Pure and Applied Mathematics Quarterly
Volume 3, Number 4

(Special Issue: In honor of

Grisha Margulis, Part 1 of 2)
1027—1036, 2007

Linear Drift and Poisson Boundary for Random Walks
Anders Karlsson* and Francois Ledrappier’

For Gregory Margulis on the occasion of his sixtieth birthday

Abstract: We consider a nondegenerate random walk on a locally compact
group with finite first moment. Then, if there are no nonconstant bounded
harmonic functions, all the linear drift comes from a real additive charac-
ter on the group. As a corollary we obtain a generalization of Varopoulos’
theorem that in the case of symmetric random walks, positive linear drift
implies the existence of nonconstant bounded harmonic functions. Another
consequence is the phenomenon that for some groups (including certain Grig-
orchuk groups) the drift vanishes for any measure of finite first moment.

1. INTRODUCTION

A metric space is called proper if closed bounded sets are compact. Let GG be
a locally compact group and d a left invariant proper metric on G (it is assumed
throughout that the topology generated by d coincides with the given one). When
G is second countable such a metric always exists, see [HP]. Let v be a probability
measure on G of finite first moment, which means that

/ d(e,g)dv(g) < oo.
G

Let Z,, denote trajectories of the corresponding random walk, that is,

Zn = gog1---gn—1
where g; are independent random variables taking values in G with distribution v.
The probability distribution v*", defined as the n-times convolution v * v ... ¥ v
of v, is the distribution of Z,. It is natural to assume that the support of v
generates G as a group, in which case we refer to v as nondegenerate. We are
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interested in asymptotic objects associated with the random walk. By Kingman’s
subadditive ergodic theorem, the linear drift

1 1

l(v):= lim —d(e, Z,) = inf/ d(e,g)v™"(g)
n—oo n nnjJag

exists and is constant almost surely. A bounded measurable f : G — R is v-

harmonic if

f(9) = /G f(gh)dv(h)

for any g € G. Constant functions are obviously v-harmonic. If f is a bounded
harmonic function, then f(Z,) is a bounded martingale and therefore converges
almost surely. We say that the Poisson boundary is trivial if the constant func-
tions are the only bounded v-harmonic functions (see [KV]). Our main result is
the following:

Theorem 1. Let G be a locally compact group with a left invariant proper metric
and v be a nondegenerate probability measure on G with first moment. Then, if
the Poisson boundary is trivial, there is a 1-Lipschitz homomorphism T : G — R
such that for almost every trajectory Z, of the corresponding random walk, we
have:

lin ~7(2,) = | Tla)rls) = 1)

n—oo N

A measure v is symmetric if dv(g~') = dv(g) for every g € G. A measure
is centered if every homomorphism of G into R is centered, meaning that the
v-weighted mean value of the image is 0 (cf. [G]). Every symmetric measure v is
centered, since for any homomorphism 7" : G — R, the mean value, which is

/GT(g)dV(9)=/GT(91)dV(9) =—/ T(g)dv(g),

G
must hence equal 0. By simple contraposition, we get:

Corollary 2. Let G be a locally compact group with a left invariant proper metric
and v be a nondegenerate centered probability measure on G with first moment.
Then, if l(v) > 0, there exist nonconstant bounded v-harmonic functions.

Corollary 2 was proved by Varopoulos ([Va]) in the case v is symmetric and
of finite support on a finitely generated group. His proof rests on estimates for
n-step transition probabilities of symmetric Markov chains. A simpler proof of
the crucial estimate was given by Carne [C]. See also [Al] and [M] for interesting
extensions. Note however that so far these estimates do not work for measures
of infinite support. Measures with infinite support and finite first moment occur
for example in the Furstenberg-Lyons-Sullivan discretization procedure of the
Brownian motion, see [KL2].
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Corollary 2 may also be compared with one of the main theorems in the paper
[G] of Guivarc’h which states that for any connected amenable Lie group and any
nondegenerate, centered measure v with finite moments of all orders, the linear
drift vanishes. The proof goes via a reduction to the case of connected, simply
connected, nilpotent Lie groups. Guivarc’h pointed out to us that it is in fact
proved in [G] that in the case of a connected amenable Lie group all the drift comes
from an additive character (similar to Theorem 1 above). For finitely generated
amenable groups this is no longer true: consider a simple symmetric random walk
on the wreath product of Z3 with Z/2Z. This example has nontrivial bounded
harmonic functions, hence the drift is positive, but all additive characters factor
through Z3 and there the random walk moves sublinearly. In this discrete case,
one should also mention the result of Kaimanovich ([K]) that when the group G
is polycyclic and v is centered, then the linear drift vanishes.

In the case when G is a finitely generated group, entropy theory (see Section
4) yields a kind of converse to Corollary 2.

Corollary 3. Let G be a finitely generated group and v be a nondegenerate cen-
tered probability measure on G with first moment. Then l(v) > 0 if, and only if,
there are nonconstant bounded v-harmonic functions on G.

Note that a measure may be centered for the simple reason that there are no
nontrivial homomorphisms into R, in this case Corollary 2 gives:

Corollary 4. Let G be a locally compact group with a left invariant proper
metric and v be a nondegenerate probability measure on G with first moment.
Assume that the only bounded v-harmonic functions are the constants and that

HY(G,R) = 0. Then I(v) = 0.

The point here is that v is not necessarily symmetric. It is remarkable that
for a whole general class of groups, the nonexistence of homomorphisms can have
such a strong influence on the drift; this is in great contrast with the case of
nonamenable groups where no matter what, any nondegenerate measure of first
moment must have positive drift (see [G]).

Recall that, if v be the volume growth rate of a finitely generated group G,
v < log |S| < 400, then it is a fact (see [Av], [G], [Ve] and below) that if v = 0,
then the Poisson boundary is trivial. Examples of groups with subexponential
growth (v = 0) and no nontrivial homomorphisms into the reals include the
torsion groups with subexponential (but superpolynomial) growth constructed
by Grigorchuk. We may formulate:
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Corollary 5. Let G be a torsion group of subexponential growth (e.g. certain
Grigorchuk groups) and v any measure with first moment. Then l(v) = 0.

Indeed, let H be the subgroup generated by the support of v. Since every
element has finite order, any homomorphism H — R vanishes and using the
word metric on G for H, the statement follows from the volume criterion and
Theorem 1.

See [E] for properties of measures without first moment, but with finite entropy,
on such groups of subexponential growth.

2. PRELIMINARIES

2.1. Horofunctions. Let (X, d) be a proper metric space. Fix a basepoint xy €
X. Let
o X — C(X)

be defined by = — d(z,-) — d(z,x0) and where the topology on the space of
continuous functions C'(X) is uniform convergence on compact sets. It can be
checked that @ is a continuous injection, and we identify X with its image. Let
H = ®(X). It is easy to verify that H is a compact and metrizable space. The
points in H \ ®(X) are called horofunctions (based at xo).

The action by Isom(X,d) on X extends continuously to an action by homeo-
morphisms of H and is given by
g-h(x) = h(g~'z) — h(g™ wo).
Note that we always have
|h(z)| < d(z, o) and [h(z) — h(y)| < d(z,y).

See [KL1] and the references therein for more information.

2.2. A noncommutative ergodic theorem. Let (£, ) be a standard Borel
space with u(Q2) = 1 and L : Q@ — Q an ergodic measure preserving transfor-
mation. Given a measurable map g : Q@ — Isom(X,d) (where the measurable
structure on Isom(X,d) is the Borel structure coming from the topology of con-
vergence on compact sets), let

Zn(w) = g(w)g(Lw)..g(L"'w).

Random walks (G,v) is a special case of this setting as follows: (Q,p) is the
infinite product measure space of copies of (G, v) indexed by n € Z, L is the shift
transformation and g is simply the projection on the first coordinate n = 0. The
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measure v equals g,u. The metric space X is the group G with the left invariance
distance d, and the action is by left translations of G on itself. The base point
xq is the group identity e in the special case. The linear drift is

[ = lim d( ( ).7}0,.1‘0)

n—0o0

which exists by the subadditive ergodic theorem and coincides with the previous
definition in the special case.

In this general ergodic setting we proved in [KL1] that

Theorem 6. There is a measurable map h. : Q0 — H, almost everywhere defined,
such that

lim —fh (Zn(w)zo) = L.

n—oo

One of the more general previous theorems of this type was obtained in [KM]
by Margulis and the first author proving a statement equivalent to Theorem 6 in
the case of (even nonproper) nonpositively curved metric spaces. See [KL1] for
references to further previous results.

2.3. Poisson boundary and stationary measures. Let v be a probability
measure on a topological group G. Assume G acts on a space K with measure 7.
The convolution measure on K is defined by

v n(d) = / il A)iv(g).
g€

The measure 7 is called v-stationary if v *n = 1. Assume that there are no
nonconstant bounded v-harmonic functions. Then, as is well-known, n is in fact
G-invariant. Indeed, given a continuous function f on K it follows from the

stationarity relation that
/ flgz)dn(z / f(z)d(gsn) (=)

is a bounded r-harmonic function, hence constant. Since this holds for all con-
tinuous functions f, we have that 7 must be invariant.
3. PROOF OF THEOREM 1

Define the skew-product system L : Q x H — Q x H by
L(w, h) = (Lw, g(w)~'h).
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The proof of Theorem 6 in [KL1] goes by constructing a L-invariant measure 7
on 2 x H such that, if F(w,h) := —h((g(w) 1z0), we have:

l(v) = /F(w,h)dn(w,h).

The measure 7 is constructed as a weak limit of

where the disintegration of u,, is given by

[nw = 08(Z,(w))-

Lemma 7. Assume that there is no monconstant bounded harmonic function.
Then, the measure n is a product measure p X m, where m is a G-invariant
measure on H.

Proof. Let m denote the projection of n on H, in other words m(B) = n(2x B).

Step 1: The measure m is v-stationary. Indeed, note that

In view of this it is clear that v * m = m.

Step 2: Negative coordinates in 2. Let Q_ be the product of copies of (G,v)
indexed by the negative integers. The natural projection of the measure 1 on
Q_ x H is the product measure p— X m, because the above construction of n was
done independently of the negative coordinates. Given w_ € Q_, the distribution
of h is just the projection of n on H, which is m by definition.

Step 3: Coordinates up to k in 2. We compute now the natural projection of
the measure 7 to the product of H and of copies of (G,v) indexed by integers
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smaller than k, for £ > 0. Write, for bounded measurable Fi, Fy:
[ Frtnn < Fa(yin = [(FR)ET r)an
= / (FLFy) (L~ *w, Z, (L *w)h)dn
- / Fi(L*w) Fy(Ze(L ™ w)h)dn(w, b)

= [ R ([ Bz aminm ) duo),

where we used Step 2 to write the last line, because Fy (L *w) and Z; (L *w)
both depend only on negative coordinates of w. Since there are no nonconstant
bounded harmonic functions, the stationary measure m is invariant, and

/ Fy(Z (L~ *w)h)dm(h) = / Fydm,

and we find [ Fi(wy,n < k)EFy(h)dn = [ Fidu [ Fhdm, as claimed.
Letting k£ go to 400 in Step 3 proves the Lemma. [J

By Lemma 7 and section 2.3, assuming that there are no nonconstant bounded
harmonic functions, we find a G-invariant probability measure m on H satisfying:

1) l)=- / h((g(w)) " z0)dm(h)dp(w) = — / h(g™Y)dm(h)du(g).

(2) T(g) = - / h(g™Y)dm(h).

The integral makes sense because |h(g~!)| < d(g,e). The function T': G — R is
measurable and satisfies [T'(g)| < d(g,e) and I(v) = [T(g)dv(g).

Recall that the action of G on H is given by:

Y1 -h(y2) = Ay ') — h( ),
so that:

T(gg) =~ [ g~y )am(n)

= —/g’-h(g‘l)dm—/h(g"l)dm
=T(9) +1(d),
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where we used the invariance of m in the last equation. Hence the map 1" defines
a homomorphism

T:G— R,
in particular T(g~1') = —T(g), T is v-integrable, and (1) becomes

(v) = /Q T(g(w))dp(w) = / T(g)dv(g).

G
Finally we note that T" moreover is a 1-Lipschitz map:

T(g) - T(¢)| < / Ih(g™Y) — h(g'~V)| dm(h) < / d(g, ¢'Ydm(h) = d(g,¢').

4. ENTROPY AND PROOF OF COROLLARY 3.

In this section G is a finitely generated group. Let S be a symmetric finite
generating set. The distance on G is the corresponding left invariant word metric
||. It is clearly a proper metric space. Let v be a probability measure on G of
finite first moment, which means that

> lglvlg) < 0.
geG
Define the entropy of v by
H(v) == Y vlo) log(v(9)).
geG
Recall that we have
(3) H(v):= - v(g)log(v(g)) <log(2|S]) Y lglv(g) + log2.
geG geq

Indeed, let a,, be the number of group elements of wordlength n. Then a,, < |S|™.
Define a probability measure v/ on G by v/(g) = 1/(2‘9|+1a|g|). Then,

H(v) =Y v(g)log(2¥ ay,) = =3 " w(g)log V,(g) <0,

geG geG v (g)

where the inequality comes from Jensen’s inequality (or —logt < 1/t—1) keeping
in mind that both measures v and 1/ are probability measures. The estimate (3)
follows. By Kingman’s subadditive ergodic theorem,the entropy of the random
walk

n—oo

1 1
h(v) = lim ——1 "(Zy,) =inf —H (W™
(v) im_—-logy (Zn) inf (™)

exists and is constant almost surely. The vanishing of the entropy is related to
bounded harmonic functions; it is proved in [Av], [D] and [KV] that h(v) = 0 if,
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and only if, the Poisson boundary is trivial. By applying (3) to v*", dividing by
n, and letting n — oo, we get:

h(v) <log(2|S|)I(v).

Hence any measure v with first moment on G and with /() = 0 has h(v) =0
and therefore only constant bounded r-harmonic functions. So if there are non-
constant bounded harmonic functions, {(v) > 0. Otherwise, since v is centered,
[(v) = 0 by Corollary 2. This proves Corollary 3.

Finally, taking as generators the set S of elements with word length smaller
than k, the new drift is not bigger than the old one divided by k. This shows
that, for all k, h(v) < log(2|Sk|)l(v)/k. Letting k — oo yields h < vl, which is
called the fundamental inequality in [Ve], and explains the role of subexponential
growth in Corollary 5.
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