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Let Γ be a finitely generated group and let (X,µX) be an ergodic
standard Borel probability Γ-space. Suppose that X is a Hermitian
symmetric space not of tube type and assume that G = Isom(X )◦

is simple. Given a Zariski dense measurable cocycle σ : Γ×X → G,
we define the notion of parametrized Kähler class and we show that
it completely determines the cocycle up to cohomology.
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1. Introduction

Thanks to the pioneering work by both Ghys [16] and Matsumoto [21], it
is well-known that a circle action is completely determined by the pull-
back of the bounded Euler class eb

Z
∈ H2

b(Homeo+(S1);Z) along the repre-
sentation which defines the action. It is natural to ask whether this rigidity
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phenomenon may appear in other different contexts. A suitable setting to
answer to such a question is the one of Hermitian symmetric spaces.

Given a Hermitian symmetric space X with isometry group G =
Isom(X )◦, the existence of a G-invariant complex structure on X allows
to construct a natural Kähler form ωX . Exploiting Dupont’s isomorphism
[14] between G-invariant differential forms on X and the continuous coho-
mology of G, one argues that ωX determines a non-vanishing class in degree
two, the Kähler class kG. Remarkably such a class has a bounded analogue
[13], namely the bounded Kähler class kbG.

The study of the bounded Kähler class has interested many mathemati-
cians so far. Just to mention few of them, we recall the work by Burger-Iozzi
[7], by Burger, Iozzi and Wienhard [10] and by Pozzetti [28], where the
common denominator is the notion of maximality for representations, which
is given by using the pullback of the bounded Kähler class. In particular,
Pozzetti proved a rigidity result for representations of complex hyperbolic
lattices into the group SU(m,n), while Burger, Iozzi and Wienhard gave a
complete characterization of maximal representations from surface groups
into a general Hermitian Lie group.

Going back to the similarities shared with the bounded Euler class,
Burger, Iozzi and Wienhard [6, 8] proved that the pullback of the bounded
Kähler class determines uniquely the conjugacy class of any Zariski dense
representation of a finitely generated group into a Hermitian group not of
tube type. A Hermitian group is of tube type if the associated symmetric
space can be biholomorphically realized as V + iΩ, where V is a real vector
space and Ω ⊂ V is a proper convex cone.

The second author [33] has recently extended the result by Ghys to the
context of measurable cocycles. The aim of this paper is to get a similar
extension for the result by Burger, Iozzi and Wienhard [8]. Given a finitely
generated group Γ and a standard Borel probability Γ-space (X,µX), we are
going to focus our attention on Zariski dense cocycles Γ×X → G (Defini-
tion 2.5), where G is a Hermitian group not of tube type. Here Zariski dense
refers to the algebraic hull (Definition 2.8).

Before stating the main results, we want to discuss shortly the techniques
that we are going to use (most of them were introduced and discussed in
[8]). Given a Hermitian symmetric space X with G = Isom(X )◦, we can
biholomorphically realize X as a bounded domain DX in some complex
vector space. In this case, even if the topological boundary ∂DX is not a
G-homogeneous space, it contains a unique closed G-orbit SG called Shilov
boundary (Definition 2.2). The importance of such a boundary relies on
the fact that one can define on it a preferred representative for bounded
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cohomology classes. In fact, setting

βBerg : D
3
X → R , βBerg(x, y, z) :=

∫

∆(x,y,z)
ωX ,

where ∆(x, y, z) is any smooth triangle with geodesic sides, one can mea-
surably extend βBerg to a G-invariant Borel cocycle βG defined everywhere
on the Shilov boundary SG [8]. The cocycle βG is a natural representative
for the bounded Kähler class (Example 2.20).

Moreover, the map βG satisfies the following identity [8, Section 3.2]

⟨⟨x, y, z⟩⟩ = eiβG(x,y,z) mod R
∗ ,

where the equality mod R∗ means that the two terms are equal up to a non-
zero multiplicative real constant. The left-hand side of the above equation
is the Hermitian triple product of x, y, z and it is defined in terms of the
Bergman kernels on DX (Section 2.1).

The boundary SG can be identified with the quotient (G/Q)(R), where
G is the connected adjoint R-group associated to the complexification of
the Lie algebra of G and Q < G is a specific maximal parabolic subgroup
[8, Section 2.3]. Burger, Iozzi and Wienhard exploited such identification to
extend the Hermitian triple product to a complex Hermitian triple product
⟨⟨·, ·, ·⟩⟩C on (G/Q)3 [8, Section 2.4]. They proved that the space X is not
of tube type if and only if the complex Hermitian triple product is not a
constant function [8, Theorem 1].

Another reason which justifies our interest in the existence of a mea-
surable representative βG of kbG relies on the role played by boundary maps
in the pull back of cohomology classes along cocycles [26, 27, 34]. Given
a cocycle σ : Γ×X → G as above, a boundary map ϕ : B ×X → SG is a
measurable σ-equivariant map (Definition 2.11), where B is a Γ-boundary
(Definition 2.9). Boundary maps exist for instance for Zariski dense cocycles
[29, Theorem 1] and allow to implement an alternative definition of the pull
back along σ.

In the setting described so far, we will prove the following

Theorem 1. Let Γ be a finitely generated group, let (X,µX) be an ergodic
standard Borel probability Γ-space and consider a Zariski dense measurable
cocycle σ : Γ×X → G into a simple Hermitian Lie group not of tube type.
Then the class H2

b(σ)(k
b
G) in H2

b(Γ; L
∞(X;R)) is non-zero and it determines

uniquely the cohomology class of σ.



✐

✐

“9-Sarti” — 2024/6/25 — 16:49 — page 1898 — #4
✐

✐

✐

✐

✐

✐

1898 F. Sarti and A. Savini

If we denote by H1
ZD(Γ ↷ X;G) the space of equivalence classes of

Zariski dense cocycles, Theorem 1 implies that we get an injection

(1) KX : H1
ZD(Γ ↷ X;G) → H2

b(Γ; L
∞(X;R)) , [σ] 7→ H2

b(σ)(k
b
G).

As [8, Theorem 3] follows from the more general [8, Theorem 4], the
same thing will happen in our case. Given two measurable cocycles σ1, σ2 :
Γ×X → Gi where Gi = Isom(Xi)

◦ for i = 1, 2, we say that σ1 and σ2 are
equivalent if there exists an isomorphism s : G1 → G2 such that s ◦ σ1 and
σ2 are cohomologous (Definition 2.7). Theorem 1 is a consequence of the
following

Theorem 2. Let Γ be a finitely generated discrete group and let (X,µX)
be an ergodic standard Borel probability Γ-space. Let {σi : Γ×X → Gi}, i =
1, . . . , n be a family of Zariski dense measurable cocycles into simple Her-
mitian Lie groups not of tube type. If the cocycles are pairwise inequivalent,
then the subset

{H2
b(σi)(k

b
Gi
), 1 ≤ i ≤ n} ⊂ H2

b(Γ; L
∞(X;R))

is linearly independent over L∞(X;Z).

The structure of the proof shares some similarities with the one of [8,
Theorem 4]. A key point of both their proofs and ours is the characteriza-
tion of Hermitian spaces not of tube type in terms of the Hermitian triple
product. However, in the measurable setting one has to overcome some new
difficulties. Boundary maps for cocycles, whose existence is ensured by [29,
Theorem 1], must be studied carefully. In fact, for any i = 1, . . . , n and σi-
equivariant map ϕi : B ×X → SGi

, we prove that the slices, namely the
maps obtained by fixing x ∈ X, preserves transversality (see Section 2.1
and Proposition 2.15). This means that for almost every x ∈ X and al-
most every pairs of points (b1, b2) ∈ B2, the points ϕi(b1, x) and ϕi(b2, x)
are Gi-conjugated in SGi

. Such property, combined with a classical Fubini
argument, allows to twist the cocycles σi’s and their boundary maps ϕi’s so
that the image under ϕi of almost every pair of points (b1, b2) ∈ B2 coin-
cides with a fixed pair ϕi(b1, x0), ϕi(b2, x0) for some x0 ∈ X. Then, we show
that a linear dependence between the pullback classes would imply that the
essential image of almost every slice is contained in a proper Zariski closed
subset of the Shilov boundary. This leads to a contradiction with the Zariski
density of the σi’s.
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As we will recall in Section 2.2, the set of measurable cocycles inherits a
natural cohomological interpretation coming from the theory by Feldmann
and Moore about the cohomology of equivalence relations [15]. The injective
map of Equation (1) shows how Theorem 1 realizes an inclusion of the
subset of Zariski dense cocycles in the second bounded cohomology of Γ with
coefficients in L∞(X;R). This allows to give some triviality statements about
the space H1

ZD(Γ ↷ X;G) in some specific cases. For instance if Γ is a higher
rank lattice whose bounded cohomology vanishes in degree two, we show that
H1
ZD(Γ ↷ X;G) is trivial (see Proposition 4.1).This can be interpreted as

an alternative approach to Zimmer’ Superrigidity, since we have that under
hypothesis of Zariski density, cocycles coincides with representations and
there are no representations in this context.

Finally, we focus on the case of products, namely when Γ is a lattice in

a product H =
n
∏

i=1
Hi whose projection on each factor is dense. In Propo-

sition 4.4, under certain suitable hypothesis on the H-action on the Borel
probability spaceX, we show that the vanishing of the second bounded coho-
mology of each factor Hi implies that cocycles Γ×X → G into a Hermitian
group not of tube type cannot exist.

Plan of the paper. The paper is divided into three main sections. In Sec-
tion 2 our aim is to set the necessary theory and tools. Section 2.1 is devoted
to recall the basics about Hermitian symmetric spaces, the notions of Shilov
boundary, Bergman cocycle and Hermitian triple product. In Section 2.2 we
introduce measurable cocycles and we show how such objects inherits a co-
homological interpretation. We then move to Section 2.3, where we deal with
the notions of boundary and boundary map. We conclude this introductory
part giving a short overview about the theory of continuous bounded co-
homology. We describe the pullback of cohomology classes along cocycles,
which allows to define the main character of the paper, the parametrized
Kähler class (Section 2.4).

In Section 3 we give the proofs of our main theorems and we conclude,
in Section 4, with some applications following from our results.
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2. Preliminaries

2.1. Hermitian symmetric spaces and Kähler class

In this section we deal with Hermitian symmetric spaces. We will distinguish
them into spaces of tube type and not of tube type. Then we define the Shilov
boundary of the bounded domain realization in Cn. The Kähler structure of a
Hermitian symmetric space allows us to introduce the Bergman cocycle. We
conclude recalling the Hermitian triple product and the complex Hermitian
triple product. For the details about this section we refer either to [6, 8] or
to the book chapter [18].

Definition 2.1. A symmetric space X with isometries G = Isom(X )◦ is
Hermitian if it admits a G-invariant complex structure. Given a semisimple
algebraic group G defined over R, we say that G = G(R)◦ is of Hermitian
type if its associated symmetric space X is Hermitian. The notation G(R)◦

refers to the connected component of the neutral element of the real points
of G.

Hermitian symmetric spaces can be distinguished into spaces of tube
type and not of tube type. The former ones are biholomorphic to a set of
the form V + iΩ, where V is a real vector space and Ω ⊂ V is a proper
convex cone. For instance, the group SU(p, q) of complex matrices preserving
the Hermitian form hp,q of signature (p, q) on Cp+q is of tube type only
when p = q. In that case, the Hermitian symmetric space is biholomorphic
to Herm(p,C) + iHerm+(p,C), where Herm(p,C) is the space of complex
Hermitian matrices and Herm+(p,C) is the proper cone of positive definite
ones (for p = 1 we get back the upper half-space realization of the hyperbolic
plane H2

R
).

For both spaces of tube type and not of tube type, it is a standard
fact that there exists a bounded domain realization (the Harish-Chandra
realization, [18, Theorem.III.2.6]), that is a biholomorphism between X and
a bounded connected open subset DX ⊂ Cn. The group G acts on DX via
biholomorphisms and such an action can be continuously extended to the
topological boundary ∂DX .

Definition 2.2. The Shilov boundary of a bounded domain D ⊂ Cn is the
unique minimal closed subset S of ∂D such that, for any continuous function
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f on D which is holomorphic on D, it holds

|f(z)| ≤ max
y∈S

|f(y)|

for every z ∈ D.

In the Harish-Chandra realization the Shilov boundary SG can be iden-
tified with the G-orbit of a unique point [8, Section 2.3], so SG is a homo-
geneous G-space. When G = SU(p, q), the associated Shilov boundary Sp,q
parametrizes totally isotropic subspaces of Cp+q with respect to the form
hp,q having maximal dimension d = min{p, q}. It is well-known that Sp,q is a
homogeneous G-space and it can be identified with the quotient G/Q, where
Q is the stabilizer of a fixed isotropic subspace of dimension d. The latter
identification can be actually extended to any Hermitian symmetric space.
More precisely, we consider a connected real algebraic group G correspond-
ing to the complexification of a Lie group of Hermitian type G = G(R)◦. By
[8, Section 2.3.1] there exists a maximal proper parabolic subgroup Q < G,
such that SG is isomorphic to (G/Q)(R) = G/Q, where Q = G ∩Q. In this
way SG is realized as the real points of the complex projective variety G/Q.

The product SG × SG contains a unique open G-orbit S
(2)
G whose ele-

ments are pairs of transverse points (in particular, G acts transitively on
transverse pairs). In the example of G = SU(p, q), two maximal isotropic
subspaces V,W ⊂ Cp+q are transverse if their intersection is trivial, that is
V ∩W = {0}. Given a point ξ ∈ SG, the subset of SG of points η such that
η and ξ are not transverse has proper Zariski closure in the quotient G/Q.
We will exploit this fact in the proof of Proposition 2.15.

Let gX be the Riemannian tensor on X and let JX be the gX -invariant
complex structure. The Kähler form on X is the differential 2-form ωDX

∈
Ω2(X )G defined by

(ωDX
)a(X,Y ) := (gX )a(X, (JX )a(Y )) ,

where a ∈ X and X,Y ∈ TaX . Notice that being G-invariant, ωDX
is closed

by Cartan’s Lemma [17, VII.4]. For any triple of points x, y, z ∈ DX , we can
define the function

βBerg(x, y, z) :=

∫

∆(x,y,z)

ωDX

where ∆(x, y, z) denotes a smooth oriented triangle with geodesic edges and
vertices x, y, z.
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We want to relate the function βBerg with the notion of Bergman kernels.
We recall that the space of complex-valued square integrable holomorphic
functions H2(DX ) on DX is an Hilbert space with Hermitian product

(f |g) :=

∫

DX

f(z)g(z)dL(z) ,

where L is the Lebesgue measure on DX . Since the evaluation of any el-
ement f ∈ H2(DX ) on a point w ∈ DX is a bounded linear functional on
H2(DX ) (see [18]), by the Riesz representation theorem it can be written
as the Hermitian product f(w) = (f |Kw), for some Kw ∈ H2(DX ). We can
define the Bergman kernel kDX

: DX ×DX → C∗ as the Hermitian product
kDX

(z, w) = (Kz|Kw). The following equation holds [8, Theorem 3.7]

(2) βBerg(x, y, z) := −(argkDX
(x, y) + argkDX

(y, z) + argkDX
(z, x)) ,

where arg is the branch of the argument function with values between −π
and π.

Since kDX
can be extended to pairs of transverse points in S

(2)
G [31], by

Equation (2) the function βBerg can be extended to the subset

S
(3)
G

:=
{

(η0, η1, η2 ∈ S3
G | (ηi, ηj) ∈ S

(2)
G if i ̸= j)

}

⊂ DX
3
.

If we still denote by βBerg such extension, by [8, Corollary 3.8] βBerg is
a continuous G-invariant alternating function and its Alexander-Spanier
coboundary vanishes, that is dβBerg(x0, x1, x2, x3) = 0 for every 4-tuple

(x0, x1, x2, x3) with (xi, xj , xk) ∈ D3
X ⊔ S

(3)
G , whenever i < j < k. Further-

more, it satisfies

sup
(η0,η1,η2)∈S

(3)
G

|βBerg(η0, η1, η2)| = πrkX ,

where rkX denotes the real rank of X , that is the dimension of a maximal flat
embedded isometrically in X . For instance, when G = SU(p, q) the real rank
of the associated symmetric space is given by min{p, q}. By [8, Theorem 4.2]

the restriction βBerg : S
(3)
G → R extends to a G-invariant Borel cocycle on

the whole S3
G. We call such extension the Bergman cocycle and we denote

it by βG.
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We conclude the section by introducing the definition of the Hermitian
triple product and by relating it to the function βBerg. Consider the function

⟨·, ·, ·⟩ : S
(3)
G → C

∗ ,

⟨z1, z2, z3⟩ := kDX
(η0, η1)kDX

(η1, η2)kDX
(η2, η0) ,

where we have tacitly exploited the extension of the Bergman kernel to the
boundary. By [8, Proposition 2.12] this map is continuous and Equation (2)
implies that

(3) ⟨z1, z2, z3⟩ ≡ eiβBerg(η0,η1,η2) mod R
∗

for any (η0, η1, η2) ∈ S
(3)
G . The notation mod R∗ refers to the fact that the

two terms in Equation (3) differ by the multiplication of a non-zero real
number. If we quotient C∗ by the R∗-action by dilations, we can compose
the map ⟨·, ·, ·⟩ with the quotient projection to obtain a map

⟨⟨·, ·, ·⟩⟩ : S
(3)
G → R

∗\C∗ .

The map above is the Hermitian triple product.
In virtue of the identification between SG and the quotient (G/Q)(R),

Burger, Iozzi and Wienhard extended the Hermitian triple product to a
complex Hermitian triple product defined on the whole G/Q. We start de-
noting by A∗ the group C∗ × C∗ endowed with the antilinear involution
(λ, µ) 7→ (µ, λ) (that is a real structure on A∗) and by ∆∗ the image of the
diagonal embedding of C∗.

By [8, Corollary 2.17] there exists a rational map

⟨⟨·, ·, ·⟩⟩C : (G/Q)3 → ∆∗\A∗

that makes the following diagram commutative

S
(3)
G

⟨⟨·,·,·⟩⟩
//

(i)3

��

R∗\C∗

∆

��
(G/Q)3

⟨⟨·,·,·⟩⟩C
// ∆∗\A∗.

Here i : SG → G/Q refers to the G-equivariant identification between SG
and (G/Q)(R), and ∆ stands for the map induced by the diagonal em-
bedding. It is worth mentioning that the complex Hermitian triple product
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is a rational function on (G/Q)3 since it can be written as a product of
determinants of complex automorphy kernels (see [8, Section 2.4] for more
details).

The fact that a Hermitian space is not of tube type has consequences on
the complex Hermitian triple product, and this fact is crucial in the proof

of Theorem 2. For any pair of transverse points (η0, η1) ∈ S
(2)
G we denote by

Oη0,η1 ⊂ (G/Q)(R) the Zariski open subset such that the map

Pη0,η1 : Oη0,η1 → ∆∗\A∗ , η 7→ ⟨⟨η0, η1, η⟩⟩C

is defined. We have the following

Lemma 2.3 ([8, Lemma 5.1]). Fix any m ∈ Z. Then the map

Oη0,η1 → ∆∗\A∗ , η 7→ Pη0,η1(η)
m

is not constant if and only if X is not of tube type.

Remark 2.4. The if part of Lemma 2.3 is exactly [8, Lemma 5.1], while the
converse implication is a consequence of the characterization of Hermitian
spaces not of tube type given in [8, Theorem 1]. This part in particular
provides an obstruction to the extension of Theorem 1, since the arguments
that we are going to use in the proof cannot be adapted in the tube type
case.

2.2. Measurable cocycles

We now introduce the basic notions about the theory of measurable cocycles.
Let Γ be a finitely generated discrete group and let G be a locally compact
group, both endowed with their Haar measurable structures. We denote by
(X,µX) a standard Borel probability Γ-space, namely a probability space
which is Borel isomorphic to a Polish space and endowed with a probability
measure preserving Γ-action.

Definition 2.5. A measurable cocycle is a Borel measurable function σ :
Γ×X → G which satisfies the following condition

(4) σ(γ1γ2, x) = σ(γ1, γ2x)σ(γ2, x)

for every γ1, γ2 ∈ Γ and for almost every x ∈ X.
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We can introduce an equivalence relation on the set of measurable co-
cycles.

Definition 2.6. Let σ1, σ2 : Γ×X → G be two measurable cocycles, let
f : X → G be a measurable map and denote by σf1 the cocycle defined by

(5) σf1 (γ, x) := f(γx)−1σ1(γ, x)f(x) ,

for every γ ∈ Γ and almost every x ∈ X. The cocycle σf1 is the f -twisted
cocycle associated to σ1. We say that σ1 is cohomologous to σ2 (writing
σ1 ≃ σ2) if there exists a measurable map f such that σ2 = σf1 .

The words cocycle and cohomologous refer to the cohomology theory
of countable equivalence relations introduced by Feldman and Moore [15,
25]. Even if their theory computes the cohomology of a generic countable
equivalence relation with values in an abelian Polish group, we can adapt
it to compute the 1-dimensional cohomology of a specific class of countable
equivalence relations, namely orbital equivalence relations, with values into
any locally compact group. Precisely, in the setting of Definition 2.5, one can
define the equivalence relation RΓ ⊂ X ×X, where (x, y) ∈ RΓ if and only
if y = γx for some γ ∈ Γ. Given a locally compact group G, we define the
space Z1(RΓ;G) as the set of measurable functions c : RΓ → G satisfying
the relation

(6) c(x, z) = c(y, z)c(x, y)

for almost every (x, y), (x, z), (y, z) ∈ RΓ. For essentially free actions we get
a natural identification between measurable cocycles and the set Z1(RΓ;G)
realized by the following map

Θ : {σ : Γ×X → G | σ is a cocycle} → Z1(RΓ;G) ,

σ 7→ cσ(x, γx) := σ(γ, x) .

The 1-cohomology group of RΓ with values in G, denoted by H1(Γ ↷

X;G), is defined as the quotient Z1(RΓ;G)/ ∼, where two functions c1, c2 :
RΓ → G are equivalent if there exists a measurable function f : X → G such
that

c2(x, γx) = f(γx)−1c1(x, γx)f(x) ,

for every γ ∈ Γ and almost every x ∈ X. It is worth noticing that the con-
dition c2(x, γx) = f(γx)−1c1(x, γx)c(x) is exactly the one of Equation (5)
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applied to the cocycles Θ−1(c1) and Θ−1(c2). In other words, the map Θ fac-
tors through the equivalence relation of cohomology between cocycles and
defines a bijection

{σ : Γ×X → G , σ cocycle }/≃ ↔ H1(Γ ↷ X;G) .

With a slight abuse of notation, we still denote by H1(Γ ↷ X;G) the left
hand side for generic actions.

Even when two measurable cocycles have different targets, it is still
possible to introduce an equivalence relation between them.

Definition 2.7. Given two measurable cocycles σ1 : Γ×X → G1 and σ2 :
Γ×X → G2 with different targets, we say that σ1 and σ2 are equivalent
(writing σ1 ∼ σ2) if there exists a group isomorphism s : G1 → G2 such that
s ◦ σ1 ≃ σ2.

Any representation ρ : Γ → G determines naturally a measurable cocycle
σρ : Γ×X → G by setting σρ(γ, x) := ρ(γ). If two representations are G-
conjugated, then the associated cocycles are cohomologous via a constant
measurable function. In this way we can view the space H1(Γ ↷ X;G) as
the natural generalization of the character variety Rep(Γ;G), namely the
space of representations Γ → G modulo G-conjugation.

Another important tool in the study of representations into a semisimple
algebraic group is given by the Zariski closure of the image. In this context,
since the image is a subgroup of the target group, its Zariski closure is a
group as well. In order to get an analogous definition for measurable cocycles,
we need to introduce the notion of algebraic hull. Such notion is necessary
since a priori the image of a measurable cocycle is not a subgroup.

Definition 2.8. Let G be a semisimple real algebraic group and define
G = G(R)◦. The algebraic hull of a measurable cocycle σ : Γ×X → G is
the G-conjugacy class of the smallest algebraic subgroup L of G such that
L(R)◦ contains the image of a cocycle cohomologous to σ.

We say that σ is Zariski dense if it holds G = L.

We need to introduce the conjugacy class of the subgroup to define the
algebraic hull, since the cohomology relation allows us to twist the cocycle
using G-conjugacy. We refer to [36, Proposition 9.2.1] for a proof of the fact
that Definition 2.8 is well-defined thanks to the Noetherianity of the target.
In this paper we will be interested in the subset of Zariski dense cocycles in
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H1(Γ ↷ X;G), that we denote by H1
ZD(Γ ↷ X;G). The latter is merely a

subset and it has no other algebraic structure.

2.3. Boundary maps

Another important tool in the theory of measurable cocycles is the notion of
boundary map. In this section we are going to recall an existence result for
ergodic Zariski dense cocycles [29, Theorem 1]. We will focus our attention
on the main properties of the slices of such boundary maps.

We start introducing the notion of boundary for a discrete countable
group. We follow Bader and Furman [3]. We first recall the notion of
amenable action. Given a locally compact second countable group H, a
Lebesgue H-space (S, ν) is a standard Borel probability space where the H-
action preserves only the measure class of ν. A mean on L∞(H × S;R) is a
norm-one linear operator

m : L∞(H × S;R) → L∞(S;R) ,

such that m(χH×S) = χS , m(f) ≥ 0 whenever f is a positive function and
for all f ∈ L∞(H × S) and any measurable subset A ⊂ S it holds m(f ·
χH×A) = m(f) · χA. An action of H on S is amenable, or equivalently S is
an amenable H-space [22, Section 5.3], if there exists a H-equivariant mean
on L∞(H × S;R). An example of amenable action is given by the action of
a lattice Γ < H in a semisimple Lie group on a homogeneous H-space of the
form H/L, where L is an amenable subgroup of H (for instance a minimal
parabolic subgroup).

We now restrict to a discrete countable group Γ. Given an equivariant
measurable map p : U → V between two Lebesgue Γ-spaces, a metric along
p is a Borel function d : U ×p U → [0,∞) on the fibered product whose re-
striction dv to the fiber Uv := p−1(v) determines a separable metric space.
We say that the Γ-action is fiberwise isometric if any γ ∈ Γ acts isometrically
on the fibers of p, that is γ : Uv → Uγ.v is an isometry, namely

dγ.v(γ.x, γ.y) = dv(x, y) ,

for every γ ∈ Γ, v ∈ V, x, y ∈ Uv. A measurable map q : Y → Z between
Lebesgue Γ-spaces is relatively metrically ergodic [3, Definition 2.1] if for
any fiberwise isometric Γ-action along a map p : U → V and any measurable
Γ-equivariant maps f : Y → U and g : Z → V , there exists a Γ-equivariant
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measurable map ψ : Z → U such that the following diagram commutes

(7) Y
f

//

q

��

U

p

��
Z

g
//

ψ

77

V .

Definition 2.9. Let Γ be a discrete countable group. A Γ-boundary is
an amenable Γ-space (B, ν) such that the projections π1 : B ×B → B and
π2 : B ×B → B on the first and the second factor, respectively, are relatively
metrically ergodic.

Example 2.10. We report two examples of Γ-boundary. The first one is
a model valid for any discrete finitely generated group, whereas the second
one is specific for lattices in Lie groups.

1) Let Γ be a discrete finitely generated group and let S be a symmetric
set of generators. Following the line of Burger and Iozzi [6] we recall
the construction of a model for a Γ-boundary. We define a probability
measure on Γ as

µS =
1

2|S|

∑

s∈S

δs + δs−1 .

We start constructing the realization of a boundary for the free
group FS on the set S. Let TS(∞) be the boundary of the Cayley graph
TS of FS , namely the set of all reduced words on S of infinite length. We
endow such a boundary with the FS-quasi-invariant measure defined
by

m(C(x)) =
1

2r(2r − 1)n−1

where x is any reduced word of length n, r = |S| and C(x) denotes
the set of all reduced words of infinite length starting with x. One has
that (TS(∞),m) is a FS-boundary.

Coming back to Γ, if ρ : FS → Γ is the representation of Γ real-
izing it as a quotient, we denote by N = ker ρ and we consider the
set L∞(TS(∞),m)N of N -invariant essentially bounded functions on
TS(∞). By the Mackey realization theorem [19], there exists a standard
measure space (B, ν) equipped with a measurable map p : TS(∞) → B
such that p∗(m) = ν and the pull back via p identifies L∞(B, ν) with
L∞(TS(∞),m)N . By [3, Theorem 2.7] we have that (B, ν) is a Γ-
boundary.
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2) When Γ is a lattice in a semisimple Lie group H, the description of
a Γ-boundary becomes easier since it can be identified with the H-
homogeneous quotient H/P , where P < H is any minimal parabolic
subgroup [3, Theorem 2.3]. For instance, if Γ is a lattice in a simple
Lie group of real rank one, a Γ-boundary coincides with the visual
boundary of the associated hyperbolic space.

Now we are ready to give the definition of boundary map, that we for-
mulate in our specific case.

Definition 2.11. Let Γ be a finitely generated group and let G be a locally
compact group. Consider a standard Borel probability Γ-space (X,µX), a
Γ-boundary B and a Lebesgue G-space (Y, ν). A boundary map for a mea-
surable cocycle σ : Γ×X → G is a measurable map

ϕ : B ×X → Y

which is σ-equivariant, that is

ϕ(γb, γx) = σ(γ, x)ϕ(b, x)

for every γ ∈ Γ and almost every b ∈ B, x ∈ X.

Remark 2.12. In Definition 2.11 the measure µX is Γ-invariant, whereas
the measure on the boundary B is only quasi-invariant (only its measure
class is invariant).

Remark 2.13. Given a cocycle σ : Γ×X → G and a measurable function
f : X → G, a boundary map ϕ : B ×X → Y naturally defines a boundary
map for the f -twisted cocycle σf as

ϕf (b, x) := f(x)−1ϕ(b, x).

In this paper the space Y appearing in Definition 2.11 will be the Shilov
boundary SG (Definition 2.2) of a simple Hermitian group G not of tube
type. Such space is neither a G-boundary nor a Γ-boundary for any lat-
tice Γ < G), since the G-action on it is not amenable in general (unless the
real rank of G is one). In fact SG can be identified with G/Q, where Q
corresponds to the real points of a maximal parabolic subgroup, and the
latter is amenable only if G has rank one. Nevertheless, given a minimal
parabolic subgroup P < G, by the fact that P < Q, there always exists a
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G-equivariant map G/P → G/Q. For instance, when G = SU(p, q), the G-
boundary G/P parametrizes maximal complete flags of isotropic subspaces
in Cp+q with respect to the Hermitian form hp,q, whereas the Shilov bound-
ary G/Q parametrizes only isotropic subspaces of maximal dimension. In
that case the map G/P → G/Q sends the flag to the space of maximal
dimension appearing in the flag itself.

Given a measurable cocycle σ : Γ×X → G and a boundary map ϕ :
B ×X → Y , we can define

ϕx : B → Y , ϕx(b) := ϕ(b, x) ,

for almost every b ∈ B, x ∈ X. By [20, Chapter VII, Lemma 1.3] the map
ϕx is measurable and it is called the x-slice of the boundary map ϕ. By the
σ-equivariance of ϕ we have that

ϕγx( · ) = σ(γ, x)ϕx( · ) ,

for every γ ∈ Γ and almost every x ∈ X. When G is a connected simple Lie
group (recall that G = G(R)◦ where G is the connected adjoint R-group
associated to the complexification of the Lie algebra of G) and Y coincides
with the real points of a quasi projective variety of the form G/L for some
real algebraic subgroup L < G, we say that the x-slice is Zariski dense if
the Zariski closure of the essential image of ϕx is exactly G/L.

In case of Zariski dense cocycles, if Γ acts ergodically on X, we have the
following result.

Theorem 2.14. [29, Theorem 1, Proposition 4.4] Let Γ be a finitely gener-
ated discrete group with a Γ-boundary B and let G be a simple Lie group of
non-compact type. Let (X,µX) be an ergodic standard Borel probability Γ-
space and consider a Zariski dense cocycle σ : Γ×X → G. Then σ admits
a boundary map ϕ : B ×X → G/P , where P < G is a minimal parabolic
subgroup. Additionally the slices of ϕ are Zariski dense.

When G is a simple Lie group of Hermitian type, thanks to Theo-
rem 2.14 we can compose the boundary map B ×X → G/P with the G-
equivariant map G/P → G/Q to obtain a boundary map ϕ : B ×X → G/Q
in the Shilov boundary of G. We are going to prove that the slices of such
map preserve transversality.

Proposition 2.15. Let σ : Γ×X → G be a Zariski dense measurable co-
cycle with a boundary map ϕ : B ×X → G/Q. Then for almost every x ∈ X
and b1, b2 ∈ B, ϕ(b1, x), ϕ(b2, x) are transverse in G/Q.
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Proof. We consider the set

E := {(b1, b2, x) ∈ B ×B ×X | ϕ(b1, x) is not transverse to ϕ(b2, x) } .

The previous set is measurable, by the measurability of the map ϕ, and it
is also Γ-invariant, by the σ-equivariance of ϕ. By the ergodicity of the Γ-
action on the product B ×B ×X [24, Proposition 2.4], the set E has either
full or zero measure. We claim that E must have measure zero.

By contradiction, suppose that E has full measure. By Fubini’s theorem,
there must exist a point b0 ∈ B, such that

(8) ϕx(b) is not transverse to ϕx(b0) ,

for almost every x ∈ X, b ∈ B, where ϕx is the x-slice of ϕ. If we denote
by nt(ϕx(b0)) the subset of G/Q of points non-transverse to ϕx(b0), Condi-
tion (8) implies that essential image Vx := EssIm(ϕx) lies inside nt(ϕx(b0))
for almost every x ∈ X.

On one hand, by Section 2.1, the set of all points that are not transverse
to ϕx(b0) has proper Zariski closure, hence the Zariski closure Vx lies in
a proper Zariski closed subset of G/Q. On the other hand, Theorem 2.14
implies that each slice is Zariski dense, thus the Zariski closure of Vx cannot
lie in any proper Zariski closed subset of G/Q. This leads to a contradiction
and proves the E has measure zero. Equivalently

ϕ(b1, x) is transverse to ϕ(b2, x)

for almost every x ∈ X and b1, b2 ∈ B, as claimed. □

We can sum up all we have shown so far in the following

Corollary 2.16. Let Γ be a finitely generated group with Γ-boundary B and
let G be a Hermitian Lie group. Let (X,µX) be an ergodic standard Borel
probability Γ-space and consider a Zariski dense cocycle σ : Γ×X → G.
Then there exists a boundary map ϕ : B ×X → G/Q, where Q < G is a
maximal parabolic subgroup. Moreover, the slices of ϕ are Zariski dense
and for almost every x ∈ X and b1, b2 ∈ B, it holds (ϕ(b1, x), ϕ(b2, x)) ∈
(G/Q)(2).

2.4. Bounded cohomology

In this section we briefly recall the theory of continuous and continuous
bounded cohomology. We refer the reader both to [12, 22] for more details
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about the functorial approach and to [26, 27] for a more detailed discussion
about the pullback induced by measurable cocycles.

Let G be a locally compact group and let E be a Banach G-module, that
is a Banach module equipped with an isometric action π : G→ Isom(E). We
assume that E is the dual of some Banach space and we endow it with both
the weak∗ topology and the associated Borel structure.

The space of E-valued continuous functions on G is

C•
c(G;E) :=

{

f : G•+1 → E | f continuous
}

,

and admits as a subspace the set of continuous bounded functions on G,
namely

C•
cb(G;E) := {f ∈ C•

c(G;E) | ||f ||∞ < +∞} ,

where

||f ||∞ = sup
g0,...,g•∈G

||f(g0, . . . , g•)||E .

The standard homogeneous coboundary operator

δ• : C•
c(G;E) → C•+1

c (G;E) ,

δ•f(g0, . . . , g•+1) :=

•+1
∑

i=0

(−1)if(g0, . . . , gi−1, gi+1, . . . , g•+1) ,

preserves both continuity and boundedness and it allows to the define a
cochain complex (C•

c(b)(G;E), δ•).
One can consider the subspace of G-invariant (bounded) E-valued con-

tinuous functions on G as the set

C•
c(b)(G;E)G := {f ∈ C•

c(b)(G;E) | gf = f , ∀g ∈ G} ,

where the G-action is given by (gf)(g0, . . . , g•) := π(g)f(g−1g0, . . . , g
−1g•)

for every g, g0, . . . , g• ∈ G. Since δ• also preserves G-invariant cochains, we
can give the following

Definition 2.17. The continuous (bounded) cohomology of G with co-
efficients in the Banach G-module E is the cohomology of the com-
plex (C•

c(G;E)G, δ•) (respectively (C•
cb(G;E)G, δ•)) and it is denoted by

H•
c(G;E) (respectively H•

cb(G;E)).

Remark 2.18. When we deal with a discrete group Γ, the continuity con-
dition is trivially satisfied. To lighten the notation, we will write H•(Γ;E)
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for the continuous cohomology and H•
b(Γ;E) for the continuous bounded

cohomology of Γ.

Given a G-equivariant map α : E → F between two Banach G-modules
E and F , we can consider the change of coefficients a the level of continuous
(bounded) cohomology groups

(9) Hkc(b)(α) : H
k
c(b)(G;E) → Hkc(b)(G;F )

for every k ≥ 0. In this paper we are going to deal with two Banach modules:

• R, endowed with the trivial G-action;

• L∞(X;R), the space of essentially bounded functions on a standard
Borel probability space G-space (X,µX). It will be endowed with the
G-action (gf)(x) := f(g−1x), for every g ∈ G and f ∈ L∞(X;R).

The inclusion R →֒ L∞(X;R) induces maps

(10) Hkc(b)(G;R) → Hkc(b)(G; L
∞(X;R))

for every k ≥ 0.
The notion of bounded cohomology turns out to be as simple to define as

hard to apply for computations. An extremely powerful tool was provided
by Burger and Monod [12, 22]. They showed a way to compute bounded
cohomology of locally compact groups using strong resolutions by relatively
injective modules. Since the theory is quite technical, we omit it and we
refer to Monod’s book [22] for a more detailed discussion. We only recall the
strong resolution of the essentially bounded weak∗ measurable functions on
the boundary of a group. More precisely, let Γ be a discrete countable group
and let (B, ν) a Γ-boundary. Let L∞

w∗(B•+1;E) be the space of (classes of)
essentially bounded weak∗ measurable functions on B•+1 with values in a
Γ-module E. With an abuse of notation we will use representatives to refer
to elements of L∞

w∗(B•+1;E). We consider the complex (L∞
w∗(B•+1;E), δ•),

where δ• is the standard homogeneous coboundary operator and the Γ-action
is given by

(γf)(b0, . . . , b•) := π(γ)f(γ−1b0, . . . , γ
−1b•)

for any γ ∈ Γ, f ∈ L∞
w∗(B•+1;E) and (b0, . . . , b•) ∈ B•+1. By adding to the

above complex the inclusion of coefficients E →֒ L∞
w∗(S;E) and by taking the
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subresolution of Γ-invariants, we get an isometric isomorphism [12, Corol-
lary 1.5.3]

(11) Hkb(Γ;E) ∼= Hk(L∞
w∗(B•+1;E)Γ, δ•)

for every k ≥ 0.

Example 2.19. When Γ is a lattice in a semisimple Lie group H, by Exam-
ple 2.10 we know that a Γ-boundary is given by the quotient H/P , where P
is any minimal parabolic subgroup of H. As a consequence we can compute
its bounded cohomology exploiting the resolution of essentially bounded
weak∗ measurable functions on H/P . In this context even more is true: the
H-invariants of the same complex computes also the continuous bounded
cohomology of H itself.

In a similar way, one can exhibit isometric isomorphisms

(12) Hkb(Γ;E) ∼= Hk(L∞
w∗,alt(B

•+1;E)Γ, δ•)

in any degree k ≥ 0, where (L∞
w∗,alt(B

•+1;E), δ•) is the resolution of essen-
tially bounded weak∗ measurable alternating functions on B [12, Corollary
1.5.3]. In our context a function f : B•+1 → E is alternating if

f(bσ(0), . . . , bσ(•)) = sgn(σ)f(b0, . . . , b•)

for any permutation σ ∈ S•+1 and for every (b0, . . . , b•) ∈ B•+1.
Using boundaries to compute pullback maps in bounded cohomology

may reveal difficult. In general a boundary map may not preserve the mea-
sure classes on the boundaries and hence it may not define any map between
the resolutions of essential bounded weak∗ measurable functions. For this
reason Burger and Iozzi [5] suggested to exploit a different complex. Let G
be a locally compact group and let Y be a Lebesgue G-space. We consider
the complex (B∞

w∗(Y •+1;E), δ•) of weak∗ measurable bounded functions on
Y with the standard homogeneous coboundary operator. Notice that this
time we are dealing with functions and not with equivalence classes of func-
tions as in Example 2.19. Burger and Iozzi [5, Corollary 2.2] proved that
there exists a canonical non-trivial map

(13) c
k : Hk(B∞

w∗(Y •+1;E)G) → Hkcb(G;E)

for every k ≥ 0. The same holds for the alternating subcomplex.
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Example 2.20. Let G be a semisimple Lie group of Hermitian type and
let SG be its Shilov boundary. Since SG is identified with the quotient
G/Q, where Q is the subgroup obtained by intersecting G with a maxi-
mal parabolic subgroup in the complexification, the space SG is a Lebesgue
G-space. By Section 2.1 we know that the Bergman cocycle βG is an every-
where defined G-invariant alternating cocycle, thus it can be viewed as an
element

βG ∈ B∞
alt(S

3
G;R)

G .

One can verify [8, Proposition 4.3] that the image of [βG] under the canonical
map

c
2 : H2(B∞

alt(S
•+1
G ;R)G) → H2

cb(G;R)

is non-trivial. Such a class is called bounded Kähler class of G and it is
denoted by kbG.

We are now ready to recall the notion of pullback along measurable
cocycles. Given a finitely generated group Γ and a measurable cocycle
σ : Γ×X → G, we define the map

C•
b(σ) : C

•
cb(G;R)

G → C•
b(Γ; L

∞(X;R))Γ

as follows

C•
b(σ)(ψ)(γ0, . . . , γ•)(x) := ψ(σ(γ−1

0 , x)−1, . . . , σ(γ−1
• , x)−1).

Such a map actually is a cochain map [32, Lemma 2.7]. Hence it descends
to a map at the level of cohomology groups

Hkb(σ) : H
k
cb(G;R) → Hkb(Γ; L

∞(X;R))

for every k ≥ 0.
The map induced in bounded cohomology depends only on the cohomol-

ogy class of σ.

Proposition 2.21. Let Γ be a finitely generated group and let (X,µX) be a
standard Borel probability Γ-space. Given a measurable cocycle σ : Γ×X →
G and a measurable map f : X → G, it holds that

H•
b(σ

f ) = H•
b(σ) .
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Except for the different coefficients modules involved, the proof of Propo-
sition 2.21 is analogous to the one of [32, Lemma 2.9] and for this reason we
refer the reader there for more details.

When G is a group of Hermitian type, the pullback construction allows
us to give the main definition of the paper.

Definition 2.22. Let Γ be a finitely generated group and let G be a Her-
mitian Lie group. Let (X,µX) be a standard Borel probability Γ-space and
σ : Γ×X → G a measurable cocycle. The parametrized Kähler class asso-
ciated to σ is the class H2

b(σ)(k
b
G) ∈ H2

b(Γ; L
∞(X;R)).

We conclude the section showing how we can implement the
parametrized Kähler class if the cocycle admits a boundary map. Let
σ : Γ×X → G be a measurable cocycle. If ϕ : B ×X → Y is a boundary
map for σ, we can naturally define a map at the level of cochains as

C•(Φ) : B∞(Y •+1;R)G → L∞
w∗(B•+1; L∞(X;R))Γ,

C•(Φ)(ψ)(b0, . . . , b•)(x) := ψ(ϕ(b0, x), . . . , ϕ(b•, x))

for every ψ ∈ B∞(Y •+1;R)G and almost every (b0, . . . , b•) ∈ B•+1 and x ∈
X. The above map is a well-defined cochain map and it does not increase
the norm [26, Lemma 4.2]. As a consequence, it induces maps at the level
of cohomology groups

Hk(Φ) : Hk(B∞(Y •+1;R)G) → Hkb(Γ; L
∞(X;R))

for every k ≥ 0.
An immediate application of [5, Proposition 1.2] shows the commutativ-

ity of the following diagram

(14) Hk(B∞(Y •+1;R)G)
c
k

//

Hk(Φ)
��

Hkcb(G;R)

Hk

b(σ)tt

Hkb(Γ; L
∞(X;R))

for every k ≥ 0.

Example 2.23. Let Γ be a discrete countable group and let (X,µX) be an
ergodic standard Borel probability Γ-space. Consider a Zariski dense mea-
surable cocycle σ : Γ×X → G, where G is a semisimple Lie group of Hermi-
tian type. By Corollary 2.16 there exists a boundary map ϕ : B ×X → SG
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in the Shilov boundary of G. Thanks to Example 2.20 we know that the
class 1

2π [βG] ∈ H2(B∞(S3
G;R)

G) is sent to the bounded Kähler class kbG. Di-
agram 14 tells us that the class H2

b(σ)(k
b
G) admits as a natural representative

1
2πC

2(Φ)(βG), that is

C2(Φ)(βG)(b0, b1, b2)(x) = βG(ϕ(b0, x), ϕ(b1, x), ϕ(b2, x)) .

Remark 2.24. Given a Hermitian symmetric space X with G = Isom(X )◦,
an isometry h ∈ Isom(X ) can be either holomorphic or antiholomorphic. In
the first case it preserves the complex structure J on X and the Kähler
form ωDX

, whereas in the second case ωDX
is sent to −ωDX

. When G is
the connected adjoint R-group associated to the complexification of the Lie
algebra of G and s : G → G is a R-homomorphism, the induced isometry
h ∈ Isom(X ) is holomorphic if and only if s is positive and antiholomorphic if
it is negative [9, Definition 4.7]. In setting of Definition 2.22 the composition
of σ with s affects the pullback of the Kähler class by a sign ±, depending
on the holomorphicity.

3. Proof of the Theorem

Before starting with the proof of Theorem 2, we recall a lemma that holds
for cocycles in degree 2.

Lemma 3.1. [24, Corollary 2.6] Let Γ a finitely generated group and let
(X,µX) be a standard Borel probability space. If B is a Γ-boundary, then

H2
b(Γ; L

∞(X;R)) ∼= ZL∞
w∗,alt(B

3; L∞(X;R))Γ ,

where the letter Z denotes the set of cocycles and the subscript alt denotes
the restrictions to alternating essentially bounded weak∗ measurable func-
tions.

We are now ready to give the proof of

Theorem 2. Let Γ be a finitely generated discrete group and let (X,µX)
be an ergodic standard Borel probability Γ-space. Let {σi : Γ×X → Gi}, i =
1, . . . , n be a family of Zariski dense measurable cocycles into simple Her-
mitian Lie groups not of tube type. If the cocycles are pairwise inequivalent,
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then the subset

{H2
b(σi)(k

b
Gi
), 1 ≤ i ≤ n} ⊂ H2

b(Γ; L
∞(X;R))

is linearly independent over L∞(X;Z).

Proof. Suppose the existence of coefficients mi ∈ L∞(X;Z), i = 1, . . . , n
such that

n
∑

i=1

miH
2
b(σi)(k

b
Gi
) = 0.

Since each cocycle is Zariski dense and X is Γ-ergodic, Corollary 2.16
guarantees the existence of a boundary map ϕi : B ×X → SGi

from a Γ-
boundary B into the Shilov boundary SGi

of the group Gi. By Exam-
ple 2.23, the cocycle C2(Φi)(βGi

) ∈ L∞
w∗(S3

Gi
; L∞(X;R)) represents canon-

ically the pullback of kbGi
along σi. Additionally, since the cocycle is alter-

nating, by Lemma 3.1 there are no coboundaries in degree two. Hence we
get the following equation

(15)

n
∑

i=1

mi(x)βGi
(ϕi(b1, x), ϕi(b2, x), ϕi(b3, x)) = 0

that holds for almost every triple (b1, b2, b3) ∈ B3 and for almost every x ∈
X. As a consequence of Equation (3) it follows that

(16)

n
∏

i=1

⟨⟨ϕi(b1, x), ϕi(b2, x), ϕi(b3, x)⟩⟩
mi(x)
C

= 1

for almost every triple (b1, b2, b3) ∈ B3 and for almost every x ∈ X.
For any i, Corollary 2.16 allows to choose ϕi in such a way that the

subset of points (x, b1, b2) ∈ X ×B ×B with (ϕi(b1, x), ϕi(b2, x)) ∈ S
(2)
Gi

is
of full measure. Hence, since a finite intersection of full measure sets is still
of full measure, we can fix a point x0 ∈ X and a pair (b1, b2) ∈ B2 such that

(ϕi(b1, x0), ϕi(b2, x0)) ∈ S
(2)
Gi

for every i = 1, . . . , n.

Exploiting the transitivity of Gi on pairs in S
(2)
Gi

, we can identify S
(2)
Gi

with the quotient

Gi/StabGi
(ϕi(b1, x0), ϕi(b2, x0))

by the stabilizer in Gi of the pair (ϕi(b1, x0), ϕi(b2, x0)) ∈ S
(2)
Gi

. Furthermore,

the map X → S
(2)
Gi

that takes x to the pair (ϕi(b1, x), ϕi(b2, x)) is measurable
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by the measurability of ϕi. Hence the composition

X → S
(2)
Gi

→ Gi/StabGi
(ϕi(b1, x0), ϕi(b2, x0))

is measurable as well and, composing again with the measurable section

Gi/StabGi
(ϕi(b1, x0), ϕi(b2, x0)) → Gi

given by [36, Corollary A.8], we get a family of measurable functions

gi : X → Gi .

By setting ϕgii (b, x) := gi(x)
−1ϕi(b, x), we have

• ϕgii (b1, x) = ϕi(b1, x0) for almost every x ∈ X;

• ϕgii (b2, x) = ϕi(b2, x0) for almost every x ∈ X;

• ϕgii is a boundary map for the cocycle σgii by Remark 2.13.

Thanks to the Gi-invariance of the complex Hermitian triple product,
Equation (16) implies that

(17)

n
∏

i=1

⟨⟨ϕgii (b1, x), ϕ
gi
i (b2, x), ϕ

gi
i (b3, x)⟩⟩

mi(x)
C

= 1

holds for almost every b3 ∈ B and for almost every x ∈ X. In view of the
properties of the ϕgii ’s, we can rewrite Equation (17) so that

(18)

n
∏

i=1

⟨⟨ϕi(b1, x0), ϕi(b2, x0), ϕ
gi
i (b3, x)⟩⟩

mi(x)
C

= 1

holds for almost every b3 ∈ B and for almost every x ∈ X.
We define the map

σ : Γ×X →

n
∏

i=1

Gi, (γ, x) 7→ (σgii (γ, x))i

which is a cocycle since the cocycle condition follows from the ones of the
σgii ’s with boundary map

ϕ : B ×X →

n
∏

i=1

SGi
, (b, x) 7→ (ϕgii (b, x))i.
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and we denote by L the algebraic hull of σ.
Using the same notation of Lemma 2.3, we denote by Oi :=

Oφi(b1,x0),φi(b2,x0) ⊂ SGi
the domain of definition of the map

Pφi(b1,x0),φi(b2,x0) : Oφi(b1,x0),φi(b2,x0) → ∆∗\A∗ ,

η 7→ ⟨⟨ϕi(b1, x0), ϕi(b2, x0), η⟩⟩C .

For almost every x ∈ X we have that
(

EssIm(ϕx)
Z
∩

n
∏

i=1

Oi

)

⊂

{

(η1, . . . , ηn) ∈

n
∏

i=1

Oi ,

n
∏

i=1

P
mi(x)
i (ηi) = 0

}

where ϕx is the x-slice of the boundary map. Since each Gi is not of

tube type, by Lemma 2.3 each P
mi(x)
i cannot be constant. It follows that

EssIm(ϕx)
Z
is contained in a proper Zariski closed subset of

n
∏

i=1
Oi. This im-

plies that the cocycle σ cannot be Zariski dense, otherwise its slices would
be Zariski dense by Corollary 2.16. As a consequence, we conclude that L

must be a proper subgroup of
n
∏

i=1
Gi.

Now, since every σi is Zariski dense, also every σgii is and the projection
πi of L on Gi is onto for every i. In this setting we claim that there exist
i, j ∈ {1, . . . , n} with i ̸= j such that Gi

∼= Gj . We will sketch a proof for
n = 2 based on Goursat Lemma [1, Theorem 4] to get the statement. The
more general case can be deduced from this basic step using the extended
version of Goursat Lemma [4, 3.2 Theorem].

Consider a proper subgroup L < G1 ×G2 such that the restriction of
the projections πi on the two factors are surjective. Let eGi

∈ Gi be the
neutral element of Gi, with i = 1, 2. Define the inclusion i1 : G1 → G1 ×G2

as i1(g1) = (g1, eG2
) and set L1 := i−1

1 (L). Define similarly the inclusion i2 :
G2 → G1 ×G2 and the group L2. Notice that Li is a normal subgroup of
Gi, for i = 1, 2.

By the fact that L surjects on each factor, Goursat Lemma guaran-
tees the existence an isomorphism s : G1/L1 → G2/L2 defined by s(g1L1) =
g2L2 where (g1, g2) ∈ L. We claim that both L1 and L2 are trivial, leading
to the desired isomorphism between G1 and G2.

By contradiction, suppose that L1 is not trivial. Since G1 is simple, we
must have G1 = L1. By the fact that φ is an isomorphism, we also have
that G2 = L2. By the way they are defined L1 and L2, we obtain that
L = G1 ×G2, leading to the desired contradiction. Thus both L1 and L2

are trivial and s : G1 → G2 is an isomorphism.



✐

✐

“9-Sarti” — 2024/6/25 — 16:49 — page 1921 — #27
✐

✐

✐

✐

✐

✐

Parametrized Kähler class 1921

In general, there exists at least one R-isomorphism s : Gi → Gj for some
i ̸= j such that s ◦ σi ≃ σj . This contradicts the pairwise inequivalence of the
σi’s and concludes the proof.

□

Theorem 2 implies the following

Theorem 1. Let Γ be a finitely generated group, let (X,µX) be an ergodic
standard Borel probability Γ-space and consider a Zariski dense measurable
cocycle σ : Γ×X → G into a simple Hermitian Lie group not of tube type.
Then the class H2

b(σ)(k
b
G) in H2

b(Γ; L
∞(X;R)) is non-zero and it determines

uniquely the cohomology class of σ.

Proof. The non-vanishing of H2
b(σ)(k

b
G) is a direct consequence of Theo-

rem 1. It remains to prove that two cocycles σ1, σ2 : Γ×X → G = Isom(X )◦

have the same parametrized Kähler class if and only if they are cohomolo-
gous. One direction follows immediately by Proposition 2.21.

We now prove the other implication. Assuming that H2
b(σ1)(k

b
G) =

H2
b(σ2)(k

b
G), Theorem 1 provides an R-automorphism s : G → G such that

s ◦ σ1 ≃ σ2, that is s ◦ σ1 = σf2 for some measurable function f : X → G.
We denote by h : X → X the isometry induced by s of the Hermitian sym-
metric space X such that G = Isom(X )◦. It is sufficient to prove that h is
holomorphic, since G = G(R)◦ = Hol(X ) ∩G(R), where Hol(X ) is the set
of holomorphic automorphisms of X (see [31] or [2, Proposition 1.7]). Com-
puting the pull back of the bounded Kähler class of G and exploiting the
G-invariance, we obtain that

H2
b(σ2)(k

b
G) = H2

b(σ
f
2 )(k

b
G)

= H2
b(s ◦ σ1)(k

b
G)

= ϵ(h)H2
b(σ1)(k

b
G)

= ϵ(h)H2
b(σ2)(k

b
G)

where ϵ(h) is the sign of the isometry h. We moved from the second to the
third line applying Remark 2.24 and according to the fact that h is either
holomorphic or antiholomorphic. Since H2

b(σ2)(k
b
G) ̸= 0, then ϵ(h) = 1 and

h ∈ Isom(X )◦ = G and hence

hσ1h
−1 = σf2

for some element h ∈ G. The thesis follows by setting

f̃ : X → G , f̃(x) := f(x)h
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and by the fact that

σ1 = σf̃2 ≃ σ2.

□

Following [8], in the setting of Theorem 1 we can denote by RepZD(Γ;G)
the subset of Zariski dense representations of Γ in G modulo conjugation.
By [8, Theorem 3] the map

K : RepZD(Γ;G) → H2
b(Γ;R) , [ρ] 7→ H2

b(ρ)(k
b
G)

is injective. Moreover, the inclusion

{

Zariski dense representations
Γ → G

}

→֒

{

Zariski dense cocycles
Γ×X → G

}

,

ρ 7→ σρ.

induces a map

RepZD(Γ;G) → H1
ZD(Γ ↷ X;G).

Finally we denote by

KX : H1
ZD(Γ ↷ X;G) → H2

b(Γ; L
∞(X;R)) , [σ] 7→ H2

b(σ)(k
b
G)

the map that associates to every cohomology class of a cocycle σ : Γ×X →
G its parametrized Kähler class. By Theorem 2 we know that the map KX

is injective.
Putting together the above maps and the map induced in cohomology

by the inclusion of coefficients R → L∞(X;R), we get the following

Corollary 3.2. In the setting of Theorem 1, we have a commutative dia-
gram

(19) RepZD(Γ;G)
K //

��

H2
b(Γ;R)

��

H1
ZD(Γ ↷ X;G)

KX // H2
b(Γ; L

∞(X;R)) ,

where the horizontal rows are injective.

Remark 3.3. We discuss a little about the vertical maps which appear in
Diagram (19). The left vertical one is not necessarily injective, namely two
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representations inducing cohomologous cocycles are not necessarily conju-
gated. Similarly, surjectivity does not hold in general, that is not every
cohomology class in H1

ZD(Γ ↷ X;G) contains a representation as preferred
representative. Surjectivity is exactly the core of cocycles superrigidity theory
[29, 35].

We now focus our attention on the right vertical arrow, namely the one
induced by the inclusion of coefficients R →֒ L∞(X;R). As we are going
to see in the next section, under specific assumptions on Γ, its bounded
cohomology with L∞(X;R)-coefficients can be equivalently computed by
restricting the coefficients to the submodules of Γ-invariants [23]. A case
when this reduction can be done is given by higher rank irreducible lattices.
Together with the hypothesis of Γ-ergodicity on (X,µ), the reduction of
coefficients allows to conclude that the right vertical arrow in Diagram 19
is actually an isomorphism.

It is worth noticing that Diagram (19) allows to partially translate the
study of the left vertical map, which is merely a set-theoretical object, in
terms of a homomorphism between bounded cohomology groups.

Finally, we recall the existence of a left (but not right) inverse map
for the function H2

b(Γ;R) → H2
b(Γ; L

∞(X;R)), induced by the integration
along X. Such a map, called integration map, is exploited for instance in the
definition of numerical invariants for cocycles [29, 30]. We refer to [27] for
a more detailed discussion about this topic.

4. Consequences of the main theorem

The aim of this last section is to present some consequences of Theorem 1
when Γ belongs to specific families of finitely generated groups. The second
author has recently studied the elementarity properties of cocycles with
values into the homeomorphisms of the circle when Γ is either a higher rank
lattice [33, Theorem 4] or an irreducible subgroup of a product [33, Theorem
3]. Here we want to follow the same line, and we will prove the vanishing of
H1
ZD(Γ ↷ X;G) under suitable assumptions. The interest in the vanishing

of such space is dynamical and comes from theories as measure equivalences
or orbit equivalences.

We start with the case of higher rank lattices.

Proposition 4.1. Let Γ < H = H(R)◦ be a lattice, where H is a connected,
simply connected, almost simple R-group of rank at least two. Let (X,µX)
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be an ergodic standard Borel probability Γ-space and consider a simple Her-
mitian Lie group G not of tube type. Then H2

b(Γ;R)
∼= 0 implies that

∣

∣H1
ZD(Γ ↷ X;G)

∣

∣ = 0 .

Before giving the proof, which is an application of Theorem 1 and of
the main results in [23], we show some examples in which Proposition 4.1
applies.

Remark 4.2. The vanishing condition assumed in Proposition 4.1 gives
rise to the natural problem of finding family of examples of higher rank
lattices Γ for which H2

b(Γ;R) = 0.
Thanks to Remark 4.3 the injectivity of the comparison map tells us that

it is sufficient to verify that H2(Γ;R) vanishes. Another example is given by
Γ < H = Isom(Y) a torsion free cocompact lattice of a Lie group of rank
bigger or equal than 3 and Y is not Hermitian symmetric. In fact under this
hypothesis [11, Corollary 1.6] implies that H2

b(Γ;R) = 0.

Proof of Proposition 4.1. Theorem 1 provides an injective map

KX : H1
ZD(Γ ↷ X;G) → H2

b(Γ; L
∞(X;R)) ,

and shows that H2
b(σ)(k

b
G) ̸= 0 ∈ H2

b(Γ; L
∞(X;R)) for any σ ∈ H1

ZD(Γ ↷

X;G). Moreover, since the Banach G-module L∞(X;R) is semi-separable,
[23, Corollary 1.6] implies that

H2
b(Γ; L

∞(X;R)) ∼= H2
b(Γ; L

∞(X;R)Γ) ,

where L∞(X;R)Γ denotes the Γ-invariant vectors of L∞(X;R). Finally, the
hypothesis of ergodicity and the vanishing condition on H2

b(Γ;R) show that

H2
b(Γ; L

∞(X;R)Γ) ∼= H2
b(Γ;R) = 0 .

We conclude by exploiting the fact that H2
b(σ)(k

b
G) ̸= 0 whenever σ is Zariski

dense. □

Remark 4.3. The setting of Proposition 4.1 coincides with the one of
Zimmer’s superrigidity theorem [35], which can be applied to show that
any Zariski dense cocycle σ : Γ×X → G is induced by a representation
ρ : Γ → G. This means that the right vertical row of Diagram (19) is a
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bijection, namely

H1
ZD(Γ ↷ X;G) = RepZD(Γ, G) .

If we consider the map induced in cohomology by the inclusion C2
cb(Γ;R) →֒

C2
c(Γ;R), this is called comparison map H2

b(Γ;R) → H2(Γ;R). By [12, The-
orem 21] the higher rank assumption implies that the comparison map is
injective. As a consequence [8, Corollary 6] provides a bound for the num-
ber of Zariski dense cohomology classes of cocycles, precisely

(20)
∣

∣H1
ZD(Γ ↷ X;G)

∣

∣ ≤ dimH2(Γ;R) .

In other words, without assuming that H2
b(Γ;R) vanishes, we only have

the bound of Equation (20).

We move now to the case of products, namely when

Γ < H =

n
∏

i=1

Hi

with n ≥ 2, where each factor Hi is a locally compact and second countable
group with H2

cb(Hi;R) = 0. We set

H ′
i =

∏

j ̸=i

Hi

for i = 1, . . . , n and we assume that each H ′
i acts ergodically on X (that is

H acts on X irreducibly in the sense of Burger-Monod). Following [12], we
say that Γ is irreducible if each projection of Γ in Hi is dense in Hi. In this
setting we are able to prove the following result.

Proposition 4.4. Let n ≥ 2. Consider an irreducible lattice Γ <
n
∏

i=1
Hi in

a product of locally compact second countable groups with H2
cb(Hi;R) = 0

for i = 1, . . . , n. and a simple Hermitian Lie group G not of tube type. Let
(X,µX) be an irreducible standard Borel H-space and assume that the Γ-
action is ergodic. Then it holds that

∣

∣H1
ZD(Γ ↷ X;G)

∣

∣ = 0 .
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Proof. As in Proposition 4.1 the inclusion

L∞(X;R) → L2(X;R)

induces an injective map

H2
b(Γ; L

∞(X;R)) → H2
b(Γ; L

2(X;R))

by [12, Corollary 9]. Precomposing with the injection KX , Theorem 1 gives
back us an inclusion

H1
ZD(Γ ↷ X;G) →֒ H2

b(Γ; L
2(X;R)).

By [12, Theorem 16], we have a decomposition

(21) H2
b(Γ; L

2(X;R)) ∼=

n
⊕

i=1

H2
cb(Hi; L

2(X;R)H
′

i) ∼=

n
⊕

i=1

H2
cb(Hi;R)

where the latter isomorphism holds thanks the irreducibility of H on X.
Since each term in the direct sum vanishes and H2

b(σ)(k
b
G) is non-zero the

statement follows. □

As noticed above, Proposition 4.4 can be view as the analogous of [33,
Theorem 3]. There the second author considers the set of semicohomology
classes of cocycles into Homeo+(S1), where semicohomology is a weaker
notion with respect to cohomology. A deep study of the parametrized Euler
class of such cocycles, namely the pullback of the real Bounded Euler class,
allows to show that, under the same assumptions of either Proposition 4.1
or Proposition 4.4, the cocycles is semicohomologous to a rotational cocycle.
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