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We consider the source-free Type IIA flow introduced by Fei-
Phong-Picard-Zhang [10], and we study it in the case where the
relevant geometric datum is a symplectic half-flat SU(3)-structure.
We show the existence of ancient, immortal and eternal solutions
to the flow, provided that the initial symplectic half-flat structure
satisfies suitable properties. In particular, we prove that the so-
lution starting at a symplectic half-flat structure with Hermitian
Ricci tensor is ancient and evolves self-similarly by scaling the ini-
tial datum. These results apply to all known (locally) homogeneous
spaces admitting invariant symplectic half-flat SU(3)-structures.
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1. Introduction

In recent years, various geometric flows have been introduced as potential
tools to solve the non-linear partial differential equations related to super-
symmetric compactifications of string theories [9–11, 22–24]. In this paper,
we focus on the Type IIA flow introduced by Fei-Phong-Picard-Zhang in [10]
to study the system of equations for the Type IIA string considered in [30]
and motivated by [17, 28].

Let (M,ω) be a compact symplectic 6-manifold and let φ be a 3-form
on M that is primitive with respect to ω and non-degenerate according to
the definition of [18]. Then, φ gives rise to an almost complex structure Jφ
on M. Moreover, the symplectic form ω is of type (1, 1) with respect to Jφ,
and thus the tensor gφ := ω(·, Jφ·) is symmetric. If gφ is positive definite, φ
is said to be positive. According to [10], the pair (ω, φ) is called a Type IIA
geometry if the 3-form φ is closed, primitive and positive.

A Type IIA geometry (ω, φ) gives rise to an almost Kähler structure
(ω, Jφ, gφ) and to a nowhere vanishing complex volume form Φ := φ+ i Jφφ
on M. In particular, M is a symplectic 6-manifold with trivial canonical
bundle, and thus a symplectic Calabi-Yau manifold according to [13, 14].

A solution to the Type IIA equation is a Type IIA geometry (ω, φ) solving
the non-linear partial differential equation

(1.1) dJφ d
∗ (|φ|2 φ

)

= ρA,

where |φ| denotes the norm of φ with respect to gφ, d
∗ is the formal adjoint

of d, and the source term ρA is the Poincaré dual of a given finite linear
combination of special Lagrangians calibrated by φ. Notice that (1.1) is
slightly different from the original equation considered in [10, 30], but they
are equivalent as soon as the pair (ω, φ) defines a Type IIA geometry, see
[10, Sect. 3.2].

In order to study the equation (1.1), in [10] the authors introduced a
geometric flow evolving the 3-form φ0 of a given Type IIA geometry (ω, φ0)
as follows

(1.2)

{

∂
∂tφ(t) = dJφ(t)d

∗t

(

|φ(t)|2g(t)φ(t)
)

− ρA(t),

φ(0) = φ0.

This flow is called the Type IIA flow and its stationary points are solutions
to the Type IIA equation (1.1).
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Assuming the source term ρA(t) in (1.2) to be identically zero, one ob-
tains the so-called source-free Type IIA flow. By [10], this flow is well-posed
on compact manifolds, and the solution φ(t) remains closed, primitive and
positive as long as it exists. Moreover, its stationary points are given by
Type IIA geometries (ω, φ) such that the corresponding almost Hermitian
structure (ω, Jφ, gφ) is Kähler Ricci-flat. We refer the reader to [9, 10] for
further results on Type IIA geometry and on the Type IIA flow.

A Type IIA geometry (ω, φ) gives rise to a symplectic SU(3)-structure
which is defined by the almost Kähler structure (ω, Jφ, gφ) together with
the complex volume form of constant norm Ψ = 2

|φ| Φ. In particular, the

whole structure is determined by ω and by the real 3-form ψ+ := Re(Ψ),
as the latter is primitive, positive and induces the same almost complex
structure as φ. Using known results on SU(3)-structures [1, 4], it is then
possible to characterize certain properties of the Type IIA geometry (ω, φ),
see Proposition 3.1.

When φ has constant norm, the 3-form ψ+ is closed, and the SU(3)-
structure (ω, ψ+) is symplectic half-flat (SHF for short). Known examples of
compact 6 manifolds admitting SHF structures include the 6-torus [8, 29]
and certain nilmanifolds and solvmanifolds [6, 7, 12, 29], namely compact
quotients of simply connected nilpotent or solvable Lie groups by cocompact
discrete subgroups. In this last case, the examples are locally homogeneous.
Further non-compact homogeneous and cohomogeneity one examples are
given in [25, 26]. More details can be found in Section 4.

In [15], we observed that on all nilmanifolds and solvmanifolds admit-
ting SHF structures there exists a SHF structure (ω, ψ+) satisfying some
distinguished properties. In detail, its torsion form w−

2 := d∗ψ+ satisfies the
conditions

(1.3) ∆gw
−

2 = cw−

2 , dw−

2 ∧ w−

2 = 0, |dw−

2 |2 = c |w−

2 |2,

where ∆g = dd∗ + d∗d is the Hodge Laplacian of g, and c is a real constant.
Here, we shall call a SHF structure satisfying (1.3) special. In Section 4,
we discuss the conditions (1.3) in detail. In particular, we show that the
third condition follows from the first one under suitable assumptions on
(M,ω, ψ+), see Proposition 4.8. Moreover, in Proposition 4.9 we prove that
c ≥ 1

4 |w−

2 |2 and that it attains the minimum value if and only if the SHF
structure has Hermitian Ricci tensor. A few examples of SHF structures
satisfying this remarkable curvature constraint are known, see [25].

In Proposition 4.5, we show that a compact 6-manifold with a SHF
structure (ω, ψ+) has finite automorphism group whenever the 3-form ψ+ is
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exact. This gives new information on the automorphism group of a compact
SHF manifold in addition to the results obtained in [26]. Moreover, it holds
for SHF structures with Hermitian Ricci tensor, and suggests that symmetry
techniques might not be helpful in the search of new compact examples.

Some consequences of the second and third condition in (1.3) are dis-
cussed in Section 5.

In [15], we were interested in studying a coupled flow for SU(3)-structures
related to Bryant’s G2-Laplacian flow [3]. The conditions (1.3) turned out
to be useful to describe the solution to the flow starting at a SHF structure
satisfying them. Motivated by this result, in Section 6 we investigate the
source-free Type IIA flow starting at a Type IIA geometry (ω, φ0) whose
corresponding SU(3)-structure (ω, ψ+

0
) is SHF and special.

We first consider the case where the Ricci tensor of the metric g0 induced
by (ω, φ0) is Hermitian with respect to the almost complex structure Jφ0

,
and we show that the solution to the flow starting at φ0 is ancient and it
evolves self-similarly by scaling the initial datum φ0 (see Theorem 6.1).

We then focus on the general case where (ω, ψ+

0
) is SHF and special.

Assuming (M,ω, φ0) to be locally homogeneous, so that the norm of the
torsion form w−

2 = d∗0ψ+

0
is constant, and that a suitable property holds, in

Theorem 6.4 we show that a solution to the flow starting at φ0 is given by
the 3-form

φ(t) = φ0 +
a(t)

|φ0|0
∆g0φ0,

where |φ0|0 is the (constant) g0-norm of φ0, and a(t) is a real valued function
solving the initial value problem















d

dt
a(t) = |φ0|30

(

1 +
c

|φ0|0
a(t)

)

|w−

2 |20
c − 1

,

a(0) = 0.

Notice that no compactness assumption is needed to show this result, but
it is required if one wants to conclude that the solution described above is
the unique one starting at φ0.

Depending on the relation between c and |w−

2 |20 , we get different types
of solutions that exist on a maximal time interval of the form (−∞,+∞),
(−∞, T ) or (T,+∞), for a certain T <∞, and that are thus eternal, ancient
or immortal, respectively (see corollaries 6.6, 6.7, 6.8).

These results apply to all known homogeneous and compact locally ho-
mogeneous manifolds admitting invariant SHF structures. Moreover, they
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allow us to obtain further examples of solutions to the Type IIA flow in
addition to those determined in [10, Sect. 9.3.2] on the nilmanifold example
given in [8, Ex. 5.2] and on the solvmanifold example given in [29, Thm. 3.5].

2. Definite 3-forms and SU(3)-structures in six dimensions

2.1. Definite 3-forms

We briefly recall the definition of a definite 3-form on a six-dimensional
vector space and how it is possible to construct a complex structure out of
it. For more details, we refer the reader to [18, 19, 27].

A 3-form φ on a six-dimensional real vector space V is said to be definite,
or non-degenerate, if the contraction ιvφ ∈ Λ2V ∗ has rank 4, for every non-
zero vector v ∈ V . The set of all definite 3-forms on V coincides with one
of the two open orbits for the natural action of GL(V ) on Λ3V ∗. In detail,
if A : Λ5V ∗ → V ⊗ Λ6V ∗ denotes the isomorphism induced by the wedge
product ∧ : Λ5V ∗ ⊗ V ∗ → Λ6V ∗, and Ω ∈ Λ6V ∗ is a non-zero element, then
a 3-form φ ∈ Λ3V ∗ gives rise to an endomorphism Sφ : V → V defined as
follows

A(ιvφ ∧ φ) = Sφ(v) Ω,

for every v ∈ V. The endomorphism Sφ satisfies the identity S2
φ = P (φ)IdV ,

where P (φ) is an irreducible SL(V )-invariant polynomial of degree 4. The
GL(V )-orbit of definite 3-forms is then the open subset of Λ3V ∗

Λ3
−
V ∗ := {φ ∈ Λ3V ∗ | P (φ) < 0}.

Every definite form φ ∈ Λ3
−
V ∗ has GL(V )-stabilizer conjugate to SL(3,C),

and thus it defines a complex structure

Jφ : V → V, Jφ =
1

√

−P (φ)
Sφ.

The 3-form Jφφ = φ(Jφ·, Jφ·, Jφ·) is also definite and it induces the same
complex structure Jφ as φ. Moreover, the complex 3-form φ+ iJφφ is of type
(3, 0) with respect to Jφ. More generally, the 3-form ϱRe

(

e−iθ (φ+ iJφφ)
)

is definite and induces the complex structure Jφ, for every ϱ ∈ R+, e−iθ ∈
C∖ {0}.
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2.2. SU(3)-structures

An SU(3)-structure on a six-dimensional vector space V is the data of an
Hermitian structure (g, J) with fundamental 2-form ω = g(J ·, ·) and a com-
plex (3, 0)-form Ψ of constant norm.

According to [19], SU(3)-structures can be characterized in terms of non-
degenerate forms as follows. Let ω ∈ Λ2V ∗ be a non-degenerate 2-form on V.
Consider a definite 3-form ψ+ ∈ Λ3

−
V ∗, denote by J the complex structure

determined by ψ+ and the orientation ω3, and denote by ψ− := Jψ+ the
imaginary part of the complex (3, 0)-form Ψ = ψ+ + iJψ+. Then, the pair
(ω, ψ+) defines an SU(3)-structure on V if and only if the following conditions
are satisfied

- ψ+ is primitive with respect to ω, i.e., ψ+ ∧ ω = 0. This is equivalent to ω
being of type (1, 1) with respect to J , namely ω(J ·, J ·) = ω;

- the symmetric bilinear form g := ω(·, J ·) is positive definite;

- the following normalization condition holds

(2.1) ψ+ ∧ ψ− =
2

3
ω3 = 4volg,

where volg denotes the volume form of the metric g.

Given an SU(3)-structure (ω, ψ+) on V with corresponding complex
structure J and metric g, there exists a g-orthonormal basis B = (e1, . . . , e6)
of V with dual basis B∗ = (e1, . . . , e6) such that

(2.2)

ω = e12 + e34 + e56,

ψ+ = e135 − e146 − e236 − e245,

ψ− = e136 + e145 + e235 − e246,

and J(e2k−1) = e2k, for k = 1, 2, 3, where the symbol eij··· is a shortening for
the wedge product of covectors ei ∧ ej ∧ · · · . The bases B and B∗ are said
to be adapted to the SU(3)-structure (ω, ψ+).

Let ∗g denote the Hodge operator induced by g and the orientation on
V. Working with respect to an adapted basis, it is immediate to check that
ψ− = ∗gψ+ and ∗gω = 1

2ω
2.
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The group SU(3) acts irreducibly on the spaces V ∗ and Λ5V ∗, while
the spaces Λ2V ∗ and Λ3V ∗ decompose into g-orthogonal irreducible SU(3)-
modules as follows (see e.g. [1, 4])

Λ2V ∗ = Λ2
1V

∗ ⊕ Λ2
6V

∗ ⊕ Λ2
8V

∗,

Λ3V ∗ = Λ3
ReV

∗ ⊕ Λ3
ImV

∗ ⊕ Λ3
6V

∗ ⊕ Λ3
12V

∗,

where the submodules Λ3
ReV

∗ and Λ3
ImV

∗ are one-dimensional, and ΛknV
∗

denotes an n-dimensional irreducible submodule of ΛkV ∗. In detail

Λ2
1V

∗ = Rω,

Λ2
6V

∗ = {∗g(α ∧ ψ+) | α ∈ V ∗} ,
Λ2
8V

∗ =
{

σ ∈ Λ2V ∗ | Jσ = σ and σ ∧ ω2 = 0
} ∼= su(3),

(2.3)

and

Λ3
ReV

∗ = Rψ+, Λ3
ImV

∗ = Rψ−,

Λ3
6V

∗ = {α ∧ ω | α ∈ V ∗} ,
Λ3
12V

∗ =
{

ρ ∈ Λ3V ∗ | ρ ∧ ω = 0 and ρ ∧ ψ± = 0
}

.

(2.4)

Moreover, the decomposition of the space Λ4V ∗ follows from that of Λ2V ∗

by applying the Hodge operator ∗g.
Notice that every σ ∈ Λ2

8V
∗ satisfies the identity ∗g(σ ∧ ω) = −σ, and

that the Hodge dual of every ρ ∈ Λ3
12V

∗ is given by ∗gρ = Jρ (see [1, Remark
2.7]).

3. From Type IIA geometry to symplectic SU(3)-structures

We now review the definition of a Type IIA geometry introduced in [10],
and we discuss how this type of geometric structure is related to symplectic
SU(3)-structures.

Let (M,ω) be a six-dimensional symplectic manifold and let φ ∈ Ω3(M)
be a definite 3-form, namely φ|x ∈ Λ3

−
(T ∗
xM) is definite at each point x of

M. We denote by Jφ ∈ End(TM) the almost complex structure induced by
φ and the orientation ω3. If φ is primitive with respect to ω, then ω is
of type (1, 1) with respect to Jφ and, consequently, the 2-covariant tensor
gφ := ω(·, Jφ·) is symmetric. In such a case, φ is said to be positive if gφ
defines a Riemannian metric. According to [10], the pair (ω, φ) is called a
Type IIA geometry if φ is closed, primitive and positive.
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Let (ω, φ) be a Type IIA geometry. Since φ is definite, its norm |φ| =
gφ(φ,φ)

1/2 is a nowhere vanishing function, and we can consider the complex
(3, 0)-form

Ψ :=
2

|φ| Φ =
2

|φ| φ+ i
2

|φ| Jφφ.

By [10], Jφφ = ∗gϕφ, where ∗gϕ denotes the Hodge operator determined by
gφ and the given orientation on M. Therefore, the real and imaginary parts
of Ψ

(3.1) ψ+ =
2

|φ| φ, ψ− =
2

|φ| Jφφ,

satisfy the normalization condition (2.1) everywhere on M. Consequently,
the pair (ω, ψ+) defines an SU(3)-structure on M.

Since ψ+ is proportional to φ, it is primitive and positive, and it induces
the same almost complex structure as φ, for any given orientation on M.
Therefore, the Riemannian metric gψ+ associated with the pair (ω, ψ+) as
explained before coincides with the metric gφ corresponding to the Type
IIA geometry (ω, φ). From now on, we shall refer to the pair (ω, ψ+) as the
symplectic SU(3)-structure corresponding to the Type IIA geometry (ω, φ),
and we shall denote the almost complex structure and Riemannian metric
associated with these structures by J and g, respectively.

By [4], the intrinsic torsion of an SU(3)-structure (ω, ψ+) is determined
by dω, dψ+ and dψ−. In detail, one can decompose these forms according
to the g-orthogonal decomposition of the bundle ΛkT ∗M that is induced by
the irreducible decomposition of the SU(3)-module ΛkV ∗, for k = 3, 4 (see
Section 2). Each summand corresponds then to a component of the intrinsic
torsion in the SU(3)-irreducible splitting of V ∗ ⊗ su(3)⊥. Using the notation
of [1], the decompositions of the spaces of 3- and 4-forms on M can be
described as follows

Ω3(M) = Ω3
Re(M)⊕ Ω3

Im(M)⊕ Ω3
6(M)⊕ Ω3

12(M),

Ω4(M) = Ω4
1(M)⊕ Ω4

6(M)⊕ Ω4
8(M),

(3.2)

where the definition of each summand follows from (2.3), (2.4) and the
correspondence Λ4

nV
∗ = ∗gΛ2

nV
∗.

As for the symplectic SU(3)-structure (ω, ψ+) corresponding to a Type
IIA geometry (ω, φ), we have dω = 0, and a direct computation using the
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expression (3.1) of ψ+ shows that

dψ+ = w1 ∧ ψ+ ∈ Ω4
6(M),

where w1 := d log 1
|φ| . Now, from the results of [1], we deduce that dψ− ∈

Ω4
6(M)⊕ Ω4

8(M), and that its Ω4
6(M)-component is Jw1 ∧ ψ+. Since Jφ =

∗gφ, we then obtain

dψ− = d log
1

|φ| ∧ ψ
− +

2

|φ| d ∗g φ = Jw1 ∧ ψ+ + w−

2 ∧ ω,

where we used the identity α ∧ ψ− = Jα ∧ ψ+, which holds for every 1-form
α on M, and we let

w−

2 :=
2

|φ| d
∗φ = − 2

|φ| ∗g d ∗g φ ∈ Ω2
8(M).

Therefore, the forms w1 and w−

2 are the torsion forms of the symplectic
SU(3)-structure (ω, ψ+) corresponding to a Type IIA geometry (cfr. [1,
Def. 2.10]).

The next proposition summarizes how certain properties of (ω, ψ+) - and,
thus, of (ω, φ) - are related to w1 and w−

2 . The proof immediately follows
from the results of [4] and the above expressions of the torsion forms.

Proposition 3.1. Let (ω, φ) be a Type IIA geometry with corresponding
symplectic SU(3)-structure (ω, ψ+). Then

i) J is integrable if and only if w−

2 = 0, and thus if and only if d∗φ = 0;

ii) dψ+ = 0 if and only if w1 = 0, and thus if and only if |φ| is constant;

iii) the holonomy group Hol(g) of the Riemannian metric g is a subgroup
of SU(3) if and only if w1 = 0 and w−

2 = 0, and thus if and only if |φ|
is constant and J is integrable.

Notice that the vanishing of the torsion forms w1 and w
−

2 is equivalent to
the vanishing of the intrinsic torsion of the SU(3)-structure (ω, ψ+). In such a
case, (ω, ψ+) is called torsion-free and the corresponding Riemannian metric
g is Ricci-flat, i.e., Ricg = 0. In particular, the almost Hermitian structure
(ω, J, g) is Kähler Ricci-flat.

Remark 3.2. Points i) and iii) of Proposition 3.1 can also be shown without
introducing the symplectic SU(3)-structure associated with (ω, φ), see [10].
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4. Special symplectic half-flat SU(3)-structures

We now focus on the case where the Type IIA geometry (ω, φ) is defined
by a 3-form φ of constant norm. This happens, for instance, when (M,ω, φ)
is a (locally) homogeneous space. Under this assumption, we have w1 = 0,
and thus the SU(3)-structure (ω, ψ+) corresponding to (ω, φ) satisfies the
conditions

dω = 0, dψ+ = 0, dψ− = w−

2 ∧ ω,

where w−

2 = d∗
(

2
|φ|φ

)

= d∗ψ+ ∈ Ω2
8(M). In the literature, these SU(3)-

structures are known as symplectic half-flat (SHF for short) [6, 25, 26, 29] or
special generalized Calabi-Yau [7, 8]. According to the classification by
Chiossi-Salamon [4], the symplectic SU(3)-structures we are considering con-
stitute the class W−

2 ⊕W5, while SHF structures determine the subclass
W−

2 .

From [4], we know that the almost complex structure J induced by a
SHF structure (ω, ψ+) is integrable if and only if w−

2 vanishes. Consequently,
the torsion form w−

2 determines the Nijenhuis tensor of J

NJ(X,Y ) =
1

4
([JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ]) .

In particular, their norms are related as follows

(4.1) |NJ |2 =
1

2
|w−

2 |2.

Moreover, by [1, Thm. 3.4], the scalar curvature of the metric g correspond-
ing to (ω, ψ+) is given by

Scalg = −1

2
|w−

2 |2,

and thus it vanishes identically if and only if (ω, ψ+) is torsion-free.
We summarize some further properties of the torsion form w−

2 in the
next lemma. For a proof, we refer the reader to [15, Lemma 5.1].

Lemma 4.1. Let (ω, ψ+) be a symplectic half-flat SU(3)-structure. Then,
the torsion form w−

2 = d∗ψ+ is coclosed, and its exterior differential decom-
poses as follows with respect to the decomposition (3.2) of Ω3(M)

(4.2) dw−

2 =
|w−

2 |2
4

ψ+ + γ,
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for a unique γ ∈ Ω3
12(M).

As a consequence, the following identities hold

(4.3)
dw−

2 ∧ ψ+ = ∗gdw−

2 ∧ ψ− = 0,

dw−

2 ∧ ψ− = ψ+ ∧ ∗gdw−

2 = |w−

2 |2 volg .

Moreover, if γ vanishes identically, then |w−

2 | is constant.

To the best of our knowledge, the currently known examples of com-
pact 6-manifolds admitting SHF structures are given by the 6-torus T6 (see
[8, 29]) and by certain nilmanifolds and solvmanifolds (see [6–8, 12, 29]). In
this last case, the 6-manifoldM is the compact quotient of a six-dimensional
simply connected nilpotent or solvable Lie group G by a cocompact discrete
subgroup (lattice) Γ ⊂ G, and the SHF structure (ω, ψ+) on M = Γ\G is
induced by a left-invariant one on G. In particular, (Γ\G, ω, ψ+) is a locally
homogeneous space that is not globally homogeneous. Indeed, the SHF struc-
ture (ω, ψ+) is preserved by the local diffeomorphisms of Γ\G induced by the
locally defined left translation action of G on Γ\G, while it is not preserved
by the transitive right translation action of G on Γ\G. Notice that examples
of this form may occur only when G is unimodular and solvable. Indeed, a
Lie group admits lattices only if it is unimodular [20], and a unimodular Lie
group admitting left-invariant symplectic structures must be solvable [5].

A left-invariant SHF structure on a Lie group G is determined by an
SU(3)-structure of the same type on the Lie algebra g of G and, conversely,
a SHF structure on a Lie algebra g gives rise to a left-invariant SHF structure
on every Lie group corresponding to g. The classification of the isomorphism
classes of nilpotent Lie algebras admitting SHF structures was given in [6],
while the analogous classification in the case of solvable Lie algebras was
obtained in [12]. Before summarizing these results in the next theorem, we
recall a useful notation. Given a six-dimensional Lie algebra g, its structure
equations with respect to a basis of covectors

(

e1, . . . , e6
)

are described by
the 6-tuple (de1, . . . , de6), where d denotes the Chevalley-Eilenberg differen-
tial of g.
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Theorem 4.2 ([6, 12]). Let g be a six-dimensional, unimodular, non-
abelian, solvable Lie algebra. Then, g admits symplectic half-flat SU(3)-
structures if and only if it is isomorphic to one of the following Lie algebras

e(1, 1)⊕ e(1, 1) = (0,−e13,−e12, 0,−e46,−e45);
g5,1 ⊕ R = (0, 0, 0, 0, e12, e13);

A−1,−1,1
5,7 ⊕ R = (e15,−e25,−e35, e45, 0, 0);
Aa,−a,15,17 ⊕ R = (ae15 + e25,−e15 + ae25,

− ae35 + e45,−e35 − ae45, 0, 0), a > 0;

g6,N3 = (0, 0, 0, e12, e13, e23);

g06,38 = (e23,−e36, e26, e26 − e56, e36 + e46, 0);

g
0,−1
6,54 = (e16 + e35,−e26 + e45, e36,−e46, 0, 0);

g
0,−1,−1
6,118 = (−e16 + e25,−e15 − e26, e36 − e45, e35 + e46, 0, 0).

The nilpotent Lie algebras appearing in the previous list are g5,1 ⊕ R and
g6,N3.

A 6-manifold M with an SU(3)-structure (ω, ψ+) is said to be homoge-
neous if it is acted on transitively by its automorphism group

Aut(M,ω, ψ+) = {f ∈ Diff(M) | f∗ω = ω, f∗ψ+ = ψ+} ,

or a subgroup thereof. By [26, Thm. 2.1], if M is compact and (ω, ψ+) is
a SHF structure that is not torsion-free, then the identity component of
Aut(M,ω, ψ+) is a k-torus with k ≤ min{5, b1(M)}. Consequently, a homo-
geneous SHF 6-manifold cannot be compact unless it is a flat torus with a
torsion-free SU(3)-structure.

The homogeneous examples given by six-dimensional Lie groups G with a
left-invariant SHF structure arise in the case where G ⊆ Aut(M,ω, ψ+) acts
simply transitively on M. More generally, if the transitive G-action is not
free, then M is G-equivariantly diffeomorphic to the quotient G/K, where
K is a compact subgroup of G, and the SHF-structure (ω, ψ+) on M = G/K
is G-invariant. If G is semisimple, the following classification result holds.

Theorem 4.3 ([25]). Let (M,ω, ψ+) be a symplectic half-flat 6-manifold
which is homogeneous under the action of a semisimple Lie group G. Then,
M is non-compact and one of the following situations occurs
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- M = SU(2, 1)/T2, and there exists a 1-parameter family of pairwise non-
homothetic and non-isomorphic invariant SHF structures;

- M = SO0(4, 1)/U(2), and there exists a unique invariant SHF structure
up to homothety.

In both cases, the Riemannian metric g induced by the SHF structure has
Hermitian Ricci tensor, namely Ricg(J ·, J ·) = Ricg.

Requiring the Ricci tensor to be Hermitian is a meaningful curvature
constraint for SHF structures. Indeed, a SHF structure whose Riemannian
metric g is Einstein must be torsion-free [1, Cor. 4.1], and the Hermitian
condition is a natural replacement of the Einstein condition on almost Kähler
manifolds, see [2].

Using the description of the Ricci tensor of an SU(3)-structure given in
[1], in [25] we proved that SHF structures with Hermitian Ricci tensor can
be characterized as follows.

Proposition 4.4 ([25]). A symplectic half-flat SU(3)-structure (ω, ψ+) has
Hermitian Ricci tensor if and only if

∆gψ
+ = λψ+.

When this happens, λ = 1
4 |w−

2 |2 and it is constant. Consequently, Scalg is
constant, too.

If (ω, ψ+) is a SHF structure with Hermitian Ricci tensor, then the pre-
vious result implies that ψ+ is an exact 3-form, as ∆gψ

+ = dd∗ψ+ = dw−

2 .
The converse is not true, as there exists an example of SHF structure (ω, ψ+)
on S3 × R3 such that ψ+ is exact and Ricg is not Hermitian, see [26]. This
example is complete and invariant under the natural cohomogeneity one
action of SO(4) on S3 × R3.

In addition to the non-compact homogeneous examples of Theorem 4.3,
an example of SHF structure with Hermitian Ricci tensor occurs on the Lie
algebra e(1, 1)⊕ e(1, 1), and thus on compact quotients of the corresponding
simply connected Lie group, see [29, Thm. 3.5] and Proposition 4.10 below.
We are not aware of the existence of further examples that are not (locally)
homogeneous. In fact, requiring ψ+ to be exact imposes strong constraints
on the symmetries of a compact SHF manifold (M,ω, ψ+), as the next result
shows.
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Proposition 4.5. The automorphism group of a compact symplectic half-
flat 6-manifold (M,ω, ψ+) with [ψ+] = 0 ∈ H3

dR(M) is finite.

Proof. The argument is analogous to the one used to show that exact G2-
structures do not have non-trivial infinitesimal symmetries [16]. Since M is
compact, the automorphism group Aut(M,ω, ψ+) is a compact Lie group
with Lie algebra

aut(M,ω, ψ+) = {X ∈ Γ(TM) | LXω = 0, LXψ = 0} .

Consider an infinitesimal automorphismX ∈ aut(M,ω, ψ+). Then, the forms
ιXω and ιXψ

+ are closed. Now, using general identities involving the forms
ω and ψ+ (see e.g. [15, Lemma 3.7]), we see that

ιXω ∧ ιXψ+ ∧ ψ+ = −2JX♭ ∧ ∗g(JX♭) = −2|X|2 volg .

Integrating the previous identity over M , using that ψ+ = dα, for some α ∈
Ω2(M), and that the forms ιXω, ιXψ

+ are closed, we obtain

−2

∫

M
|X|2volg =

∫

M
ιXω ∧ ιXψ+ ∧ ψ+ =

∫

M
d (ιXω ∧ ιXψ+ ∧ α) .

Using Stokes’ Theorem, we then conclude that X = 0. Consequently,
aut(M,ω, ψ+) = {0}, and the thesis follows. □

We now introduce a class of SHF structures that generalizes the class of
SHF structures with Hermitian Ricci tensor.

Definition 4.6. We say that a symplectic half-flat SU(3)-structure (ω, ψ+)
is special if its torsion form w−

2 is non-vanishing and satisfies the following
properties

i) ∆gw
−

2 = cw−

2 , for some real number c;

ii) dw−

2 ∧ w−

2 = 0;

iii) |dw−

2 |2 = c |w−

2 |2.

Before reviewing some known examples of special SHF structures, we
discuss the properties i)–iii) appearing in the definition. First, we observe
that SHF structures with Hermitian Ricci tensor are always special with
c = 1

4 |w−

2 |2.
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Proposition 4.7. Let (ω, ψ+) be a symplectic half-flat SU(3)-structure with
Hermitian Ricci tensor. Then, (ω, ψ+) is special, and its torsion form w−

2

satisfies the equation ∆gw
−

2 = cw−

2 for c = 1
4 |w−

2 |2.

Proof. Since ∆gψ
+ = dd∗ψ+ = dw−

2 , from Proposition 4.4 we see that

dw−

2 =
1

4
|w−

2 |2 ψ+,

and that |w−

2 | is constant. Since w−

2 is coclosed, taking the codifferential of
the previous identity gives ∆gw

−

2 = cw−

2 , with c = 1
4 |w−

2 |2. Moreover, the
identity dw−

2 ∧ w−

2 = 0 immediately follows, as w−

2 is of type (1, 1) with re-
spect to J. Finally, using Lemma 4.1, we see that

|dw−

2 |2 volg = dw−

2 ∧ ∗gdw−

2 =
1

4
|w−

2 |2 ψ+ ∧ ∗gdw−

2 =
1

4
|w−

2 |4 volg,

and thus |dw−

2 |2g = c |w−

2 |2g. □

In view of (4.2), the condition ii) is satisfied if and only if γ ∧ w−

2 = 0,
where γ is the Ω3

12(M)-component of dw−

2 . Moreover, it implies the identity
w−

2 ∧ ∗gdw−

2 = 0, since ∗gγ = Jγ and Jw−

2 = w−

2 (see Section 2). The condi-
tion ii) is related to a general property discussed in Section 5, and it will
play a role in the proof of Theorem 6.4. However, it might not be satisfied
by the torsion form of a generic SHF structure.

Under certain assumptions, the condition iii) follows from i), as the next
result shows.

Proposition 4.8. Let (ω, ψ+) be a symplectic half-flat SU(3)-structure on
a 6 manifold M, and assume that ∆gw

−

2 = cw−

2 , for some real number c.
Then, the identity |dw−

2 |2 = c |w−

2 |2 holds in the following cases:

1) M is compact and both |dw−

2 | and |w−

2 | are constant. This holds, in par-
ticular, if (M,ω, ψ+) is compact and locally homogeneous;

2) M = G is a unimodular Lie group, and (ω, ψ+) is left-invariant.

Proof.

1) Let (α, β)g =
∫

M α ∧ ∗gβ denote the L2 inner product on Ωk(M) induced
by g. Then,

|dw−

2 |2Vol(M) = (dw−

2 , dw
−

2 )g = (d∗dw−

2 , w
−

2 )g

= (∆gw
−

2 , w
−

2 )g = c |w−

2 |2Vol(M).
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2) We can work on the Lie algebra g of G with the SHF structure (ω, ψ+)
induced by the left-invariant one on G. Let d denote the Chevalley-
Eilenberg differential of g. Since the Lie group is unimodular, every 5-form
on g is d-closed. Consequently, we see that

|dw−

2 |2 volg = dw−

2 ∧ ∗gdw−

2

= d (w−

2 ∧ ∗gdw−

2 )− w−

2 ∧ d ∗g dw−

2 = −w−

2 ∧ d ∗g dw−

2 .

Now, we have cw−

2 = ∆gw
−

2 = − ∗g d ∗g dw−

2 , whence it follows that
c ∗g w−

2 = −d ∗g dw−

2 . Combining this identity with the previous one, the
thesis follows. □

In Definition 4.6, the eigenvalue c is assumed to be a real constant. In
the next result, we obtain a bound on its possible values that depends only
on the condition iii).

Proposition 4.9. Let (ω, ψ+) be a symplectic half-flat SU(3)-structure such

that |dw−

2 |2 = c |w−

2 |2, for some real number c. Then, c ≥ |w−

2 |2
4 and the equal-

ity holds if and only if (ω, ψ+) has Hermitian Ricci tensor.

Proof. From the decomposition dw−

2 = |w−

2 |2
4 ψ+ + γ given in Lemma 4.1, we

deduce that

|dw−

2 |2 =
|w−

2 |4
4

+ |γ|2,

as the summands are g-orthogonal and |ψ+| = 2. Then, the identity |dw−

2 |2 =
c |w−

2 |2 implies c ≥ |w−

2 |2
4 . Moreover, c = |w−

2 |2
4 if and only if |γ| = 0. This last

condition is equivalent to Ricg being Hermitian by Proposition 4.4. □

Thus, among all SHF structures satisfying the condition iii) of Defini-
tion 4.6, SHF structures with Hermitian Ricci tensor can be characterized
as those for which the eigenvalue c attains the minimum possible value.

As we observed in [15], SHF structures satisfying the conditions i)–iii)
of Definition 4.6 occur on every unimodular Lie algebra admitting SHF
structures. Thus, there exist various examples of compact 6-manifolds with a
special SHF structure that are locally homogeneous. In the next proposition,
we summarize some relevant properties of the examples considered in [15].
We refer the reader to Appendix A for further details.

Proposition 4.10 ([15]). Every unimodular Lie algebra admitting sym-
plectic half-flat SU(3)-structures also admits special symplectic half-flat
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SU(3)-structures. The values of c and |w−

2 |2 for an example of such a struc-
ture on each Lie algebra are summarized in the following list:

e(1, 1)⊕ e(1, 1) : c = 2, |w−

2 |2 = 8;

g5,1 ⊕ R : c = 2, |w−

2 |2 = 2;

A−1,−1,1
5,7 ⊕ R : c = 4, |w−

2 |2 = 8;

Aa,−a,15,17 ⊕ R : c = 4a2, |w−

2 |2 = 8a2;

g6,N3 : c = 6, |w−

2 |2 = 6;

g06,38 : c = 6, |w−

2 |2 = 6;

g
0,−1
6,54 : c = 2, |w−

2 |2 = 6;

g
0,−1,−1
6,118 : c = 4, |w−

2 |2 = 8.

Remark 4.11. The example on e(1, 1)⊕ e(1, 1) has Hermitian Ricci tensor
by Proposition 4.9, as c = 1

4 |w−

2 |2. In the remaining examples, the possible
values of c are |w−

2 |2, 1
2 |w−

2 |2 and 1
3 |w−

2 |2.

Summing up, special SHF structures exist on all known homogeneous
and compact locally homogeneous spaces admitting invariant SHF struc-
tures, and the known examples have c ∈

{

|w−

2 |2, 12 |w−

2 |2, 13 |w−

2 |2, 14 |w−

2 |2
}

,
with c = 1

4 |w−

2 |2 if and only if the SHF structure has Hermitian Ricci tensor.
This naturally leads to the question whether there exist further examples of
6-manifolds that admit a special SHF structure and that are not (locally)
homogeneous. However, it may also happen that (some of) the conditions
i)–iii) force a SHF 6-manifold (M,ω, ψ+) to be locally homogeneous. We
leave this as an open problem.

On the other hand, there exist examples of SHF structures that are not
special according to Definition 4.6. These examples include the family of SHF
structures on the 6-torus constructed in [8], the complete cohomogeneity one
SHF structure on S3 × R3 obtained in [26], and the SHF structure on the
Lie algebra g

0,−1
6,54 given in [29, Ex. 3.1].

Going back to Type IIA geometry, we introduce the following definition
for those Type IIA geometries inducing special SHF structures.

Definition 4.12. A Type IIA geometry (ω, φ) is special if φ has constant
norm and the corresponding symplectic half-flat SU(3)-structure is special.
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Since w−

2 = d∗
(

2
|φ|φ

)

, the conditions i)–iii) of Definition 4.6 can be easily

restated in terms of d∗φ.

5. Two useful lemmas

In this section, we discuss some results that are related to the properties
of a special SHF structure and that might be of some interest in their own
right.

Let us consider a six-dimensional vector space V with an SU(3)-structure
(ω, ψ+) inducing the complex structure J and the metric g. The space
Sym(V ) of symmetric endomorphisms of V decomposes into irreducible
SU(3)-modules as follows

Sym(V ) = R Id⊕ Sym+

0
(V )⊕ Sym−(V ),

where

Sym+

0
(V ) := {A ∈ Sym(V ) | AJ = JA and tr(A) = 0} ,

Sym−(V ) := {S ∈ Sym(V ) | SJ = −JS} .

Moreover, we have the following isomorphisms of SU(3)-representations

Σ8 : Sym
+

0
(V ) → Λ2

8V
∗, A 7→ g(AJ ·, ·),

Σ12 : Sym
−(V ) → Λ3

12V
∗, S 7→ S∗ψ

+ = −ψ+(S·, ·, ·)
− ψ+(·, S·, ·)− ψ+(·, ·, S·),

see for instance [1, 21].

The first result we discuss gives some insights on the condition ii) of
Definition 4.6 and singles out a basis that might be useful for computations
involving special SHF structures.

Lemma 5.1. Consider two endomorphisms A ∈ Sym+

0
(V ) and S ∈

Sym−(V ), and let σ := Σ8(A) ∈ Λ2
8V

∗ and ρ := Σ12(S) = S∗ψ+ ∈ Λ3
12V

∗.
Then, A and S commute if and only if σ ∧ ρ = 0. Whenever this happens,
there exists a unitary basis of V formed by common eigenvectors of A and
S.

Proof. Let B = (e1, . . . , e6) be a g-orthonormal basis of V that is adapted
to (ω, ψ+), and denote by B∗ = (e1, . . . , e6) its dual basis. Two generic sym-
metric endomorphisms A ∈ Sym+

0
(V ) and S ∈ Sym−(V ) have the following
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matrix representations with respect to the basis B

A =

















a11 0 a13 a14 a15 a16
0 a11 −a14 a13 −a16 a15
a13 −a14 a33 0 a35 a36
a14 a13 0 a33 −a36 a35
a15 −a16 a35 −a36 −a11 − a33 0
a16 a15 a36 a35 0 −a11 − a33

















,

S =

















s11 s12 s13 s14 s15 s16
s12 −s11 s14 −s13 s16 −s15
s13 s14 s33 s34 s35 s36
s14 −s13 s34 −s33 s36 −s35
s15 s16 s35 s36 s55 s56
s16 −s15 s36 −s35 s56 −s55

















,

for some real numbers aij and skl.
Using the correspondences σ = Σ8(A) and ρ = Σ12(S) = S∗ψ+, we ob-

tain

σ = a11e
12 − a14e

13 + a13e
14 − a16e

15 + a15e
16 − a13e

23 − a14e
24 − a15e

25

− a16e
26 + a33e

34 − a36e
35 + a35e

36 − a35e
45 − a36e

46

+ (−a11 − a33)e
56,

ρ = 2s16e
123 + 2s15e

124 − 2s14e
125 − 2s13e

126 − 2s36e
134

+ (−s55 − s11 − s33)e
135 + (s12 − s56 + s34)e

136 + (s56 + s12 − s34)e
145

+ (s11 − s55 − s33)e
146 + 2s36e

156 − 2s35e
234 + (s56 − s12 + s34)e

235

+ (s33 − s55 − s11)e
236 + (s55 − s11 − s33)e

245 + (s56 + s12 + s34)e
246

+ 2s35e
256 + 2s14e

345 + 2s13e
346 − 2s16e

356 − 2s15e
456.

Now, a computation shows that

σ ∧ ρ = p1e
12345 + p2e

12346 + p3e
12356 + p4e

12456 + p5e
13456 + p6e

23456,

where p1, . . . , p6 are certain homogeneous polynomials of degree 2 in aij and
skl, and that the matrix representation of the skew symmetric endomorphism
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AS − SA with respect to the basis B is given by

AS − SA =
1

2

















0 0 p2 p1 −p4 −p3
0 0 p1 −p2 −p3 p4

−p2 −p1 0 0 p6 p5
−p1 p2 0 0 p5 −p6
p4 p3 −p6 −p5 0 0
p3 −p4 −p5 p6 0 0

















.

From this, we see that A and S commute if and only if σ ∧ ρ = 0. Con-
sequently, whenever σ ∧ ρ = 0, there exists a basis B̃ = (ẽ1, . . . , ẽ6) of V
formed by common eigenvectors of A and S that is unitary, namely B̃ is g-
orthonormal and Jẽ2k−1 = ẽ2k, for k = 1, 2, 3. More in detail, the spectrum
of A is of the form (λ1, λ1, λ2, λ2, λ3, λ3), for some λ1, λ2, λ3 ∈ R with λ1 +
λ2 + λ3 = 0, the spectrum of S is of the form (µ1,−µ1, µ2,−µ2, µ3,−µ3), for
some µ1, µ2, µ3 ∈ R, and we have

Aẽ1 = λ1ẽ1, Aẽ2 = λ1ẽ2, Aẽ3 = λ2ẽ3,

Aẽ4 = λ2ẽ4, Aẽ5 = λ3ẽ5, Aẽ6 = λ3ẽ6,

Sẽ1 = µ1ẽ1, Sẽ2 = −µ1ẽ2, Sẽ3 = µ2ẽ3,

Sẽ4 = −µ2ẽ4, Sẽ5 = µ3ẽ5, Sẽ6 = −µ3ẽ6.

Since the basis B̃ is unitary, the expressions of the forms ω, ψ+ and ψ− with
respect to the dual basis B̃∗ = (ẽ1, . . . , ẽ6) are the following

ω = ẽ12 + ẽ34 + ẽ56,

ψ+ = cos(θ)
(

ẽ135 − ẽ146 − ẽ236 − ẽ245
)

+ sin(θ)
(

ẽ136 + ẽ145 + ẽ235 − ẽ246
)

,

ψ− = cos(θ)
(

ẽ136 + ẽ145 + ẽ235 − ẽ246
)

− sin(θ)
(

ẽ135 − ẽ146 − ẽ236 − ẽ245
)

,

(5.1)

for some θ ∈ [0, 2π). In particular, θ = 0 if and only if the basis B̃ is special
unitary, namely if and only if it is adapted to the SU(3)-structure (ω, ψ+).

□

From the previous discussion, we know that, at each point x of a manifold
M with a special SHF structure (ω, ψ+), the component of dw−

2 in Λ3
12(T

∗
xM)

is of the form S∗ψ+, for some S ∈ Sym−(TxM). In the known examples where
such a component is not zero, i.e., those whose Ricci tensor is not Hermitian,
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the endomorphism S satisfies some constraints. In detail, one of the following
occurs:

• S has rank 2 and its spectrum is of the form (0, 0, 0, 0, µ,−µ), with µ =
±1

4 |w−

2 |2;
• S has rank 6 and its spectrum is of the form (µ,−µ, µ,−µ, µ,−µ), with
either µ = −1

4 |w−

2 |2 or µ = 1
12 |w−

2 |2,

see Appendix A for the explicit expressions. The first possibility holds for
the examples on the Lie algebras A−1,−1,1

5,7 ⊕ R, Aa,−a,15,17 ⊕ R, g0,−1,−1
6,118 , while

the second possibility holds for the examples on g5,1 ⊕ R, g6,N3, g
0
6,38 (µ =

−1
4 |w−

2 |2) and g
0,−1
6,54 (µ = 1

12 |w−

2 |2). Notice that, in both cases, there exists
a basis formed by eigenvectors of S that is adapted to the SU(3)-structure
(ω, ψ+).

Let us consider again a vector space V with an SU(3)-structure (ω, ψ+).
As we observed in the proof of Lemma 5.1, the spectrum of an endomor-
phism S ∈ Sym−(V ) is of the form (µ1,−µ1, µ2,−µ2, µ3,−µ3), for some real
numbers µ1, µ2, µ3. We now show a result that, when applied to a manifold
with a special SHF structure, gives a (pointwise) relation among the con-
stant c appearing in Definition 4.6, the norm of the torsion form w−

2 , and the
eigenvalues of S. More generally, this result holds for every SHF structure
satisfying condition iii) of Definition 4.6.

Lemma 5.2. Let ρ = S∗ψ+ ∈ Λ3
12V

∗, where S ∈ Sym−(V ), and let w and
c be non-zero real constants. Consider the 3-form β = w2

4 ψ
+ + ρ ∈ Λ3

ReV
∗ ⊕

Λ3
12V

∗, and assume that |β|2 = cw2. Then

µ21 + µ22 + µ23 =
1

4
w2

(

c− 1

4
w2

)

,

where (µ1,−µ1, µ2,−µ2, µ3,−µ3) is the spectrum of S.

Proof. Since S is symmetric and anticommutes with J, there exists a unitary
basis of V formed by eigenvectors of S. Let B = (e1, . . . , e6) be such a basis
and denote by B∗ = (e1, . . . , e6) its dual basis. Recall that B is g-orthonormal
and that Je2k−1 = e2k, for k = 1, 2, 3. Moreover, we have

Se1 = µ1e1, Se2 = −µ1e2, Se3 = µ2e3,

Se4 = −µ2e4, Se5 = µ3e5, Se6 = −µ3e6.
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As we recalled in the proof of Lemma 5.1, there exists some θ ∈ [0, 2π) such
that ψ+ and ψ− can be written as in (5.1) with respect to B∗.

Since ∗gβ = w2

4 ψ
− + ∗gρ and the spaces Λ3

ReV
∗ and Λ3

12V
∗ are g-

orthogonal, the condition |β|2 = cw2 can be rewritten as follows

cw2 = |β|2 = ∗g(β ∧ ∗gβ) =
1

4
w4 + |ρ|2.

To get the thesis, it is then sufficient to compute |ρ|2. With respect to the
basis B∗, we have

ρ = − cos(θ)
[

(µ1 + µ2 + µ3) e
135 + (−µ1 + µ2 + µ3) e

146

+ (µ1 − µ2 + µ3) e
236 + (µ1 + µ2 − µ3) e

245
]

− sin(θ)
[

(µ1 + µ2 − µ3) e
136 + (µ1 − µ2 + µ3) e

145

+ (−µ1 + µ2 + µ3) e
235 + (µ1 + µ2 + µ3) e

246
]

,

and from this we obtain |ρ|2 = 4
(

µ21 + µ22 + µ23
)

. □

From the previous lemma, we see that if S has spectrum (0, 0, 0, 0, µ,−µ),
for some µ ∈ R, then

(5.2) µ2 =
1

4
w2

(

c− 1

4
w2

)

,

while if S has spectrum (µ,−µ, µ,−µ, µ,−µ), then

(5.3) µ2 =
1

12
w2

(

c− 1

4
w2

)

.

Moreover, S = 0 ∈ Sym−(V ) if and only if c = 1
4w

2. This is consistent with
Proposition 4.9.

6. The source-free type IIA flow starting at a special
Type IIA geometry

We now focus on the source-free Type IIA flow starting at a special Type
IIA geometry (ω, φ0) on a 6-manifold M

(6.1)

{

∂
∂tφ(t) = dJtd

∗t

(

|φ(t)|2g(t)φ(t)
)

,

φ(0) = φ0,
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where we let Jt := Jφ(t). Recall that, by definition, the norm of φ0 is assumed
to be constant. In the following, we shall use the subscript 0 to denote all
tensors induced by (ω, φ0) but the torsion form of the corresponding SHF
structure (ω, ψ+

0
)

(6.2) w−

2 =
2

|φ0|0
d∗0φ0 = d∗0

(

2

|φ0|0
φ0

)

.

Here and henceforth, the symbol | · |0 denotes a norm induced by g0.

We begin considering the case where the metric g0 has Hermitian Ricci
tensor. Under this assumption, we can show that the solution to the Type
IIA flow (6.1) evolves only by scaling the initial datum φ0, namely it is
self-similar.

Theorem 6.1. Let (ω, φ0) be a Type IIA geometry such that F0 := |φ0|0 is
constant and the Ricci tensor of g0 is Hermitian. Then, a solution to the
source-free Type IIA flow starting at φ0 is

φ(t) =
1

√

1− 2cF 2
0
t
φ0,

where c = 1
4 |w−

2 |20 , and it exists for all t ∈
(

−∞, 1
2cF 2

0

)

. This is the unique

solution to the flow when the manifold is compact. Moreover, 1
|φ(t)|g(t)φ(t) =

1
F0
φ0, and the SU(3)-structure corresponding to (ω, φ(t)) is constant along

the flow.

Proof. Since |φ0|0 is constant and the Ricci tensor of g0 is Hermitian, by
Proposition 4.4 we know that |w−

2 |20 is constant and we obtain

∆g0φ0 =
|w−

2 |20
4

φ0 = c φ0.

This suggests the following Ansatz for the solution of (6.1)

φ(t) = h(t)φ0,

where h(t) is a real valued smooth function defined in some neighborhood
of 0 ∈ R and such that h(0) = 1. Since φ(t) is proportional to φ0, the almost
complex structure Jt induced by (ω, φ(t)) coincides with J0. Consequently,
g(t) = g0 as long as φ(t) exists, and we see that |φ(t)|2g(t) = F 2

0
h(t)2 is a
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function of t only. Now, since φ0 is closed and d∗0φ0 is J0-invariant, the RHS
of the flow equation in (6.1) can be rewritten as follows

dJtd
∗t

(

|φ(t)|2g(t)φ(t)
)

= F 2
0
h(t)3 dJ0d

∗0φ0 = F 2
0
h(t)3∆g0φ0 = F 2

0
h(t)3 c φ0.

Consequently, under our Ansatz, the Type IIA flow starting at φ0 is equiv-
alent to the following initial value problem for h(t)

{

d
dth(t) = F 2

0
c h(t)3,

h(0) = 1.

From this, the thesis follows. □

Examples where the previous theorem applies include the homogeneous
spaces SU(2, 1)/T2 and SO0(4, 1)/U(2) with their invariant SHF structures
described in [25], and the Lie algebra e(1, 1)⊕ e(1, 1) with the SHF structure
given in [29, Thm. 3.5]. The solution to the Type IIA flow on this last space
was investigated in [10, Sect. 9.3.2], where the authors considered a family
of SHF structures including the one with Hermitian Ricci tensor.

We now focus on the more general case where (ω, φ0) is a special Type
IIA geometry. Let (ω, ψ+

0
) be the special SHF structure corresponding to

(ω, φ0). Then, dψ
−

0
= w−

2 ∧ ω = − ∗g0 w−

2 , where the torsion form w−

2 is given
by (6.2) and it satisfies the conditions ∆g0w

−

2 = cw−

2 , dw
−

2 ∧ w−

2 = 0, and
|dw−

2 |20 = c |w−

2 |20 . According to the discussion in Section 5, the component
of dw−

2 in Ω3
12(M) is of the form S∗ψ+, for some section S of the bundle

Sym−(TM) of g0-symmetric endomorphisms anticommuting with J0.
Assuming that (M,ω, φ0) is locally homogeneous, we get the additional

condition |w−

2 |0 ∈ R+ and we see that Sx ∈ Sym−(TxM) has the same spec-
trum at every point x ofM. As we observed in Section 5, all known examples
of this type have some restrictions on c and on S. In detail, if S is not zero,
then its rank is either 2 or 6 and it has two non-zero eigenvalues ±µ, for some
µ ∈ R∖ {0}. Moreover, c, µ and |w−

2 |0 are related by one of the equations
(5.2) and (5.3). The possible values of c are |w−

2 |20 , 1
2 |w−

2 |20 and 1
3 |w−

2 |20 , and
the corresponding values of µ are −1

4 |w−

2 |20 , ±1
4 |w−

2 |20 , and 1
12 |w−

2 |20 , respec-
tively. On the other hand, S is zero if and only if the SHF structure (ω, ψ+

0
)

has Hermitian Ricci tensor, and thus c = 1
4 |w−

2 |20 .
Motivated by Theorem 6.1, we look for a suitable Ansatz that allows

us to determine the solution of the flow (6.1) when (M,ω, φ0) is locally
homogeneous and the special SHF structure satisfies one of the previous
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conditions. We consider the following

(6.3) φ(t) = φ0 +
a(t)

F0

∆g0φ0,

where F0 := |φ0|0 and a(t) is a real valued smooth function defined in some
connected interval I ⊆ R containing 0 and such that a(0) = 0. Notice that
the solution determined in Theorem 6.1 can be written in this form by
choosing

(6.4) a(t) =
F0

c
(h(t)− 1) =

F0

c

(

1
√

1− 2cF 2
0
t
− 1

)

.

Since φ0 is closed and its norm F0 is constant, using (6.2) we can
rewrite (6.3) as follows

φ(t) = φ0 +
a(t)

F0

∆g0φ0 = φ0 +
a(t)

2
dw−

2 .

Thus, φ(t) is closed and primitive with respect to ω (cfr. Lemma 4.1).
Moreover, φ(t) is positive when t is sufficiently close to 0, as φ0 is posi-
tive, a(0) = 0, and being positive is an open condition. Therefore, the pair
(ω, φ(t)) defines a Type IIA geometry such that φ(0) = φ0, for t sufficiently
close to 0. In particular, we can consider the corresponding SU(3)-structure
(ω, ψ+

t ).
Let Ft := |φ(t)|g(t). By definition, we have

ψ+

t =
2

Ft
φ(t) =

F0

Ft
ψ+

0
+
a(t)

Ft
dw−

2 =
F0

Ft

(

ψ+

0
+
a(t)

F0

dw−

2

)

.

Since (M,ω, φ0) is locally homogeneous, Ft is a function of t only and, con-
sequently, ψ+

t is closed. Thus, the SU(3)-structure (ω, ψ+

t ) is SHF.
The restrictions on c and S mentioned above allow us to determine the

expression of Ft and ψ−

t = Jtψ
+

t with the help of the results discussed in
Section 5. In detail, we have the following.

Proposition 6.2. Assume that at some point x of M (and thus at each
point of the manifold) the endomorphism S ∈ Sym−(T ∗

xM) satisfies one of
the following conditions:

a) S has rank 2 and spectrum (0, 0, 0, 0, µ,−µ), with either µ = 1
4 |w−

2 |20 or
µ = −1

4 |w−

2 |20 ;
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b) S has rank 6 and spectrum (µ,−µ, µ,−µ, µ,−µ), with either µ = −1
4 |w−

2 |20
or µ = 1

12 |w−

2 |20 , and there exists a basis of TxM formed by eigenvectors
of S that is adapted to the special SHF structure (ω, ψ+

0
).

Then,

(6.5) Ft = F0

(

1 +
c

F0

a(t)

)

|w−

2 |20
4c

,

and

(6.6) ψ−

t = Jtψ
+

t =
Ft
F0

(

ψ−

0
− a(t)

F0 + c a(t)
∗g0 dw−

2

)

,

where the constants c, µ and |w−

2 |20 are related by equation (5.2) in the case a)
and by equation (5.3) in the case b).

Proof. The identities can be shown via a pointwise computation with respect
to a suitable basis of the tangent space.

In the case a), we have c = 1
2 |w−

2 |20 = ±2µ, and we consider a basis
B = (e1, . . . , e6) of TxM formed by eigenvectors of S that is unitary with
respect to the almost Hermitian structure (g0, J0). It is not restrictive to
assume that Se1 = µe1, Se2 = −µe2 and Sek = 0 otherwise. With respect
to the dual basis B∗ = (e1, . . . , e6) of B, the 3-form ψ+

0
can be written

as in (5.1) for some θ ∈ [0, 2π). We can then determine the expression of
dw−

2 = 1
4 |w−

2 |20ψ+

0
+ S∗ψ+

0
with respect to B∗ in the same fashion as in the

proof of Lemma 5.2.
Since φ(t) = φ0 +

a(t)
2 dw−

2 = F0

2 ψ
+

0
+ a(t)

2 dw−

2 , at x we have

φ(t) =
cos(θ)

2

(

F0 + a(t)

( |w−

2 |20
4

− µ

))

(

e135 − e146
)

− cos(θ)

2

(

F0 + a(t)

( |w−

2 |20
4

+ µ

))

(

e236 + e245
)

+
sin(θ)

2

(

F0 + a(t)

( |w−

2 |20
4

− µ

))

(

e136 + e145
)

+
sin(θ)

2

(

F0 + a(t)

( |w−

2 |20
4

+
c

2

))

(

e235 − e246
)

.

Using the general identity from [10, Lemma 4]

(6.7)
√

−P (φ) = 1

2
|φ|2,
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and the definition of the polynomial P (φ), we see that

Ft =

√

(

F0 + a(t)

( |w−

2 |20
4

− µ

))(

F0 + a(t)

( |w−

2 |20
4

+ µ

))

,

and thus (6.5) is verified when c = 1
2 |w−

2 |20 = ±2µ. We then compute the
almost complex structure Jt induced by (ω, ψ+

t ) using the definition recalled
in Section 2, obtaining

Jte1 =
F0 + a(t)

(

|w−

2 |20
4 − µ

)

F0 + a(t)
(

|w−

2 |20
4 + µ

)e2, Jte2 = −
F0 + a(t)

(

|w−

2 |20
4 + µ

)

F0 + a(t)
(

|w−

2 |20
4 − µ

)e1,

and Jte2k−1 = e2k, for k = 2, 3. It is now possible to compute the expression
of ψ−

t = Jtψ
+

t with respect to B∗ and conclude that (6.6) holds when c =
1
2 |w−

2 |20 = ±2µ.
In the case b), we have either c = |w−

2 |20 = −4µ or c = 1
3 |w−

2 |20 = 4µ.
Moreover, by hypothesis there exists a basis B = (e1, . . . , e6) of TxM formed
by eigenvectors of S that is adapted to (ω, ψ+

0
). Thus, we have

Se2k−1 = µe2k−1, Se2k = −µe2k, k = 1, 2, 3,

and we can write ψ+ and ψ− as in (2.2) with respect to the dual basis of B.
We then compute

Ft =
4

√

(

F0 + a(t)

( |w−

2 |20
4

+ µ

))3(

F0 + a(t)

( |w−

2 |20
4

− 3µ

))

,

from which we see that (6.5) holds. We can then proceed in a similar way
as in the case a) computing the expression of Jt and then checking (6.6), so
we omit the detail. □

Notice that the identities (6.5) and (6.6) also hold for the solution to
the Type IIA flow considered in Theorem 6.1, as in that case a(t) is given
by (6.4) and c = 1

4 |w−

2 |20 . Thus, the same conclusions of Proposition 6.2 hold
when S = 0.

Remark 6.3. The equations (5.2) and (5.3) are a consequence of Lemma
5.2, and thus of the identity |dw−

2 |20 = c |w−

2 |20 of Definition 4.6. When ψ−

t is
given by (6.6), the normalization condition for the SU(3)-structure (ω, ψ+

t )
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follows from this identity. Indeed, using it together with the general identi-
ties (4.3), we have

ψ+

t ∧ ψ−

t = ψ+

0
∧ ψ−

0
− a(t)

F0 + c a(t)
ψ+

0
∧ ∗g0dw−

2 +
a(t)

F0

dw−

2 ∧ ψ−

0

− (a(t))2

F0(F0 + c a(t))
|dw−

2 |20 volg

= ψ+

0
∧ ψ−

0
+

(

− a(t)

F0 + c a(t)
+
a(t)

F0

− (a(t))2

F0(F0 + c a(t))
c

)

|w−

2 |20 volg

=
2

3
ω3.

In the next theorem, we show that the Type IIA flow is equivalent to an
initial value problem for the function a(t) under the Ansatz (6.3) whenever
ψ−

t is given by (6.6). This will allow us to solve the flow starting at any of
the known examples of (locally) homogeneous special Type IIA geometries.
As we will see in the proof, the expression of Ft given in Proposition 6.2 also
follows from the flow equation.

Theorem 6.4. Let (M,ω, φ0) be a locally homogeneous 6-manifold with an
invariant special Type IIA geometry. Consider the 3-form

φ(t) = φ0 +
a(t)

F0

∆g0φ0,

where a(t) is a real valued function defined in some neighborhood of 0 ∈ R

and such that a(0) = 0, and let (ω, ψ+

t ) be the SHF structure corresponding
to the Type IIA geometry (ω, φ(t)). Assume that

ψ−

t =
Ft
F0

(

ψ−

0
− a(t)

F0 + c a(t)
∗g0 dw−

2

)

.

Then, φ(t) solves the source-free Type IIA flow starting at φ0 if and only if
a(t) solves the initial value problem

(6.8)















d

dt
a(t) = F 3

0

(

1 +
c

F0

a(t)

)

|w−

2 |20
c − 1

,

a(0) = 0.

Moreover, this is the unique solution to the flow starting at φ0 if M is
compact.
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Proof. We begin computing the expression of the torsion form w−

2 (t) of
the SHF structure (ω, ψ+

t ). Since ∆g0w
−

2 = cw−

2 , we have d ∗g0 dw−

2 = −c ∗g0
w−

2 = cw−

2 ∧ ω. Therefore

dψ−

t =
Ft
F0

(

dψ−

0
− a(t)

F0 + c a(t)
d ∗g0 dw−

2

)

=
Ft

F0 + c a(t)
w−

2 ∧ ω.

The assumption dw−

2 ∧ w−

2 = 0 ensures that w−

2 ∈ Ω2
8(M), where this space

is now determined by the SU(3)-structure (ω, ψ+

t ). Indeed, w
−

2 ∧ ω2 = 0 and
w−

2 ∧ ψ+

t = 0, whence it follows that Jtw
−

2 = w−

2 . By the uniqueness of the
torsion form w−

2 (t), we conclude that

w−

2 (t) =
Ft

F0 + c a(t)
w−

2 .

Now, since Ft depends only on t, and d∗tφ(t) = Ft

2 w
−

2 (t), we see that the
RHS of the flow equation in (6.1) becomes

dJtd
∗t

(

F 2
t φ(t)

)

=
F 3
t

2
dw−

2 (t) =
1

2

F 4
t

F0 + c a(t)
dw−

2 ,

as w−

2 (t) is Jt-invariant. On the other hand, we have

∂

∂t
φ(t) =

1

2

d

dt
a(t) dw−

2 .

Therefore, the 3-form φ(t) given by (6.3) solves the source-free Type IIA
flow equation if and only if a(t) solves the ODE

(6.9)
d

dt
a(t) =

F 4
t

F0 + c a(t)
.

We now show that the expression of Ft given in Proposition 6.2 can
also be obtained from the flow equation. We know from [10, (7.28)] that the
function u(t) = logF 2

t evolves as follows along the source-free Type IIA flow

∂

∂t
u(t) = eu(t)

(

∆g(t)u(t) + 2 |du(t)|2g(t) + |NJt
|2g(t)

)

.

Under our assumptions, u(t) is a function of t only, and this equation be-
comes

(6.10)
∂

∂t
u(t) = eu(t)|NJt

|2g(t).
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From (4.1), we know that |NJt
|2g(t) = 1

2 |w−

2 (t)|2g(t). Since volg(t) =
1
6 ω

3 =

volg0 and w−

2 (t) ∈ Ω2
8(M), we can compute the norm of w−

2 (t) as follows

|w−

2 (t)|2g(t) volg(t) = w−

2 (t) ∧ ∗g(t)w−

2 (t) = −w−

2 (t) ∧ w−

2 (t) ∧ ω

= −
(

Ft
F0 + c a(t)

)2

w−

2 ∧ w−

2 ∧ ω

=

(

Ft
F0 + c a(t)

)2

|w−

2 |20 volg0 .

Substituting this last expression into the equation (6.10), we then obtain

(6.11)
d

dt
Ft =

1

4

F 5
t

(F0 + c a(t))2
|w−

2 |20 .

Combining the ODEs (6.9) and (6.11) and using that a(0) = 0, we get

Ft = F0

(

1 +
c

F0

a(t)

)

|w−

2 |20
4c

,

that is precisely (6.5). Consequently, we have

d

dt
a(t) =

F 4
t

F0 + c a(t)
= F 3

0

(

1 +
c

F0

a(t)

)

|w−

2 |20
c − 1

.

Finally, the uniqueness of the solution when M is compact follows from [10,
Thm. 2]. □

Remark 6.5. In the statement of Theorem 6.4 it is possible to replace the
hypothesis on (M,ω, φ0) with one of the following:

1) (M,ω, φ0) is compact locally homogeneous and the SHF structure (ω, ψ+

0
)

satisfies the conditions i) and ii) of Definition 4.6;

2) M = G is a unimodular Lie group with a left-invariant Type IIA geome-
try (ω, φ0) and the SHF structure (ω, ψ+

0
) satisfies the conditions i) and ii)

of Definition 4.6.

Indeed, Proposition 4.8 ensures that the identity |dw−

2 |20 = c |w−

2 |20 holds, and
the thesis follows from the same argument used in the proof of Theorem 6.4.
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From the proof of Theorem 6.4, we see that the norm of the Nijenhuis
tensor of the almost complex structure Jt is

|NJt
|2g(t) =

1

2
|w−

2 (t)|2g(t) =
|w−

2 |20
2

(

1 +
c

F0

a(t)

)

|w−

2 |20
2c −2

.

It is clear that the expression of the solution to the initial value prob-
lem (6.8) depends on the relation between the constants c and |w−

2 |20 . In
fact, there are three relevant cases giving rise to different types of solutions.
We describe each possible case separately in the following corollaries, whose
proofs follow from direct computations using the results obtained so far. As
we will see, all possibilities occur in the known examples.

Corollary 6.6. If c = 1
2 |w−

2 |20 , the solution to (6.8) is given by

a(t) =
F0

c

(

ecF
2
0 t − 1

)

.

Consequently, the norm of the solution (6.3) to the Type IIA flow is

|φ(t)|g(t) = F0 e
1

2
cF 2

0 t,

and φ(t) exists for all real times, i.e., it is eternal. Moreover, the norm of
the Nijenhuis tensor of Jt is

|NJt
|2g(t) =

|w−

2 |20
2

e−cF
2
0 t.

Corollary 6.7. If 1
4 |w−

2 |20 ≤ c < 1
2 |w−

2 |20 , the solution to (6.8) is given by

a(t) =
F0

c

[(

2c− |w−

2 |20
)

F 2
0
t+ 1

]

c
2c−|w−

2 |20 − F0

c
.

Consequently, the norm of the solution (6.3) to the Type IIA flow is

|φ(t)|g(t) = F0

[(

2c− |w−

2 |20
)

F 2
0
t+ 1

]

|w−

2 |20
4(2c−|w−

2 |20) ,

and φ(t) exists for t ∈
(

−∞, 1

(|w−

2 |20−2c)F 2
0

)

, i.e., it is ancient. Moreover, the

norm of the Nijenhuis tensor of Jt is

|NJt
|2g(t) =

|w−

2 |20
2

[(

2c− |w−

2 |20
)

F 2
0
t+ 1

]

|w−

2 |20−4c

2(2c−|w−

2 |20) .
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Corollary 6.8. If c > 1
2 |w−

2 |20 , the expressions of a(t), |φ(t)|g(t) and
|NJt

|2g(t) are those given in Corollary 6.7, and the solution φ(t) exists for

t ∈
(

1

(|w−

2 |20−2c)F 2
0

,+∞
)

, i.e., it is immortal.

In the previous corollaries, the maximal time interval where the solu-
tion φ(t) exists is the maximal connected real interval containing 0 where
|φ(t)|g(t) is different from zero. Indeed, the general identity from [10, Lemma
4] recalled in (6.7) ensures that the primitive 3-form φ(t) is positive as long
as |φ(t)|g(t) does not pass through zero.

Remark 6.9. The conclusion of Corollary 6.7 when c = 1
4 |w−

2 |20 is con-
sistent with the results of Theorem 6.1, which was proved under weaker
assumptions.

When c ≥ 1
2 |w−

2 |20 , from corollaries 6.6 and 6.8 we deduce the next result,
which is consistent with the general result [10, Cor. 2].

Corollary 6.10. Let φ(t) be the solution (6.3) to the source-free Type IIA
flow starting at a special Type IIA geometry (ω, φ0) such that c ≥ 1

2 |w−

2 |20 .
Then, φ(t) exists for all positive times and

lim
t→+∞

|NJt
|2g(t) = 0.

In particular, the symplectic form ω admits compatible almost complex struc-
tures with arbitrary small Nijenhuis tensor.

From Proposition 4.10, Proposition 6.2 and Appendix A, we see that
Corollary 6.6 holds for the examples of special SHF structures on the Lie
algebras A−1,−1,1

5,7 ⊕ R, Aa,−a,15,17 ⊕ R and g
0,−1,−1
6,118 , Corollary 6.7 holds for the

examples on e(1, 1)⊕ e(1, 1) and g
0,−1
6,54 , and Corollary 6.8 holds for the ex-

amples on g5,1 ⊕ R, g6,N3 and g06,38. As a consequence, all compact locally
homogeneous spaces corresponding to these Lie algebras admit a solution to
the Type IIA flow which is described by Theorem 6.4 and its corollaries.

Remark 6.11. The solution to the type IIA flow on the nilmanifold studied
in [10, Sect. 9.3.2] corresponds to the example of special SHF structure on
the nilpotent Lie algebra g5,1 ⊕ R. In that case, F0 = 2 and c = |w−

2 |20 , whence
a(t) = F 3

0
t = 8t.
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Appendix A. Examples of special SHF structures on
Lie algebras

In this appendix, we describe the special SHF structures on unimodular
Lie algebras considered in [15] and mentioned in Proposition 4.10. For each
Lie algebra g, we consider the structure equations given in Theorem 4.2
with respect to a basis B∗ = (e1, . . . , e6) of g∗, and we use this basis to
write the forms ω, ψ+, w−

2 and the metric g. The expression of the almost
complex structure J can be deduced from the identity ω = g(J ·, ·), while the
expression of ψ− can be obtained computing ψ− = ∗gψ+.

According to (4.2), the Chevalley-Eilenberg differential of w−

2 = − ∗g d ∗g
ψ+ is given by

dw−

2 =
|w−

2 |2
4

ψ+ + γ,

where γ ∈ Λ3
12g

∗ is of the form γ = S∗ψ+, for a certain S ∈ Sym−(g). We
write both γ and the matrix representation of S with respect to the basis
B = (e1, . . . , e6). For the examples having S ̸= 0, we also specify a basis of
g∗ that is adapted to the special SHF structure.

• e(1, 1)⊕ e(1, 1) = (0,−e13,−e12, 0,−e46,−e45):
ω = e14 + e23 + 2 e56, ψ+ = e125 − e126 − e135 − e136 + e245 + e246 +
e345 − e346,

g = (e1)2 + (e2)2 + (e3)2 + (e4)2 + 2 (e5)2 + 2 (e6)2,

w−

2 = 2
(

e26 + e25 + e36 − e35
)

,

γ = 0, S = 0.

• g5,1 ⊕ R = (0, 0, 0, 0, e12, e13):

ω = e14 + e26 + e35, ψ+ = e123 + e156 + e245 − e346,

g = (e1)2 + (e2)2 + (e3)2 + (e4)2 + (e5)2 + (e6)2,

w−

2 = e26 − e35,
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γ = 3
2 e

123 − 1
2 e

156 − 1
2 e

245 + 1
2 e

346, S = diag
(

−1
2 ,−1

2 ,−1
2 ,

1
2 ,

1
2 ,

1
2

)

,

adapted basis
(

e1, e4,−e3,−e5, e2, e6
)

.

• A−1,−1,1
5,7 ⊕ R = (e15,−e25,−e35, e45, 0, 0):
ω = −e13 + e24 + e56, ψ+ = −e126 − e145 − e235 − e346,

g = (e1)2 + (e2)2 + (e3)2 + (e4)2 + (e5)2 + (e6)2,

w−

2 = 2
(

e14 − e23
)

,

γ = 2
(

e126 − e145 − e235 + e346
)

, S = diag (0, 0, 0, 0,−2, 2) ,

adapted basis
(

e3, e1, e2, e4, e5, e6
)

.

• Aa,−a,15,17 ⊕ R = (ae15 + e25,−e15 + ae25,−ae35 + e45,−e35 −
ae45, 0, 0), a > 0:

ω = e13 + e24 + e56, ψ+ = e125 − e146 + e236 − e345,

g = (e1)2 + (e2)2 + (e3)2 + (e4)2 + (e5)2 + (e6)2,

w−

2 = −2a
(

e12 + e34
)

,

γ = 2a2
(

e125 + e146 − e236 − e345
)

, S = diag
(

0, 0, 0, 0,−2a2, 2a2
)

,

adapted basis
(

e1, e3, e2, e4, e5, e6
)

.

• g6,N3 = (0, 0, 0, e12, e13, e23):

ω = 2 e16 + e25 − e34, ψ+ = −e123 + e145 − 2e246 − 2 e356,

g = (e1)2 + (e2)2 + (e3)2 + (e4)2 + (e5)2 + 4 (e6)2,

w−

2 = 4 e16 − e25 + e34,

γ = −9
2 e

123 − 3
2 e

145 − 3
2 e

246 − 3
2 e

356, S = diag
(

−3
2 ,−3

2 ,−3
2 ,

3
2 ,

3
2 ,

3
2

)

,

adapted basis
(

e1, 2 e6, e3,−e4, e2, e5
)

.

• g06,38 = (e23,−e36, e26, e26 − e56, e36 + e46, 0):

ω = −2 e16 + e34 − e25, ψ+ = −2 e135 − 2 e124 + e236 − e456,

g = 4 (e1)2 + (e2)2 + (e3)2 + (e4)2 + (e5)2 + (e6)2,

w−

2 = 4 e16 − e25 + e34,

γ = 3 e124 + 3 e135 + 9
2 e

236 + 3
2 e

456, S = diag
(

3
2 ,−3

2 ,−3
2 ,

3
2 ,

3
2 ,−3

2

)

,

adapted basis
(

e6, 2 e1, e3, e4,−e2, e5
)

.

• g
0,−1
6,54 = (e16 + e35,−e26 + e45, e36,−e46, 0, 0):
ω = e14 + e23 +

√
2 e56, ψ+ = e125 −

√
2 e136 +

√
2 e246 + e345,

g = (e1)2 + (e2)2 + (e3)2 + (e4)2 + (e5)2 + 2 (e6)2,
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w−

2 =
√
2 e13 − e14 + e23 +

√
2 e24,

γ = −3
2 e

125 −
√
2
2 e136 +

√
2
2 e246 + 1

2 e
345, S =

diag
(

1
2 ,

1
2 ,−1

2 ,−1
2 ,

1
2 ,−1

2

)

,

adapted basis
(

e1, e4, e2, e3, e5,
√
2 e6
)

.

• g
0,−1,−1
6,118 = (−e16 + e25,−e15 − e26, e36 − e45, e35 + e46, 0, 0):

ω = e14 + e23 − e56, ψ+ = e126 − e135 + e245 + e346,

g = (e1)2 + (e2)2 + (e3)2 + (e4)2 + (e5)2 + (e6)2,

w−

2 = 2
(

e12 − e34
)

,

γ = 2
(

e126 + e135 − e245 + e346
)

, S = diag(0, 0, 0, 0, 2,−2),

adapted basis
(

e1, e4, e3,−e2,−e5, e6
)

.
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[2] D. E. Blair and S. Ianuş, Critical associated metrics on symplectic man-
ifolds, in Nonlinear Problems in Geometry, Vol. 51 of Contemp. Math.,
23–29, Amer. Math. Soc., Providence, RI (1986).

[3] R. L. Bryant, Some remarks on G2-structures, in Proceedings of
Gökova Geometry-Topology Conference 2005, 75–109, Gökova Geome-
try/Topology Conference (GGT), Gökova (2006).

[4] S. Chiossi and S. Salamon, The intrinsic torsion of SU(3) and G2 struc-
tures, in Differential Geometry, Valencia, 2001, 115–133, World Sci.
Publ., River Edge, NJ (2002).

[5] B. Y. Chu, Symplectic homogeneous spaces, Trans. Amer. Math. Soc.
197 (1974), 145–159.

[6] D. Conti and A. Tomassini, Special symplectic six-manifolds, Q. J.
Math. 58 (2007), no. 3, 297–311.

[7] P. de Bartolomeis and A. Tomassini, On solvable generalized Calabi-Yau
manifolds, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 5, 1281–1296.

[8] ———, On the Maslov index of Lagrangian submanifolds of generalized
Calabi-Yau manifolds, Internat. J. Math. 17 (2006), no. 8, 921–947.

[9] T. Fei, D. H. Phong, S. Picard, and X. Zhang, Bochner-Kodaira formu-
las and the Type IIA flow, arXiv:2012.01550, (2020).



✐

✐

“8-Raffero” — 2024/6/25 — 16:45 — page 1892 — #36
✐

✐

✐

✐

✐

✐

1892 Alberto Raffero

[10] ———, Geometric flows for the type IIA string, Camb. J. Math. 9
(2021), no. 3, 693–807.

[11] ———, Estimates for a geometric flow for the type IIB string, Math.
Ann. 382 (2022), no. 3-4, 1935–1955.

[12] M. Fernández, V. Manero, A. Otal, and L. Ugarte, Symplectic half-flat
solvmanifolds, Ann. Global Anal. Geom. 43 (2013), no. 4, 367–383.

[13] J. Fine and D. Panov, Symplectic Calabi-Yau manifolds, minimal sur-
faces and the hyperbolic geometry of the conifold, J. Differential Geom.
82 (2009), no. 1, 155–205.

[14] ———, Hyperbolic geometry and non-Kähler manifolds with trivial
canonical bundle, Geom. Topol. 14 (2010), no. 3, 1723–1763.

[15] A. Fino and A. Raffero, Closed warped G2-structures evolving under
the Laplacian flow, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 20 (2020),
no. 1, 315–348.

[16] U. Fowdar, S1-invariant Laplacian flow, J. Geom. Anal. 32 (2022),
no. 1, Paper No. 17, 27.

[17] M. Graña, R. Minasian, M. Petrini, and A. Tomasiello, Generalized
structures of N = 1 vacua, J. High Energy Phys. (2005), no. 11, 020,
22.

[18] N. Hitchin, The geometry of three-forms in six dimensions, J. Differen-
tial Geom. 55 (2000), no. 3, 547–576.

[19] ———, Stable forms and special metrics, in Global Differential Geom-
etry: The Mathematical Legacy of Alfred Gray (Bilbao, 2000), Vol. 288
of Contemp. Math., 70–89, Amer. Math. Soc., Providence, RI (2001).

[20] J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances
in Math. 21 (1976), no. 3, 293–329.

[21] A. Moroianu, P.-A. Nagy, and U. Semmelmann, Deformations of nearly
Kähler structures, Pacific J. Math. 235 (2008), no. 1, 57–72.

[22] D. H. Phong, Geometric partial differential equations from unified string
theories, arXiv:1906.03693, (2019).

[23] D. H. Phong, S. Picard, and X. Zhang, Anomaly flows, Comm. Anal.
Geom. 26 (2018), no. 4, 955–1008.



✐

✐

“8-Raffero” — 2024/6/25 — 16:45 — page 1893 — #37
✐

✐

✐

✐

✐

✐

Special solutions to the Type IIA flow 1893

[24] ———, Geometric flows and Strominger systems, Math. Z. 288 (2018),
no. 1-2, 101–113.
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