frac{1}{2}}) \tilde{u}_0(q) = T_{\frac{1}{2}} \sigma_q(s-\frac{1}{2}), \quad \forall s \in [\frac{1}{2}, \frac{3}{2}],$$

the restriction of $s \mapsto T_s \tilde{u}_0(q)$ to $[\frac{1}{2}, \frac{3}{2}]$ is a geodesic segment. Using an analogous argument, we can inductively show that for any $n \in \mathbb{N}$, the restriction to $[\frac{n}{2}, \frac{n}{2} + \frac{1}{2}]$ of the map $s \mapsto T_s \tilde{u}_0(q) = (T_{\frac{1}{2}} \circ T_{s-\frac{1}{2}})\tilde{u}_0(q)$ is a geodesic segment. Thus, we conclude that $s \mapsto T_s \tilde{u}_0(q)$ is a geodesic ray with $T_s \tilde{u}_0(q) = \sigma_q(s)$ for $s \in [0, 1]$. Since the two geodesic rays $s \mapsto T_s \tilde{u}_0(q)$ and $s \mapsto \sigma_q(s)$ agree on [0, 1], they are the same geodesic ray. Since T_s is an isometry,

$$d(\sigma_q(s), \sigma_p(s)) = d(T_s \tilde{u}_0(q), T_s \tilde{u}_0(p)) = d(\tilde{u}_0(q), \tilde{u}_0(p)) = d(\sigma_0(q), \sigma_0(p)).$$

For $Q = \tilde{u}_0(q)$, let $\sigma^Q = \sigma_q$. By Claim 2, there exists map from $\tilde{u}_0(M)$ to a family of pairwise parallel geodesic lines given by

$$Q \mapsto \sigma^Q$$
.

Since $\sigma^Q = \sigma_q$ and $\sigma^{\rho(\gamma)Q} = \sigma_{\gamma q}$ are extensions of $\bar{\sigma}_q$ and $\bar{\sigma}_{\gamma q}$ and

$$\rho(\gamma)\bar{\sigma}_q(s) = \rho(\gamma)\tilde{u}_s(q) = \tilde{u}_s(\gamma q) = \bar{\sigma}_{\gamma q}(s), \ \forall s \in [0,1],$$

we have

$$\rho(\gamma)\sigma^Q = \sigma^{\rho(\gamma)Q}, \quad \forall \gamma \in \pi_1(M).$$

Since σ^Q and $\sigma^{\rho(\gamma)Q}$ are parallel geodesic rays, we conclude that that

$$\rho(\gamma)[\sigma_q] = [\sigma_q], \quad \gamma \in \pi_1(M).$$

In other words, $\rho(\pi_1(M))$ fixes a point at infinity, contradicting assumption (i).

3.3. Euclidean buildings

Throughout this subsection, \tilde{X} is an irreducible Bruhat-Tits building of dimension n. An open n-dimensional simplex of \tilde{X} will be referred to as a *chamber*. An apartment of \tilde{X} is a convex isometric embedding of \mathbb{R}^n in \tilde{X} .

Let \tilde{u}_s be the geodesic interpolation maps defined in §3.1. The *regular* set $\mathcal{R}(\tilde{u}_s)$ is the set of all points $q \in \tilde{M}$ with the following property: There exists a neighborhood \mathcal{U}_q of q such that $\tilde{u}_s(\mathcal{U}_q)$ is contained in an apartment A_q of \tilde{X} .

Theorem 3.2 ([GS] Theorem 6.4). The singular set $S(\tilde{u}_s)$, i.e. the complement of $\mathcal{R}(\tilde{u}_s)$, is a closed set of Hausdorff codimension at least 2.

Let $\mathcal{R}^*(\tilde{u}_s)$ be the set of points q in $\mathcal{R}(\tilde{u}_s)$ such that

(3.15) $\exists \epsilon > 0 \text{ and a chamber } C^* \text{ such that } \tilde{u}_s(B_q(\epsilon)) \subset \overline{C}^*.$

After identifying $A \simeq \mathbb{R}^n$, $\tilde{u}_s|_{\mathcal{U}_q}$ is a harmonic map into Euclidean space, and it follows that the set $\mathcal{U}_q \setminus \mathcal{R}^*(\tilde{u}_s)$ is a closed set of dimension at most 1.

For each $q \in \overline{M}$, let $\overline{\sigma}_q(s) = \tilde{u}_s(q)$ (cf. (3.5)) and denote by R_q the set of all points $s \in [0, 1]$ such that

(3.16) $\exists \epsilon > 0 \text{ and a chamber } C \text{ such that } \bar{\sigma}_q((s - \epsilon, s + \epsilon)) \subset \bar{C}.$

The complement of R_q in [0, 1] is a finite set. Thus, the complement of $\mathcal{R}^{**} = \{(q, s) : q \in \mathcal{R}^*(\tilde{u}_s), s \in R_q\}$ in $\tilde{M} \times [0, 1]$ is an closed set of measure 0.

Fix $(q, s) \in \mathcal{R}^{**}$ and let C, C^* be the chamber as in (3.15), (3.16) respectively. Let (x^1, \ldots, x^n) be local coordinates in a neighborhood \mathcal{U}_q of $q \in \mathcal{R}^*$ with coordinate vector fields $(\partial_1, \ldots, \partial_n)$. Let A be the apartment containing $\tilde{u}_s(\mathcal{U}_q)$ for all $s \in [0, 1]$. After isometrically identifying A with \mathbb{R}^n , let $\langle \cdot, \cdot \rangle$ be the usual inner product defined on $A \simeq \mathbb{R}^n$. Thus, (3.4) with $V = \partial_{\alpha}$, implies at q_0

$$s \mapsto \left\langle \frac{\partial \tilde{u}_s}{\partial x^{\alpha}}, \frac{\partial \tilde{u}_s}{\partial x^{\alpha}} \right\rangle = \text{constant in } [0, 1].$$

We can differentiate this twice with respect to s to obtain

$$0 = \frac{\partial^2}{\partial s^2} \left\langle \frac{\partial \tilde{u}_s}{\partial x^{\alpha}}, \frac{\partial \tilde{u}_s}{\partial x^{\alpha}} \right\rangle = 2 \left\langle \frac{\partial}{\partial x^{\alpha}} \frac{\partial^2 \tilde{u}_s}{\partial s^2}, \frac{\partial \tilde{u}_s}{\partial x^{\alpha}} \right\rangle + 2 \left\langle \frac{\partial}{\partial x^{\alpha}} \frac{\partial \tilde{u}_s}{\partial s}, \frac{\partial}{\partial x^{\alpha}} \frac{\partial \tilde{u}_s}{\partial s} \right\rangle.$$

Since $\bar{\sigma}_{q_0}$ is a geodesic, $\frac{\partial^2 \tilde{u}_s}{\partial s^2}(q_0) = \bar{\sigma}_{q_0}''(s) = 0$. Thus,

$$\frac{\partial \bar{\sigma}'_q(s)}{\partial x^{\alpha}}\Big|_{q=q_0} = \frac{\partial}{\partial x^{\alpha}} \frac{\partial \tilde{u}_s}{\partial s}(q_0) = 0.$$

Since the choice of $\alpha \in \{1, \ldots, n\}$ is arbitrary and \mathcal{R}^* is of full measure in $\tilde{M} \times [0, 1]$, we conclude that the geodesic segments $\bar{\sigma}_p$ and $\bar{\sigma}_q$ are parallel for any $p, q \in \tilde{M}$; i.e.

(3.17)
$$d(\bar{\sigma}_p(s), \bar{\sigma}_q(s)) =: \delta_{p,q}, \quad \forall s \in [0, 1]$$

where $\delta_{p,q} := d(\bar{\sigma}_q(0), \bar{\sigma}_p(0)) = d(\tilde{u}_0(q), \tilde{u}_0(p)).$ Next note the following:

- (Existence of a geodesic extension) Given a geodesic segment, property (2) of Definition 2.7 implies that there exists an apartment containing its endpoints and hence its image. We can thus extend the geodesic segment to a geodesic line in this apartment.
- (Non-uniqueness of a geodesic extension) Unlike symmetric spaces, the geodesic extensions are not necessarily unique in a Euclidean building. Indeed, there may be many apartments containing the endpoints of a given geodesic segment.

Because of the non-uniqueness of geodesic extensions, the proof for the building case is slightly different from the symmetric space case as we see below.

We define the sets

$$(3.18) C_0, C_1, \dots, C_n$$

inductively follows. First, let $C_0 = \tilde{u}_0(\tilde{M})$, and then let C_n be the union of the images of all geodesic segments connecting points of C_{n-1} . The $\rho(\pi_1(M))$ -invariance of C_0 implies the $\rho(\pi_1(M))$ -invariance of C_n .

To each $Q = \tilde{u}_0(q) \in C_0$, we assign a geodesic segment $\bar{\sigma}^Q = \bar{\sigma}_q$ (cf. (3.5)). By (3.17), $\{\bar{\sigma}^Q\}_{Q \in C_0}$ is a family of pairwise parallel geodesic segments. Since \tilde{u}_s is ρ -equivariant, the assignment $Q \mapsto \bar{\sigma}^Q$ is $\rho(\pi_1(M))$ equivariant; i.e. $\rho(\gamma)\bar{\sigma}^Q = \bar{\sigma}^{\rho(\gamma)Q}$ for any $Q \in C_0$ and $\gamma \in \rho(\pi_1(M))$.

For $n \in \mathbb{N}$, we inductively define a $\rho(\pi_1(M))$ -equivariant map from C_n to a family of pairwise parallel geodesic segments as follows: For any pair of points $Q_0, Q_1 \in C_{n-1}$, apply the Flat Quadrilateral Theorem (cf. [BH, 2.11]) with vertices $Q_0, Q_1, P_1 := \bar{\sigma}^{Q_1}(1), P_0 := \bar{\sigma}^{Q_0}(1)$ to define a one-parameter family of parallel geodesic segments $\bar{\sigma}^{Q_t} : [0,1] \to \tilde{X}$ with initial point $Q_t = (1-t)Q_0 + tQ_1$ and terminal point $P_t = (1-t)P_0 + tP_1$ (cf. (2.9)). The inductive hypothesis implies that the map $Q \mapsto \bar{\sigma}^Q$ defined on C_n is also $\rho(\pi_1(M))$ -equivariant. The above construction defines a $\rho(\pi_1(M))$ equivariant map

$$Q \mapsto \bar{\sigma}^Q$$

from \tilde{X} to a family of pairwise geodesic segments. Indeed, we are assuming that the action of $\rho(\pi_1(M))$ does not fix a non-empty closed convex strict subset of \tilde{X} . Thus,

(3.19)
$$\tilde{X} = \bigcup_{n=0}^{\infty} C_n$$

since the right hand side is the convex hull of $C_0 = \tilde{u}_0(\tilde{M})$ and each C_n is invariant under the action of $\rho(\pi_1(M))$.

Claim 3. There exists a $\rho(\pi_1(M))$ -equivariant map

$$Q \mapsto \sigma^Q : [0,\infty) \to \tilde{X}$$

from \tilde{X} into a family of pairwise parallel rays; i.e. $\rho(\gamma)\sigma^Q = \sigma^{\rho(\gamma)Q}$ for all $Q \in \tilde{X}$, $\gamma \in \pi_1(M)$ and $d(\sigma_p(s), \sigma_q(s)) = \delta_{p,q}$ for all $s \in [0, \infty)$.

Proof. For $Q \in \tilde{X}$, we inductively construct a sequence $\{Q_i\}$ of points in \tilde{X} by first setting $Q_0 = Q$ and then defining $Q_i = \bar{\sigma}^{Q_{i-1}}(\frac{3}{4})$. Next, let

$$L^Q = \bigcup_{i=0}^{\infty} I^{Q_i}$$

where $I^{Q_i} = \bar{\sigma}^{Q_i}([0,1])$. Therefore, L^Q is a union of pairwise parallel geodesic segments. Thus, $\{L^Q\}_{Q \in \tilde{X}}$ is a family of pairwise parallel geodesic

rays. Moreover, the $\rho(\pi_1(M))$ -equivariance of the map $Q \mapsto \bar{\sigma}^Q$ implies $\rho(\gamma)\bar{\sigma}^{Q_{i-1}}(\frac{3}{4}) = \bar{\sigma}^{\rho(\gamma)Q_{i-1}}(\frac{3}{4})$. Thus, if $\{Q_i\}$ is the sequence constructed starting with $Q_0 = Q$, then $\{\rho(\gamma)Q_i\}$ is the sequence constructed starting with $\rho(\gamma)Q_0 = \rho(\gamma)Q$. We thus conclude

$$\rho(\gamma)L^Q = \bigcup_{i=0}^{\infty} \rho(\gamma)I^{Q_i} = \bigcup_{i=0}^{\infty} I^{\rho(\gamma)Q_i} = L^{\rho(\gamma)Q}.$$

We are done by letting the geodesic ray $\sigma^Q : [0, \infty) \to \tilde{X}$ be the extension of the geodesic segment $\bar{\sigma}^Q : [0, 1] \to \tilde{X}$ parameterizing L^Q .

Claim 3 implies that $\rho(\pi_1(M))$ fixes the point $[\sigma^Q]$ at infinity. This contradicts assumption (i) and completes the proof.

Remark 3.3 (Generalization to thick Euclidean buildings with transitive isometry groups). In a forthcoming paper [BDM] by Breiner, Dees and the second author, we generalize Theorem 3.2 to the cases when \tilde{X} is a Euclidean building, not necessarily locally finite. From this, we conjecture that we can generalize Theorem 1.1.

Acknowledgements

We would like to thank Alexander Lytchak useful discussions.

References

- [BDM] C. Breiner, B. K. Dees, C. Mese. Harmonic maps into Euclidean buildings and non-Archimedean superrigidity. arxiv
 - [BH] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature. Springer-Verlag, Berlin 1999.
 - [BT] F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Publ. Math. IHES 41 (1972), 5–251.
 - [Ca] P.-E. Caprace, Lectures on proper CAT(0) spaces and their isometry groups, Geometric Group Theory, IAS/Park City Math. Ser., vol. 21, Amer. Math. Soc., Providence, RI, 2014, pp. 91–125.
- [CaMo] P.-E. Caprace and N. Monod, Isometry groups of non-positively curved spaces: discrete subgroups, Journal of Topology 2 (2009), 701–746.

- [Co1] K. Corlette, Archimedian superrigidity and hyperbolic geometry, Ann. Math. 135 (1990), 165–182.
- [Co2] K. Corlette, Flat G-bundles with anonical metrics, J. Differential Geom. 28 (1988), 361–382.
- [DMV] G. Daskalopoulos, C. Mese and A. Vdovina, Superrigidity of hyperbolic buildings, GAFA 21 (2011), 1–15.
 - [Do] S. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. 55 (1987), 127–131.
 - [Eb] P. Eberlein, Geometry of Nonpositively Curved Manifolds, Chicago Lecture Series in Mathematics, Chicago, 1997.
 - [ES] J. Eells, Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, American Journal of Mathematics 86 (1964), 109–160.
 - [GS] M. Gromov and R. Schoen, Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one, Publ. Math. IHES 76 (1992), 165–246.
 - [Ha] P. Hartman, On homotopic harmonic maps, Canad. J. Math. 19 (1967), 673–687.
 - [He] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics Vol. 34, American Mathematical Society, Providence, R.I., 2001.
 - [J] J. Jost, Nonpositive Curvature: Geometric and Analytic Aspects, Lectures in Mathematics. ETH Zürich, Birkhäuser Verlag 1997.
 - [JY] J. Jost and S. T. Yau, Harmonic maps and superrigidity, Differential Geometry: Partial Differential Equations on Manifolds, Proc. Sympos. Pure Math. 54, part 1 (1993) 245–280.
- [KL1] B. Kleiner and B. Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Publications Mathématiques de IHES 86 (1997), 115–197.
- [KL2] B. Kleiner and B. Leeb, Rigidity of invariant convex sets in symmetric spaces, Invent. Math. 163 (2006), 657–676.
- [KS1] N. Korevaar and R. Schoen, Global existence theorems for harmonic maps to non-locally compact spaces, Comm. Anal. Geom. 5 (1997), 213–266.

- [KS2] N. Korevaar and R. Schoen, Global existence theorem for harmonic maps to non-locally compact spaces, Comm. Anal. Geom. 5 (1997), 333–387.
- [KS3] N. Korevaar and R. Schoen, Global existence theorem for harmonic maps: finite rank spaces and an approach to rigidity for smooth actions, unpublished manuscript.
 - [L] F. Labourie, Existence d'applications harmoniques tordues a valeurs dans lesvarietes a courbure negative, Proc. Amer. Math. Soc. 111 (1991), 877–882.
- [Me] C. Mese, Uniqueness theorems for harmonic maps into metric spaces, Communications in Contemporary Mathematics 4 (2002), 725–750.
- [MSY] N. Mok, Y.-T. Siu, and S. K. Yeung, *Geometric superrigidity*, Invent. Math. **113** (1993), 57–83.
 - [Sa] J. H. Sampson, Some properties and applications of harmonic mappings, Annales scientifiques de l'École Normale Supérieure, Series 4 (1978), 211–228.
 - [Sc] R. Schoen. Analytic aspects of the harmonic map problem, Seminar on Non-linear Partial Differential Equations (S.S. Chern, ed.), MSRI Publ. 2, Springer-Verlag, New York 1983, 321–358.
 - [Si] Y.-T. Siu, The complex-analyticity of harmonic maps and the strong rigidity of compact Kahler manifolds, Ann. Math. 112 (1980), 73– 112.

DEPARTMENT OF MATHEMATICS, BROWN UNIVERSITY PROVIDENCE, RI 02912, USA *E-mail address*: daskal@math.brown.edu

DEPARTMENT OF MATHEMATICS, JOHNS HOPKINS UNIVERSITY BALTIMORE, MD 21218, USA *E-mail address*: cmese@math.jhu.edu

RECEIVED NOVEMBER 22, 2021 ACCEPTED MARCH 21, 2022