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On the values of Artin L-functions

Benedict H. Gross

0. Information

I wrote this paper in 1979, as an attempt to extend the results of Borel [2] on zeta
functions at negative integers to Artin L-functions. The conceptual framework
was provided by Tate’s formulation [10] of Stark’s conjectures. What I needed
was a workable definition of the regulator homomorphism in complex K-theory.
I discussed this with Borel at the Institute, first over lunch and then in his office.
It is an honor to dedicate this paper to his memory.

Using results of Bloch and Thurston, I was able to treat the special case of
Dirichlet L-series at s = −1. I had the hope of treating Dirichlet L-series at
all negative integers, where the order of vanishing is either zero or one, but was
unable to construct the required “cyclotomic classes” in K-theory. This was done
by Beilinson [11], who also found the generalization of my conjecture, and the
conjectures of Deligne [6] on special values, to all motivic L-functionss.

I didn’t publish this paper, but it has circulated as a preprint for 25 years.
For reasons of historical interest, I decided to publish it in its original form here.
I have updated the references, and added some comments on the recent literature
at the end of the paper.

1 Higher logarithms

If A is a commutative ring with unit, we let KiA, i > 0, be the abelian groups
defined by Quillen [9]. Then

KiA = πi(BGL(A)+) (1.1)
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and one has a canonical isomorphism:

KiA⊗Q ' Prim Hi(GL(A),Q). (1.2)

In this section we will define canonical homomorphisms

e2m+1 : K2m+1C→ R. (1.3)

If we identify K1C ' C∗ then e1 becomes the homomorphism

C∗ → R

z 7→ log |z| = Re (log z).

Similarly, e3 may be identified with the imaginary part of the dilogarithm. In
general, if α 7→ α is the involution on K2m+1C induced by complex conjugation,
we have

e2m+1(α) = (−1)me2m+1(α). (1.4)

To define e2m+1 we will use Quillen’s isomorphism (1.2) and construct an
(indecomposible) class

c2m+1 ∈ H2m+1(GL(C),R). (1.5)

This class will be in the image of the map

H∗
c (GL(C),R)−→

f
H∗(GL(C),R), (1.6)

where H∗
c denotes the continuous group cohomology of of GL(C).

For n > m let Xn be the symmetric space

Xn = Un\Un × Un, (1.7)

where Un is the unitary group of degree n, embedded in the product along the
diagonal. Since Xn is the “compact dual” of GLn(C), one has a canonical iso-
morphism [3]

H∗
top(Xn,R) ∼−→

g
H∗

c (GLn(C),R). (1.8)

Complex conjugation acts as an involution on both exterior algebras; if u is a
topological class of pure degree

g(u) = (−1)deg u · g(u). (1.9)
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The integral cohomology of Xn is a free exterior algebra, generated by the
classes of odd spheres [4]:

H∗
top(Xn,Z) ' Λ∗Z(u1, u3, . . . , u2n−1). (1.10)

We have
u2m−1 = (−1)m · u2m−1 (1.11)

as complex conjugation on Cm induces an automorphism of S2m−1 of degree
(−1)m. Setting

v2m+1 = g(u2m+1) (1.12)

and passing to the limit over n [3] gives an isomorphism

H∗
c (GL(C),R) ' Λ∗R(v1, v3, v5, . . .). (1.13)

Furthermore, by combining (1.9) and (1.11) we obtain

v2m+1 = (−1)m · v2m+1. (1.14)

Finally, let
c2m+1 = 2π · f(v2m+1) (1.15)

where f is the map in (1.6). This is the canonical class which corresponds to
the honomorphisms e2m+1. An explicit cocycle for c2m+1 can be constructed
geometrically, using the methods of Dupont [7].

2 The theorems of Dirichlet and Borel

Let F be a number field of finite degree n over Q. Let A be the ring of integers
in F . Let

Y = Hom(RF/QGm,Gm/C) ' ZHom(F,C). (2.1)

We have an exact sequence

0 → Y0 → Y
deg−→ Z→ 0 (2.2)

∑
aφ · φ 7→ aφ.

The groups Aut(F ) and AutRC ' 〈c〉 act on Y and stabilize Y0; they both act
trivially on the quotient Y/Y0 ' Z.
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Let m be a nonnegative integer. Any complex embedding φ : F → C induces
a map φ∗ : K2m+1A → K2m+1C by functorality. Define the homomorphism

K2m+1A −→
λ2m+1

Y ⊗ R (2.3)

α 7→
∑

φ

e2m+1(φ∗(α)) · φ,

where e2m+1 is the homomorphism described in Section 1. By (1.4) the image of
λ2m+1 lies in the subspace (Y ⊗ R)(−1)m

, where ± denotes the eigenspaces of c.
If m = 0 then K1A ' A∗ and e1(φ∗(α)) = log |φ∗(α)|. Consequently the image
of λ1 lies in the subspace (Y0 ⊗ R)+, by the product formula.

Theorem 2.4 (Dirichlet, cf. [5]). The map λ1 induces an isomorphism

K1A⊗ R ∼−→
λ1

(Y0 ⊗ R)+.

Theorem 2.5 (Borel, [2], [3]). For m > 0 the map λ2m+1 induces an isomor-

phism
K2m+1A⊗ R ∼−→

λ2m+1

(Y ⊗ R)(−1)m
.

The above isomorphisms are equivariant for Aut(F ).

3 Artin L-series

Let k be a number field, and let F be a finite Galois extension of k. Let G =
Gal(F/k); if w is a place of k let Gw be a decomposition group for w in G.

Let E be a finite extension field of Q. Let V be a vector space of finite
dimension over E which admits a linear action of G:

ρ : G → AutE(V ). (3.1)

The class of this representation corresponds to an Artin motive over k with
coefficients in E [6].

For any s ∈ Hom(E,C) we obtain a complex representation

ρσ : G → AutC(V σ) (3.2)
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by change of base. Let L(V σ, s) be its Artin L-series, and let

L(V, s) = (. . . , L(V σ, s), . . .)Hom(E,C). (3.3)

This is a meromorphic function on C with values in C⊗ E ' CHom(E,C).

For m ≤ 0 the order of L(V σ, s) at s = −m is independent of σ. Let dm(V )
be this order; we have the formulas

d0(V ) =
∑

w|∞
dimV Gw − dimV G. (3.4)

dm(V ) =
∑

complex
w|∞

dimV Gw +
∑

real
w|∞

dimV Gw
m even
m > 0

(3.5)

dm(V ) =
∑

complex
w|∞

dimV Gw +
∑

real
w|∞

dim
(
V/V Gw

)
m odd. (3.6)

We define

L(V,−m)∗ = lim
s→−m

L(V, s)
(s + m)dm(V )

(3.7)

in (C⊗ E)∗, and wish to conjecture its value modulo E∗.

The theorems of Dirichlet and Borel, applied to the field F , give us canonical
G-isomorphisms:

K1A⊗ R ∼−→
λ1

(Y0 ⊗ R)+

K2m+1A⊗ R ∼−→
λ2m+1

(Y ⊗ R)(−1)m
m > 0.

We may therefore choose G-isomorphisms of the underlying Q-vector spaces:

K1A⊗Q ∼←−
φ1

(Y0 ⊗Q)+

K2m+1A⊗Q ∼←−
φ2m+1

(Y ⊗Q)(−1)m
m > 0.

Let

W2m+1 =
{

(Y0 ⊗ C)+ if m = 0,
(Y ⊗ C)(−1)m

if m > 0.
(3.8)
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Then W2m+1 ⊗ V is a free (C ⊗ E)-module. The group G acts linearly and one
has

rankC⊗E(W2m+1 ⊗ V )G = dm(V ) (3.9)

by Frobenius reciprocity.

The autmorphism (λ2m+1 ◦ φ2m+1) ⊗ 1 is C ⊗ E-linear and commutes with
the action of G. Define

c(V, 2m + 1) = det((λ2m+1 ◦ φ2m+1)⊗ 1|(W2m+1 ⊗ V )G). (3.10)

Modulo E∗ this is independent of the choice of φ2m+1.

Conjecture 3.11. For m ≥ 0 the value L(V,−m)∗ is equal to the product of
c(V, 2m + 1) by an element of E∗.

4 Remarks

For m = 0, Conjecture 3.11 is Stark’s conjecture, as formulated by Tate [10]. It
is known to be true in the following cases:

V has a rational character (Dirichlet, Ono, Lichtenbaum, Tate)

V is abelian and k = Q (Dirichlet, Lerch).

V is abelian and k = Q(
√−D) (Kronecker).

d0(V ) = 0 (Siegel).

When dm(V ) = 0, Conjecture 3.11 is a special case of Deligne’s conjecture
on the critical values of motivic L-series [6]. This case is known to be true by
results of Siegel.

When m > 0 and dm(V ) > 0 less is known. For the trivial representation one
has the much sharper conjectures of Lichetenbaum [8], and conjecture 3.11 was
proved by Borel [2]. One deduces that (3.11) is true whenever V has the form
⊕miIndG

Hi
lHi with mi ∈ Z.

It would be very interesting to prove (3.11) either for all V with rational
character, or for all abelian representations V of Gal(Q/Q).
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We will show how the methods of Bloch [1] can be used to settle the latter
case in the affirmative when m = 1.

5 Character sums

For k > 0 and |z| ≤ 1 define

Dk(z) =
∑

n≥1

zn

nk+1
.

Theorem 5.1. Let k ≥ 1 be an integer. If χ is any Dirichlet character (mod
f) then

∑

(Z/f)∗
χ(a)Dk(e2πia/f ) 6= 0.

Corollary 5.2. Let dilog(z) = Im D1(z). If χ is any odd Dirichlet character
(mod f) then

∑

(Z/f)∗
χ(a)dilog(e2πia/f ) 6= 0.

Proof of Corollary. Since Dk(z) = Dk(z), the real part of D1(z) is an even
function. Since χ is assumed odd:

∑
χ(a)D1(e2πia/f ) = i ·

∑
χ(a)dilog(e2πia/f ).

Thus the Corollary follows from the theorem.

Translation. dilog(e2πia/f ) = 2h(πa/f) when h is Lobachevsky’s function.

Proof of Theorem. First assume χ is a primitive character (mod f), and let
L(s, χ) =

∑
n≥1 χ(n)n−s be its Dirichlet L-series (s > 1).

Define the Fourier transform of χ on Z/f by

χ̂(a) =
1
f

∑

(Z/f)∗
χ(b)e2πiab/f .
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Since χ is primitive, χ̂(a) = 0 unless (a, f) = 1. Hence

χ(n) =
∑

(Z/f)∗
χ̂(a)e−2πian/f .

by Fourier inversion. Putting this formula into the L-series, we obtain

L(s, χ) =
∑

(Z/f)∗
χ̂(a)Ds−1(e−2πia/f ).

Define the Gauss sum

g(χ) =
1
f

∑

(Z/f)∗
χ(a)e2πia/f .

Then making the change of variables a 7→ ab, we see that g(χ) = χ(a)χ̂(a) for all
(a, f) = 1. Consequently if k ≥ 1:

L(1 + k, χ) = g(χ)
∑

(Z/f)∗
χ−1(a)Dk(e−2πia/f ). (5.1)

But L(s, χ) admits an Euler product which converges for s > 1:

L(s, χ) =
∏
p

(1− χ(p)p−s)−1.

Consequently, L(1 + k, χ) 6= 0 and by (5.1):

∑

(Z/f)∗
χ−1(a)Dk(e−2πia/f ) 6= 0.

Now start with the primitive character χ−1 to obtain

∑

(Z/f)∗
χ(a)Dk(e2πia/f ) = χ(−1)

∑

(Z/f)∗
χ(a)Dk(e−2πia/f ) 6= 0.

This completes the proof when χ is primitive (mod f).

Now assume g|f and χ comes from a primitive character (mod g). Since the
function Dk : S1 → C is a distribution of weight k, we have the formula:
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(f/g)k
∑

(Z/f)∗
χ(a)Dk(e2πia/f ) =

∏

p|f
p-g

(1− χ(p)pk) ·
∑

(Z/g)∗
χ(b)Dk(e2πib/g).

The sum on the right-hand side is nonzero, by our previous argument. So is
the product, as χ(p) is a root of unity and k ≥ 1. This completes the proof.

Notes:

1) The result of Theorem 5.1 also holds when k = 0, if we assume that χ is
primitive and χ 6= 1.

2) The function L(s, χ) satisfies a functional equation, which relates the value
at s = k+1 to the leading term in the Taylor expansion at s = −k. For example,
if χ is primitive and χ(−1) = (−1)k then

L(−k, χ) = 0

L′(−k, χ) = −1
2

fkk!
(2πi)k

∑

(Z/f)∗
χ(a)Dk(e2πia/f ).

6 K3 of abelian fields

Let F = Q(µf ) and let A = Z[µf ]. The Artin map gives a canonical isomorphism:

(Z/f)∗' Gal(F/Q)
b → Frob(b) where ζFrob(b) = ζb.

Fix an embedding φ : F → C; this induces a map φ∗ : K3A → K3C by
functorality. Recall the map e3 : K3C→ R defined in §1.

Theorem 6.1 (Bloch, Thurston). For a ∈ (Z/f)∗ there exist elements Cf (a) in
K3A⊗Q which satisfy

1) Cf (a)Frob(b) = Cf (ab),
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2) Cf (−a) = −Cf (a),

3) e3(φ∗Cf (a)) = 1
2dilog(e2πia/f ).

These properties (and the choice of φ) completely determine the elements Cf (a).

We will combine this result with Corollary 5.2 to prove the following result.

Theorem 6.2. 1) For any character χ (mod f) the element Cχ =
∑

(Z/f)∗ χ(a)⊗
Cf (a) spans the χ−1-eigenspace of C⊗K3A.

2) The elements {Cf (a) : a ∈ (Z/f)∗} span the vector space
K3A ⊗ Q. Any relation between them is a consequence of the relation 2) in
Theorem 6.1.

Combining these results with the explicit formulas for L′(−1, χ) given at the
end of §5, one obtains a proof of conjecture 3.11 for all abelian representation V
of Gal(Q/Q) when m = 1.

Proof of 6.1. To exhibit elements in K3A⊗ R we will use Borel’s isomorphism
(2.5): K3A⊗ R ∼−→

λ3

(Y ⊗ R)−. The elements

{φ−Frob(a) − φFrob(a) : a ∈ (Z/f)∗/ ± 1} give a basis for the space (Y ⊗ R)−.
Associating to each basis element a copy of hyperbolic 3-space

H = {(x + iy, z) ∈ C× R∗+}

we may specify an element α ∈ K3A⊗R by giving a collection of 3-simplices (or,
more generally, 3-chains) in H:

∆(α) = (. . . , ∆a(α), . . .)a∈(Z/f)∗/± 1.

Then λ3(∆a(α)) = (. . . , vol ∆a(α), . . .), where the volume is computed with
respect to the invariant 3-form (dxdydz)/πz3. It is sufficient, for the purpose of
representation, to use ideal simplices ∆a(α) with four vertices on the boundary.

What condition will insure that ∆(α) lies in the rational vector space K3A⊗
Q? We might hope this would hold when the four vertices of ∆(α) lie in the
rational boundary P1(F ) ↪→ (. . . ,P1(C)a, . . .). At least this condition makes
it easy to compute the Galois action: Since Borel’s isomorphism commutes with
G = Gal(F/Q), the Galois group acts on these cycles via its action on the vertices
in P1(F ).
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However, the rational boundary assumption does not suffice to give a rational
cycle: There is a further geometric invariant which must vanish. If we normalize
the vertices of ∆(α) to be at the points {∞, 0, 1, zα} with zα ∈ F − {0, 1},
Thurston has shown that α is a rational cycle iff (zα) ∧ (1 − zα) = 0 in the
rational vector space Λ2(F ∗ ⊗ Q). More generally, the chain

∑
i ai∆(αi) with

ai ∈ Q gives a rational cycle iff

∑

i

ai · (zαi) ∧ (1− zαi) = 0 in Λ2(F ∗ ⊗Q).

The condition is certainly met when zα is a root of unity! Moreover, the vol-
ume of an ideal simplex with vertices {∞, 0, 1, e2πia/f} is 1

πdilog(e2πia/f ). Taking
Cf (a) to be the element in K3A⊗Q represented by the ideal simplex with vertices
{∞, 0, 1, φ−1(e2πia/f )} in P1(F ), we get the theorem.

Proof of 6.2. Since Borel’s isomorphism K3A⊗C ∼−→
λ3

(Y ⊗C)− is G-equivariant

the χ−1-eigenspace of K3A⊗C is zero when χ is even and one-dimensional when
χ is odd. By 6.1 we see that the element Cχ always lies in the χ−1-eigenspace; it
suffices to show Cχ 6= 0 when χ is odd.

But the φ-coordinate of λ3(Cχ) is equal to

1
π

∑

(Z/f)∗
χ(a)dilog(e2πia/f )

by 6.1. This character sum is nonzero by 5.2. Hence Cχ 6= 0.

Now observe that the elements Cf (a) with (a, f) = 1 span K3A⊗ C, as they
span all the nontrivial eigenspaces for G. Hence they span K3A ⊗ Q; since this
space has dimension φ(f)/2, there can be no additional relations beyond those
in 6.1. This completes the Proof of 6.2.

Finally, we will discuss the norms of elements in K3A⊗Q to abelian subfields E
of F . Let B be the ring of integers in E and H = Gal(F/E). The inclusion B ↪→

i
A

induces a G-homomorphism i∗ : K3B → K3A. Using Borel’s isomorphism, one
can show

Lemma 6.3. The map i∗ ⊗ 1 : K3B ⊗Q→ K3A⊗Q is injective and has image
equal to the subspace (K3A⊗Q)H .
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Now for σ ∈ G/H let aσ be any lifting of σ to G. Define the element

Cf (σ) =
∑

a∈H

Cf (aaσ) =
∑

a∈H

Cf (aσ)Frob(a).

By Lemma 6.3, this gives an element of K3B ⊗ C which is independent of the
lifting chosen.

Corollary 6.4.

1) For τ ∈ G/H = Gal(E/Q) : Cf (σ)τ = Cf (στ),

2) Cf (σ) = −Cf (σ),

3) The elements {Cf (σ) : σ ∈ Gal(E/Q)} span the vector space K3B ⊗ Q.
All relations between them are a consequence of 2).

This follows immediately from the definition of Cf (σ) and Theorem 6.2. For
a given abelian extension E/Q, we may take f to be the non-Archimedian part
of the conductor of E.
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