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p-complete arc-descent for perfect

complexes over integral perfectoid rings

Kazuhiro Ito

We prove p-complete arc-descent results for finite projective mod-
ules and perfect complexes over integral perfectoid rings. Using our
results, we clarify a reduction argument in the proof of the classifi-
cation of p-divisible groups over integral perfectoid rings given by
Scholze–Weinstein.

1. Introduction

We őx a prime number p > 0. In this paper, we will prove p-complete arc-
descent results for őnite projective modules and perfect complexes over (p-
complete integral) perfectoid rings.

Before stating our main results, we őrst recall the following descent re-
sult due to BhattśScholze [6, Theorem 11.2] for the v-topology and Bhattś
Mathew [4, Theorem 5.16] for the arc-topology. Following their work, we
will use the ∞-categorical language in this paper. Let Cat∞ denote the ∞-
category of (small)∞-categories. For a commutative ring A, the∞-category
of perfect complexes over A is denoted by Perf(A). Recall that, for a ho-
momorphism A→ B of commutative rings, we have a base change functor
Perf(A)→ Perf(B), K 7→ K ⊗L

A B.

Theorem 1.1 (Bhatt–Scholze, Bhatt–Mathew). The functor A 7→
Perf(A) from the category of perfect Fp-algebras to Cat∞ satisfies arc-
hyperdescent.

The main result of this paper is the following analogous statement for
perfectoid rings (in the sense of [5, Deőnition 3.5]). Here we use the ϖ-
complete arc-topology introduced in [7, Section 2.2.1].
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Theorem 1.2. Let R be a perfectoid ring and ϖ ∈ R an element with p ∈
(ϖp) such that R is ϖ-complete. Then the functors

A 7→ Perf(A♭), A 7→ Perf(W (A♭)), and A 7→ Perf(A)

from the category of ϖ-complete perfectoid R-algebras to Cat∞ satisfy ϖ-
complete arc-hyperdescent. Here A♭ := lim

←−x 7→xp
A/pA is the tilt of A and

W (A♭) is the ring of Witt vectors of A♭.

We will make precise what we mean by łϖ-complete arc-hyperdescentž
in Deőnition 2.1. From this theorem, we can deduce ϖ-complete arc-descent
results for őnite projective modules over perfectoid rings, which can be stated
using classical category theory; see Corollary 4.2.

We need an analogue of Theorem 1.1 for derived quotients of perfect
rings to prove Theorem 1.2. We formulate it in terms of E∞-rings and their
modules; see Theorem 3.1. We will present two proofs of Theorem 3.1; it
can be proved in the same way as Theorem 1.1, and also can be deduced
from Theorem 1.1. Even if one is only interested in descent results for őnite
projective modules (Corollary 4.2), such an analogue will be essential.

Remark 1.3. A similar statement to Theorem 1.2 has been conjectured by
Henkel in [10, Conjecture A]. In fact, the proof of Theorem 1.2 shows that
[10, Conjecture A] is true; see Remark 4.3 for additional details.

As an application of Theorem 1.2 (or Corollary 4.2), we will discuss
the following classiőcation result for p-divisible groups over perfectoid rings
obtained by Lau [12, Theorem 9.8] in the case where p ≥ 3, and by Scholześ
Weinstein [20, Theorem 17.5.2] in general; see Theorem 5.2 for a more precise
statement.

Theorem 1.4 (Lau, Scholze–Weinstein). Let A be a perfectoid ring.
The category of p-divisible groups over A is anti-equivalent to the category
of minuscule Breuil–Kisin–Fargues modules for A.

Remark 1.5. The strategy of ScholześWeinstein is to deduce the general
statement from the classiőcation of p-divisible groups over perfectoid val-
uation rings of rank ≤ 1 with algebraically closed fraction őelds, which is
proved by Berthelot [2, Corollaire 3.4.3] in the equal characteristic case, and
by ScholześWeinstein [20, Theorem 14.4.1] (based on [19, Theorem B]) in
the mixed characteristic case. In their original proof, however, there seems
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to be a technical issue in this reduction procedure.1 We will verify it by using
Theorem 1.2 (or Corollary 4.2) in Section 5.

This paper is organized as follows. In Section 2, we recall the deőnitions
and some basic properties of perfectoid rings and ϖ-complete arc-covers. We
also collect some results from the theory of E∞-rings and their modules,
which are used in the proof of Theorem 1.2. In Section 3, we state and prove
an analogue of Theorem 1.1 for derived quotients of perfect rings (Theo-
rem 3.1). In Section 4, we prove Theorem 1.2 and deduce descent results
for őnite projective modules (Corollary 4.2) from it. In Section 5, we give a
proof of Theorem 1.4, following the approach of ScholześWeinstein.

2. Preliminaries

2.1. Perfectoid rings and ϖ-complete arc-covers

In this subsection, we recall some basic facts about perfectoid rings and ϖ-
complete arc-covers. Our basic references are [5, Section 3] and [7, Section 2].

Let us őrst recall the notion of a ϖ-complete arc-cover from [7, Sec-
tion 2.2.1]. Let R be a commutative ring and ϖ ∈ R an element. We say
that a homomorphism A→ B of R-algebras is a ϖ-complete arc-cover if,
for any homomorphism A→ V with V a ϖ-complete valuation ring of rank
≤ 1, there exist an extension of V →֒W of ϖ-complete valuation rings of
rank ≤ 1 and a homomorphism B →W such that the following diagram
commutes:

A //

��

B

��

V // W.

A 0-complete arc-cover is just an arc-cover in the sense of [4, Deőnition 1.2].
The reduction modulo ϖ of a ϖ-complete arc-cover is an arc-cover.

1More precisely, we should replace the v-cover S over R♭ given in the last para-
graph of the proof of [20, Theorem 17.5.2] with its ξ0-completion to conclude that
W (S)/(ξ) is a perfectoid ring over R whose tilt is isomorphic to S (see also Propo-
sition 2.3). Here ξ = (ξ0, ξ1, . . . ) ∈W (R♭) is a generator of the kernel of the usual
map θ : W (R♭)→ R. Accordingly, we need to use Corollary 4.2 (or its “ϖ-complete
v-descent” analogue, which, to the best of our knowledge, has not been proved be-
fore in the literature, either) instead of Theorem 1.1 or [6, Theorem 4.1]. We thank
P. Scholze for e-mail correspondence on the proof of [20, Theorem 17.5.2].
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Let R be a perfectoid ring in the sense of [5, Deőnition 3.5], i.e. R
is ϖ-complete for some element ϖ ∈ R with p ∈ (ϖp), the Frobenius map
R/pR→ R/pR is surjective, and the kernel of θ : W (R♭)→ R is principal.
Here

R♭ := lim
←−
x 7→xp

R/pR

is the tilt of R and θ : W (R♭)→ R is the unique ring homomorphism whose
reduction modulo p is the projection map R♭ → R/pR, (x0, x1, . . . ) 7→ x0.
We note that R is p-complete.

Let ϖ ∈ R be an element as above. Let CR,ϖ denote the category of ϖ-
complete perfectoid R-algebras. Every diagram B ← A→ B′ in CR,ϖ has a
colimit, which is given by the ϖ-completion of B ⊗A B′; see, for instance,
[7, Proposition 2.1.11]. Hence we can deőne, in the usual way, the Čech
conerve A→ B• for a homomorphism A→ B in CR,ϖ, which is an augmented
cosimplicial object in CR,ϖ, and the notion of a ϖ-complete arc-hypercover
A→ B• using ϖ-complete arc-covers.

In this paper, we will check that some functors on CR,ϖ (e.g. A 7→
Perf(A)) satisfy ϖ-complete arc-(hyper)descent. For the sake of clarity, let
us recall what it means.

Definition 2.1. Let F : CR,ϖ → D be a (covariant) functor to an ∞-
category D. We say that the functor F satisőes ϖ-complete arc-descent (resp.
ϖ-complete arc-hyperdescent) if F preserves őnite products and if for every
ϖ-complete arc-cover A→ B in CR,ϖ with Čech conerve A→ B• (resp. every
ϖ-complete arc-hypercover A→ B•) we have

F(A)
∼
→ lim

∆
F(B•) in D,

i.e. F(A) is a limit of the cosimplicial diagram F(B•) : ∆→ D. Here ∆
denotes the simplex category. (See also [14, Section A.3.3 and Section A.5.7].)

Example 2.2. (1) An Fp-algebra is perfectoid if and only if it is perfect;
see [5, Example 3.15]. If R is a perfect Fp-algebra, then ϖ can be any
element such that R is ϖ-complete. If ϖ = 0, then CR,0 is just the
category of perfect R-algebras.

(2) For every perfectoid algebra R, there is an element ϖ ∈ R such that
ϖp is a unit multiple of p; see [5, Lemma 3.9]. For such an element
ϖ, we see that CR,ϖ is the category of perfectoid R-algebras and a
ϖ-complete arc-cover in CR,ϖ is simply a p-complete arc-cover.
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We set x♯ := θ([x]) for an element x ∈ R♭, where [−] denotes the Teich-
müller lift. By [5, Lemma 3.9], there is an element ϖ♭ ∈ R♭ such that (ϖ♭)♯

is a unit multiple of ϖ. The perfect ring R♭ is ϖ♭-complete.

Proposition 2.3 ([7, Proposition 2.1.9]). The functor A 7→ A♭ induces
an equivalence from the category CR,ϖ of ϖ-complete perfectoid R-algebras to
the category CR♭,ϖ♭ of ϖ♭-complete perfect R♭-algebras. The inverse functor is

given by B 7→W (B)/(ξ), where ξ is a generator of the kernel of θ : W (R♭)→
R. Moreover, a map A→ B in CR,ϖ is a ϖ-complete arc-cover if and only
if the induced map A♭ → B♭ is a ϖ♭-complete arc-cover.

Proof. This proposition follows from [7, Proposition 2.1.9]. (See also [7,
Lemma 2.2.2].) □

2.2. Preliminaries on E∞-rings and their modules

In this subsection, we review some terminology and results from the theory
of E∞-rings and their modules. Our basic references are [13] and [14].

Let CAlg(Sp) denote the ∞-category of E∞-rings; see [13, Section 7.1]
for the deőnition and results which we state below. We say that an E∞-ring
A is connective (resp. discrete) if for n < 0 (resp. for n ̸= 0) the homotopy
group πn(A) is trivial. Let CAlg(Sp)cn ⊂ CAlg(Sp) be the full subcategory
spanned by the connective E∞-rings. We have a natural fully faithful functor

Ring→ CAlg(Sp)cn

from the category Ring of commutative rings, whose essential image is the
full subcategory spanned by the discrete E∞-rings. This functor admits a
left adjoint which sends a connective E∞-ring A to π0(A). We will regard a
commutative ring as an E∞-ring via this functor.

Example 2.4. An example of an E∞-ring is a derived quotient of a commu-
tative ring, that is deőned as follows. We őrst remark that the ∞-category
CAlg(Sp) admits colimits and limits. In particular, a diagram B ← A→ B′

in CAlg(Sp) admits a colimit, denoted by B ⊗L

A B′. Let R be a commutative
ring and let x1, . . . , xr ∈ R be elements. Then we deőne the derived quotient
of R by elements x1, . . . , xr as

R/L(x1, . . . , xr) := R⊗L

Z[X1,...,Xr]
Z,
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where Z[X1, . . . , Xr]→ R is deőned by Xi 7→ xi and Z[X1, . . . , Xr]→ Z is
deőned by Xi 7→ 0. The E∞-ring R/L(x1, . . . , xr) is connective.

For an E∞-ring A, let Mod(A) denote the∞-category of module spectra
over A; see [13, Notation 7.1.1.1] for the deőnition. We simply say łmodulež
instead of łmodule spectrumž when there is no ambiguity. The ∞-category
Mod(A) is stable and has the structure of a symmetric monoidal∞-category.
Let us write ⊗L

A for the tensor product.

Definition 2.5 ([13, Definition 7.2.4.1]). Let

Perf(A) ⊂ Mod(A)

denote the smallest stable subcategory of Mod(A) which contains A and
is closed under retracts. We say that a module K ∈ Mod(A) is perfect if
K ∈ Perf(A).

Example 2.6. Let A be a discrete E∞-ring. By [13, Theorem 7.1.2.13], we
have a natural equivalence

Mod(A) ∼= D(π0(A)).

Here D(π0(A)) is the derived ∞-category of π0(A). Via this equivalence, we
may identify Perf(A) with the ∞-category of perfect complexes over π0(A).
This follows, for instance, from the fact that (for every E∞-ring A) a module
K ∈ Mod(A) is perfect if and only if K is a compact object of Mod(A) in
the sense of [15, Deőnition 5.3.4.5]; see [13, Proposition 7.2.4.2]. (Compare
[21, Tag 07LT].)

For a map A→ B of E∞-rings, we have a forgetful functor Mod(B)→
Mod(A). This admits a left adjoint −⊗L

A B : Mod(A)→ Mod(B), which
induces a functor Perf(A)→ Perf(B).

We will need the following notion of a perfect module with Tor-amplitude
in [a, b]. Here we use homological indexing conventions.

Definition 2.7. Let A be a connective E∞-ring (and therefore we have a
natural map A→ π0(A)). Let K ∈ Perf(A) and let a, b be integers with a ≤
b. We say that K has Tor-amplitude in [a, b] if the base change K ⊗L

A π0(A)
has Tor-amplitude in [a, b] (or in other words, for every discrete π0(A)-module
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M , we have πn(K ⊗
L

A M) = 0 for every n /∈ [a, b]). Let

Perf [a,b](A) ⊂ Perf(A)

be the full subcategory spanned by the perfect modules with Tor-amplitude
in [a, b].

Lemma 2.8. Let A be a connective E∞-ring. Let a, b be integers with a ≤ b.

(1) Assume that there is an integer r ≥ 0 such that πm(A) = 0 for m ≥ r.
We put n := b− a+ r. Then the ∞-category Perf [a,b](A) is equivalent
to an n-category (in the sense of [15, Definition 2.3.4.1]).

(2) Let A→ B be a map of connective E∞-rings. Assume that the induced
map Specπ0(B)→ Specπ0(A) is surjective. Then a perfect module
K ∈ Perf(A) has Tor-amplitude in [a, b] if and only if K ⊗L

A B ∈
Perf(B) has Tor-amplitude in [a, b].

Proof. (1) By [15, Proposition 2.3.4.18], it suffices to prove that the map-
ping space Map(K,L) is (n− 1)-truncated for all K,L ∈ Perf [a,b](A). By
[13, Proposition 7.2.4.4], there is a perfect module K∨ ∈ Perf(A) such that
the underlying space of K∨ ⊗L

A L is equivalent to Map(K,L) functorially in
L ∈ Mod(A). (The module K∨ is a dual of K in the symmetric monoidal
∞-category Mod(A); see also the proof of [16, Proposition 2.7.28].) We have

K∨ ⊗L

A π0(A) ∼= RHomπ0(A)(K ⊗
L

A π0(A), π0(A)).

It follows that K∨ ∈ Perf [−b,−a](A), and hence K∨ ⊗L

A L ∈ Perf [−b+a,b−a](A)
for L ∈ Perf [a,b](A). Then we see that the homotopy group πm(K∨ ⊗L

A L)
is trivial for m ≥ n by [13, Proposition 7.2.4.23 (5)] and the assumption on
πm(A). Thus Map(K,L) is (n− 1)-truncated as desired.

(2) This follows from the following fact. Let K ∈ Perf(R) be a perfect
complex over a commutative ring R. If K ⊗L

R κ(x) ∈ Perf [a,b](κ(x)) for every
point x ∈ SpecR, where κ(x) is the residue őeld of x, then we have K ∈
Perf [a,b](R); see the proof of [6, Theorem 11.2 (2)]. □

We record some results on perfect modules over łderived completež E∞-
rings. Let R be a commutative ring and let I = (x1, . . . , xr) ⊂ R be a őnitely
generated ideal. Let R→ A be a map of E∞-rings. We say that a module
M ∈ Mod(A) is derived I-complete if M is derived I-complete (in the sense
of [21, Tag 091S]) when we regard it as an object of D(R); see also [14,
Deőnition 7.3.1.1 and Corollary 7.3.3.6].



✐

✐

ł4-Itož Ð 2024/6/7 Ð 14:10 Ð page 1734 Ð #8
✐

✐

✐

✐

✐

✐

1734 Kazuhiro Ito

Proposition 2.9. Let A be a connective E∞-ring over R. We assume that
A is derived I-complete. Let a, b be integers with a ≤ b.

(1) We put S := π0(A)/Iπ0(A). Let K ∈ Mod(A) be a module which is
almost connective, i.e. there exists an integer n such that the ho-
motopy group πm(M) is trivial for every m < n. Then K belongs to
Perf [a,b](A) if and only if K is derived I-complete and K ⊗L

A S belongs
to Perf [a,b](S).

(2) We put Am := A⊗L

R R/L(xm1 , . . . , xmr ) for an integer m ≥ 1. We have

Perf(A)
∼
→ lim

m≥1
Perf(Am) in Cat∞ .

Similarly, we have

Perf [a,b](A)
∼
→ lim

m≥1
Perf [a,b](Am) in Cat∞ .

Proof. (1) By [14, Corollary 8.3.5.9], we see that K belongs to Perf(A) if and
only if K is derived I-complete and K ⊗L

A S belongs to Perf(S). We shall
prove that a perfect module K ∈ Perf(A) belongs to Perf [a,b](A) if and only
if K ⊗L

A S belongs to Perf [a,b](S). Let K∨ be a dual of K; see the proof of
Lemma 2.8 and the references therein. We have (K∨)∨ ∼= K. It follows that
K has Tor-amplitude in [a, b] if and only if K has Tor-amplitude ≤ b and
K∨ has Tor-amplitude ≤ −a in the sense of [13, Deőnition 7.2.4.21]. Thus
our claim follows from [14, Corollary 8.3.5.8].

(2) The second equivalence follows from the őrst one by (1). We prove
the őrst assertion. Let

Φ: Mod(A)→ lim
m≥1

Mod(Am)

denote the natural functor. An object of limm≥1Mod(Am) can be identiőed
with a family of objects {Km}m≥1, where Km ∈ Mod(Am), together with
equivalences Km+1 ⊗

L

Am+1
Am

∼
→ Km (m ≥ 1). The functor Φ admits a right

adjoint

Ψ: lim
m≥1

Mod(Am)→ Mod(A)

which sends a family {Km}m≥1 as above to limmKm, where we regard Km

as an object of Mod(A). We claim that if Km ∈ Perf(Am) for every m ≥ 1,
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then K := limmKm belongs to Perf(A) and we have

(2.1) K ⊗L

A Am
∼
→ Km.

In order to prove the claim, we may assume that K1 is connective. It then
follows that Km is connective for every m ≥ 1, and hence K is also connective
since π0(Km+1)→ π0(Km) is surjective for every m ≥ 1. Now, [14, Lemma
8.3.5.4] implies that the map K ⊗L

A Am → Km is an equivalence. Since each
Km is derived I-complete as an A-module, the limit K is also derived I-
complete. Therefore K is perfect by (1).

We now obtain the following adjunction

F : Perf(A) ⇄ lim
m≥1

Perf(Am) :G.

It suffices to prove that the unit transformation id→ G ◦ F and the counit
transformation F ◦G→ id are equivalences. For a K ∈ Perf(A), we see that
(G ◦ F )(K) is isomorphic to the derived I-completion of K as an object of
Mod(R); see, for instance, [21, Tag 0920]. Since K is derived I-complete by
(1), we have K

∼
→ (G ◦ F )(K). Finally, we shall prove F ◦G

∼
→ id. We note

that a map in limm≥1 Perf(Am) is an equivalence if and only if, for every m,
its image in Perf(Am) is an equivalence2. Thus (2.1) implies F ◦G ∼

→ id. □

We conclude this section with the following result on derived quotients
of perfectoid rings.

Lemma 2.10. Let R be a perfectoid ring and ϖ ∈ R an element with p ∈
(ϖp) such that R is ϖ-complete. Let ϖ♭ ∈ R♭ be an element such that (ϖ♭)♯

is a unit multiple of ϖ. Let A be a ϖ-complete perfectoid R-algebra. Then
we have an isomorphism of E∞-rings

A♭/Lϖ♭ ∼= A/Lϖ

which is functorial in A.

Proof. We may assume that ϖ = (ϖ♭)♯. Then ϖ admits a p-th root, and
thus it suffices to prove that A♭/L(ϖ♭)p ∼= A/L(ϖ)p functorially in A. Since

2This can be deduced from the fact that a natural transformation between two
functors from a simplicial set to an ∞-category is an equivalence if and only if it is
an objectwise equivalence (which can be found, e.g., in [8, Corollary 3.5.12]). One
can also check it by considering fiber sequences. We note that limm≥1 Perf(Am) is
also a limit in the ∞-category of stable ∞-categories ([13, Theorem 1.1.4.4]).
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the map θ : W (R♭)→ R is surjective and p ∈ (ϖp), there exists an element
x ∈W (R♭) such that p = −θ(x)ϖp. Then ξ := p+ x[ϖ♭]p is a generator of
Ker θ; see the proof of [5, Lemma 3.10]. We consider two maps

W (R♭)[S1, S2]→W (A♭) deőned by S1 7→ p, S2 7→ [ϖ♭]p

and

W (R♭)[T1, T2]→W (A♭) deőned by T1 7→ ξ, T2 7→ [ϖ♭]p.

Since both p and ξ are non-zero divisors in W (A♭), we have

W (A♭)⊗L

W (R♭)[S1,S2]
W (R♭) ∼= A♭/L(ϖ♭)p,

W (A♭)⊗L

W (R♭)[T1,T2]
W (R♭) ∼= A/L(ϖ)p.

Here W (R♭)[S1, S2]→W (R♭) is deőned by Si 7→ 0 and similarly for
W (R♭)[T1, T2]→W (R♭). To conclude the proof, it suffices to observe that
we have an isomorphism W (R♭)[T1, T2]

∼
→W (R♭)[S1, S2] deőned by T1 7→

S1 + xS2, T2 7→ S2, which is compatible with the above maps. □

3. An analogue for derived quotients of perfect rings

3.1. An analogue for derived quotients of perfect rings

In this section, we prove the following analogue of Theorem 1.1 for derived
quotients of perfect rings:

Theorem 3.1. Let R be a perfect Fp-algebra and I = (x1, . . . , xr) ⊂ R a
finitely generated ideal. Let a, b be integers with a ≤ b. Then the functors

A 7→ F(A) := Perf(A/L(x1, . . . , xr))

and

A 7→ F[a,b](A) := Perf [a,b](A/
L(x1, . . . , xr))

from the category of perfect R-algebras to Cat∞ satisfy arc-hyperdescent (see
also Definition 2.1).

We give two proofs of Theorem 3.1. The őrst proof, given below, goes
along the same line as that of Theorem 1.1; the notion of a descendable map
of E∞-rings introduced by Mathew ([17, Deőnition 3.18]) plays a central role.
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A key input is the fact that an h-cover of perfect Fp-algebras is descendable,
which is proved by BhattśScholze.

The second proof, which we learned from B. Bhatt, is given in the next
subsection; we deduce Theorem 3.1 from Theorem 1.1. It may be easier than
the őrst one for the reader who is familiar with some fundamental results on
(almost) perfect modules provided in [13, 14, 21].

Proof. The functor F commutes with őnite products (see, for instance, [14,
Lemma D.3.5.5]) and őltered colimits (see [13, Lemma 7.3.5.13]). Then we
see that the same results hold for F[a,b]. To prove the theorem, it is enough to
prove that F[a,b] satisőes arc-hyperdescent (for all a, b with a ≤ b). Moreover,
it suffices to prove that F[a,b] satisőes arc-descent since F[a,b](A) is equivalent
to an N -category for every perfect R-algebra A by Lemma 2.8 (1), where
N := b− a+ r + 1. We want to apply [4, Proposition 4.8]. For this, we need
to prove the following assertions.

(i) (v-descent) For every v-cover A→ B of perfect R-algebras (in the
sense of [6, Deőnition 2.1] or equivalently [18, Deőnition 2.2]) with
Čech conerve A→ B•, the functor

F[a,b](A)→ lim
∆
F[a,b](B

•)

is an equivalence in Cat∞ (or equivalently, in the full subcategory
CatN ⊂ Cat∞ consisting of those ∞-categories which are equivalent
to N -categories).

(ii) (aic-v-excision) For every valuation ring V over R with algebraically
closed fraction őeld and every prime ideal p ∈ Spec(V ), the square

F[a,b](V ) //

��

F[a,b](V/p)

��

F[a,b](Vp) // F[a,b](κ(p))

is a pullback square in Cat∞ (or equivalently, in CatN ).

We őrst prove (i). We can write B as a colimit of a őltered sys-
tem {B0,i}i∈I of őnitely presented A-algebras. Let Bi := (B0,i)perf :=
colimx 7→xp B0,i be the perfection of B0,i. It follows that A→ Bi is an h-
cover (in the sense of [6, Deőnition 11.1]) and hence it is descendable in
the sense of [17, Deőnition 3.18] (or equivalently [6, Deőnition 11.14]) by [6,
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Theorem 11.27]. The base change

fi : A/
L(x1, . . . , xr)→ Bi/

L(x1, . . . , xr)

is also descendable. Let A→ B•
i denote the Čech conerve of A→ Bi taken

in the category Ring of commutative rings. The (derived) Čech conerve of fi
taken in the ∞-category CAlg(Sp) of E∞-algebras is isomorphic to the base
change

A/L(x1, . . . , xr)→ B•
i /

L(x1, . . . , xr)

of A→ B•
i along A→ A/L(x1, . . . , xr) by [6, Lemma 3.16 or Proposition

11.6]. Therefore, by [17, Proposition 3.22], we have an equivalence of sym-
metric monoidal ∞-categories for every i ∈ I

Mod(A/L(x1, . . . , xr))
∼
→ lim

∆
Mod(B•

i /
L(x1, . . . , xr)),

hence F(A)
∼
→ lim

∆
F(B•

i );

here, for the second equivalence, we use [13, Proposition 4.6.1.11] and the
fact that an object of Mod(A/L(x1, . . . , xr)) is perfect if and only if it is
dualizable (see [16, Proposition 2.7.28]). By Lemma 2.8 (2), this implies

F[a,b](A)
∼
→ lim

∆
F[a,b](B

•
i )

for every i ∈ I. Since we have colimI Bi
∼= B and F[a,b](A) is equivalent to

an N -category for every A, it follows from [4, Lemma 3.7] that the functor
F[a,b](A)→ lim∆F[a,b](B

•) is an equivalence.
Next, we prove (ii). As remarked in the proof of [4, Theorem

5.16], the map V →W := Vp × V/p is descendable. The base change
V/L(x1, . . . , xr)→W/L(x1, . . . , xr) is also descendable. Thus, similarly to
the proof of (i), we have

F[a,b](V )
∼
→ lim

∆
F[a,b](W

•)

for the Čech conerve V →W • of V →W taken in Ring. As in the proof
of [4, Theorem 5.16], one can prove that the right hand side of the above
equivalence is a limit of the diagram

F[a,b](V/p)

��

F[a,b](Vp) // F[a,b](κ(p)).
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This proves (ii).
With assertions (i) and (ii), we can now apply the argument as in the

proof of [4, Proposition 4.8] to F[a,b] (or rather the functor A 7→ F[a,b](Aperf)
from the category of R-algebras to CatN ) to conclude that F[a,b] satisőes
arc-descent. The proof of Theorem 3.1 is complete. □

The following corollary is a key ingredient in the proof of Theorem 1.2.

Corollary 3.2. Let R be a perfectoid ring and ϖ ∈ R an element with p ∈
(ϖp) such that R is ϖ-complete. Let m ≥ 1 be an integer. The following
functors from the category CR,ϖ of ϖ-complete perfectoid R-algebras to Cat∞

A 7→ Perf(A/Lϖ) and A 7→ Perf(A♭/L(ϖ♭)m)

satisfy ϖ-complete arc-hyperdescent. The same statement holds for perfect
modules with Tor-amplitude in [a, b] for all a, b with a ≤ b.

Proof. By Proposition 2.3 and Lemma 2.10, it suffices to prove that the
functors

A 7→ Perf(A/L(ϖ♭)m) and A 7→ Perf [a,b](A/
L(ϖ♭)m)

from the category CR♭,ϖ♭ of ϖ♭-complete perfect R♭-algebras to Cat∞ satisfy
ϖ♭-complete arc-hyperdescent. Moreover, it is enough to prove that the sec-
ond functor satisőes ϖ-complete arc-descent; compare the őrst paragraph of
the (őrst) proof of Theorem 3.1. This functor preserves őnite products. Let
A→ B be a ϖ♭-complete arc-cover in CR♭,ϖ♭ . Since A→ C := B ×A[1/ϖ♭]
is an arc-cover, we obtain

Perf [a,b](A/
L(ϖ♭)m)

∼
→ lim

∆
Perf [a,b](C

•/L(ϖ♭)m)

by Theorem 3.1, where A→ C• is the Čech conerve of A→ C taken in
the category of perfect R♭-algebras. Let A→ B• be the (completed) Čech
conerve of A→ B taken in CR♭,ϖ♭ . We have C•/L(ϖ♭)m ∼= B•/L(ϖ♭)m, and
thus

Perf [a,b](C
•/L(ϖ♭)m) ∼= Perf [a,b](B

•/L(ϖ♭)m).

In conclusion, we have Perf [a,b](A/
L(ϖ♭)m)

∼
→ lim∆ Perf [a,b](B

•/L(ϖ♭)m),
which completes the proof. □
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3.2. The second proof of Theorem 3.1

In this subsection, we prove the following proposition, by which one can
easily see that Theorem 1.1 implies Theorem 3.1.

Proposition 3.3. Let A→ B• be an augmented cosimplicial object in Ring
and I = (x1, . . . , xr) ⊂ A a finitely generated ideal such that SpecB0/IB0 →
SpecA/I is surjective. Let A/L(x1, . . . , xr)→ B•/L(x1, . . . , xr) be the aug-
mented cosimplicial object in CAlg(Sp) obtained by base change. If
Perf(A)

∼
→ lim∆ Perf(B•), then we have

F : Perf(A/L(x1, . . . , xr))
∼
→ lim

∆
Perf(B•/L(x1, . . . , xr)).

Proof. To simplify the notation, we write

A := A/L(x1, . . . , xr) and B
n
:= Bn/L(x1, . . . , xr).

Let
Φ: Mod(A)→ lim

∆
Mod(B

•
)

denote the natural functor. This functor Φ admits a right adjoint

Ψ: lim
∆

Mod(B
•
)→ Mod(A).

An object {K•} of lim∆Mod(B
•
) gives rise to a natural functor ∆→

Mod(A) such that the image Kn of [n] ∈ ∆ is isomorphic to that of {K•}
in Mod(B

n
) regarded as an A-module. The functor Ψ sends {K•} to

lim[n]∈∆Kn.
We őrst prove the fully faithfulness of F . Let D ⊂ Mod(A) be the

full subcategory spanned by those objects K such that the unit map
K → (Ψ ◦ Φ)(K) is an isomorphism. It is clear that D is a stable sub-
category which is closed under retracts. Using the fully faithfulness of
Perf(A)→ lim∆ Perf(B•) and using the őber sequences

A/L(x1, . . . , xi)
×xi+1

→ A/L(x1, . . . , xi)→ A/L(x1, . . . , xi+1)

for 0 ≤ i ≤ r − 1 inductively, where A/L(x1, . . . , xi) := A if i = 0, we see that
A ∈ D. Thus, by the deőnition of Perf(A), we have Perf(A) ⊂ D. In partic-
ular, it follows that F is fully faithful.

It remains to show that F is essentially surjective. Let {K•} be an object
of lim∆ Perf(B

•
) and let Kn ∈ Perf(B

n
) denote its image. It suffices to prove
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that L := Ψ({K•}) belongs to Perf(A) and the canonical map L⊗L

A
B

n
→

Kn is an isomorphism. (See also the proof of Proposition 2.9 (2).) Since Bn is
perfect as a Bn-module, it follows that Kn is perfect over Bn as well. Thus,
by our assumption (and a similar argument as in the previous paragraph),
we see that L is perfect over A and we have L⊗L

A
B

n ∼= L⊗L

A Bn ∼= Kn. It
remains to show that L is perfect over A. For this, we remark that, since A
is perfect as an A-module, the A-module L is almost perfect in the sense of
[13, Deőnition 7.2.4.10] by Lemma 3.4 below. Therefore, by [21, Tag 068W]
and [14, Proposition 2.7.3.2 (d)] (see also [14, Corollary 8.6.4.3]), it suffices
to show that L⊗L

A
π0(A)/m is perfect over π0(A)/m for every maximal ideal

m ⊂ π0(A). This follows from the fact that L⊗L

A
B

0 ∼= K0 is perfect over B0

and the assumption that SpecB0/IB0 → SpecA/I is surjective. □

The following easy lemma is used in the proof of Proposition 3.3.

Lemma 3.4. Let A→ B be a map of connective E∞-rings. Assume that B
is almost perfect as an A-module (in the sense of [13, Definition 7.2.4.10]).
Then a B-module M is almost perfect if and only if M is almost perfect as
an A-module.

Proof. Let n ≥ 0 be an integer. We prove that a connective B-module M is
perfect to order n in the sense of [14, Deőnition 2.7.0.1] if and only if M is
perfect to order n as an A-module, from which the lemma follows (see [14,
Remark 2.7.0.2]). The łonly ifž direction is proved in [14, Proposition 2.7.3.3].
The łifž direction can be proved in a similar way; we provide the proof for
the reader’s convenience. (See also [21, Tag 064Z] for the case where A and
B are discrete.)

We proceed by induction on n. Since a connective B-module M is per-
fect to order 0 if and only if π0(M) is őnitely generated over π0(B) by
[14, Proposition 2.7.2.1], the case where n = 0 is clear. Assume n > 0. Since
π0(M) is őnitely generated over π0(B), there exists a map f : B⊕m →M of
B-modules such that the induced map π0(B

⊕m)→ π0(M) is surjective. Let
N be a őber of f , which is a connective B-module. Since both B and M are
perfect to n as A-modules, we see that N is perfect to n− 1 over A by [14,
Remark 2.7.0.7], and hence it is perfect to n− 1 over B by the induction
hypothesis. By [14, Remark 2.7.0.7] again, it follows that M is perfect to n
over B. □
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4. Proofs of main results

4.1. Proof of Theorem 1.2

We prove Theorem 1.2. By Proposition 2.9 (2) and Corollary 3.2, the functor
A 7→ Perf(A♭) satisőes ϖ-complete arc-hyperdescent.

We prove the assertions for the functors A 7→ Perf(W (A♭)) and A 7→
Perf(A) simultaneously. For this, let G denote the functor A 7→W (A♭) or
A 7→ A from CR,ϖ to Ring, and let α ∈ G(A) be p or ϖ, respectively. Then,
for every integer m ≥ 1, let Gm : CR,ϖ → CAlg(Sp) be the functor deőned by
A 7→ G(A)/Lαm. By Proposition 2.9 (2), it suffices to prove that the functor
A 7→ Perf(Gm(A)) satisőes ϖ-complete arc-hyperdescent for every integer
m ≥ 1. This functor preserves őnite products. We want to show that the
functor

F : Perf(Gm(A))→ lim
∆

Perf(Gm(B•))

is an equivalence for any ϖ-complete arc-hypercover A→ B•. We őrst prove
the fully faithfulness of F . The natural functor

Φm : Mod(Gm(A))→ lim
∆

Mod(Gm(B•))

admits a right adjoint

Ψm : lim
∆

Mod(Gm(B•))→ Mod(Gm(A)).

Lemma 4.1. Let D ⊂ Mod(Gm(A)) be the full subcategory spanned by those
objects K such that the unit map K → (Ψm ◦ Φm)(K) is an isomorphism.
Then we have Perf(Gm(A)) ⊂ D. In particular, the functor F is fully faithful.

Proof. As in the proof of Proposition 3.3, it suffices to show Gm(A) ∈ D. We
proceed by induction on m. Assume m = 1. In the beginning of this section
and Corollary 3.2, we have proved that the functor F is an equivalence (and
in particular fully faithful), which implies the result. When m > 1, the result
follows from the őber sequence

(4.1) Gm−1(A)
×α
→ Gm(A)→ G1(A)

and the induction hypothesis. □

We shall prove that F is essentially surjective. Again, we proceed by in-
duction on m. The case m = 1 has already been established in the beginning
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of the proof and Corollary 3.2. Assume m > 1. Let {K•
m} be an object of

lim∆ Perf(Gm(B•)) and let Kn
m ∈ Perf(Gm(Bn)) denote its image. It suffices

to prove that Lm := Ψm({K•
m}) belongs to Perf(Gm(A)) and the canonical

map

(4.2) Lm ⊗
L

Gm(A) Gm(Bn)→ Kn
m

is an isomorphism. (See also the proofs of Proposition 2.9 (2) and Proposi-
tion 3.3.)

By the induction hypothesis, the image {K•
l } of {K•

m} in
lim∆ Perf(Gl(B

•)) corresponds to a perfect module Ll ∈ Perf(Gl(A)) for ev-
ery l ≤ m− 1. By Lemma 4.1, we have Ll

∼= Ψl({K
•
l }). We claim that Lm

is almost connective and

(4.3) Lm ⊗
L

Gm(A) G1(A)
∼
→ L1.

Our claim together with Proposition 2.9 (1) shows that Lm ∈ Perf(Gm(A)).
It also implies that the map (4.2) is an isomorphism. Indeed, the base change
of (4.2) along Gm(Bn)→ G1(B

n) is an isomorphism since it can be identi-
őed with the base change of (4.3) along G1(A)→ G1(B

n). Then, using (4.1)
repeatedly, we conclude that the map (4.2) is also an isomorphism.

We shall prove our claim. Using (4.1) and the functor Ψm, we obtain a
őber sequence Lm−1 → Lm → L1. Since Lm−1 and L1 are almost connective,
it follows that Lm is also almost connective. It remains to show (4.3). We
have a natural őber sequence G1(A)→ Gm(A)→ Gm−1(A). Moreover, from
the following őber sequence

(4.4) G(A)
×α
→ G(A)→ G1(A),

we obtain a őber sequence Gm(A)→ Gm(A)→ Gm(A)⊗L

G(A) G1(A). Then,
(4.1) and these őber sequences induce a őber sequence

(4.5) G1(A)[1]→ Gm(A)⊗L

G(A) G1(A)→ G1(A),

where [1] denotes the shift by 1. From (4.5), we have a natural map of őber
sequences

Lm ⊗
L

Gm(A) G1(A)[1] //

��

Lm ⊗
L

G(A) G1(A)

id
��

// Lm ⊗
L

Gm(A) G1(A)

��

L1[1] // Lm ⊗
L

G(A) G1(A) // L1.
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The őrst line is obtained by applying Lm ⊗
L

Gm(A) − to (4.5). The second line
is obtained by applying Kn

m ⊗
L

Gm(A) − to (4.5) and then using the functor
Ψm. Here we use the fact that the functor −⊗L

G(A) G1(A) : Mod(G(A))→

Mod(G1(A)) preserves limits (which can be checked using the őber se-
quence (4.4)). We shall prove that the map Lm ⊗

L

Gm(A) G1(A)→ L1 induces
an isomorphism on the k-th homotopy groups for every k. Since Lm is almost
connective, so is Lm ⊗

L

Gm(A) G1(A). In particular, the assertion holds for a
sufficiently small k. Then, by induction on k and using the above diagram,
we see that the assertion holds for all k. This concludes the proof of (4.3)
and hence the proof of the essential surjectivity of F .

The proof of Theorem 1.2 is now complete.

4.2. ϖ-complete arc-descent for finite projective modules

For future reference, we record a ϖ-complete arc-descent result for őnite pro-
jective modules over perfectoid rings, which is a consequence of Theorem 1.2.

We őrst őx some notation. Let A→ B• be an augmented cosimplicial
object in Ring. For any 0 ≤ i ≤ 1, we denote by pi : B

0 → B1 the map cor-
responding to the injection [0] ∼= {i} →֒ [1] in ∆. Similarly, for any 0 ≤ i <
j ≤ 2, we denote by pi,j : B

1 → B2 the map corresponding to the injection
[1] ∼= {i, j} →֒ [2] in ∆. Let Vect(A) be the category of őnite projective mod-
ules over A and DD(B•) the category of pairs (M,σ) where M ∈ Vect(B0)
is a őnite projective module over B0 and σ : p∗0M

∼
→ p∗1M is an isomorphism

in Vect(B1) satisfying the usual cocycle condition p∗0,2σ = p∗1,2σ ◦ p
∗
0,1σ. Here

for a map of commutative rings f : R→ S and a module M over R, we de-
note by f∗M := M ⊗A B the base change of M along f . We have a natural
functor

Vect(A)→ DD(B•).

Corollary 4.2. Let R be a perfectoid ring and ϖ ∈ R an element with p ∈
(ϖp) such that R is ϖ-complete. Let A→ B• be a ϖ-complete arc-hypercover
in CR,ϖ. Then we have the equivalences of categories

Vect(A♭)
∼
→ DD((B•)♭), Vect(W (A♭))

∼
→ DD(W ((B•)♭)),

Vect(A)
∼
→ DD(B•).

Proof. We only prove Vect(A)
∼
→ DD(B•); the other statements can be

proved similarly. First, note that Vect(A) ∼= Perf [0,0](A). By Theorem 1.2,
Lemma 2.8 (2), and Proposition 2.9 (1), we have Vect(A)

∼
→ lim∆Vect(B•).
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Let ∆s,≤n be the subcategory of ∆ whose objects are [m] = {0, 1, . . . ,m}
for 0 ≤ m ≤ n and morphisms are given by injective order preserving maps.
Since Vect(Bn) is a 1-category for any n, it follows that lim∆Vect(B•) ∼=
lim∆s,≤2

Vect(B•); see, for instance, [16, Proposition 4.3.5]. (Here we use the
dual of [16, Proposition 4.3.5]. Although it is claimed there that the geomet-
ric realization of X• is isomorphic to a colimit of the diagram X•|∆op

s,≤n+1
,

its proof shows that it is also isomorphic to a colimit of the diagram
X•|∆op

s,≤n
; compare [15, Lemma 5.5.6.17].) One can check that DD(B•) ∼=

lim∆s,≤2
Vect(B•), which concludes the proof. □

Remark 4.3. By the proof of Theorem 1.2 and the argument in the proof
of Corollary 4.2, we also have an equivalence of categories Vect(Wn(A

♭))
∼
→

DD(Wn((B
•)♭)) for every integer n ≥ 1, where Wn(A

♭) := W (A♭)/pn. This
implies that [10, Conjecture A] holds.

In [10, Section 4.3.3], Henkel proved some p-complete arc-descent re-
sults for BKn-modules for perfectoid rings assuming this conjecture. Here
BKn-modules are łtruncatedž analogues of (minuscule) BreuilśKisinśFargues
modules; see [10, Chapter 2] for details. For example, he proved that [10,
Conjecture A] implies that the functor sending a perfectoid R-algebra A to
the groupoid BKn(A) of BKn-modules for A is a stack with respect to the
p-complete arc-topology; see [10, Theorem 4.3.15].

5. The classification of p-divisible groups over

perfectoid rings

In this section, we discuss the classiőcation of p-divisible groups over perfec-
toid rings (Theorem 1.4). We follow the approach of ScholześWeinstein [20,
Theorem 17.5.2].

Let A be a perfectoid ring. Let φ be the Frobenius automorphism of
W (A♭). For a generator ξ ∈ Ker θ, we put ξ̃ := φ(ξ). Recall that a minuscule
Breuil–Kisin–Fargues module for A is a őnite projective module M over
W (A♭) with a W (A♭)-linear map FM : φ∗M →M such that the cokernel of
FM is killed by ξ̃. Note that, since ξ̃ is a non-zero divisor, the condition on
FM is equivalent to the existence of a W (A♭)-linear map VM : M → φ∗M
such that FM ◦ VM = ξ̃. Moreover, for a őxed ξ, such a map VM is uniquely
determined.

We begin by recalling the following special case:
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Theorem 5.1. Let A be a perfectoid ring. If A satisfies one of the following
conditions, then there exists an anti-equivalence M from the category of p-
divisible groups over A to the category of minuscule Breuil–Kisin–Fargues
modules for A.

(1) (Berthelot, Gabber, Lau) A is a perfect ring over Fp.

(2) (Fargues, Scholze–Weinstein) A is the ring of integers OC of an alge-
braically closed non-archimedean extension C of Qp.

Proof. (1) For a p-divisible group G over A, letM(G) := D(G)(W (A)) be the
evaluation on the divided power extension W (A)→ A of the contravariant
Dieudonné crystal D(G) deőned in [3, Déőnition 3.3.6]. This construction
induces an anti-equivalence from the category of p-divisible groups over A
to the category of minuscule BreuilśKisinśFargues modules for A; this fact
is proved by Berthelot [2, Corollaire 3.4.3] (see also [2, Proposition 4.3.4])
for a perfect valuation ring over Fp, and it is proved by Gabber and Lau [11,
Theorem 6.4] independently for a general perfect ring over Fp.

(2) See [20, Theorem 14.4.1], which is based on [19, Theorem B]. In this
paper, for a p-divisible group G over OC , we deőneM(G) to be the W (O♭

C)-
linear dual of the BreuilśKisinśFargues module attached to G given in [20,
Theorem 14.4.1]. □

We now deduce the general case from Theorem 5.1 by using Corollary 4.2:

Theorem 5.2 (Lau, Scholze–Weinstein). For each perfectoid ring A,
there exists an anti-equivalence MA of categories

{p-divisible groups over A}
∼
→ {minuscule Breuil–Kisin–Fargues modules for A}

satisfying the following properties:

• MA is compatible with base change in A.

• If p = 0 in A or A = OC for an algebraically closed non-archimedean
extension C/Qp, then MA coincides with the anti-equivalence given
in Theorem 5.1.

Proof. As in the proof of [20, Theorem 17.5.2], Theorem 5.1 implies that,
for each perfectoid ring A =

∏
i Vi which is a product of perfectoid valuation

rings Vi of rank ≤ 1 with algebraically closed fraction őelds, we have an
anti-equivalence MA satisfying the above conditions.
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Let A be a general perfectoid ring. By [7, Lemma 2.2.3] (and Exam-
ple 2.2), there exists a p-complete arc-hypercover A→ B• whose terms Bn

are products of perfectoid valuation rings of rank ≤ 1 with algebraically
closed fraction őelds. By Corollary 4.2 and [9, Proposition 1.1], the cate-
gory of p-divisible groups over A is equivalent to the category of p-divisible
groups over B0 with descent data (deőned in the same way as the category
DD(B•) in Section 4.2). Applying Corollary 4.2 again, we see that the same
statement holds for minuscule BreuilśKisinśFargues modules. Thus we can
obtain an anti-equivalence MA from the category of p-divisible groups over
A to the category of minuscule BreuilśKisinśFargues modules for A by us-
ing anti-equivalences MBn . One can check that MA does not depend (up
to canonical equivalence) on the choice of A→ B•, and MA is compatible
with base change in A. We also note that, if p = 0 in A, then MA coin-
cides with the anti-equivalence given in Theorem 5.1 since the formation of
D(G)(W (A)) is compatible with base change in A.

The proof of Theorem 5.2 is complete. □

Remark 5.3. The conditions in Theorem 5.2 determine the anti-
equivalencesMA uniquely (up to canonical equivalences). AnschützśLe Bras
give a cohomological description ofMA using the prismatic site of a perfec-
toid ring A developed by BhattśScholze; see [1] for details.
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