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compact perturbation theorem
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We study the behavior of the Quillen metric for families of Rie-
mann surfaces with hyperbolic cusps when the additional cusps
are created by degeneration.

More precisely, in our previous paper, we’ve shown that the
renormalization of the Quillen metric associated with a family of
Riemann surfaces with cusps extends continuously over the locus
of singular curves. Here we show that modulo some explicit univer-
sal constant, this continuous extension coincides with the Quillen
metric of the normalization of singular curves.

As a consequence, we get an explicit relation in terms of the
Bott-Chern classes between the Quillen metric associated with a
metric with cusps and the Quillen metric associated with a metric
on the compactified Riemann surface. We also prove compatibil-
ity between our version of the analytic torsion and the version of
Takhtajan-Zograf, defined through lengths of closed geodesics.
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1. Introduction

In this paper, we study the behavior of the Quillen metric for families of
Riemann surfaces with cusps when the additional cusps are created by de-
generation.

More precisely, let M be a compact Riemann surface, and let DM =
{PM

1 , . . . , PM
m } be a finite set of distinct points in M . Let gTM be a

Kähler metric on the punctured Riemann surface M = M \DM . We say
that gTM is Poincaré-compatible with holomorphic coordinates zM1 , . . . , zMm :

M ⊃ V M
i (ϵ) → D(ϵ), ϵ ∈]0, 1[, if there is ϵ > 0 such that gTM |V M

i (ϵ) is in-
duced by the Kähler form

(1.1)

√
−1dzMi dzMi∣∣zMi log |zMi |

∣∣2 ,

where V M
i (ϵ) are defined as follows

(1.2) V M
i (ϵ) = {x ∈ M : |zMi (x)| < ϵ}.

A triple (M,DM , gTM ) of a Riemann surface M , a set of punctures DM

and a metric gTM , which is Poincaré-compatible with some holomorphic
coordinates of DM , is called a surface with cusps (cf. [22]). A metric with
cusps has scalar curvature equal to −1 away from a compact subset of M .

We fix a holomorphic, proper, surjective map π : X → S of complex
manifolds, such that for every t ∈ S, Xt := π−1(t) is a complex curve with
at most double point singularities. We denote by ΣX/S ⊂ X the submanifold
of singular points of the fibers (see Corollary 2.6), and by ∆ = π∗(ΣX/S) the
divisor formed by the locus of the singular fibers π.

In this article we only consider π for which the associated divisor ∆ has
normal crossings.

The construction of Grothendick-Knudsen-Mumford [21] (cf. also [6, §3])
associates for every holomorphic vector bundle ξ over X the “determinant
of the direct image of ξ”. It is a holomorphic line bundle over S, which we
denote (cf. (2.13))

(1.3) λ(j∗ξ)−1 := det(R•π∗ξ),

such that the restriction of λ(j∗ξ) at t ∈ S \ |∆|, is canonically isomorphic
to

(1.4) λ(j∗ξ)|t ≃
(
ΛmaxH0(Xt, ξ|Xt

)
)−1 ⊗ ΛmaxH1(Xt, ξ|Xt

),
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where the letter j designates the injection j : Xt → X of the fiber in the
total space.

Let σ1, . . . , σm : S → X \ ΣX/S be disjoint holomorphic sections of π.
We introduce a divisor

(1.5) DX/S = Im(σ1) + · · ·+ Im(σm).

Let ∥·∥ωX/S be a C∞ Hermitian norm on the relative canonical line

bundle ωX/S := ωX ⊗ π∗ω−1
S over X \ (π−1(|∆|) ∪ |DX/S |) such that its re-

striction over each nonsingular fiber Xt := π−1(t), t ∈ S \ |∆| of π induces
the Kähler metric gTXt on Xt \ {σ1(t), . . . , σm(t)} such that the triple
(Xt, {σ1(t), . . . , σm(t)}, gTXt) is a surface with cusps. In particular, the sec-
tions σ1, . . . , σm parameterize the positions of the hyperbolic cusps in the
fibers.

For a complex manifold Y and a divisor D0 ⊂ Y , we denote by ∥·∥divD0

the singular norm on OY (D0) such that for the canonical section sD0
of the

divisor D0 with div(sD0
) = D0, we have

(1.6) ∥sD0
∥divD0

(x) = 1, for any x ∈ Y \D0.

We endow the twisted canonical line bundle

(1.7) ωX/S(D) := ωX/S ⊗ OX(DX/S)

with the canonical norm ∥·∥X/S over X \ (π−1(|∆|) ∪ |DX/S |), induced by

∥·∥ωX/S and ∥·∥divDX/S
. The norm ∥·∥X/S has logarithmic singularities in the

neighborhood of |DX/S |.
The metric gTXt on the regular fiber Xt, t ∈ S \ |∆|, is not compact,

and the spectrum of the associated Kodaira Laplacian is not discrete. This
entails technical difficulties for giving a definition of the analytic torsion
as the “zeta-regularized” determinant of the Laplacian, as it was done by
Ray-Singer in [26]. Nevertheless, in [13, Definition 2.16], for a Hermitian
vector bundle (ξ, hξ) over X, we defined the analytic torsion T (gTXt , hξ ⊗
∥·∥2nX/S) of the fiber (Xt, g

TXt) associated with a singular Hermitian vector

bundle (ξ ⊗ ωX/S(D)n, hξ ⊗∥·∥2nX/S) through the regularized trace of the heat
kernel, obtained by subtracting a universal contribution from the cusp, see
Section 2.1.

In [13], [14] (cf. Section 2.1), we’ve defined the Quillen
norm ∥·∥Q (gTXt , hξ ⊗ ∥·∥2nX/S) on the determinant line bundle
λ(j∗(ξ ⊗ ωX/S(D)n)), n ≤ 0, over S \ |∆| as the product of the square
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root of the analytic torsion of the fiber T (gTXt , hξ ⊗∥·∥2nX/S) and the

L2-norm of the fiber, defined analogously to the compact case, see (2.3).
This gives a non-compact 1-dimensional version of the Quillen metric of
Bismut-Gillet-Soulé [6] and it generalizes the definition of Quillen [25],
which was given for n,m = 0 and trivial π.

Let’s denote by ∥·∥WX/S the Wolpert norm on ⊗m
i=1σ

∗
i (ωX/S) induced by

∥·∥ωX/S , see Wolpert [30, Definition 1] (see Definition 2.3). This norm tracks
the variation of the Poincaré-compatible coordinates near the cusp, see (1.1).

The necessary definitions for the following passage are given in Defini-
tions 2.8, 2.9, 2.11.

We suppose that the Hermitian norm∥·∥X/S on ωX/S(D) extends
smoothly over X \ (ΣX/S ∪ |DX/S |), has log-log growth with sin-
gularities along ΣX/S ∪ |DX/S |, and is good in the sense of Mum-
ford on X with singularities along π−1(∆) ∪DX/S .

(1.8)

We denote by hdet ξ the induced Hermitian metric on det ξ := Λmaxξ. In
[14, Theorem C3] (cf. Theorem 2.7), we proved that under the assumption
(1.8), the norm

∥·∥X/S
Ln

:=
(
∥·∥Q (gTXt , hξ ⊗ ∥·∥2nX/S)

)12
(1.9)

⊗
(
∥·∥WX/S

)−rk(ξ) ⊗
(
∥·∥div∆

)rk(ξ) ⊗ (⊗m
i=1σ

∗
i h

det ξ)3

on the line bundle

L
X/S
n := λ

(
j∗(ξ ⊗ ωX/S(D)n)

)12 ⊗ (⊗m
i=1σ

∗
i ωX/S)

−rk(ξ)(1.10)

⊗ OS(∆)rk(ξ) ⊗ (⊗m
i=1σ

∗
i det ξ)

6

extends continuously over S. The main goal of this paper is to understand
the value of this continuous extension, and to give a geometric interpretation
of it as the Quillen norm of the normalization of a singular fiber.

More precisely, as ∆ has normal crossings, by shrinking the base S, we
may always assume that for any t ∈ S, there is l ∈ N, so that the divisor ∆
decomposes near t as

(1.11) ∆ = k ·∆0 + k1 ·∆1 + · · ·+ kl ·∆l,

where ∆i, i = 0, . . . , l are divisors induced by the submanifolds |∆i| and
k, kj ∈ N∗, j = 1, . . . , l. Let ∆0

j := ∆j ∩∆0 be the induced divisor on S′ :=
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|∆0|, and let ∆′ be the divisor on S′ given by

(1.12) ∆′ := k1 ·∆0
1 + · · ·+ kl ·∆0

l .

Let ι : S′ → S be the obvious inclusion. We denote Z := π−1(S′), Zt :=
π−1(t), t ∈ S′, and let ρ : Y → Z be the normalization of Z. We denote
by π′ : Y → S′ the family of surfaces, induced by the following commutative
square.

(1.13)

Y
ρ−−−−→ X

yπ′

yπ

S′ ι−−−−→ S

The restriction of the holomorphic sections σ1, . . . , σm on S′ induce the
holomorphic sections of Y , which we denote by σ′

1, . . . , σ
′
m : S′ → Y . See

Figure 1 for an example.

Xt X0 Y0

t 0

ρ

Figure 1: A degenerating family. From left to right, points on the surfaces
represent the elements in DX/S |Xt

, DX/S |X0
and DY/S′ |Y0

.

Let ΣZ/S′ be the locus of points, normalized in ρ. The manifold ΣZ/S′

is a union of some connected components of ΣX/S . In particular, ΣX/S has
codimension 2 in X (see Corollary 2.6). Let

(1.14) κ : ΣZ/S′ →֒ X

the obvious inclusion. Then the restriction of π′ to ρ−1(κ(ΣZ/S′)) is a cov-
ering map of degree 2k, see (1.11) and Figure 3. By shrinking the base, we
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may always assume that it is a trivial cover, so there are holomoprhic sec-
tions σ′

m+1, . . . , σ
′
m+2k : S′ → Y such that ρ−1(ΣZ/S′) = ∪2k

i=1 Im(σ′
m+i) and

ρ ◦ σ′
m+2i−1 = ρ ◦ σ′

m+2i, i = 1, . . . , k. We define the divisor DY/S′ over Y by

(1.15) DY/S′ := Im(σ′
1) + · · ·+ Im(σ′

m+2k).

We also define the twisted canonical line bundle of π′ as follows

(1.16) ωY/S′(D) := ωY/S′ ⊗ OY (DY/S′).

We have the canonical isomorphism (cf. Section 2.1)

(1.17) ρ∗(ωX/S(D)) ≃ ωY/S′(D).

Under assumptions (1.8), more precisely, the smoothness assumption,
the isomorphism (1.17) induces the Hermitian norm ∥·∥Y/S′ on ωY/S′(D)

over Y \ ((π′)−1(|∆′|) ∪ |DY/S′ |) as follows

(1.18) ∥·∥Y/S′ := ρ∗(∥·∥X/S).

Let ∥·∥ωY/S′ be the norm on ωY/S′ , induced by ∥·∥Y/S′ using (1.6).

We assume that the restriction of the norm∥·∥ωY/S′ over each non-

singular fiber Yt := π−1(t), t ∈ S′ \ |∆′| of π′ induces the Kähler
metric gTYt , for which the triple (Yt, {σ′

1(t), . . . , σ
′
m+2k(t)}, gTYt)

is a surface with cusps in the sense of Section 2.1.

(1.19)

Essentially the assumption (1.19) says that the hyperbolic cusps on the
normalization of the singular fibers are produced either by the extension
of the existing cusps or by degeneration. To motivate, in a very important
special case, when the marked family of curves π : X → S, σ1, . . . , σm : S →
X corresponds to a family of stable curves, and the norm ∥·∥ωX/S induces
the complete metric of constant scalar curvature −1 over the fibers, both
assumptions (1.8) and (1.19) are satisfied by the results of Wolpert, [29]
(in the compact case, m = 0) and Freixas, [15] (in the non-compact case,
m > 0), cf. [14, Proposition 5.7].

We denote by∥·∥WY/S′ the Wolpert norm on ⊗m+2k
i=1 (σ′

i)
∗ωY/S′ , induced by

∥·∥ωY/S′ (it is well-defined by the assumption (1.19)). Now, by (1.19), similarly
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to (1.9), (1.10), we define the norm ∥·∥Y/S
′

Ln
on the line bundle

L
Y/S′

n := λ
(
j∗(ρ∗(ξ)⊗ ωY/S′(D)n)

)12 ⊗ (⊗m+2k
i=1 (σ′

i)
∗ωY/S′)−rk(ξ)(1.20)

⊗ OS′(∆′)rk(ξ) ⊗
(
⊗m+2k

i=1 (σ′
i ◦ ρ)∗ det ξ

)6
.

The main result of this paper relates the restriction of the Hermitian

norm ∥·∥X/S
Ln

to S′ with the Hermitian norm ∥·∥Y/S
′

Ln
. To state it, we need

to first relate the restriction of the line bundle L
X/S
n to the line bundle

S′ with L
Y/S′

n . By using the residue morphism and the additivity of the
determinant, in Section 3.1, we construct the canonical isomorphism

(1.21) L
X/S
n |S′ → L

Y/S′

n .

Now, for k ∈ N∗, we define

(1.22)
C0 = −6 log(π),

Ck = −6(1 + k) log(2)− 6(1 + 2k) log(π)− 6 log((2k)!).

Theorem 1.1 (Restriction theorem). Under the assumptions (1.8) and

(1.19), the norm ∥·∥X/S
Ln

extends continuously over S, and under (1.21), we
have

(1.23) ∥·∥X/S
Ln

|S′ = exp(k · rk(ξ) · C−n) ·∥·∥Y/S
′

Ln
.

Remark 1.2. A related theorem was proven by Bismut in [3, Theorems 0.2,
0.3] (cf. Theorem 3.2), but the geometric situation here is different from [3].
In particular, in our case even when the general fiber has no cusps, the metric
on the normalization of the singular fiber acquires at least two cusps, which
is not the case in [3]. Due to the fact that at this stage there is no precise
relation between the Quillen metrics for surfaces with cusps and without
cusps, we cannot obtain Theorem 1.1 directly from [3, Theorems 0.2, 0.3]
and the anomaly formula of Bismut-Gillet-Soulé [6].

Now, let’s describe our second result. We fix a compact Riemann surface
M and a set of points DM ⊂ M , #DM = m, m < +∞. We denote M :=
M \DM . Suppose that a pointed Riemann surface (M,DM ) is stable, i.e.
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the genus g(M) of M satisfies

(1.24) 2g(M)− 2 +m > 0,

then, by the uniformization theorem (cf. [12, Chapter IV], [2, Lemma 6.2]),
there is exactly one complete metric gTM

hyp of constant scalar curvature −1 on
M with cusps at DM . We call this metric the canonical hyperbolic metric.
We denote by ∥·∥hypM the norm induced by gTM

hyp on ωM (D) over M . Then,

as we explain in [13, §2.1], the triple (M,DM , gTM
hyp ) is a surface with cusps

(see Section 2.1), in particular, the analytic torsion T (gTM
hyp , (∥·∥

hyp
M )2n) is

well-defined by the results from [13].
Alternatively, we denote by Z(M,DM )(s), s ∈ C, the Selberg zeta-function,

which is given for Re(s) > 1 by the following absolutely converging product

(1.25) Z(M,DM )(s) =
∏

γ

∞∏

k=0

(1− e−(s+k)l(γ))2,

where γ runs over the set of all primitive non-oriented closed geodesics on
(M, gTM

hyp ), and l(γ) is the length of γ. The function Z(M,DM )(s) admits a
meromorphic extension to the whole complex s-plane with a simple zero at
s = 1 (see for example [10, (5.3)]).

Let ζ(s) :=
∑∞

k=1 k
−s be the Riemann zeta function. For k ∈ N∗, we put

(1.26)

c0 = 4ζ ′(−1)− 1

2
+ log(2π),

ck =

k−1∑

l=0

(2k − 2l − 1)
(
log(2k + 2kl − l2 − l)− log(2)

)

+ (
1

3
+ k + k2) log(2) + (2k + 1) log(2π) + 4ζ ′(−1)− 2(k + 1

2)
2

− 4

k−1∑

l=1

log(l!)− 2 log(k!).

For k ∈ N, we denote by Bk : N2 → R, E : N2 → R the following functions

(1.27)
Bk(g,m) = exp

(
(2− 2g(M)−m)

ck
2

)
,

E(g,m) = exp
(
(g(M) + 2−m)

log(2)

3

)
.
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For surfaces of constant scalar curvature −1 and (ξ, hξ) trivial, and l ∈ Z,
l < 0, Takhtajan-Zograf in [28, (6)] proposed1 the analogue of the analytic
torsion defined via Selbrerg zeta function:

(1.28)
TTZ(g

TM
hyp , 1) = E(g(M),m) ·B0(g(M),m) · Z ′

(M,DM )
(1),

TTZ(g
TM
hyp , (∥·∥hypM )2l) = B−l(g(M),m) · Z(M,DM )(−l + 1).

Theorem 1.3 (Compatibility theorem). For any surface with cusps
(M,DM , gTM

hyp ), for which gTM
hyp has constant scalar curvature −1, the follow-

ing identity holds

(1.29) T (gTM
hyp , (∥·∥hypM )2n) = TTZ(g

TM
hyp , (∥·∥hypM )2n).

Remark 1.4. When the surface has no cusps, Theorem 1.3 was proven by
D’Hoker-Phong [10, (7.30)], [11, (3.6)] (see also [27], [7, (50)] and [24, (9)]).
Our proof is based on their result.

Now let’s describe some applications of Theorems 1.1, 1.3 to the moduli
space Mg,m of m-pointed Riemann surfaces of genus g ∈ N, 2g − 2 +m > 0.
We denote by M g,m the Deligne-Mumford compactification of Mg,m, by
∂Mg,m := M g,m \ Mg,m the compactifying divisor, by Cg,m and C g,m the
universal curves over Mg,m and M g,m respectively. We denote by Π :

C g,m → M g,m the universal projection, and by Dg,m the divisor on C g,m,
formed by m fixed points. We denote by ωg,m the relative canonical line
bundle of Π, by ⊗m

i=1σ
∗
i ωg,m the determinant of the restriction of ωg,m to

the divisor Dg,m, and by ωg,m(D) the twisted relative canonical line bundle

(1.30) ωg,m(D) := ωg,m ⊗ O
C g,m

(Dg,m).

We endow ωg,m(D) with the Hermitian norm ∥·∥hypg,m induced by the
canonical hyperbolic metric of constant scalar curvature −1 on the fibers.
We endow the determinant line bundle λ(j∗(ωg,m(D)n)), n ≤ 0, with the in-

duced Quillen norm∥·∥Q,n
g,m from [13] and ⊗m

i=1σ
∗
i ωg,m with the Wolpert norm

∥·∥Wg,m, cf. Definition 2.3.

We denote by λn
g,m, ∥·∥ng,m the specifications of L

X/S
n , ∥·∥X/S

Ln
to X :=

C g,m, S := M g,m and ξ trivial. In [14, Corollary 1.11] (cf. Theorem 2.7), we
proved that ∥·∥ng,m extends continuously over M g,m.

1The constant in front of Selberg zeta function didn’t appear in [28], as the result
of the authors of [28] is independent of it. This normalization was introduced by
Freixas [15], [16], [17].
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For the definition of the clutching morphisms

(1.31)
α : M g−1,m+2 → M g,m,

β : M g1,m1+1 × M g2,m2+1 → M g,m,

see Knudsen [20].
For line bundles LX , LY over manifolds X, Y and natural projections

πX : X × Y → X and πY : X × Y → Y , we denote LX ⊠ LY := π∗
XLX ⊗

π∗
Y LY . The isomorphism (1.21) specifies to

α∗λn
g,m ≃ λn

g−1,m+2,(1.32)

β∗λn
g,m ≃ λn

g1,m1+1 ⊠ λn
g2,m2+1.(1.33)

Corollary 1.5. a) The isomorphism (1.32) is an isometry if the left-hand
side is endowed with ∥·∥ng,m, and the right-hand side with exp(m · C−n) ·
∥·∥ng−1,m+2.

b) Similarly, the isomorphism (1.33) is an isometry if the left-hand side
is endowed with ∥·∥ng,m, and the right-hand side is endowed with exp(m ·
C−n) · (∥·∥ng1,m1+1 ⊠∥·∥ng2,m2+1).

Remark 1.6. For a special family of curves from Section 2.3, Freixas
proved a version of Corollary 1.5 for n = 0 in [16, Corollary 5.8] and for
n > 0 in [16, Theorem 5.3], cf. Theorem 2.13. There, Freixas used a version
of the Quillen norm, defined as a product of (1.28) and the L2-norm. By
Theorem 1.3, our results are compatible. We use the result of Freixas to
calculate C−n from (1.22).

Finally, let’s state our last result which describes an explicit relation
between the Quillen metric associated with a metric with cusps and the
Quillen metric associated with a metric on the compactified Riemann sur-
face. It should be regarded as a refinement of [13, Theorem A].

To state it precisely, recall that the Bott-Chern classes T̃d(ξ, hξ1, h
ξ
2),

c̃h(ξ, hξ1, h
ξ
2) of a vector bundle ξ with Hermitian metrics hξ1, h

ξ
2 were defined

in [5, Theorem 1.27], cf. (3.9), (3.10), (3.11).
In (3.43), for a singular (1, 1)-differential form α with some specified

growth near the cusps (see (3.42)), we define a notion of the regularized
integral

∫
r

M α ∈ R by taking out the divergent part of the integral on a
truncated surface.

Recall that Ck, k ∈ N were defined in (1.22). Now, we define

(1.34) Ek = 4ζ ′(−1)− log(2π) +
1− Ck

6
.
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Theorem 1.7 (Compact perturbation theorem). Let (M,DM , gTM )
be a surface with cusps. We denote by ∥·∥M the induced norm on ωM (D)

over M as in (1.6). We denote by ∥·∥W the Wolpert norm on ⊗P∈DM
ωM |P

induced by gTM .
Let gTM be a Kähler metric over M , and let ∥·∥M be some Hermitian

norm on ωM (D) over M . We denote by ∥·∥DM

M
the norm on ⊗P∈DM

ωM |P
induced by gTM . Let ξ be a holomorphic vector bundle over M , and let hξ

and hξ0 be two metrics on ξ over M . Then the following identity holds

(1.35)

2 log
(
∥·∥Q

(
gTM , hξ ⊗ ∥·∥2nM

)/
∥·∥Q

(
gTM , hξ0 ⊗ ∥·∥2nM

))

=

∫
r

M

[
T̃d

(
ω−1
M

, gTM , gTM
)
ch
(
ξ, hξ0

)
ch
(
ωM (D)n,∥·∥2nM

)

+Td
(
ω−1
M , gTM

)
c̃h
(
ξ, hξ0, h

ξ
)
ch
(
ωM (D)n,∥·∥2nM

)

+Td
(
ω−1
M , gTM

)
ch
(
ξ, hξ

)
c̃h
(
ωM (D)n,∥·∥2nM , ∥·∥2nM

)][2]

+
rk(ξ)

6
log

(
∥·∥W /∥·∥DM

M

)
− 1

2

∑

P∈DM

log
(
det(hξ0/h

ξ)|P
)

+#(DM ) · rk(ξ) · E−n.

Remark 1.8. Other authors use terminology “compactly supported per-
turbations” to designate the conformal change with a factor of compact
support in M . Such perturbations, unlike ours, do not change the metric at
the cusp. The name “compact perturbation theorem” stems from the idea
that gTM , viewed as a perturbation of gTM , “perturbs the compactness” of
the metric.

This theorem has some applications to Arakelov geometry. In fact, once it
is generalized to metrics with conical singularities, it can be used to calculate
some special values of the Selberg zeta function of some modular curves
without a direct appeal to the Arithmetic Riemann-Roch theorem as in
Freixas [15, Corollary 8.2.2], Freixas-von Pippich [18, Theorem 10.2].

This paper is organized as follows. In Section 2, we recall the definition of
the Quillen norm on the family of Riemann surfaces with cusps, the definition
of Wolpert norm, and some results from [13], [14], which study those norms.
Then we recall an analogue of Theorem 1.1 in the constant scalar curvature
case due to Freixas. In Section 3 we extend a result of Bismut [3, Theorem
0.3] to non-Kähler metrics and give a proof of Theorems 1.1, 1.3, 1.7 and
Corollary 1.5.
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Notation. For a complex manifold X, we denote by ωX the canonical line
bundle det(T ∗(1,0)X) of X. For a divisor D in X, we denote by sD the
canonical meromorphic section of OX(D). For ϵ > 0, we define D(ϵ) = {u ∈
C : |u| < ϵ}, D∗(ϵ) = {u ∈ C : 0 < |u| < ϵ}.
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2. Families of nodal curves and hyperbolic cusps

In this section we recall the relevant notations and some preliminary results.
More precisely, in Section 2.1, we recall the definition of the Quillen norm
from [25], [6], [13] and some notions related to families of Riemann surfaces
with cusps from [4], [13], [14], which appeared in the formulation of condi-
tions (1.8) and (1.19). In Section 2.2, we recall several notions of singularities
of Hermitian metrics on line bundles and a regularity result from [14] for a
push-forward of a differential form in a family of curves with double-point
singularities. In Section 2.3, we recall the results of Freixas, [16], [17], related
to the degeneration of the Takhtajan-Zograf version of the Quillen metric.
In Section 2.4, we recall the results related to the study of the hyperbolic
metric near the singular fibers due to Wolpert [29].

2.1. Determinant line bundles and Quillen norms

In this section we recall some basic facts about families of curves due to
Bismut-Bost [4] and the Quillen metrics associated with them basing on
[13].

We fix a surface with cusps (M,DM , gTM ) and a Hermitian vector bun-
dle (ξ, hξ) over it. We denote by ωM := T ∗(1,0)M the canonical line bundle
over M . We denote by ∥·∥ωM the norm on ωM induced by gTM over M by
the natural identification TM ∋ X 7→ 1

2(X −
√
−1JX) ∈ T (1,0)M , where J

is the complex structure of M . Let OM (DM ) be the line bundle associated
with the divisor DM . The twisted canonical line bundle is defined as

(2.1) ωM (D) := ωM ⊗ OM (DM ).
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Using (1.6), the metric gTM endows the line bundle ωM (D) with the induced
norm ∥·∥M over M .

We recall now briefly the definition of the analytic torsion T (gTM , hξ ⊗
∥·∥2nM ) for m ∈ N, n ≤ 0. Assume first m = 0, i.e. the surface has no cusps.
Then T (gTM , hξ ⊗∥·∥2nM ) was defined by Ray-Singer [26, Definition 1.2] as
the zeta-regularized determinant of the Kodaira Laplacian □

ξ⊗ωM (D)n asso-
ciated with (M, gTM ) and (ξ ⊗ ωM (D)n, hξ ⊗∥·∥2nM ).

Now, letm > 0. ThenM is non-compact, and the spectrum of□ξ⊗ωM (D)n

is not discrete. Also, the heat operator associated with □
ξ⊗ωM (D)n is no

longer of trace class. Thus, the classical definition of Ray-Singer is not ap-
plicable. In this case, in [13, Definition 2.10], for n ≤ 0, we defined the regu-
larized heat trace Trr[exp⊥(−t□ξ⊗ωM (D)n)] as a difference of the heat trace
of □ξ⊗ωM (D)n and the heat trace of the Kodaira Laplacian □

ωP (D)n corre-
sponding to the 3-punctured projective plane P := P \ {0, 1,∞}, P := CP 1,
endowed with the complete metric gTP of constant scalar curvature −1 and
the induced norm∥·∥P on ωP (D) := ωP ⊗ OP (0 + 1 +∞). Then in [13, Defi-
nition 2.16], we defined the regularized spectral zeta function ζM (s) for s ∈ C,
Re(s) > 1, as the Mellin transform of Trr[exp⊥(−t□ξ⊗ωM (D)n)], and we con-
cluded in [13, p. 17] that similarly to the case m = 0, the function ζM (s)
extends meromorphically to C and 0 is a holomorphic point. In [13, Defini-
tion 2.17], we defined the regularized analytic torsion as

(2.2) T (gTM , hξ ⊗∥·∥2nM ) := exp(−ζ ′M (0)/2) · TTZ(g
TP ,∥·∥2nP )m·rk(ξ)/3,

where TTZ(·, ·) was defined in (1.28). In other words, our version of the ana-
lytic torsion is defined by subtracting the universal contribution of the cusp
from the heat trace and by normalizing it in such a way that it coincides with
the version of the analytic torsion of Takhtajan-Zograf for CP 1 \ {0, 1,∞},
endowed with the complete metric of constant scalar curvature −1.

Then for n ≤ 0, in [13, §2.1], we explained how the usual definition of
the L2-scalar product extends to the singular setting. More precisely, for
α, α′ ∈ C∞(M, ξ ⊗ ωM (D)n) or α, α′ ∈ C∞(M,ωM ⊗ ξ ⊗ ωM (D)n), in [13,
§2.1], we’ve shown that for n ≤ 0, despite the singularities of the metric, the
following L2-scalar product is well-defined

(2.3)
〈
α, α′

〉
L2

:=
1

2π

∫

M

〈
α(x), α′(x)

〉
h
dvM (x),
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where ⟨·, ·⟩h is the pointwise scalar product on ξ ⊗ ωM (D)n and dvM is the
Riemannian volume form on (M, gTM ). This endows the complex line

(2.4)
(
detH•(M, ξ ⊗ ωM (D)n)

)−1

:=
(
ΛmaxH0(M, ξ ⊗ ωM (D)n)

)−1 ⊗ ΛmaxH1(M, ξ ⊗ ωM (D)n),

with the induced L2-norm ∥·∥L2 (gTM , hξ ⊗∥·∥2nM ).
The Quillen norm on the complex line (2.4) is then defined by

(2.5) ∥·∥Q (gTM , hξ ⊗ ∥·∥2nM )

= T (gTM , hξ ⊗ ∥·∥2nM )1/2 ·∥·∥L2 (g
TM , hξ ⊗ ∥·∥2nM ).

To motivate, when m = 0, this coincides (up to a normalization by 2π in
(2.3)) with the usual definition of the Quillen norm from Quillen [25] and
Bismut-Gillet-Soulé [5, (1.64)].

Following [13], we say that a (smooth) metric gTM
f over M is a flattening

of gTM if there is ν > 0 such that gTM is induced by (1.1) over V M
i (ν), and

(2.6) gTM
f |M\(∪iV M

i (ν)) = gTM |M\(∪iV M
i (ν)).

Similarly, we define a flattening ∥·∥fM of the norm ∥·∥M .
One of the main results of [13] compares the Quillen metric associated

with a metric with cusps and a flattening. Another result gives a formula for
the variation of the Quillen metric induced by the variation of the metrics
on M and ξ. We recall those results for the convenience of the reader.

Theorem 2.1 ([13, Theorem A]). Let gTM
f , ∥·∥fM be flattenings of gTM ,

∥·∥M . Then

(2.7) 2rk(ξ)−1 log
(
∥·∥Q

(
gTM , hξ ⊗ ∥·∥2nM

)/
∥·∥Q

(
gTM
f , hξ ⊗ (∥·∥fM )2n

))

− rk(ξ)−1

∫

M
c1(ξ, h

ξ)
(
2n log(∥·∥fM /∥·∥M ) + log(gTM

f /gTM )
)

depends only on the integers n ∈ Z, n ≤ 0, and the functions
(gTM

f /gTM )|V M
i (1) ◦ (zMi )−1 : D∗ → R, (∥·∥fM /∥·∥M )|V M

i (1) ◦ (zMi )−1 :

D∗ → R, for i = 1, . . . ,m.

Remark 2.2. Directly from the proof of Theorem 2.1, it is easy to see that
Theorem 2.1 continues to hold if instead of the flattening gTM

f of gTM , we
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consider a partial flattening gTM
f,0 of gTM , i.e. instead of the condition (2.6),

we demand

(2.8) gTM
f,0 |M\(∪i∈IV M

i (ν)) = gTM |M\(∪i∈IV M
i (ν)),

where I is a subset of the index set parametrizing the cusps.

Definition 2.3 ([13, Definition 1.5]). For a surface with cusps
(M,DM , gTM ), we define the norms ∥·∥W,i

M on the complex lines ωM |PM
i
,

i = 1, . . . ,m, by requiring ∥dzMi ∥W,i
M = 1. They induce the Wolpert norm

∥·∥WM on the complex line ⊗m
i=1ωM |PM

i
.

The Wolpert norm has been introduced by Wolpert in [30] for metrics
of constant scalar curvature −1, and the name “Wolpert norm” was coined
up by Freixas in [15], [16]. In [13], we extended the definition of Wolpert to
the case of non-constant scalar curvature.

Theorem 2.4 ([13, Theorem B]). Suppose that for the metric gTM
0 , the

triple (M,DM , gTM
0 ) is a surface with cusps. We denote by ∥·∥M ,∥·∥0M the

norms induced by gTM , gTM
0 on ωM (D), and by ∥·∥WM , ∥·∥W,0

M the associated

Wolpert norms. Let hξ0 be a Hermitian metric on ξ over M . Then the right-
hand side of the following equation is finite, and

(2.9)

2 log
(
∥·∥Q

(
gTM
0 , hξ0 ⊗ (∥·∥0M )2n

)/
∥·∥Q

(
gTM , hξ ⊗ ∥·∥2nM

))

=

∫

M

[
T̃d

(
ωM (D)−1, ∥·∥−2

M , (∥·∥0M )−2
)
ch
(
ξ, hξ

)
ch
(
ωM (D)n,∥·∥2nM

)

+Td
(
ωM (D)−1, (∥·∥0M )−2

)
c̃h
(
ξ, hξ, hξ0

)
ch
(
ωM (D)n,∥·∥2nM

)

+Td
(
ωM (D)−1, (∥·∥0M )−2

)
ch
(
ξ, hξ0

)
·

· c̃h
(
ωM (D)n,∥·∥2nM , (∥·∥0M )2n

)][2]

− rk(ξ)

6
log

(
∥·∥WM /∥·∥W,0

M

)
+

1

2

∑

P∈DM

log
(
det(hξ/hξ0)|P

)
.

Now let’s pass to the study of curves in families. By a curve we mean,
cf. [1, p. 79], an analytic space such that every one of its points is either
smooth or is locally complex-analytically isomorphic to a neighborhood of
the origin in {(z0, z1) ∈ C2 : z0z1 = 0}.
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We fix a holomorphic, proper, surjective map π : X → S of complex
manifolds, such that for every t ∈ S, the space Xt := π−1(t) is a curve (in
the terminology of [4], [14], π is a f.s.o).

Proposition 2.5 ([4, Proposition 3.1]). For every x ∈ X, there are local
holomorphic coordinates (z0, . . . , zq) of x ∈ X and (w1, . . . , wq) of π(x) ∈ S,
such that π is locally defined by

wi = zi, for i = 1, . . . , q,(2.10)

or w1 = z0z1; wi = zi, for i = 2, . . . , q.(2.11)

Corollary 2.6 ([4, §3(a)]). Let ΣX/S ⊂ X be the locus of double points
of the fibers of π. Then ΣX/S is a submanifold of X of codimension 2;
π|ΣX/S

: ΣX/S → S is a closed immersion and π|X\ΣX/S
: X \ ΣX/S → S is a

submersion. In particular, ∆ = π∗(ΣX/S) is a divisor in S.

Let s0 := π(x) ∈ ∆, x ∈ ΣX/S , and let ρ : Ys0 → Xs0 be the normal-
ization of Xs0 at x. Then for the relative canonical line bundle, ωX/S :=

ωX ⊗ π∗ω−1
S , there is a canonical isomorphism

(2.12) ρ∗ωX/S = ωYs0
⊗ OYs0

(ρ−1(x)),

which induces the isomorphism (1.17). Let’s fix σ1, . . . , σm : S → X \ ΣX/S

and DX/S ⊂ X as in (1.5). Fix a Hermitian norm ∥·∥ωX/S on ωX/S over

π−1(S \ |∆|) \ (∪i Im(σi)), satisfying the assumptions described below (1.5).
Now, let (ξ, hξ) be a Hermitian vector bundle over X. For t ∈ S, we

denote

(2.13) det(R•π∗(ξ ⊗ ωX/S(D)n))t := detH0(Xt, ξ ⊗ ωX/S(D)n)

⊗ (detH1(Xt, ξ ⊗ ωX/S(D)n))−1.

Even though individually H0(Xt, ξ ⊗ ωX/S(D)n) and H1(Xt, ξ ⊗ ωX/S(D)n)
do not necessarily form vector bundles over S, by a result of Grothendick-
Knudsen-Mumford [21] (cf. [4, Proposition 4.1]), the family of complex lines
(det(R•π∗(ξ ⊗ ωX/S(D)n))t)t∈S can be endowed with a natural structure of
a holomorphic line bundle, denoted here by det(R•π∗(ξ ⊗ ωX/S(D)n)). We
denote

(2.14) λ(j∗(ξ ⊗ ωX/S(D)n)) :=
(
det(R•π∗(ξ ⊗ ωX/S(D)n))

)−1
.

Following [14], by gluing the pointwise Quillen norms, cf. (2.5), we in-
duce the Quillen norm∥·∥Q

(
gTXt , hξ ⊗ ∥·∥2nX/S

)
on the line bundle λ(j∗(ξ ⊗
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ωX/S(D)n)). Similarly, the pointwise Wolpert norms, cf. Definition 2.3, glue

into the Wolpert norm∥·∥WX/S on ⊗m
i=1σ

∗
i ωX/S . We make no claim about the

regularity of the metrics∥·∥Q
(
gTXt , hξ ⊗ ∥·∥2nX/S

)
and∥·∥WX/S . This is due to

the fact that it is not clear if there is any relation between the coordinates
as in (1.1) for nearby fibers.

One of the motivations for introducing Quillen metric is a theorem of
Bismut-Gillet-Soulé [6, Theorem 1.6], which says that despite the singulari-
ties in the L2-norm caused by the jumps in the dimension of the cohomology
of the fibers, which might occur when one moves over the base space of the
family of compact smooth manifolds, the Quillen metric is a smooth metric.
Similarly, one can motivate the definition of the Hermitian norm (1.9). More
precisely, we have

Theorem 2.7 ([14, Theorem C3]). Suppose that assumption (1.8) holds.
Then the Hermitian norm (1.9) on the line bundle (1.10) extends continu-
ously over S.

2.2. Singular Hermitian vector bundles

Here we recall several notions of singularities for Hermitian vector bundles,
which we already used in conditions (1.8) and (1.19). We fix a complex
manifold Y of dimension q + 1, a normal crossing divisor D0 ⊂ Y and a
submanifold F ⊂ Y .

A triple (U ; z0, . . . , zq; l) of an open set U ⊂ Y , coordinates z0, . . . , zq :

U → C and l ∈ N is called an adapted chart for D0 (resp. F ) at x ∈ D0

(resp. x ∈ F ) if U = {(z0, . . . , zq) ∈ Cq+1 : |zi| < 1, for all i = 0, . . . , q} and
D0 ∩ U (resp. F ∩ U) is defined by {z0 · · · zl = 0} (resp. {z0 = 0, . . . , zl =
0}). Let (U ; z0, . . . , zq; l) be an adapted chart for D0. We denote

(2.15) dζk =

{
dzk/(zk log |zk|), if 0 ≤ k ≤ l,

dzk, if l + 1 ≤ k ≤ q.

Definition 2.8. a) [15, Definition 2.1] A function f : Y \ F → C has log-log
growth on Y , with singularities along F if for any x ∈ Y , for some adapted
chart (U ; z0, . . . , zq; l) of F at x, and for some C > 0, p ∈ N, we have

(2.16) |f(z0, . . . , zq)| ≤ C
(
log

∣∣ log
(
maxlk=0{|zk|}

)∣∣
)p

+ C.

b) [23, p. 240] A differential form over Y \D0 has Poincaré growth on
Y , with singularities along D0, if it can be expressed as a linear combination
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of monomials constructed using dζk, dζk, k = 0, . . . , q, with coefficients f ∈
C∞(Y \D0) ∩ L∞(Y \D0).

c) [15, Definition 2.14] A smooth function f : Y \D0 → C is P-singular,
with singularities along D0, if ∂f , ∂f , ∂∂f have Poincaré growth on Y , with
singularities along D0.

Definition 2.9 ([23, p. 242]). Let L be a holomorphic line bundle over
Y and let hL be a smooth Hermitian metric on L over Y \D0. We say hL

is good with singularities along D0 if for a local holomorphic frame υ of L,
log hL(υ, υ) is P-singular, with singularities along D0.

Remark 2.10. The original definition of Mumford is equivalent to this
one, see [15, Proposition 3.2].

Definition 2.11 ([8]). Let L be a holomorphic line bundle over Y and let
hL be a smooth Hermitian metric on L over Y \ F . We say hL has log-log
growth with singularities along F if for a local holomorphic frame υ of L,
log hL(υ, υ) has log-log growth with singularities along F .

Now, we fix a holomorphic, proper, surjective map π : X → S of com-
plex manifolds, such that for every t ∈ S, the space Xt := π−1(t) is a curve.
Suppose that the divisor of singular curves ∆ has normal crossings. Let D
be a divisor on X such that π|D : D → S is a local isomorphism.

Proposition 2.12. Let α be a smooth (1, 1)-form over X \ (ΣX/S ∪ |D|),
with Poincaré growth on X \ (|D| ∪ |π−1(∆)|) with singularities along D ∪
π−1(∆). Let f : X \ (ΣX/S ∪ |D|) → R be a continuous function, with log-
log growth along ΣX/S ∪ |D|.

Then for the normalization ρ : Yt → Xt of Xt, t ∈ |∆|, the form ρ∗(fα) is
integrable over Yt. Moreover, the function π∗[fα] extends continuously over
S, and the value of this extension is

(2.17) π∗[fα](t) =
∫
Yt
ρ∗(fα).

Proof. The first part of the statement was proven in [14, Proposition 3.1c)],
and the second part follows directly from the proof of [14, Proposition 3.1c)].

□

2.3. Families of hyperbolic surfaces and Quillen metric

In this section we recall the results of Freixas from [16] and [17], which
describe how the Quillen metric, defined using the Takhtajan-Zograf version
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of the analytic torsion, (1.28), behaves in a one specific degenerating family
of Riemann surfaces. We will use those results in our proof of Theorem 1.1.

Let’s describe the family of Riemann surfaces first. We fix a Rie-
mann surface M with m fixed points DM = {PM

1 , . . . , PM
m } ⊂ M and a

Riemann surface T , homeomorphic to a torus with one fixed point DT =
{P T } ⊂ T . Take m copies (T i, P

T
i ) of (T , P T ), i = 1, . . . ,m. Let g ∈ N

be the genus of M . Clutching morphisms β (see (1.31)), applied to the
pairs {PM

1 , P T
1 }, . . . , {PM

m , P T
m}, realizes the pointed surface (M,m · T ) :=

(M,DM ) ∪ (T 1, P
T
1 ) ∪ · · · ∪ (Tm, P T

m) as a point in a compactifying divisor
∂Mg+m,0 of M g+m,0. The plumbing family associated with (M,m · T ) is a
family of pointed curves representing a transversal direction to ∂Mg+m,0 in
M g+m,0.

More precisely, we consider a neighborhood Ui of P
M
i ∈ M , i = 1, . . . ,m,

biholomorphic to an open disc and a holomorphic coordinate mappings Fi :

Ui → C with Fi(P
M
i ) = 0; similarly, a neighborhood V of P T ∈ T , and a

holomorphic coordinate mapping G : V → C satisfying G(P T ) = 0; and a
small complex parameter t ∈ C.

We suppose that Ui are pairwise disjoint. Let c > 0 be such that
D(c) ⊂ C is contained in Im(Fi), i = 1, . . . ,m and Im(G). We take m copies
G1, . . . , Gm of G, and regard them as local functions on T 1, . . . , Tm respec-
tively. Let |t| < c2. For d ∈ D(c), we note

Rd,∗ =
(
M \ (∪m

i=1{|Fi| ≤ |d|})
)

(2.18)

∪
(
T 1 \ {|G1| ≤ |d|}

)
∪ · · · ∪

(
Tm \ {|Gm| ≤ |d|}

)
.

Consider the equivalence relation on points of Rt/c,∗ generated by:

(2.19) p ∼ q if |t|/c ≤ |Fi(p)| ≤ c, |t|/c ≤ |Gi(q)| ≤ c, Fi(p)Gi(q) = t.

Form the identification space Xt = Rt/c,∗/ ∼. The curve Xt, t ∈ D(c2), is
called the plumbing construction for (M,m · T ) associated with the plumb-
ing data (∪iUi, V,∪iFi, G, t). Clearly, X := ∪t∈D(c2)Xt has a structure of
a complex manifold, for which π : X → S := D(c2) is a proper holomorphic
map of codimension 1. The divisor of singular curves is given by ∆ = m · {0}.

Now, suppose that the pointed surface (M,DM ) is stable, i.e. it satisfies
(1.24). Then one can take the functions Fi, i = 1, . . . ,m, from the plumbing
construction to be Poincaré-compatible coordinates zMi of PM

i (see (1.1))
with respect to the canonical complete hyperbolic metric of constant scalar
curvature −1 on M \DM with cusps at DM . Similarly, we make the choice
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for Gi = zT . We call the associated plumbing family the canonical plumbing
family.

From now on, we fix a canonical plumbing family π : X → S := D(c2).
We denote by

(2.20) Y0 := (M ∪ T 1 ∪ · · · ∪ Tm), ρ : Y0 → X0

the normalization of the singular fiber and by

(2.21) ΣX/S = {Q1, . . . , Qm}, Qi = ρ(PM
i ),

the set of singular points in X0. We denote by ZXt
(s) the Selberg zeta-

function associated with Xt, given by the formula (1.25). Let gTXt

hyp , t ̸= 0 be
the canonical hyperbolic metric of constant scalar curvature −1 on Xt. Let
∥·∥hypX/S be the induced Hermitian norm on ωX/S over X \ π−1(|∆|).

We consider the determinant line bundle λ(j∗(ωn
X/S)), n ≤ 0, (2.14), and

endow it over S \∆ with the Takhtajan-Zograf version of the Quillen norm
(cf. [15, §6]), given by

(2.22) ∥·∥TZ
Q

(
gTXt

hyp , (∥·∥hypX/S)
2n
)

:= TTZ

(
gTXt

hyp , (∥·∥hypX/S)
2n
)1/2 ·∥·∥L2

(
gTXt

hyp , (∥·∥hypX/S)
2n
)
.

We construct the norm (compare with (1.9))

(2.23) ∥·∥TZ
Ln

:=
(
∥·∥TZ

Q (gTXt

hyp , (∥·∥hypX/S)
2n)

)12 ⊗∥·∥div∆

on the line bundle (compare with (1.10))

(2.24) L
TZ
n := λ

(
j∗(ωn

X/S)
)12 ⊗ OS(∆).

We denote by∥·∥hypM ,∥·∥hypT the norms on ωM (D), ωT (D) induced by the
canonical hyperbolic metrics gTM

hyp , g
TT
hyp of constant scalar curvature −1 on

(M,DM ), (T ,DT ). We denote by ∥·∥W,hyp
M , ∥·∥W,hyp

T the associated Wolpert
norms on the complex lines det(ωM |DM

) and det(ωT |DT
). Now, we define

the norm

(2.25) ∥·∥TZ
L ′

n
:=

(
∥·∥TZ

Q (gTM
hyp , (∥·∥hypM )2n)⊗

(
∥·∥TZ

Q (gTT
hyp, (∥·∥hypT )2n)

)m)12

⊗
(
∥·∥W,hyp

M ⊗ (∥·∥W,hyp
T )m

)−1
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on the complex line (compare with (1.20))

L
TZ
n

′ :=
(
λ
(
ωM (D)n

)
⊗ λ

(
ωT (D)n

)m)12
(2.26)

⊗
(
det(ωM |DM

)⊗ (det(ωT |DT
))m

)−1
.

Then the isomorphism (1.21) specifies in this case to the canonical iso-
morphism

(2.27) L
TZ
n |∆ → L

TZ
n

′.

We recall that the constants Ck, k ∈ N were defined in (1.22).

Theorem 2.13 (Freixas, [16, Corollary 5.8] for n = 0 and [17, The-
orem 5.3] for n < 0). The norm ∥·∥TZ

Ln
extends continuously over S, and,

under the isomorphism (2.27), the following identity holds

(2.28) ∥·∥TZ
Ln

|∆ = exp(m · C−n) ·∥·∥TZ
Ln

′ .

Remark 2.14. Theorem 2.13 corresponds exactly to Theorem 1.1 for a
special choice of a family of curves, a special choice of the metric and a
different definition of the analytic torsion.

Remark also that Freixas states his theorems for λ(j∗(ω−n+1
X/S )), n ≤ 0,

but since Serre duality is an isometry, cf. [9, p. 310], his result holds for
λ(j∗(ωn

X/S)), n ≤ 0.

2.4. Model grafting and pinching expansion

The goal of this section is to recall the model grafting construction due to
Wolpert [29]. For simplicity, we state it only in the setting of Section 2.3.
We conserve the notation from Section 2.3.

To be compatible with further notation, we denote

(2.29) zi0 := zMi , zi1 := zTi .

By the definition of the plumbing family from Section 2.3, the coordinates
(zi0, z

i
1) can be regarded as local holomorphic charts in the neighborhood
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Qi ∈ X. We denote

(2.30) U(Qi, ϵ) =
{
x ∈ X : |zi0(x)| < ϵ, |zi1(x)| < ϵ

}
.

By the definition of plumbing family, in t-coordinates on S (see (2.19)), we
have

(2.31) π(zi0, z
i
1) = zi0z

i
1.

The canonical hyperbolic metric on M (resp. T ) with cusps at DM (resp.
DT ) induces a metric gTRϵ,∗

hyp on Rϵ,∗ (see (2.18) for the definition of Rϵ,∗).

Let ϵ be so small, so that gTRϵ,∗

hyp is induced by (1.1) in coordinate zMj over

{|zMj | < 2ϵ
}
and by (1.1) in coordinate zTj over {|zTj | < 2ϵ

}
.

We choose c = ϵ2 in the plumbing construction from Section 2.3. Now,
since the manifold X \ (∪k

i=1U(Qi, ϵ)) is naturally isomorphic to the prod-
uct Rϵ,∗ ×D(ϵ2), the metric gTRϵ,∗

hyp induces the Kähler metric gTXt on

Xt \ (∪k
i=1U(Qi, ϵ)).

The model grafted metric gTXt

gft on Xt, is built from the metric gTXt and
the hyperbolic metric on a cylinder, (2.34). It models the degeneration of
the metric of constant scalar curvature −1.

More precisely, let ν : X → [0, 1] be smooth function, satisfying

(2.32) ν(x) =

{
0, for x ∈ X \ (∪k

i=1U(Qi, 2ϵ)),

1, for x ∈ ∪k
i=1U(Qi, ϵ).

For t ∈ D(ϵ2), we denote by gCyl
i,t the metric over the set

(2.33)
{
(zi0, z

i
1) ∈ Xt : |t|/(2ϵ) < |zi0| < 2ϵ

}
,

induced by the Kähler form

(2.34)

(
π

|zi0| log |t|

(
sin

π log |zi0|
log |t|

)−1)2√
−1dzi0dz

i
0.

We remark that since over Xt, we have zi0z
i
1 = t, the expression (2.34) is

symmetric in zi0 and zi1.
Following Wolpert [29], we define the model grafted metric gTXt

gft as

follows: over Xt \ (∪m
i=1U(Qi, 2ϵ)), gTXt

gft coincides with gTXt , and over
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U(Qi, 2ϵ), it is given by

(2.35) gTXt

gft =
(
gCyl
i,t

)ν
(gTXt)1−ν .

The metric gTXt

gft is designed to model the metric of constant scalar curvature
near the degeneration, according to Wolpert [29, Expansion 4.2]. The ad-
vantage of the grafted metric over the hyperbolic one is that its construction
is local near the singularities.

Proposition 2.15. The norm ∥·∥gftX/S , induced by gTXt

gft over X \ π−1(|∆|),
extends continuously over X \ ΣX/S . Moreover, it is good in the sense of
Mumford on X \ π−1(|∆|) with singularities along π−1(∆) and has log-log
growth with singularities along ΣX/S .

Proof. This follows from an explicit calculation, see Wolpert [29,
Lemma 1.5]. □

3. The behavior of the Quillen metric near singular fibers

The main goal of this section is to prove Theorems 1.1, 1.3 and Corollar-
ies 1.5, 1.7. More precisely, this section is organized as follows. In Section
3.1, we use Theorems 2.1, 2.4, 2.7, 2.13 to prove Theorems 1.1, 1.3 modulo
a certain universality statement. In Section 3.2, we slightly generalize the
result of Bismut [3, Theorem 0.3] about the behavior of the Quillen norm
in a smooth Kähler family of degenerating compact Riemann surfaces by
dropping out the Kähler assumption on the metric. Finally, in Section 3.3,
by using this result, we prove the universality statement, which is used in
Section 3.1. From this, we also deduce Theorem 1.7.

3.1. Quillen metric on the singular locus, proof of Theorems 1.1,
1.3

In this section we prove Theorems 1.1, 1.3 modulo a certain universality
statement, which will be established in Section 3.3. We then establish Corol-
lary 1.5. We conserve the notation from the statement of Theorem 1.1.

Before describing the proofs, let’s explain the construction of the iso-
morphism (1.21). Recall that ΣZ/S′ , ΣX/S and κ were defined in (1.14) and
in a paragraph before it. We denote by NΣZ/S′/X (resp. NS′/S) the normal
vector bundle of ΣZ/S′ in X (resp. of S′ in S). The fibers of X have only
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double-point singularities, so the projection π induces the following canoni-
cal isomorphism (see (2.11), cf. also [3, (2.9)])

(3.1) dπ2 : ∧2(NΣZ/S′/X)⊗ (det ρ∗(Oρ−1ΣZ/S′
)) → κ∗π∗NS′/S .

The square of det ρ∗(Oρ−1ΣZ/S′
) is canonically trivialized, so from the met-

rical point of view, it doesn’t contribute to our analysis and we omit this
bundle from now on. For the relative tangent bundle TY/S′ of π′ and for any
i = 1, . . . , k, the normalization map ρ induces the canonical isomorphism

(3.2) (σ′
m+2i−1)

∗(TY/S′)⊗ (σ′
m+2i)

∗(TY/S′) → ∧2(NΣZ/S′/X).

We denote by ωS and ωS′ the canonical line bundles over S and S′. By
combining the duals of the isomorphisms (3.1), (3.2), for i = 1, . . . , k, we get
the canonical isomorphism

(3.3) (ωS ⊗ ω−1
S′ )|S′ → (σ′

m+2i−1)
∗(ωY/S′)⊗ (σ′

m+2i)
∗(ωY/S′).

Poincaré residue morphism (cf. [19, p. 147]) gives a canonical isomor-
phism

(3.4) (ωS ⊗ OS(∆0))|S′ → ωS′ .

By combining the isomoprhism (3.3), applied for each i = 1, . . . , k, the iso-
morphism (3.4) and by multiplying by (⊗m

i=1σ
∗
i ωX/S)

−1 ⊗ OS(
∑

ki∆i), we
get the canonical isomorphism

(3.5)
((

⊗m
i=1 σ

∗
i ωX/S

)−1 ⊗ OS(∆)
)∣∣

S′

→
(
⊗m+2k

i=1 (σ′
i)
∗ωY/S′

)−1 ⊗ OS′(∆′).

For t ∈ S′, we have the following exact sequence of sheaves (cf. [3, (5.53)])

(3.6) 0 → OZt

(
j∗(ξ ⊗ ωX/S(D)n)

)
→ ρ∗OYt

(
j∗(ρ∗(ξ)⊗ ωY/S′(D)n)

)

→ OΣZ/S′

(
κ∗(ξ)⊗ det(ρ∗Oρ−1ΣZ/S′

)
)
→ 0,

where the first map is induced by the pull-back and (1.17), and the second
map is the difference of the residue morphism at ρ−1(ΣZ/S′). By the additiv-
ity of the determinant, the short exact sequence (3.6) induces the canonical
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isomorphism (cf. [3, (5.55)])

(3.7) λ
(
j∗(ξ ⊗ ωX/S(D)n)

)
|S′ → λ

(
j∗(ρ∗(ξ)⊗ ωY/S′(D)n)

)

⊗ det
(
π∗(κ

∗(ξ))
)
⊗ det

(
(π ◦ ρ)∗Oρ−1ΣZ/S′

)rk(ξ)
.

Trivially, we have an isomorphism

(3.8) det
(
π∗(κ

∗(ξ))
)2

→
(
⊗2k

i=1 (σ
′
m+i ◦ ρ)∗ det ξ

)
⊗
(
det ρ∗(Oρ−1ΣZ/S′

)
)rk(ξ)

.

The composition of the isomorphisms (3.5), (3.7) and (3.8) induce the iso-
morphism (1.21).

We can now state a crucial theorem in our analysis, which will be proved
in Section 3.3.

Theorem 3.1. For any n ≤ 0, there exists a universal constant A−n ∈ R,
such that Theorem 1.1 holds for any family of curves π : X → S without
cusps (i.e. m = 0) with A−n in place of C−n.

Now, by [5, Theorem 1.27], the Bott-Chern classes of a vector bundle ξ

with metrics hξ1, h
ξ
2 are natural differential forms T̃d(ξ, hξ1, h

ξ
2), c̃h(ξ, h

ξ
1, h

ξ
2),

defined modulo Im(∂) + Im(∂), so that

(3.9)

∂∂

2π
√
−1

T̃d(ξ, hξ1, h
ξ
2) = Td(ξ, hξ1)− Td(ξ, hξ2),

∂∂

2π
√
−1

c̃h(ξ, hξ1, h
ξ
2) = ch(ξ, hξ1)− ch(ξ, hξ2),

where Td, ch are Todd and Chern forms. By [5, Theorem 1.27], we have the
following identities

(3.10) c̃h(ξ, hξ1, h
ξ
2)

[0] = 2T̃d(ξ, hξ1, h
ξ
2)

[0] = log
(
det(hξ1/h

ξ
2)
)
.

If, moreover, ξ := L is a line bundle, we have

c̃h(L, hL1 , h
L
2 )

[2] = 6T̃d(L, hL1 , h
L
2 )

[2](3.11)

= log(hL1 /h
L
2 )
(
c1(L, h

L
1 ) + c1(L, h

L
2 )
)
/2,

where c1 is the first Chern form. In what follows, when we write a Bott-
Chern class, one should interpret it as a differential form, given by (3.10),
(3.11).
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Now let’s see how Theorem 3.1 can be used to prove Theorems 1.1, 1.3.

Proof of Theorem 1.1. The proof consists of 3 steps. In Steps 1, 2, we prove
that it is enough to establish Theorem 1.1 for m = 0. This reduces Theo-
rem 1.1 by Theorem 3.1 to the proof that A−n from Theorem 3.1 coincides
with C−n from Theorem 1.1. We establish this in Step 3.

Before describing the proof in details, let us remark that by Theorem 2.7,
we may assume S = D(1), |∆| = {0}. Also, by Theorem 2.4, the metrics
from Theorem 1.1 depend in the same way on the variation of hξ. Hence, we
may assume that the Hermitian vector bundle (ξ, hξ) is trivial over a small
neighborhood of |DX/S | ∪ ΣX/S . We make those simplifications below.

Step 1. In this step we show that it is enough to establish Theorem 1.1
for families of Riemann surfaces with cusps such that the metric near the
cusp is constant in the horizontal direction (with respect to some fixed local
holomorphic coordinates near the cusp). For this, let Vi,c, i = 1, . . . ,m, c > 0
(resp. U) be a neighborhood of σi(t0) (resp. t0) such that for some local
coordinates (z0, . . . , zq) of σi(t0) and (w1, . . . , wq) of t0 ∈ S, satisfying (2.10),
we have Vi,c = {x ∈ π−1(U) : |z0(x)| < c} and {z0(x) = 0} = {σi(t) : t ∈ U}.
For simplicity, we note Vi := Vi,1. Let ν0 : R+ → [0, 1] be a smooth function
satisfying

(3.12) ν0(u) =

{
0, if u < 1/2,

1, if u > 3/4.

We denote by ∥·∥ω,0X/S the norm on ωX/S over X \ (π−1(|∆|) ∪ |DX/S |)
such that∥·∥ω,0X/S coincides with∥·∥ωX/S away from ∪m

i=1Vi, and over (∪m
i=1Vi) \

(π−1(|∆|) ∪ |DX/S |), we have

(3.13) ∥dz0∥ω,0X/S =
∣∣z0 log |z0|

∣∣1−ν0(|z0|) ·
(
∥dz0∥ωX/S

)ν0(|z0|).

Let∥·∥0X/S be the norm on ωX/S(D) induced from∥·∥ω,0X/S as in (1.6), and let

gTXt

0 , t ∈ S be the induced Kähler metric Xt \DX/S with cusps at DX/S ∩
Xt. We denote by∥·∥W,0

X/S the norm on the line bundle ⊗m
i=1σ

∗
i ωX/S associated

with gTXt

0 as in Definition 2.3. Then by (3.13), we see that if∥·∥X/S satisfies

assumptions (1.8) and (1.19), then ∥·∥0X/S satisfies assumptions (1.8) and

(1.19) as well. In fact, this property along with the fact that ∥·∥ω,0X/S doesn’t

vary in the horizontal direction around the cusps (with respect to some
fixed local holomorphic coordinates) are the only facts we need from the
construction (3.13).
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We denote by gTY0

0 the Kähler metric on Y0 \DY0
, constructed from

∥·∥0Y0

:= ρ∗(∥·∥0X/S) as in (1.6). We denote by ∥·∥W,0
Y0

the Wolpert norm on

⊗m+2k
i=1 (σ′

i)
∗ωY0

induced by gTY0

0 .
As we assumed that (ξ, hξ) is trivial in a neighborhood of |DX/S |, and

the metrics ∥·∥X/S , ∥·∥0X/S differ only in the neighborhood of |DX/S |, by

Theorem 2.4, applied pointwise for the line bundle λ(j∗(ξ ⊗ ωX/S(D)n))12 ⊗
(⊗m

i=1σ
∗
i ωX/S)

−rk(ξ), for any t ∈ S \ |∆|, we have
(3.14)
1

6
log

(
∥·∥Q

(
gTXt

0 , hξ ⊗ (∥·∥0X/S)
2n
)12 ⊗

(
∥·∥W,0

X/S

)−rk(ξ)
)

− 1

6
log

(
∥·∥Q

(
gTXt , hξ ⊗ (∥·∥X/S)

2n
)12 ⊗

(
∥·∥WX/S

)−rk(ξ)
)

= rk(ξ) ·
∫

Xt

(
T̃d

(
ωX/S(D)−1, ∥·∥−2

X/S , (∥·∥0X/S)
−2

)
ch
(
ωX/S(D)n,∥·∥2nX/S

)

+Td
(
ωX/S(D)−1, (∥·∥0X/S)

−2
)
c̃h
(
ωX/S(D)n,∥·∥2nX/S , (∥·∥0X/S)

2n
))

.

We note that the conformal factor corresponding to the change of the norm
from ∥·∥ωX/S to ∥·∥ω,0X/S is non-trivial in the neighborhood of the cusp. Thus,

in (3.14) we use a strong version of Theorem 2.4 with the conformal factor
of non-compact support in the punctured surface.

By applying Theorem 2.4, we get

(3.15)

1

6
log

(
∥·∥Q

(
gTY0

0 , ρ∗(hξ)⊗ (∥·∥0Y0
)2n

)12 ⊗
(
∥·∥W,0

Y0

)−rk(ξ)
)

− 1

6
log

(
∥·∥Q

(
gTY0 , ρ∗(hξ)⊗ (∥·∥Y0

)2n
)12 ⊗

(
∥·∥WY0

)−rk(ξ)
)

= rk(ξ) ·
∫

Y0

(
T̃d

(
ωY0

(D)−1, ∥·∥−2
Y0

, (∥·∥0Y0
)−2

)
ch
(
ωY0

(D)n,∥·∥2nY0

)

+Td
(
ωY0

(D)−1, (∥·∥0Y0
)−2

)
c̃h
(
ωY0

(D)n,∥·∥2nY0
, (∥·∥0Y0

)2n
))

.

By Proposition 2.12, we see that the right-hand-side of (3.14) extends con-
tinuously over S, moreover, as t → 0, by (2.17), the right-hand side of (3.14)
converges to the right-hand side of (3.15). Thus, it is enough to prove The-
orem 1.1 for the metrics ∥·∥0X/S , ∥·∥

ω,0
X/S , ∥·∥

W,0
X/S instead of ∥·∥X/S , ∥·∥ωX/S ,

∥·∥WX/S . We also note that by (3.13), for i = 1, . . . ,m, the following identity
holds

(3.16)
∥∥dz0|σi(t)

∥∥W,0,i

X/S
=

∥∥dz0|σ′

i(0)

∥∥W,0,i

Y/S′
= 1.
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In other words, the Wolpert norms associated with σi, i = 1, . . . ,m, are
trivial.

Step 2. In this step we show that by Theorem 2.1, one can delete the
cusps from the metric obtained in Step 1. We denote V ′

i = Vi,1/2 ⊂ Vi, i =
1, . . . ,m. Let∥·∥ω,cmp

X/S be the Hermitian norm on ωX/S overX \ π−1(|∆|) such
that∥·∥ω,cmp

X/S coincides with∥·∥ω,0X/S away from ∪m
i=1V

′
i , and for ν0 : R → [0, 1]

as in (3.12), over V ′
i , we have

(3.17) ∥dz0∥ω,cmp
X/S = |z0 log |z0||ν0(2|z0|).

We denote by gTXt
cmp the induced Kähler metric on Xt. By (3.17), we see

that if∥·∥ω,0X/S satisfies the assumptions (1.8) and (1.19), then∥·∥ω,cmp
X/S satisfies

the assumptions (1.8) and (1.19) as well, but for DX/S = ∅, i.e. without the
cusps. In fact, this property along with the fact that∥·∥ω,cmp

X/S doesn’t vary in

the horizontal direction around the cusps (with respect to some fixed local
holomorphic coordinates) are the only facts we need from (3.17).

We denote by gTY0

cmp the Kähler metric over Y0 \ ρ−1(ΣX/S) induced from
∥·∥ω,cmp

X/S as in (1.18) forDX/S = ∅. We denote by∥·∥cmp
X/S the norm on ωX/S(D)

over X \ π−1(|∆|), such that∥·∥cmp
X/S coincides with∥·∥0X/S away from ∪m

i=1V
′
i ,

and over V ′
i , we have

(3.18)
∥∥dz0 ⊗ sDX/S

/z0
∥∥cmp

X/S
= | log |z0||ν0(2|z0|).

We denote by ∥·∥cmp
Y0

:= ρ∗(∥·∥cmp
X/S) the induced Hermitian norm on ωY0

(D)

over Y0 \ ρ−1(ΣX/S). Remark that gTY0

cmp, ∥·∥cmp
Y0

form a partial flattening of

gTY0

0 and∥·∥0Y0
in the sense of Remark 2.2. Now, since in gTXt

0 the Poincaré-
compatible coordinates of the cusps are trivialized, we see by Theorem 2.1
and Remark 2.2 that for t ∈ S \ |∆| the following holds

(3.19) log
(
∥·∥Q

(
gTXt
cmp , h

ξ ⊗ (∥·∥cmp
X/S)

2n
)/

∥·∥Q
(
gTXt

0 , hξ ⊗ (∥·∥0X/S)
2n
))

= log
(
∥·∥Q

(
gTY0

cmp, ρ
∗(hξ)⊗ (∥·∥cmp

Y0

)2n
)/

∥·∥Q
(
gTY0

0 , ρ∗(hξ)⊗ (∥·∥0Y0
)2n

))
.

In (3.19), we didn’t mention the last term of (2.7) since (ξ, hξ) is trivial in
the neighborhood of |DX/S |, and the norms ∥·∥cmp

X/S , ∥·∥
0
X/S differ only in the

neighborhood of |DX/S |.
We denote by∥·∥cmp

DX/S
the norm on OX(DX/S), given by∥·∥cmp

X/S /∥·∥ω,cmp
X/S .

The norm∥·∥cmp
DX/S

is trivial away from ∪m
i=1Vi (with respect to the canonical

trivialization of OX(DX/S)), and it is smooth over X.
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By (3.5), (3.16) and (3.19), it is enough to prove Theorem 1.1 for the Her-
mitian vector bundles (ξ ⊗ OX(DX/S)

n, hξ ⊗ (∥·∥cmp
DX/S

)2n), (ωX/S ,∥·∥ω,cmp
X/S )

and DX/S = ∅, instead of (ξ, hξ), (ωX/S ,∥·∥ω,0X/S) and DX/S , given by (1.5).

Since hξ ⊗ (∥·∥cmp
DX/S

)2n is smooth over X, such a statement is equivalent to
Theorem 1.1 for m = 0. Thus, it is enough to prove Theorem 1.1 only for
m = 0, which we assume from now on.

Step 3. As we established in Steps 1, 2, to prove Theorem 1.1, it is
enough to do so for surfaces without cusps, by Theorem 3.1, it would be
sufficient to establish that the constant A−n from Theorem 3.1 actually
coincides with the constant C−n from Theorem 1.1.

For this, we consider a stable pointed Riemann surface (M,DM ) and the
associated canonical plumbing family π : X → S (see Section 2.3) with the
norm ∥·∥hypX/S on ωX/S induced by the constant scalar curvature −1 metric.
The generic fiber of this family has no cusps, hence, in the notations of
Section 2.3, by a theorem of D’Hoker-Phong [10], [11], (cf. Remark 1.4), the
following identity of norms over S \ |∆| holds

(3.20) ∥·∥Q (gTXt

hyp , (∥·∥hypX/S)
2n) =∥·∥TZ

Q (gTXt

hyp , (∥·∥hypX/S)
2n).

We apply this for (M,DM ) := (T ,DT ), where (T ,DT ) is a 1-pointed
torus, considered in Section 2.3. Then by taking limit t → 0 in (3.20), by
Theorems 2.13 and 3.1, we get

(3.21) exp(A−n/2) ·∥·∥Q (gTT
hyp, (∥·∥hypT )2n)

= exp(C−n/2) ·∥·∥TZ
Q (gTT

hyp, (∥·∥hypT )2n).

By applying (3.20) again, but now for any (M,DM ), and by taking limit
t → 0 again, by Theorems 2.13, 3.1 and (3.21), we see that for any (M,DM ),
m := #DM , we have

(3.22) exp(m ·A−n/2) ·∥·∥Q (gTM
hyp , (∥·∥hypM )2n)

= exp(m · C−n/2) ·∥·∥TZ
Q (gTM

hyp , (∥·∥hypM )2n).

But by (2.2), our definition of the analytic torsion coincides with the def-
inition of Takhtajan-Zograf for the 3-punctured hyperbolic sphere P :=
P \ {0, 1,∞}. From this and (3.22), we get A−n = C−n, which finishes the
proof of Theorem 1.1 for m = 0. Thus, by Steps 1,2, Theorem 1.1 holds for
any m ∈ N. □
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Proof of Theorem 1.3. In Step 3 of the proof of Theorem 1.1, we proved that
A−n = C−n for any n ∈ N. From this and (3.22), we deduce

(3.23) ∥·∥Q (gTM
hyp , (∥·∥hypM )2n) =∥·∥TZ

Q (gTM
hyp , (∥·∥hypM )2n),

for any surface with cusps (M,DM , gTM
hyp ), for which gTM

hyp has constant scalar
curvature −1. From (2.5), (2.22) and (3.23), we deduce the result. □

Proof of Corollary 1.5. By the results of Wolpert, [29] (in the compact case)
and Freixas, [15] (in the non-compact case), (cf. [14, Proposition 5.6]), the
norm ∥·∥hypg,m satisfies assumptions (1.8) and (1.19). Thus, Corollary 1.5 is a
direct consequence of Theorem 1.1. The fact that the underlying spaces are
orbifolds doesn’t pose any problem, as our methods are local. □

3.2. Quillen metric for families of Riemann surfaces
with smooth metric

In this section we describe a generalization of the result of Bismut [3, The-
orem 0.3] for non-necessarily Kähler metrics. This theorem describes the
behavior of the Quillen norm in a family of degenerating Riemann surfaces
endowed with a (non-singular) metric, coming from the metric on the total
space of the family. It will be used in our proof of Theorem 3.1.

To describe it precisely, let’s fix a holomorphic, proper, surjective map
π : X → S of complex manifolds, such that for every t ∈ S, the space Xt :=
π−1(t) is a curve. Let (ξ, hξ) be a Hermitian vector bundle over X. Let
gTX be a Riemannian metric over X, which is compatible with the complex
structure of X. By hTX we note the Hermitian metric on T (1,0)X induced
by gTX as in Section 2.1. We denote by gTXt the restriction of the metric
gTX on Xt, t ∈ S \ |∆|. Since gTX is compatible with the complex structure
of X, and Xt is a complex submanifold of dimension 1, the metric gTXt is
Kähler on Xt. We denote by ∥·∥Q (gTXt , hξ) the Quillen norm on the line
bundle λ(j∗ξ) over S \ |∆| (see (2.5)).

For simplicity, assume that S = D(1) and |∆| = {0}. We write ΣX/S =
{Q1, . . . , Qk}. Let ρ : Y0 → X0 be the normalization of X0. We denote

(3.24) ρ−1(ΣX/S) = {P1, . . . , P2k},

where Pi are enumerated in such a way that ρ(P2j−1) = ρ(P2j) = Qj for
j = 1, . . . , k. We notice that gTY0 := ρ∗(gTX) is the well-defined Riemannian
metric on Y0 and we denote by ∥·∥ωY0

the induced Hermitian norm on ωY0
.

Since gTX is compatible with the complex structure, gTY0 is Kähler. We
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Quillen metric for a singular family of Riemann surfaces 1711

denote by ∥·∥Q (gTY0 , ρ∗(hξ)) the induced Quillen norm on the complex line
λ(ρ∗ξ).

Let ∥·∥iΣX/S/X
be the Hermitian norm induced by the natural isomor-

phism (3.2) on the complex lines ωY0
|P2i−1

⊗ ωY0
|P2i

, i = 1, . . . , k. More ex-
plicitly, let local holomorphic coordinates zi0, z

i
1 around Qi ∈ X and t around

0 ∈ S be as in (2.31). We denote
(3.25)

ai = hTX
( ∂

∂zi0
,

∂

∂zi0

)
, bi = hTX

( ∂

∂zi0
,

∂

∂zi1

)
, ci = hTX

( ∂

∂zi1
,

∂

∂zi1

)
.

Then, by definition, we have

(3.26)
∥∥dzi0 ⊗ dzi1

∥∥i
ΣX/S/X

=
(
aici − |bi|2

)−1/2
(Qi).

We denote by ∥·∥ΣX/S/X
the induced norm on the complex line

⊗k
i=1(ωY0

|P2i−1
⊗ ωY0

|P2i
).

Over S, we introduce the holomorphic line bundle

(3.27) L := λ(j∗ξ)12 ⊗ OS(∆)2·rk(ξ).

We endow it with a norm

(3.28) ∥·∥cmp
L

:=∥·∥Q (gTXt , hξ)12 ⊗ (∥·∥div∆ )2·rk(ξ).

Notice that the power of the divisor line bundle OS(∆) in L is different
from (1.10). This discrepancy is motivated by Theorem 3.2, which contrasts
with Theorem 2.7. This is due to the fact that the geometric setting in this
section is different from Section 1, see Remark 1.2. In fact, it turns out that
the appearance of the hyperbolic cusps in the degenerated fiber entails a
different singularity in the Quillen metric, compared to the case when the
metric comes from a smooth metric on the total space of the fibration.

More precisely, we introduce the complex line

L
′ := λ(ρ∗ξ)12 ⊗ (⊗2k

i=1 det ρ
∗(ξ)|Pi

)6(3.29)

⊗ (⊗k
i=1(ωY0

|P2i−1
⊗ ωY0

|P2i
))−2·rk(ξ).

We denote by∥·∥cmp
L ′ the norm on L ′ induced by∥·∥Q (gTY0 , ρ∗(hξ)), hξ and

∥·∥ΣX/S/X
. Similarly to (1.21), one has the following canonical isomorphism

(3.30) L |∆ → L
′.

Now we can state the main result of this section.
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Theorem 3.2. The norm ∥·∥cmp
L

extends continuously over S. Moreover,
under the isomorphism (3.30), the following identity holds

(3.31) ∥·∥cmp
L

|∆ = exp
(
rk(ξ) · k ·

(
24ζ ′(−1)− 6 log(2π)

))
·∥·∥cmp

L ′ .

Proof. First of all, let’s assume that gTX is Kähler. Then we argue that
Theorem 3.2 is just a restatement of [3, Theorem 0.3] due to Bismut.

To see this, let’s fix a holomorphic coordinate t on S such that ∆ =
k · {t = 0}. We denote by∥·∥∆ the Hermitian norm on OS(∆), characterized
by

(3.32) ∥s∆/tk∥∆ = 1.

As div(s∆) = k{0}, we deduce that∥·∥∆ is smooth over S. By the definition

of the singular norm∥·∥div∆ from (1.6), by (3.32), we have∥·∥div∆ = |t|−k ·∥·∥∆ .
We denote by ∥dπ2∥ the norm of the isomorphism (3.5), calculated with
respect to ∥·∥∆ and ∥·∥ΣX/S/X

.

Due to our normalization of the L2-norm, (2.3), the difference between
our definition of the Quillen norm, and the one from [6], [3], which we denote
by ∥·∥BGS

Q , is given by

(3.33) ∥·∥Q (gTXt , hξ) = exp
(
log(2π) · χ(Xt, ξ|Xt

)/2
)
·∥·∥BGS

Q (gTXt , hξ),

where χ(Xt, ξ|Xt
) = dimH0(Xt, ξ|Xt

)− dimH1(Xt, ξ|Xt
) is the Euler char-

acteristic. By Riemann-Roch theorem, the value χ(Xt, ξ|Xt
) depends only

on the topological invariants of Xt and ξ|Xt
, and thus, by the flatness of the

family, is constant over S \ |∆|.
We denote by∥·∥ξQ (gTY0 , ρ∗(hξ)) the norm on the complex line λ(j∗ξ)⊗

(⊗2k
i=1 det ξ|Pi

)6 induced by ∥·∥Q (gTY0 , ρ∗(hξ)) and hξ. Similarly, due to our

normalization of the L2-norm, (2.3), the difference between our definition of
the norm ∥·∥ξQ (gTY0 , ρ∗(hξ)), and the one from [6], [3], which we denote by

∥·∥ξ,BGS
Q (gTY0 , ρ∗(hξ)), is

(3.34) ∥·∥ξQ (gTY0 , ρ∗(hξ))

= exp
(
log(2π) · χ(Y0, ρ∗(ξ)|Y0

)/2
)
·∥·∥ξ,BGS

Q (gTY0 , ρ∗(hξ)).

We fix a smooth frame υ of λ(j∗ξ) over S. As gTX is Kähler, we can
apply [3, Theorem 0.3, (0.5)], to see that under the isomorphisms (3.7),



✐

✐

“3-Finski” — 2024/6/7 — 13:27 — page 1713 — #33
✐

✐

✐

✐

✐

✐

Quillen metric for a singular family of Riemann surfaces 1713

(3.8), the following identity holds

(3.35) lim
t→0

(
log

(
∥υ(t)∥BGS

Q (gTXt , hξ)
)
− rk(ξ)

6
log

(∥∥s∆(t)
∥∥
∆

))

= log
(
∥υ(0)∥ξ,BGS

Q (gTY0 , ρ∗(hξ))
)
+

rk(ξ)

6
log

∥∥∥dπ2
∥∥∥+ 2ζ ′(−1) · k · rk(ξ).

Now, by (3.6) and the induced long exact sequence, we deduce χ(Xt, ξ|Xt
) =

χ(Y0, ρ
∗(ξ))− k · rk(ξ). By this, (2.31) and (3.32), we see that (3.35) is a

restatement of (3.31).
Now let’s prove (3.31) for non-necessarily Kähler metrics gTX

0 . We note
that π is locally projective (cf. Bismut-Bost [4, Proposition 3.4]), thus for
some small neighborhood U of 0 ∈ S, we may find a Kähler metric gTX over
π−1(U). As the statement of Theorem 3.2 is local over the base, without
losing the generality, we may suppose that gTX is defined over X. We denote
by ∥·∥cmp,0

L
the norm on L , induced by gTX

0 . The idea of the proof is to use

the above result and the anomaly formula to relate the norms ∥·∥cmp,0
L

and
∥·∥cmp

L
near the locus of singular curves.

We denote by ∥·∥0ΣX/S/X
the norm on the line bundle ⊗k

i=1(ωY0
|P2i−1

⊗
ωY0

|P2i
), induced by gTX

0 as in (3.26). Similarly to the functions ai, bi, ci
from (3.25), we define the functions a0i , b

0
i , c

0
i associated with gTX

0 .
Let us assume that a0i , c

0
i = 1, b0i = 0. This loses no generality, as we can

fix a Riemannian metric gTX
∗ which is compatible with the complex structure

satisfying this assumption and then by applying Theorem 3.2 twice for gTX
∗

and gTX and for gTX
∗ and gTX

0 , we infer the original statement.
Now, by (3.26) and the above assumption, we trivially have

(3.36) 2 log
(
∥·∥ΣX/S/X

/∥·∥0ΣX/S/X

)
= −

k∑

i=1

log(aici − |bi|2)(Qi).

Let the differential form F on X be given by

(3.37) F = T̃d
(
TX/S, gTX/S , g

TX/S
0

)
ch
(
ξ, hξ

)
,

where gTX/S , g
TX/S
0 are the Hermitian norms on TX/S induced by

gTX , gTX
0 . Now, as the map π is a submersion away from ΣX/S , and the met-

rics gTX , gTX
0 are smooth over X, by the first part of the proof, (3.36) and

the anomaly formula of Bismut-Gillet-Soulé [6] (cf. Theorem 2.4 for m = 0),
to prove Theorem 3.2, it is enough to establish that for any i = 1, . . . , k, the
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following holds

(3.38) lim
ϵ→0

lim
t→0

∫

Xt∩U(Qi,ϵ)
F =

rk(ξ)

6
log(aici − |bi|2)(Qi).

For brevity, we fix 1 ≤ i ≤ k, and denote z0 := zi0, z1 := zi1. As z0
∂
∂z0

− z1
∂
∂z1

is a local holomoprhic frame of TX/S, locally around Qi, we have

(3.39) gTX/S
(
z0

∂

∂z0
− z1

∂

∂z1
, z0

∂

∂z0
− z1

∂

∂z1

)

= ai|z0|2 + ci|z1|2 − biz0z1 − biz1z0.

By using the fact that z0z1 = t over Xt, we deduce that locally around Qi,
we have

(3.40)

c1(TX/S, gTX)|Xt
=

∂∂

2π
√
−1

(
log

(
ai|z0|2 + ci|z1|2 − biz0z1 − biz1z0

))

=
4(aici − |bi|2)|z0|2|t|2

(ai|z0|4 + ci|t|2 − biz20t− biz20t)
2

dz0dz0

2π
√
−1

+ o

(( |t|2
|z0|6

+
|z0|2
|t|2

)
dz0dz0

)
.

As we are only interested in the limit (3.38), we may suppose that ai, bi, ci
are constants. By this, the change of variables y0 = z0|t|−1/2 and (3.10),
(3.11), we see that (3.38) now reduces to proving that for any a, c > 0,
b ∈ R, ac− b2 > 0, we get

∫ +∞

−∞

∫ +∞

−∞

(
log

a(x2 + y2) + c− 2bx

x2 + y2 + 1

)
(3.41)

×
(

4ac− 4b2

(a(x2 + y2) + c− 2bx)2
+

4

(x2 + y2 + 1)2

)
dxdy

= 4π log(ac− b2).

But (3.41) can be verified directly by switching to polar coordinates, chang-
ing the integration over the radius by the integration over its square and
applying tedious derivation by parts. □

3.3. Univesality in restriction theorem,
proofs of Theorems 1.7, 3.1

The goal of this section is to prove Theorems 1.7, 3.1.
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Let’s first define the notion of regularized integral on a surface with
cusps (M,DM , gTM ). Let α be a (1, 1)-form on M . We suppose that for any
Pi ∈ DM , there are coordinates zi around Pi ∈ DM , such that for some ϵ > 0
small enough, there are C ∈ C, l ∈ N such that the following estimate holds

(3.42) α|{|zi|<ϵ} = −C ·
√
−1dzidzi

|zi|2| log |zi||
+O

(
log | log |zi||ldzidzi

|zi log |zi||2
)
.

We define
∫
r

M α ∈ C by the following limit

(3.43)

∫
r

M
α = lim

ϵ→0

(∫

M\(∪{|zi|<ϵ})
α+ 4π · C · (#DM ) · log | log ϵ|

)
.

In other words,
∫
r

M α is the non-divergent part of
∫
M\(∪{|zi|<ϵ}) α, as ϵ → 0.

It is an easy verification that
∫
r

M α doesn’t depend on the choice of the
coordinates zi.

Proof of Theorem 3.1. The main idea of the proof is to give a general
construction of a special norm ∥·∥degX/S on ωX/S over X \ |π−1(∆)| for any
π : X → S using the local coordinates zi near Qi, for which the assump-
tions (1.8), (1.19) hold, and to show that Theorem 3.1 holds for ∥·∥degX/S (i.e.

the value ∥·∥X/S
Ln

|S′/∥·∥Y/S
′

Ln
is independent of π : X → S, etc., once ωX/S is

endowed with ∥·∥degX/S). Then, by the anomaly formula, Theorem 2.4, and
Proposition 2.12, we deduce that Theorem 3.1 holds in its full generality.

More precisely, we proceed in the following way. First, we construct a
certain Riemannian metric gTX

sm compatible with the complex structure on
X. By using Theorem 3.2, we will calculate the asymptotics of the norm

∥·∥sm
Ln

induced on the line bundle L
X/S
n by gTX

sm . Then by modifying locally
this metric in the neighborhood of ΣX/S , we construct a family of metrics

gTXt

deg on Xt for t ∈ S \ |∆|, which degenerates to the hyperbolic metric at
the singular fiber through the family of degenerating hyperbolic cylinders.
The construction of the metric gTXt

deg is highly motivated by (2.35). By ap-
plying Theorem 2.4, and the previous result on the asymptotics of ∥·∥sm

Ln
,

we compute the asymptotics of the norm ∥·∥deg
Ln

induced on the line bundle

L
X/S
n by gTXt

deg .

Now, let’s give a precise construction of the metric gTX
sm . Fix the local

coordinates zj0, z
j
1 (cf. (3.24)) around Qj as in (2.31). For simplicity, assume

D(1) ⊂ Im(zj0) ∩ Im(zj1). Recall that U(Qi, ϵ), ϵ > 0 was defined in (2.30).
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We specify the function ν from (2.32) as follows

(3.44) ν(x) =

{
0, for x ∈ X \ (∪k

i=1U(Qi, 1)),

1− ν0(|zi0|2 + |zi1|2), for x ∈ U(Qi, 1),

where ν0 was defined in (3.12). By (3.12), the function (3.44) satisfies (2.32)
for ϵ = 1/2.

As π is locally projective (cf. Bismut-Bost [4, Proposition 3.4]), there
is a neighborhood U of 0 ∈ S and a Kähler metric gTX

0 over π−1(U). But
Theorem 3.2 is local over the base, so we may suppose from now on that
gTX
0 is defined over X. We define the Riemannian metric gTX

sm over X so
that it coincides with gTX

0 over X \ (∪k
i=1U(Qi, 1)), and over U(Qi, 1) it is

given by

(3.45) gTX
sm = (1− ν) · gTX

0 + ν · (|dzi0|2 + |dzi1|2).

We denote by gTXt
sm the induced metric on Xt, t ∈ S \ |∆|, and define gTY0

sm =
ρ∗(gTX

sm ), where ρ : Y0 → X0 is the normalization map. The metric gTX
sm is

not necessarily Kähler, but it is compatible with the complex structure of
X. In particular, the metrics gTXt

sm , gTY0

sm are Kähler.
We endow ωX/S with the Hermitian norm ∥·∥sm,ind

X/S induced by gTX
sm

over X \ ΣX/S . Let ν̃ : X → [0, 1] be defined as ν in (3.44), where in

place of ν0(·), we put ν0(4·). Then ν̃(x) = 1 for x ∈ X \ (∪k
i=1U(Qi, 1/2)).

We define the Hermitian norm ∥·∥smX/S on ωX/S over X as follows. Over

X \ (∪k
i=1U(Qi, 1/2)), we demand it to be equal to ∥·∥sm,ind

X/S , and over

U(Qi, 1/2), we define it by

(3.46)
∥∥dzi0/zi0

∥∥sm
X/S

= (1− ν̃) ·
∥∥dzi0/zi0

∥∥sm,ind

X/S
+ ν̃.

The Hermitian norm∥·∥smX/S on ωX/S is smooth over X. Moreover, it is trivial

on ∪k
i=1U(Qi, 1/4). We also define the norm∥·∥smY0

:= ρ∗(∥·∥smX/S) over ωY0
(D).

X Y Y' X'Z

Figure 2: Over X,X ′, the metric gTXt
sm is induced by gTX

0 . Over Y, Y ′, it is
an interpolation between gTX

0 and |dz0|2 + |dz1|2, and over Z, it is given by
|dz0|2 + |dz1|2.
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We endow L
X/S
n with the norm ∥·∥sm

Ln
, induced by the Quillen norm

∥·∥Q (gTXt
sm , hξ ⊗ (∥·∥smX/S)

2n) and the singular norm (1.6). We endow L ′
n with

the norm∥·∥sm
L ′

n
, induced by the Quillen norm∥·∥Q (gTY0

sm , ρ∗(hξ)⊗ (∥·∥smY0
)2n)

and the norm ∥·∥smΣX/S/X
(see (3.26)) on ⊗k

i=1(ωY0
|P2i−1

⊗ ωY0
|P2i

).

The metrics gTXt
sm ,∥·∥smX/S and gTY0

sm ,∥·∥smY0
satisfy the assumptions of The-

orem 3.2. Let

(3.47) A′
−n := 24ζ ′(−1)− 6 log(2π).

By Theorem 3.2, (3.26) and (3.45), for a frame υ of L
X/S
n , under the iso-

morphism (1.21), we have

(3.48) lim
t→0

(
log

(
∥υ(t)∥smLn

)
− k · rk(ξ) · log |t|

)

= log
(
∥υ(0)∥smL ′

n

)
+ k · rk(ξ) ·A′

−n.

Let’s now modify the metric gTXt
sm to gTXt

deg , so that gTXt

deg satisfies the

assumptions of Theorem 1.1. We define gTXt

deg on Xt, t ∈ S \ |∆|, as follows:
over Xt \ (∪k

i=1U(Qi, 1/2)) it coincides with gTXt
sm , and over U(Qi, 1/2) it is

given by

(3.49) gTXt

deg := (1− ν̃) · gTXt
sm + ν̃ · gCyl

i,t ,

where the metric gCyl
j,t was defined in (2.34). We also define the metric

gTY0

deg as follows: over Y0 \ (∪k
i=1U(Qi, 1/2)) it coincides with gTY0

sm , and over
U(Qi, 1/2) it is given by

(3.50) gTY0

deg := (1− (ν̃ ◦ ρ)) · gTY0

sm + (ν̃ ◦ ρ) ·
(
gPoinci,0 + gPoinci,1

)
,

where the metrics gPoinci,0 , gPoinci,1 are the metrics induced by the Poincaré met-

ric (1.1) with respect to the coordinates zi0 and zi1. We denote by∥·∥degX/S the

Hermitian norm on ωX/S induced by gTXt

deg . By (3.49) (cf. Proposition 2.15),

we see that the Hermitian norm∥·∥degX/S extends smoothly overX \ ΣX/S , and

the assumptions (1.8) are satisfied. We define the norm∥·∥degY0

on ωY0
(D) by

(3.51) ∥·∥degY0

= ρ∗(∥·∥degX/S).

Then we see that ∥·∥degX/S satisfies assumptions (1.19), and by (3.49), (3.50),

the associated metric on Y0 \DY0
, constructed as in Section 1, coincides

with gTY0

deg .
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Let’s pause and explain this construction. By Section 2.4, the metrics
gTXt

deg degenerate near the singular fibers to a metric with cusps in the similar

way as the hyperbolic metrics. The advantage of the metrics gTXt

deg over the

hyperbolic one is that over the region ∪k
i=1U(Qi, 1/2), it is independent of

any exterior data (as π : X → S), and overXt \ (∪k
i=1U(Qi, 1/2)), the metric

gTXt

deg coincides with a metric gTXt
sm , for which Theorem 3.2 holds.

X Y V Y' X'Z U' Z'U

Figure 3: The metric gTXt

deg . Over the regions X,Y, Z, Z ′, Y ′, X ′ it coincides

with gTXt
sm . Over the regions U,U ′, it is an interpolation between gTXt

sm and
the hyperbolic cylinder metric, (2.34), and over the region V , it coincides
with the hyperbolic cylinder metric, (2.34).

To get the asymptotic near the singular fibers of the Hermitian norm

∥·∥deg
Ln

on the holomorphic line bundle L
X/S
n , induced by the Quillen norm

∥·∥Q (gTXt

deg , hξ ⊗ (∥·∥degX/S)
2n) and the singular norm (1.6), it is enough to ap-

ply the anomaly formula and use (3.48). More precisely, let ∥·∥W,deg
Y0

be the

Wolpert norm on ⊗k
i=1(ωY0

|P2i−1
⊗ ωY0

|P2i
). We endow L ′

n with the Hermi-

tian norm∥·∥deg
L ′

n
, induced by the Quillen norm∥·∥Q (gTY0

deg , ρ
∗(hξ)⊗ (∥·∥degY0

)2n)

and the Wolpert norm ∥·∥W,deg
Y0

.
Recall that the regularized integral was defined in (3.43). For n ∈ N we

define A′′
−n ∈ R as follows (from (1.1), (3.10) and (3.11), the regularized

integral below is well-defined)

(3.52) A′′
−n := 1 + 6k−1 ·

∫
r

Y0

(
T̃d

(
ω−1
Y0

, gTY0

sm , gTY0

deg

)
ch
(
ωY0

(D)n, (∥·∥smY0
)2n

)

+Td
(
ω−1
Y0

, gTY0

deg

)
c̃h
(
ωY0

(D)n, (∥·∥smY0
)2n, (∥·∥degY0

)2n
))

.

By (3.45), (3.46), (3.49), (3.50) and (3.52), we see that the integral in A′′
−n

is a sum of 2k identical contributions, one for each cusp, and those contribu-
tions do not depend on the global geometry of π : X → S or ξ. In fact, A′′

−n

depends only on n ∈ N and ν0. We would like to prove that the following
holds

(3.53) lim
t→0

(
log

(
∥·∥deg

Ln
/∥·∥sm

Ln

)
(t) + k · rk(ξ) · log |t|

)
= k · rk(ξ) ·A′′

−n.
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Assume we proved (3.53). Remark that by Theorem 2.1, (3.26), (3.45),
(3.50), (3.51) and the similar reasoning as below (3.52), the value

(3.54) A′′′
−n := (k · rk(ξ))−1 log

(
∥·∥deg

L ′
n
/∥·∥sm

L ′
n

)

depends only the choice of n ∈ N and ν0. Thus, by (3.48), (3.53) and (3.54),
we deduce that under the isomorphism (1.21), the following identity holds
(3.55)
∥·∥deg

Ln
||∆| = exp(k · rk(ξ) ·A−n) ·∥·∥degL ′

n
with A−n := A′

−n +A′′
−n −A′′′

−n.

So Theorem 3.1 holds for ∥·∥degX/S and the universal constant A−n, defined
above. But then by applying anomaly formula, and by proceeding similarly
to Steps 1, 2 of the proof of Theorem 1.1, we see that Theorem 3.1 holds in
its full generality.

Now, to prove (3.53), we apply the anomaly formula of Bismut-Gillet-
Soulé [6] (cf. Theorem 2.4 for m = 0). By the triviality of (ξ, hξ) near ΣX/S ,

and the fact that gTXt

deg coincides with gTXt
sm away from a small neighborhood

of ΣX/S , for any t ∈ S \ |∆|, we have

(3.56) log
(
∥·∥deg

Ln
/∥·∥sm

Ln

)
(t) = 6 · rk(ξ) ·

∫

Xt

G,

where the differential form G is given by

(3.57) G =
(
T̃d

(
ω−1
X/S , (∥·∥

sm,ind
X/S )−2, (∥·∥degX/S)

−2
)
ch
(
ωn
X/S , (∥·∥smX/S)

2n
)

+Td
(
ω−1
X/S , (∥·∥

deg
X/S)

−2
)
c̃h
(
ωn
X/S , (∥·∥smX/S)

2n, (∥·∥degX/S)
2n
))[2]

.

We decompose G = G1 +G2, where

G1 = T̃d
(
ω−1
X/S , (∥·∥

sm,ind
X/S )−2, (∥·∥degX/S)

−2
)[2]

,(3.58)

G2 =
(
T̃d

(
ω−1
X/S , (∥·∥

sm,ind
X/S )−2, (∥·∥degX/S)

−2
)[0]

ch
(
ωn
X/S , (∥·∥smX/S)

2n
)

+Td
(
ω−1
X/S , (∥·∥

deg
X/S)

−2
)
c̃h
(
ωn
X/S , (∥·∥smX/S)

2n, (∥·∥degX/S)
2n
))[2]

.(3.59)

By (3.58), (3.59) and the fact that the norms∥·∥sm,ind
X/S ,∥·∥smX/S ,∥·∥

deg
X/S coincide

over X \ (∪k
i=1U(Qi, 1/2)), we conclude that Gi, i = 1, 2 have support over

∪k
i=1U(Qi, 1/2).
Now, the norm ∥·∥smX/S is smooth over X and by Proposition 2.15, the

norm ∥·∥degX/S is good on X \ π−1(|∆|) with singularities along π−1(∆), and
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it has log-log growth along ΣX/S . By this, the first summand in (3.59) has
logarithmic singularities in the neighborhood of ΣX/S and the integrand
satisfies the assumptions of Proposition 2.12. Hence, by Proposition 2.12
and (3.10), (3.11), (3.59), we conclude that

(3.60) lim
t→0

∫

Xt

G2 =

∫

Y0

(
T̃d

(
ω−1
Y0

, gTY0

sm , gTY0

deg

)[0]
ch
(
ωY0

(D)n, (∥·∥smY0
)2n

)

+Td
(
ω−1
Y0

, gTY0

deg

)
c̃h
(
ωY0

(D)n, (∥·∥smY0
)2n, (∥·∥degY0

)2n
))

.

By (3.56) and (3.60), we see that to prove (3.53), it is enough to establish

(3.61) lim
t→0

(∫

Xt

G1 + k · log |t|
6

)
=

∫
r

Y0

T̃d
(
ω−1
Y0

, gTY0

sm , gTY0

deg

)
+

k

6
.

To show (3.61), we remark that by (3.40) and (3.45), for t ∈ S \ |∆|, we have

(3.62) c1(ω
−1
X/S , (∥·∥

sm,ind
X/S )−2)|Xt∩U(Qi,1/2) =

4|zi0|2|t|2
(|zi0|4 + |t|2)2

dzi0dz
i
0

2π
√
−1

.

By the fact that the norm ∥·∥sm,ind
X/S coincides with ∥·∥degX/S away from

U(Qi, 1/2), by Green identities and (3.10), (3.11), (3.45), (3.49), (3.62), we
see that the following identity holds

(3.63)
∫

Xt

G1 =
1

12

k∑

i=1

∫

2|t|<|zi
0
|<1/2

log
(
|zi0|2 + |t/zi0|2

) 4|zi0|2|t|2
(|zi0|4 + |t|2)2

dzi0dz
i
0

2π
√
−1

− 1

6

k∑

i=1

∫

2|t|<|zi
0
|<1/2

log
( 1√

2

∥∥∥dz
i
0

zi0
− dzi1

zi1

∥∥∥
deg

X/S

)
c1(ωX/S , (∥·∥degX/S)

2).

After a change of variables y := zi0 · |t|−1/2, a simple calculation yields

(3.64)

∫

2|t|<|zi
0
|<1/2

log
(
|zi0|2 + |t/zi0|2

) 4|zi0|2|t|2
(|zi0|4 + |t|2)2

dzi0dz
i
0

2π
√
−1

= −2 log |t| − 2 + o(1).
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Also, we see easily by (3.49) that

(3.65) lim
t→0

∫

2|t|<|zi
0
|<1/2

log
( 1√

2

∥∥∥dz
i
0

zi0
− dzi1

zi1

∥∥∥
deg

X/S

)
c1(ωX/S , (∥·∥degX/S)

2)

= −
∫

0<|zi
0
|<1/2

log
(
(1− ν̃)|zi0|2 +

ν̃

(log |zi0|)2
)
c1(ωY0

(D), (∥·∥degY0

)2).

Thus, by (3.10), (3.11), (3.45), (3.49) and the fact that c1(ω
−1
Y0

, gTY0

sm ) = 0

over {|zi0| < 1/2}:

(3.66)

k∑

i=1

∫

0<|zi
0
|<1/2

log
(
(1− ν̃)|zij |2 +

ν̃

(log |zij |)2
)
c1(ωY0

(D), (∥·∥degY0

)2)

= 6

∫
r

Y0

T̃d
(
ω−1
Y0

, gTY0

sm , gTY0

deg

)
+ 2k ·

∫
r

0<|zi
0
|<1/2

log |zij |c1(ωY0
(D), (∥·∥degY0

)2).

However, by (3.49) and Green identities, we have

∫

ϵ<|zi
0
|<1/2

log |zi0| · c1(ωY0
(D), (∥·∥degY0

)2)(3.67)

=
1

4π

∫

ϵ<|zi
0
|<1/2

log |zi0| ·∆ log
(
(1− ν̃) +

ν̃

|zi0 log |zi0||2
)
dxdy

= 1− log | log ϵ|.

Thus, we deduce by (3.43), (3.67) that

(3.68)

∫
r

0<|zi
0
|<1/2

log |zi0|c1(ωY0
(D), (∥·∥degY0

)2) = 1.

By (3.63)–(3.68) the proof of (3.61), and thus of (3.53), is complete. □

Proof of Theorem 1.7. First, for fixed n ∈ N, (M,DM , gTM ), gTM , gTM ,
∥·∥M , hξ, hξ0, we define E−n ∈ R by equality (1.35). Let’s prove the inde-

pendence of E−n on gTM , gTM , ∥·∥M , hξ, hξ0.

To be brief, we restrict ourselves to the proof of independence on gTM . By
the anomaly formula of Bismut-Gillet-Soulé [6] (cf. Theorem 2.4 for m = 0),

it is enough to establish that for any Kähler metrics gTM
1 , gTM

2 over M , we
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have

(3.69)

∫
r

M

[(
T̃d

(
ω−1
M

, gTM
1 , gTM

)
− T̃d

(
ω−1
M

, gTM
2 , gTM

))

× ch
(
ξ, hξ0

)
ch
(
ωM (D)n,∥·∥2nM

)][2]

=

∫

M

[
T̃d

(
ω−1
M

, gTM
1 , gTM

2

)
ch
(
ξ, hξ0

)
ch
(
ωM (D)n,∥·∥2nM

)][2]

+
rk(ξ)

6
log

(
∥·∥DM

M,1
/∥·∥DM

M,2

)
,

where the norms∥·∥DM

M,1
,∥·∥DM

M,2
on the complex line ⊗P∈DM

ωM |P are induced

by gTM
1 and gTM

2 respectively. But (3.69) follows from (3.10), (3.11) and
Green identities.

Now, we proved that E−n is a universal constant, depending only on
n ∈ N. To show that it is indeed equal to (1.34), it is enough to verify this for

at least one example. We will do so for M = Y0, g
TM := gTY0

sm , gTM := gTY0

deg ,

ξ := ρ∗ξ, hξ = hξ0 := ρ∗(hξ) in the notation from the proof of Theorem 3.1.
For this choice of the data, by (3.54), we have

(3.70)

2 log
(
∥·∥Q (gTY0

deg , ρ
∗(hξ)⊗ (∥·∥degY0

)2n)/∥·∥Q (gTY0

sm , ρ∗(hξ)⊗ (∥·∥smY0
)2n)

)

− rk(ξ)

6
log

(
∥·∥Wdeg /∥·∥DM

M,sm

)
=

k · rk(ξ)
6

A′′′
−n

However, by (3.55), we have A′′′
−n = A′

−n +A′′
−n −A−n. By Theorem 1.1,

A−n is equal to C−n. But by (3.47), (3.52), this exactly means that Theo-
rem 1.7 holds for this particular data. This finishes the proof since E−n is a
universal constant. □
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