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Global well-posedness and scattering of
3D defocusing, cubic Schrodinger equation

JIA SHEN AND YIFEI WU

In this paper, we study the global well-posedness and scatter-
ing of 3D defocusing, cubic Schrédinger equation. Recently, Dod-
son [16] studied the global well-posedness in a critical Sobolev space
W1/T.7/6 n this paper, we aim to show that if the initial data
belongs to H? to guarantee the local existence, then some extra
weak space which is supercritical, is sufficient to prove the global
well-posedness. More precisely, we prove that if the initial data
belongs to H'/2 N W1 for 12/13 < s < 1, then the corresponding
solution exists globally and scatters.
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1. Introduction

We study the non-linear Schrédinger equation (NLS)

(1.1)

i0ru + Au = plulPu,
u(0, ) = uo(x),

1931
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where u(t,z) : R x R*=C, = 41 and p > 0. u = 1 is defocusing case, and
u = —11is focusing case. The equation (|1.1)) has conserved mass

(1.2) M(u(t)) :== /Rd lu(t,z)* doz = M (up),

and energy

lu(t, z)[PT? dz = E(ug).

(1.3) E(u(t)) := /Rd %!Vu(t,x)ﬁ dx-i—H/Rd b2

The equation (1.1 also has rescaled solution

(1.4) ux(t,z) = A2/Pu(t/ N2, z/\).
The scaling leaves H®, s, =2 —% norm invariant, that is, [[w(0)|z:c =

[ux(0)|| gz - In this sense, it has critical Sobolev space H3-. Therefore, ac-
cording to the conservation law, the equation is called mass critical when
p= %, and energy critical when p = ﬁ.

The local well-posedness for is well-understood, which can be found
in Cazenave and Weissler [6]. Moreover, there are extensive studies on the
large data global well-posedness and scattering for . Let us first men-
tion the results in energy space when p = 1. In energy subcritical and mass
supercritical case, Ginibre and Velo [20] proved the large data global well-
posedness and scattering in energy space for d > 3. Bourgain [4] introduced
the induction on energy method to study the 3D quintic energy critical NLS
and proved global well-posedness and scattering in H'(R?) for radial data.
Nakanishi [31] used this method and introduced a new kind of modified
Morawetz estimate to obtain the energy scattering for p > 4/d when d =1
and d = 2. Bourgain’s result was extended to the non-radial case by Collian-
der, Keel, Staffilani, Takaoka and Tao [9], for which a key ingredient is the in-
teraction Morawetz estimate introduced in [§]. Energy critical case in higher
dimensions was solved by [33] [39]. Secondly, focusing equations has special
solutions constructed from ground state, which does not scatter. Kenig and
Merle [25] introduced the concentration compactness method to study the
radial focusing energy critical NLS in H' when d = 3,4, 5. They proved the
“ground state theorem”, namely below the energy of ground state, the solu-
tion with positive virial is global well-posed and scatters, and the solution
with negative virial blows up. Killip and Visan [2§] obtained the scattering
below the ground state for non-radial energy critical NLS in dimensions five
and higher, and dimension d = 4 case was solved by Dodson [I5]. In mass
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critical case, authors further studied the global well-posedness and scatter-
ing purely in L2. In radial case, it was solved by Killip, Tao and Visan [27]
for d = 2, and by Tao, Visan, Zhang [37], and Killip, Visan and Zhang [29]
for d > 3. The defocusing non-radial case for all dimensions were proved by
Dodson [10}, 12, 13]. Furthermore, Dodson [I1] studied the focusing case with
initial data below the mass of the ground state in all dimensions.

Next, we review some of the results for the energy subcritical and mass
supercritical case. As the typical model, we consider the 3D cubic NLS as
follows,

(15) u(0,z) = ug(z),

{i@tu + Au = plul?u,
In the defocusing case, as described above, global and scattering in energy
space was proved by Ginibre and Velo in [20]. In the focusing case, global
well-posedness and scattering in energy space below the ground state was
proved by Duyckaerts, Holmer and Roudenko in [I8], 22]. For negative virial
data, blowing-up solution in energy space was established in [17, 21], 23] [32].
Below the energy space, Bourgain [3] obtained global well-posedness and
scattering in H® with s > 11/13 in the defocusing case. The result was fur-
ther extended to s >5/6 in [7], s >4/5 in [§ and s > 5/7 in [34]. With
radial assumption, Dodson [I4] obtained the result almost in critical space
s > 1/2. In critical space, Kenig and Merle [26] proved global well-posedness
and scattering for defocusing case with assumption that the solution is uni-
formly bounded in critical space. More recently, Dodson [16] studied the
global well-posedness for defocusing equation in a critical Sobolev space
W11/7,7/6_

In this paper, we intend to study the global well-posedness and scatter-
ing for defocusing 3D cubic NLS in critical H'/? space intersected with a
supercritical space. The main result is

Theorem 1.1. Let p=1 and 1> s> 12/13. Suppose that ug € H;/Q N
W;’l, then the solution u of equation (1.5)) exists globally and scatters.

Remark 1.2. The followings are some remarks related to the theorem.

1) Our main purpose is to show that if the initial data belongs to H;/Q to
guarantee the local existence, then some extra weak space, likes Wil
which is supercritical space under the scaling, is sufficient to prove the
global well-posedness.
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2) We mainly concern the rough data case when the derivative index
s < 1. In this case, the main obstruction is the lack of any V-estimate
for the linear solution. Then, the two key ingredients are as follows.
First, we invoke the bilinear Strichartz estimate suitably to lower down
the derivative of the linear solution, but it costs the increase of the
energy bound. To overcome the difficulty, we also derive a global space-
time estimate L{L" with r > 6, see (4.31). These tools allow us to
control the growth of the energy under the rough data assumption.

3) The scattering statement is also included. Indeed, by the uniform

boundedness in Hi/ % obtained below, it is an immediate consequence
of the result of Kenig and Merle [26].

4) Lastly, we remark that the lower bound 12/13 for the regularity s of
the space W51 is not optimal, which can be improved by more delicate
analysis, see below. In particular, we can further lower down the
required regularity by I-method in [§]. However, in this paper we are
not going to pursue this optimality. We conjecture that if ug € HY/?2Nn
L', then the corresponding solution of equation with u = 1 exists
globally and scatters.

The method in [16] was based on the fact that if the initial data belongs
to WP for p < 2, then the linear flow becomes more regular by the dispersive
equation when the time is away from zero. The similar observation was made
in the earlier paper [I], in which Beceanu, Deng, Soffer, and the second
author showed that if the initial data is radial and compactly supported,
then the linear flow becomes smoother when the time is away from zero.
Due to this, they proved the global well-posedness in mass-subcritical case
when the initial data ug € H§C, radial and compactly supported. This fact
also plays a crucial role in our argument, see Lemma 3.3 below for the precise
statement.

Let us explain the main idea of the proof in this paper. We use the argu-
ment in [1], in which a strategy of “time-cutoff” equation’s decomposition
was given. More precisely, we split the solution v = v + w with v satisfying

10w + Av = x<1(t)|v]?v.

Then we can prove that v keeps the properties as the linear flow. Further-
more, w satisfies

10w + Aw = le(t)]v\% + O(wu?).
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As the heart of the whole analysis, benefiting from that v is more regular in
t 2 1, we can transfer the additional regularity from v to w by bootstrap.
However, the implementation of such ideas is quite challenging because of
the rough data.

The first main obstruction is to improve the regularity of the solution w
when it transits from ¢ = 0 to t = 1, we choose various appropriate function
spaces to bootstrap. This is analogue to the works that studied the NLS at
critical regularity, in which the Gronwall’s inequalities were employed suit-
ably to gain the regularity of the solution, see, e.g., [27, 29]. To do this, the
analysis is subtle and the estimates should be critical. More precisely, to
establish the H!l-estimate of w in local time for H2 data, there is a half of
derivative loss, and we use the bi-linear Strichartz estimate to save the reg-
ularity. In particular, a multi-scale bi-linear Strichartz estimate established
very recently by Candy [5] shall be applied to overcome the difficulties.

More precisely, the bi-linear Strichartz estimate in the form of

(1.6) H[eitA(bHeiitAw]‘

LIL7 (RxRY)

with particular frequency restrictions on ¢, ¥ plays a crucial role in this pa-
per. Lgm bi-linear estimate for Schrodinger equation was first introduced by
Bourgain [2] in 2D case, and was further extended in [9] and [39]. This kind
of estimates was widely used in the theory of critical non-linear Schrédinger
equations, see for examples [9HI3] 27, 29] [39]. For ¢,r < 2, has close
relation with bi-linear restriction estimate for paraboloid, which was exten-
sively studied before. Wolff proved bi-linear restriction estimate for cone in
[40] with ¢ =7 > %, and then Tao [35] extended the result to paraboloid
case. Moreover, bi-linear restriction estimate is an important technique to-
wards the linear restriction problems, see [36]. We refer the reader to Mat-
tila’s book [30] for more references of bi-linear restriction theory. In this
paper, we are going to use the multi-scale version of bi-linear restriction es-
timate by Candy [5]. To be more precise, in the proof of local result, in order
to close the contraction mapping, we combine L%JFLZ and the classical L%x
estimates to obtain additional regularity for the low frequency summation.

The second main ingredient of this paper is that the energy of w part
is almost conserved for any long time. This is achieved by controlling the
energy increment of the perturbed solution w. More precisely, the energy
increment contains at least one v that has subcritical estimate, which allows
us to control the remaining w parts with supercritical norms. Since v is lack
of W _estimate ( especially when we assume s < 1), we need to use the
bi-linear Strichartz estimate to lower down the regularity of v. However, as
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described in Remark (b), in the view of (4.32) and (4.33)), the use of

bi-linear Strichartz estimate will increase the energy bound dramatically for
long time. To close the bootstrap argument, we interpolate the bi-linear esti-
mate and the interaction Morawetz estimate to control the energy increment

properly, see (4.51)) below.

Organization of the paper. In Section 2, we give some preliminaries.
This includes notations and some useful lemmas. In Section 3, we give the
subcritical estimate of v. In Section 4, we give the energy estimate of w, and
finish the proof of Theorem [I.1

2. Preliminary
2.1. Notations

The followings are some notations.

° f or Ff denotes the Fourier transform of f.

e For any a € R, a+ := a £ ¢ for some small ¢ > 0.

e C' > 0 denotes some constant, and C(a) > 0 denotes some constant
depending on coefficient a.

o If f <Cg, we write f<Sg. If f<Cg and g<Cf, we write f ~g.
Suppose further that C'= C(a) depends on a, then we write f <, g and
f ~a g, respectively. If f < 27°g, we denote f < g. The notation f > g is
defined similarly.

o |V|:= Fl¢|F and |V|® := FL¢]5F.

e Take a cut-off function y € C5°(0,00) such that x(r) =1 if r <1
and x(r) =0 if 7 >2. For N €2Z let xny(r)=x(N"1r) and ¢n(r) =
XN(7) = Xny2(r). We define the Littlewood-Paley dyadic operator fon =
Penf = F (xn (€D f(€)) and fn = Pyf:=F on(€))f(£)). We also
define that fon = Ponf = [f— P<nf, fan = P<nf = Pco-snf, f[>n =
Psnf = Pso-snf, f<y = P<nf = Pcosnf,and fun = Pun = Pgosn f —
Pey-snf.

e Let S(R?) be the Schwartz space and S'(R%) be the tempered dis-
tribution space. LP(R?) denotes the usual Lebesgue space. We define the
homogeneous Sobolev and Besov spaces

WeP(R?) == {f € S'(R?) : Z N®Py f converges in 8’ to a LP-function },
Ne2t
By (R = {7 € S®Y: 1F5, = 1N 1wllizcan g o}
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Moreover, — the  Sobolev  morm is defined by |[[fllj.ss) =
HZNGQZ NSPNf‘ Lr(R4)" We know from the Littlewood-Paley the-
ory that for 1<p<oo, |[flly.mgas)~ IIVI°fllLo(rs)- We denote that
H*(R?) := W#2(R%). We also deﬁne (-,-) as real L? inner product:

g = / f(2)g(x) da

e For any time interval I C R, we denote LIW3"(I) := LIWy" (I x R?)
for short.

e For any 0 < < 1, we call that the exponent pair (g,7) € R? is H7-
admissible, if2+%:§—*y, 2<g< o0, and 2 < r <oo. If v=0, we say
that (q,7) is L*-admissible.

e For functions f, g, h, we use the notation

O(fg) :=c1fg+ cofg+csfg + cafg,

for some ¢; € C, i =1,2,3,4. We also set O(fgh) := O((fg)h), and O(f +
9) == O(f) + O(9).

2.2. Useful lemmas
In this subsection, we gather some useful results.

Lemma 2.1 (Strichartz estimate,[24]). Suppose that (q,7) and (q,7)
are L?-admissible. Then, we have

1) 1620l o oy S e
and
! i(t A
(2.2) H/O IE(s) ds|| g my S IE 7 1y

Furthermore, by the Bernstein inequality and (2.1), for any 0 < e < %,

(2.3)

(Y N|Pve el

Ne2z

L?L(R) N4571HPN€“ASOHZ/EL;¢( )% ||<P”H1'
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Lemma 2.2 (Schur’s test). For any a > 0, sequences {an}, {bn} €

112\,62Z , we have

(2.4) > (Z]\\f,1

) “anbn, S llanllg, 11651, -
Ny, Ne2%:N, <N

In this paper, we need the following multi-scale bi-linear Strichartz es-
timate for Schrodinger equation, which is a particular case of Theorem 1.2
in [5):

Lemma 2.3. Letl < q,r < 2, % + % < 2, and suppose that M, N € 2% sat-
isfy M < N. Then for any ¢,v € L2(R3),

4_2

. . MY S
(2.5) H[6”APN¢][6ﬂtAPM¢]HLgL;(R) SF I PNAN 2 1Padll e -

Using the same argument as in [39], we can transfer the bi-linear estimate
in Lemma [2.3] from linear solutions into general functions:

Lemma 2.4. LetI CR,1<q,r <2, % + % < 2, and suppose that M, N €
27 satisfy M < N. Let (q,7) be L*-admissible with ¢ < q. Moreover, for
any t € I, u(t,-) is supported on {& :|&| ~ N}, and 0(t,-) is supported on
(€5 €] ~ M}. Then,

aii
(2:6) 10 (woll Lo rr (1) SF lull gy 1Vl g1y »
where a € I, and

(2.7) HUHS*([) = Hu(a)HLg + [|(20; + A)“”L?L;f/(l) ‘

Lemma 2.5 (Inhomogeneous Strichartz,[19), 38]). Let I C R. Suppose
that (q,r) satisfy

5 1 3 3 2 3
1 <0<00,2<r<15, —+ = <D and S+ =2,
4 q T 2 q T
Then, for a € I, we have
t
(2.8) H/ A (s, x) dSHL;'?T(I) S ”F”L?'LT’(I)'
i . L

Particularly, (q,7) = (3/2,9/2) satisfies the above conditions.
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Lemma 2.6 (Interaction Morawetz inequality, [8]). Let u €
C ([O,T] : H1/2) be the solution of (1.5) with =1 for some T > 0. Then,
we have

T
2 2
(2.9) / u(t, )| do dt S luollZ, sup Ju(t) e
0o JRs * te[0,7) :

2.3. Rescaling

From now on, we assume that y =1 in , and for convenience we denote
the initial data as ug. Fix ug € H, 1/2 N ng 1 with 13 < s < 1. Then, for any
0 > 0, there exists tg = to(d,up) < 1 such that

B <.

+([0,3t0]) =

Let & = 6(||[woll g2/2q4i:2) > 0 be a small constant determined later. By
standard local theory, the equation (1.5) admits a unique solution w €
C([0,to); HY?) with initial data 1, satisfying

Il <2l 3

LeF2( ([0,30]) +([0,3t0]) = < 20,

Then, we make the scaling transform
1o 1 1
ug = tguo(tix), and u(t, z) = tgu(tot, t3 x).
Now, we have
- s_1 o
(2.10) l[woll g1z == [[toll /2, and uollypsn =15 [[wollyje -

Moreover, the local solution u of (|1.5)) is defined on [0, 3] with

.
(2.11) [ull 2|[oll 3 , and [lul

Lo F2 ((0,3]) 13, (03] < 20
2.4. Decomposition of the solution

For the above d, we can find sufficiently large dyadic No = No(6, to, ug) € 2N
such that

(2.12) 1P N woll g2z + | Ponyioll s < 806
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We define that vy = P>n,up and wp = up — vg. Then, we decompose the
solution u of (1.5)) as u(t,x) = v(t,z) + w(t, x), where v and w satisfy

(2.13) i + Av = x(t)|v]?v,
. v(0,2) = vo(x),

and

(2.14) 10w + Aw = |ul*u — x(t)|v|*v,
' w(0,z) = wo(x),

respectively. In the following, we regard |uol| ;1/2}j:1 as a constant and
omit its dependence for short. We consider the L2-norm of ug:

luoll 2 <lP<ruollpz + [[Po1uoll s -
Note that
[Pz1uoll 2 S [|P1uoll e S 1.

By Bernstein’s inequality, s < %, Wel s Bioo, and ([2.10)),

3 s_q
1P<ruoll s S D I1Pvuollze S D N2 Pyuollpy S lluollypen S5
N<1 N<1

Therefore,

=1
(2.15) uoll 2 St5 -

~

By the above argument and (2.12]),

(2.16) lvoll 2 < 8%,
and

1/2 1/2
(2.17) lwoll g S N lluoll o S N,

Using the equation, for any 0 < v < 1/2 and H2 "-admissible (g,7), we have

1/2
(2.18) ”|V\7U”L‘3L;([o,3]) S ( Z N*Y HPN“H%gL;([O,?)})) / S HUOHI‘{;/2 S L
Ne2Z
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3. Subcritical estimate of v

We define vy(t, z) := ey and

t
it ) 1= =i [ I (5)uls, ) Po(s,) ds.
0
By ([2.13]), we have v = v); + vy Using the Strichartz estimate in Lemma

2
HU”Lch;/Qr]L?Lg(]R) S HvOHH;/2 + HvHLgoH;“(]R) HM’L%LQ(R)’

Therefore, by (2.12)), (2.16)), and the standard fixed point argument, we have
that v is global defined, and satisfies

10
(3.1) HUHL;&H;/%Lng(R) St o,

and thus by (2.2) in Lemma
30 £3
(32) H’UHIHL?OH;/2QL?L2(R) S tO o°.

Using the equation again, by the Bernstein inequality, the Strichartz esti-
mate 1n Lemma u, and the Littlewood- Paley theory, we have the

followmg H_? : estimate: for any 0 < v < 1/2, and H; 2" 7_admissible exponent
pair (q,r), we have

1/2
(3.3) V0l g ) S ( Z N* HPNUH%;’L;(]R)) < t°d.
Ne2?

Combining ([2.18]), (2.11)) and ({3.3)), we also have

1/2
3.4) IIVI@llzsr, oz S (> N> 1PNl Zar 05) ) %< luoll gare S 1,
Ne2z

and

(3.5) lwllzs (o3 <0

Moreover, by Lemma and Lemma we have the following ' nonlinear
estimate (see [16] for its proof),

(3.6) ZN :

13053,

Py (Jvf*v )HL1L2(R
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We denote
(3.7) A(N) = [[Pyvoll 2 + [|Pv (10*0) ||y 2 sy -
and

(3.8) B(N) := |[Pywo| 2 + || Px (‘w’2w)HL§L§([O,3])'

Similarly, we denote g( N) and B(N) with projector Py replaced by Py

Then, by - and , we have l2 -bound:
(S N(AW)2 + AN)2))F < %,

and (S N(B(N)2+B(N)?)? S 1.
N

(3.9)

The first main result in this section is that on local time interval [0, 3],
v belongs to some subcritical space away from the origin, which is inspired
by Proposition 4.4 in [I].
Lemma 3.1. Suppose that 1 < s <1 and [voll 172 piet < 1305, Let v be
the solution of (2.13 - Then, for any 0 <e < 10( %),

< 1406.

(3.10) 101l x(jo,3)) = = ¢ N2t L(0,3) >

Proof. We bound the linear part using the dispersive estimate:

[ N2+ Py

st oan S VI =]l g

Note that vy = P>1vg, then by interpolation, 1 5+ 105 < s, and Wsl
Bi o,
1 1
11915l 5 < 37 N5 [ Pywoll g
N>1

3 1
<N NTE(NEEE | Pyl ) (NE [ Pavoll 2 )
N>1

2
5

3 2
Sllvollfy e lvoll 7o
<td%s.
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Then, we have

(3.11) |46 N3+ Py < 1406,

HL?@([OB])

For the non-linear part, ||[t%/10ON1/2+¢ Py, L .(j0,3)) can be bounded by

9 1 2
(3.12) (LR /0 I P (F*0) dsllyg o
t

(3.13) — Htﬁ)Ni+8/
t

/2 92X (s) P ([v]*v) dsf|

[0,3])°

We bound the term (3.12)) by the dispersive estimate, noting that ¢ ~ [t — s
when s < /2,

2
B <|IVE [Py (o)
0
(3.14) g HN%HPN (|U‘QU)

L3/ ds’ L5([0,3))

HLgLi/“([o,Q])

1 2 2
< HN2+5PN (va(v +venN) + UNNU<<N> HL}L?/“([OQ])’
where we have used the frequency support property

Py ("U’Q’U) = PNO <U%N + U%NU<<N + "UZN’UZ<N>

= PnO (U%N(v +ven) + UNNviN) .

Then by N > 1, Holder’s inequality and (3.3)),

||N§+5PN (v%N(v + v<<N)> }

1) o loenlle oy 1oz llerzs oy Wl ez ooz

LiLY*([0,2)

< N 3

SN oz | e grave gy 102 | paiporaoors gy 0l psor 2070,
30 ¢3

S ||UHLt°°H;/2(R) |’U||L§W£/2o,2o/3(R) H’U”L?O/uLio/s(R) S tO (S .

Note that for N > 1, by (2.12), we have

(3.16) NeA(N) < llvoll gire + [V (v]?v) | < 1%,

Ly LZ(R) ~
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then combining Lemma [2.4] Lemma[2.2] (3.3) and (3.9), we have

HNﬁaPNO (v~nvZy) HL1L5/4([0 2))

SNE""E Z ”O(UNNUN1)”L2 ([0,2]) ||UN2||L2L10/3([02])
Nl,N23N1<N2<<N
(317) < > NENLA(N)A(ND) [[ow, | 2072 0.2
Ni,No:N: < No <N ’
N1/2
s Y L Nll/zA(Nl)HW]l/%Nz < 13063,

~ 1/2 Lm0
N17N22N1<N2<<N 2 ’

Next, we estimate ([3.13)). Note that we have Py (\v[%) = PyO (vaUQ).
Using dyadic decomposition in time, Lemma and [3 C I°, we have

t )
B S (3 [arsnte [ IR0 (12n®) i aasnn)’

M<1,Me2? /2
SO D0 IMsN ounyaccan (PO (v2nv?) Hisﬁdo 5’
M<1,Me2% tLZ ([0,
9 14 2
(3.18) S [[PeN=TEPNO (02 507) ||L§L§([o,3])
1y 9
SN Y0 eeew, L,.((0.3]) HvHLiSL;{%(R)
Ni:N 2N
Nate 9 1
5 2%052 Z T tlgu le +EUN, ||L§r([075]) ,S t%O(SQ ||’U||X([0’3]) )
Ni:N 2N

Combining the estimates (3.11)), (3.15)), (3.17]), and (3.18)), we have

0]l x 0.7y S 1070 + 507 vl 0.3

Noting that to < 1 and § is sufficiently small, this implies (3.10)). O

An immediate consequence of Lemma [3.1] is

Corollary 3.2. Suppose that £ < s <1 and lvoll grrzpisr < 308, then
1/2,,
(3.19) Z I ‘

Next, we derive the global bound for v when ¢ > 3, for which the estimate
is even better. This lemma is one of the key ingredients in our argument,
which gives subcritical estimates for long time and will be frequently used
in the following.

Sto'd.

=([1,3])
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Lemma 3.3. Suppose that 3 < s <1 and [voll 172 piet < 1308, and let v
be the solution of (|2.13] - Then for any t > 3, we have

(3.20) lo®ll g, _ St2850,
and
(3.21) o) S0, and  o(®)l| s St 5%,

Proof. First, we prove ([3.20]). For any ¢ > 0, by the dispersive estimate
- - —3/2,10
(322) ol St lwollg S ol S 210

For the non-linear part, we have

2
lvnl 1 S/ |t—s|73/2 sup HNPN (\v|2v)‘ I ds
00,00 0 Ne2z “

2
5/ |t = s|73/% sup || PxV (jof*v)]],, ds
0 Ne2Z :
(3.23) S0 (Vo) I oz

< t_3/2H Z 0O (VUN’URNU) + O (VuoNve NV«N) HL;I([OQ])'
N

By Hoélder’s inequality, Lemma [2.2] and (3.3),

L:,([0,2)) S Z 10 (Vonon,v)llL:o.21)
NiSN

1 1/2 3053
S E 1/2N /2 ”UNHL2 02])N1 “UNll‘L:TZ(R) ”UHL;?,E(R) Stp 67
N1>N '

(3.24) H ZO VUNU>NU) ‘

Changing order of summation and using Hélder’s inequality,

I %: O (Vunvenven) HL}@([OQ])

SIX_oen > wwow))
N

N1,No:N; <No <N

~1d0 >0 oVen Y wmom) o

N2 NN2<<N N1:N1<N2

SO > ovew Y UNl)HL%)m([OQ])||UN2||L2 ([0,2)) -

Ny  N:N KN N1:N1 <N,

L.([0.2)
(3.25)
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By the frequency support property, we can update the l]l\,—summation for N
to l?\,:

I > Oo(Vew >, ww)

Lz .([0,2])

N:N><KN N1:N1 <N,

(3.26) slloven >0 ww)ls, .\ 202
Ny:N: < Na
< 2 HO(VUNUNl)Hl?\,:N>>N2L$)m([O,2])'
Ni:N:1 <N,

Note also that by ,
an (O Nalowlliz qoep) " S 10l e S 6.

N>
Then using Lemma [2.4] Lemma [2.2] (3.9), and (3.27),

I %: O (Vunvenv<n) HL;,([OQ])

S > llovesew) HEV:NMQLg,m([o,Q]) lone 2z, 0,21
N17N21N1<N2

3.28
B2 < (S NNANAND) 2 fonlze o

Ni,N3:N1;<Ny; N:N>N,

N i 1/2
SE6 Y ZENPANON, Jow iz oy S 800

N1,N3:N1 <Ny 2

Therefore, by (3.23), (3.24), and (3.28), we obtain |[vn|| 5 < t_%t3053. By

1
dispersive estimate and HZ C L3,
s [? 3 ~2,30¢3
lomill g, S llomillpe S 72 [ Nlo(s)llzs ds S 17265707
o0, 00 x 0 x

Then, by interpolation, [jvnllz. S t_%tgoé?’, which completes the proof

of (20)
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By (3.22)), we have

lo®l= £ S 1Pvoull e + ol

N>1
<t | Pvvoll 1 + ¢ 28306°
o S
<t Hv0||W 4t Eg3083
<t

Moreover, L*-estimate follows from (3.21)) and the interpolation
(3.30) lo@®lls S o)l (o)} -
This finishes the proof of this lemma. O

4. Energy estimate

First, we have the following local estimate of w. Note that w satisfies
t
(4.1) w(t) = ePwy — z/ elt=s)A (Jul*u — x(s)[v|*v) ds.
0

Proposition 4.1. Suppose that 2 <s<1, uge Hl/2 W;’l, up(z) =
téﬂﬂo(té/zx), and let v and w be the solutions of equations (2.13] - and -,
respectively. Then,

19 sup [[w(t)]l g S No/ lluoll g -
0<t<3

Proof. We define X ([0,3]) norm as

lollgqog) ¢ HwanHlM
1/2
(43) FOX NPyl N IPvwlly o))"
Ne2Z
2 — 2 1/2
(> N”PNW||L%L;°<[0,3J> + N PNl o )
Ne2Z

Here ¢ < 1 is a fixed positive small number. By (2.1)) and (2.3 in Lemmal2.1]

and (2.17)), we have

(4.4) e < Ny ol -

wOHX ([0,3]) ~
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For the non-linear part, by the Sobolev inequality and (2.2) in
Lemma 2.1} we have

t .
H/O e =92 (juu — x(s)[v]|*v) ds| 20,31

ZNz 1P (lul*u = x(s)lo0) inzwﬁ(m,:ﬂ))w
(4.5) ZNZH (1= x(®) Py ([v]v )”L17°([03]))1/2
(46) ZNQ |PN |'U,‘2'LL— ‘U’2 )HL1L2+L7([0,3D>1/2'

For the first term (4.5)), by Minkowski’s inequality and the Littlewood-
Paley theory, it suffices to estimate

(4.7) HV (|U )HLW7 ([1,3])

To this end, we use the similar method in the proof of (3.20]) in Lemma
and write

(|v ZO VUNU>NU) + O (VuoNve NV«nN) -
N

By Holder’s inequality, Lemma (3.3), and (3.19)),

(48) |20 (Vovvewv) | porgy S D2 10 (Vovow o)l g )
N Ni>N

Nm 303
<D 5V HUNHL5 (N " Jow, I 2e )HIUHL?T(]R) S g 67
N >N ,

Using the similar argument in (3.26)), and then using Lemma Lemma

. ., and , we have

I Z O (Vonvenven) |
N

L;°/7([1,3)

(4.9) S Z HO (Vonup,)

N1,N2:N1 N2
30 ¢3
< 3083,

‘l?v Ny L2 ([0,3]) o, L. ([1,3])
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Combining and , we have
(4.10) IV (o) [ 2o gy S 1076°

For the term (4.6), we have

9 9 9 1/2
ZN |PN (|u‘ u— ‘U’ )’ L1L2+L7 [0,3}))
2
(4.11) S %:Nz | PvO (w>n (w® +wo + v2))| L2 ([0.3) )1/2
2
(412) + (%:Nz HPNO (UzN (w2 + ’LUU))l L1L2+L70([O,3]) )1/2

We first estimate the term (@.11)). We only consider the term O (w>yw?),
since other terms can be treated similarly. Since

PO (wZNwz) = PyO (wZNszw) + PyO (wNNwiN) ,

by Hoélder’s inequality, (3.4), (3.5), and Lemma we have

ZN2 HPNO w>Nw>Nw) HL .(0,3]) )1/2

5(2( > Nlwwllegqosp lhonal 2 o 1002, o))

N Ny,Ny:Ny,N22N e

N 2\1/2
(413) o 3 St e, OSDNQ”||wNQHL£([073D))/

N Ni,N3:Ni,N.ZN Nl
min{Nl,Ng}l 1/2|

<4§
Ny N maX{Nl,N2}1/2

~

sz, oy N3 ol 2 g

S5 lwll s -

Similarly using only Hélder’s inequality and , we also have
2 1/2
( Z N? HPNO (wNNwi<N) HLi([O,B]) )

1/2

(4.14) ZN2 wallm leoliZs qoan )"
[0,3]) ,

<6 Hwa(([OB])'

Therefore, by (4.13) and (4.14]), we get

(4.15) B11) S 6wl g o4 -
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For the second term (4.12]), we write

PyO (vsn (w? + wv))
= PNO (’UNN (wi<N + w<<Nv<<N))
+ PyO (vawZNw +v>Nw>NU + vZszNw) .
Treated similarly as , we have

(4.16) ( %: N2|[PnO (vznwznw + vzywzno +vznvznw) [ o)

NEY ”wHX([og]) .
Therefore, it suffices to estimate
9 2 2 1/2
(4.17) (EN HO (van (W +wenven)) HL}L@([OB])) :
N
By Minkowski’s inequality,
(4.18)
1/2
EDs Y (> N0y (on +wm) wn) I oay )

N1,Ny N:N>N;,N-

For N1, No < N, 1 < qg < 2, by Lemma|[2.4] we have the following tri-linear
estimate:

N O (v (v, +wn,) W)l 12z (0.3)

S N0 (nn vz +wna))l o 2 o3 lwmll o

((0,3])
(1) ¢ NN, (V) (AN) + BOR)NE NG |
~ 2 2 2 1 1 WN, Lf‘/’LgO([O,s})
Ny, 3 2 _1

< N%E(N)(E) 2 0 NG (A(N2) + B(N2))N,® * Jlww, ||,

P Le((0.3)
Therefore, by (4.18)), (4.19) and (3.9)), we have
(4.20)

Nayi-z 3 %
ETD) < té“éNZN (37,)7 ™ N3 (AN2) + BNl

-1
2

L((0,3])

Note that for both choices gy = 2 and gop = 1/(1 — ¢) for ¢ < 1, we have

1

(4.21) 1N o I,

% oo 12, ~ 1020



3D NLS 1951

Therefore, we can choose gy = 1/(1 — ) when N; < N, and gy = 2 when

N1 > N,. Using Lemma (3.9) and (4.21)), we have

(4.22) N
1y3-2 575 2e—3
ETD <% Y (0N (AN) + BOV)IN, w2 o)
NN, 2
Navins p
+190 Z (E)2N2 (A(N2) + B(N2))NY [[wn, | 22 £ (j0,3))
N12=N>
< t°0(tg 0 + 1) 1wl % 0,3 -
Together with (4.4)), (4.10), (4.15)), (4.16)), and (4.22), we have
1/2
(4.23) ol oy SVE? luoll o2 + 6% + 206 ol .

then by choosing § small enough, we have

1/2
lwllg (o3 S No'* lluoll e

which completes the proof of (4.2]). O
Define that
1 ) 1 A
Ew(t) == [ |[Vw(tz)|*de+ - [ |w(t )| de.
2 Jes 4 Jos

By (4.2), (2.10), (2.12)), Sobolev’s inequality, and the interpolation,

1 1 1/4
sup [lw(®) s < sup [w(®), [w(t)llze < No'™.
0<t<3 ©0<t<3

Then, there exists a constant Co = Co(|[tol| z1/2yj+2) > 0 such that

sup E(w(t)) < CoNo.
(4.24) 0<t£3 (w(?)) 04Vo

Next, we turn to the energy bound of w when ¢ > 3. For all ¢ > 0, by
conservation law [Ju(t)||3. = [|uo|/3-, and (3.1)), we have

EN]
(4.25) w2 < t6

We take 3 < Ty < oo such that u is well-posed on [0,7p). We are going to
prove that
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Proposition 4.2. Suppose that 12/13 < s <1, ug € HI/2 N Wf’l, and

up(x) = t0/2~ (t (1)/2 ). Let v and w be the solution of equations (2.13) and
(2.14)), respectively. Then,

(4.26) sup E(w(t)) < 2CyNp.
3<t<Ty

Proof. Suppose that (4.26)) did fail, then we could define

=inf {3<Ty <Tp: sup E(w(t)) =2CoNy.}
3<t<Th

In the following, we denote <S¢, as < for short.
We first collect some useful estimates. By definition of 7', for 0 < ¢ < T,
we have that

(4.27) lw(®) 1 < No"*, and [lw(®)] . < N'*.
Combining (4.25)), for any 0 <1 < 1,
1, (s-2)

(4.28) ol sz oy + Nll o o,y < No o’

Using the interaction Morawetz inequality in Lemma (4.28]) and (3.1]),
we have

1/8,2(s—2)
(4.29) lollzs oy S t°0: and [lwllgs oy S No"™t3" -

Interpolating with [|w| e < N01/2,

1/4
(4.30) ol oo oy S No 572

Using the equation (2.14) and (4.30]), we have

1/4

ol 2oy S Mo’ + 112 (ufw) |

1/4 1
(4.31) SN IVl e s oy 1l 201
< N

208 ([0,17)
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Then, by (4.27), [#.25), (4.30), and (4.31)), for any 0 < a <1 and N € 2%,

we have

N HPNUJOHLg + N*® HPN (’u‘Qu) HL?L?([O,TD

(4.32) S NG+ lull e gra o, HUHL?L%O’T]) lwll 22 Lo (fo,77)

< NG,

Moreover, for 0 < a < %, we can improve the bound by (4.27)), (4.25)), and
[E39),

]\TQHPNWOHL2 +Na HPN (|u|2 )”L2L5 ([0,T)

(4.33) SN + V%l oo 12 0,7) ||UHL4 ([0.7])

< NEHE (),

Inspired by [16], we define the modified energy by
(4.34) E(w(t)) = E(w(t)) + (Jw]?w,v).

Then, we have

@35 S elr)) = (P, v) — (we o) — w20+ 7T,

Therefore, noting that CoNy 2 1,

(4.36) S [EG(t) ~ E(w(t)] < 7€M

Note that for ¢ > 3, v; = iAv. After integrating by parts in x, we have

T T
(4.37) / [(|w|*w, vr)] dt§/ ‘/O (Vw - Vow?) dz| dt.
3 3
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Therefore, for any 3 <t < T, by (4.24), (4.36)), and (4.35)), it follows that
E(w(t)) < / ‘— s))| ds

2
< CoNo + EOONO +/ [(Jw]*w, vy)| dt

+ C’/ /(|w|4 + [v[H)|v|? da dt
o

+C’/ /|va|2 dz dt
3

(4.38) .
+C’/ ’/O Vuw - Vov(w + v)) dz| dt

< TGy 0+/ /\w[ + ol of? de d

+C'/ /|va| dz dt
3

T
+C’/ ‘/O(Vw-VU(wQ—i—wv—i—vz)) dz| dt.
3

By (4.29)) and ( -, we have

T
/ / (Jw[* + [v[H|v|* dz dt

(Hw||L4 (@ T HUHLfT(ST])) 017 Lo (i3.70)
S NP0 (300)? < 02Ny,

(4.39)

By (4.27) and (3.21]), we also have

T
(4.40) /3 /’VU’U‘Q dr dt S ||w||igoH;([3,T]) ||U||%§L;°([3,T]) S 52N0-

By (4.29) and (3.21]), we have

T
/ ‘/O(Vw-val(wz—l—wv—i-vQ)) dz| dt
3

4.41 2 2
A0 <Vl o pa oy ol gy (0l oy + 1012 )

SN2 05 . NABETD < N3
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Then, it suffices to consider the term

T
(4.42) / ‘/O(Vw - Vst (w? + wv + %)) dz| dt.
3

By the frequency support property, we can divide it into three terms,

(4.43)

- Z/ /}V’UN wa>NU+w‘d:Cdt

N>1

(4.44) + Z/ /}VUN Vwvs y(v +w) ‘ dz dt

N>1

(4.45) + Z / /}VUN VwN(w<<N + Ve NWN + v<<N)’ dz dt.
N1

For (4.43), from (4.27), (4.29), and the Sobolev inequality, we have for any

1>8>g,

T
/ / ’va - Vwws y (v —|—w)‘ dz dt

s HWN”LQLM([:& ) IVl 22 gs.m) Hw?NHi‘% -(3,1])

(4.46) : HwZNHLfoLi([g,T] (HU||L4 3,1+ ||w||L4£(3T]))

2 5(s-2) g
5 N[) tO ”VUNH % m([g T]) szNHLfOHI%([&T])

<Nt12 HIV!WNHLQL (3.1

Hence, applying Lemma we have

5 25 (o
(4.47) B2 S No S NE Y 1105 < G,
N>1
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For (), by Holder’s inequality, (27), (1), and (E23),

T
/ / [V - Vwos (v + w)| da dt
3
(4.48) SIVewvvanll e oy IVl L2 g3,
(ol 2 gy + el e 22 g,y )

1/2 \1-25,%5°
S NNt 1IN oy 1191 02w e oy

Therefore, using (3.20)) and (3.21]), we have for any 1 > s > %,

(4.49) 3 < Y0 N AN B (100)? < 62N,
N>1

Finally, we deal with the term (4.45)). Since the estimate of v will not
increase the bound of Ny, the worst case is as follows, and the others can be
treated similarly:

T
(4.50) Z/ /}VUN : vaw<<Nw<<N‘ dx dt.
3

N>1

By Hélder’s inequality and (4.29)),

T
/ / ’va . VwNw<<Nw<<N‘ dx dt
3

(4.51) < |Von| \|VwNw<<NHf%,

LB L) P r2(0,)

" 24
. 13 13
IVwll 2 12 3.77) Hw<<NHLt%La%([3,TD '

Interpolating (4.25)) with (4.29)), we have

1

11
12

48 48 < le < é 1
(4'52) ||w<<NHLtﬁLF([3,T]) ~ HwHLchi([g,T]) HwHL;{I([&T}) ~ NO to
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By Lemma [2.4] (4.32)), and (4.33)), we have

IVovwaenl g1 om)

< Y NUEN(|Pyvwolls + 1Py (Jul?u) |
(4.53) NizNi <N
- NE (1 Prvwollps + || P, (Jul?u) |

2L (0,7)) )

218 ([o,10) )

SNTENG 4t

By (4:27), (@51)), (452), (4.53), and (3-20), we have for any 1 > s > 32,

SN NE TV g

N1 L3 L (3.11)

(4.54) 5 (s_2)—
< NS Z N13*5t13 13085 < 6Ny,

N>1
Then, by - and (4.54] , we have
(4.55) [T22) < oM.

Therefore, (4.39), (4.40), (4.41), and (4.55) imply
101 3
(4.56) sup E(w(t)) < 75, CoNo + C(Co)dNo < 5 ColNo,
te[3,T]

which contradicts to the definition of T'. Then, we obtain (4.26|). O

Proof of Theorem[I.1. Note that by (3.1]), (4.25) and Proposition we

obtain that for some C'(No, ||u0|| e ) >0, such that

< C(No, HUOH

i )-

L°°H2(I nwst

Here I is the maximal lifespan. Then the global well-posedness and scatter-
ing follows directly from the conclusion in [26]. This finishes the proof of
Theorem [} O
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