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Abstract: We give a proof of the Alexandrov-Fenchel type inequality for
k-convex functions on Sn.

1. Introduction

There are many important integral formulae and integral inequalities for convex
bodies (see [4], [18]). The Brunn-Minkowski inequality and Alexandrov-Fenchel
inequality are among the most important integral inequalities in the theory of
convex bodies, and the Minkowski type integral formulae and more general for-
mulae of Chern are very useful in the global geometry of convex hypersurfaces.
Most of these formulae and inequalities can be stated in the integral forms on the
unit sphere Sn with the convexity assumption. It seems of interest to establish
similar results without the convexity assumption. For a convex body, the polar
of the body is also convex. The support function of the convex body corresponds
to the gauge function of its polar body. In other words, the geometry of a convex
body can be reflected from its polar dual. With this relation, we will introduce a
class of domains in Rn+1 called k∗-convex (see Definition 4.2) as a natural gen-
eralization of convex bodies. We will derive a form of the Alexandrov-Fenchel
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inequality for this class of domains. The concept of k∗-convexity is related to a
Hessian equation on Sn by the distance function. It will also be shown that the
assumption of convexity is not necessary for some of the integral formulae. We
will also prove a uniqueness theorem for the Hessian equation, which generalizes
the classical Alexandrov-Fenchel-Jessen theorem.

In most cases, our proofs are not so different from those known in the convex
case with two exceptions. First, we work directly on the functions and related
vector-valued forms on Sn without convexity assumptions. Secondly, we make
use of hyperbolic polynomial theory instead of Alexandrov’s mixed discriminant
inequality, which enables us to replace the notion of convexity by the more general
notions. Our arguments are drawn mainly from three important papers: Garding
[9], Chern [7] and Cheng-Yau [6]. In fact, the hyperbolic polynomial theory
was already used by Chern in [7] in the proof the uniqueness theorem and in
Hörmander [14] in the proof of Alexandrov-Fenchel inequality for convex bodies.
It should be noted that the hyperbolicity of the elementary symmetric functions
was used in the development of fully nonlinear equations in the pioneering work
of Caffarelli-Nirenberg-Spruck [5]. So, it is not a coincidence that this theory is
used here in a crucial way.

2. Integral Formulas for the functions on Sn

Let e1, ..., en is an orthonormal frame on Sn, let ω1, ..., ωn be the corresponding
dual 1-forms. For each function u ∈ C2(Sn), let ui be the covariant derivative of
u with respect to ei. We define a vector valued function

Z =
n∑

i=1

uiei + uen+1,

where en+1 is the position vector on Sn, that is, the outer normal vector field of
Sn. We note that Z is globally defined on Sn. We write the Hessian matrix of u

with respect to the frame as

W = {uij + uδij}.
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By calculation we have,

u = Z · en+1,

dZ =
n∑

i=1

(duiei + uidei) + duen+1 + uden+1

=
n∑

i=1

(
n∑

j=1

uijω
j −

n∑

j=1

ujω
i
j)ei +

n∑

i=1

(
n+1∑

α=1

uiω
α
i eα)

+
n∑

i=1

(uiω
i)en+1 + u

n∑

i=1

ωiei

=
n∑

j=1

(
n∑

i=1

(uij + δiju)ei)ωj .

For u1, ..., un+1 ∈ C2(Sn), we define ∀l = 1, ..., n + 1,

Z l =
n∑

i=1

ul
iei + ulen+1,

and

W l = {ul
ij + ulδij}.

Set,

Ω(u1, ..., un+1) = (Z1, dZ2, dZ3, ..., dZn+1),(2.1)

and

V (u1, u2..., un+1) =
∫

Sn

Ω(u1, ..., un+1).(2.2)

We note that

Ω(u1, ..., un+1) = u1Sn(W 2, ..., Wn+1)ds,(2.3)

where Sn(W 2, ..., Wn+1) is the mixed determinant and ds is the standard area
form on Sn. In particular, ∀1 ≤ k ≤ n, if we set uk+2 = ... = un+1 = 1, we obtain

Ω(u1, ..., un+1) = u1Sk(W 2, ..., W k+1)ds,(2.4)

where Sk(W 2, ..., W k+1) is the complete polarization of the symmetric function
Sk on symmetric matrices.

Lemma 2.1. V is a symmetric multilinear form on (C2(Sn))n+1.
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Proof. The multilinearility follows directly from the definition. Also, by the
definition, for any permutation σ of {2, ..., n + 1},

Ω(u1, u2..., un+1) = Ω(u1, uσ(2)..., uσ(n+1)),

so V (u1, u2..., un+1) = V (u1, uσ(2)..., uσ(n+1)). To see V is a symmetric form, we
only need to show

V (u1, u2, u3..., un+1) = V (u2, u1, u3..., un+1).(2.5)

We first assume ui ∈ C3(Sn),∀i. Letting,

ω(u1, ..., un+1) = (Z1, Z2, dZ3, ..., dZn+1),

we have

dω(u1, ..., un+1) = −Ω(u2, u1, u3..., un+1) + Ω(u1, u2, u3..., un+1),

whence, (2.5) follows from Stokes theorem. The identity (2.5) is valid for C2

function by approximation. ¤

Remark: If u1, ..., un+1 are the support functions of convex bodies K1, ..., Kn+1

respectively, then V (u1, u2..., un+1) is the Minkowski mixed volume V (K1, ..., Kn+1).

The following is a direct corollary of the Lemma 2.1. If u is a support function
of a convex body, it is a well known Minkowski type integral formula.

Corollary 2.2. For any function u ∈ C2(Sn), W = {uij + δiju}. For any
1 ≤ k < n, we have the Minkowski type integral formulae.

∫

Sn

uSk(W ) ds =
∫

Sn

Sk+1(W ) ds,(2.6)

where ds is the standard area element on Sn.

For any n × n symmetric matrices W1, ..., Wk, let Sk(W1, ..., Wk) be the com-
plete polarization of Sk. Let u and ũ be two C2 functions on Sn and let W and W̃

be the corresponding Hessian matrices of u and ũ respectively. Following Chern’s
notations in [7], we let Prs = Sr+s(W, ..., W, W̃ , ...W̃ ) where W appears r times
and W̃ appears s times. So, Prs is a polynomial in Wij , W̃ij , homogeneous of de-
grees r and s respectively. The following dual generalization of Chern’s formulae
is another corollary of Lemma 2.1.
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Corollary 2.3. Suppose u and ũ are two C2 functions on Sn. Then the following
identities hold,

∫

Sn

[uP0k − ũP1,k−1]dx = 0,(2.7)

∫

Sn

[uPk−1,1 − ũPk0]dx = 0,(2.8)

and

2
∫

Sn

u(P0k − Pk−1,1)dx

=
∫

Sn

{ũ(P1,k−1 − Pk0)− u(Pk−1,1 − P0k)}dx = 0.(2.9)

3. k-convex functions on Sn

Now we consider functions satisfying the following equation,

Sk(W ) = ϕ on Sn.(3.1)

Definition 3.1. For 1 ≤ k ≤ n, let Γk be the convex cone in Rn determined by

Γk = {λ ∈ Rn : S1(λ) > 0, ..., Sk(λ) > 0}.
Suppose u ∈ C2(Sn), we say u is k-convex, if W (x) = {uij(x) + u(x)δij} is in
Γk for each x ∈ Sn. u is convex on Sn if W is semi-positive definite on Sn.
Furthermore, u is called an admissible solution of (3.1), if u is k-convex and
satisfies (3.1).

The next is a uniqueness theorem which generalizes the Alexandrov-Fenchel-
Jessen theorem ([2], [8] and [7]) to the k-convex case.

Theorem 3.2. Suppose u and ũ are two nonnegative C2 k-convex functions on
Sn satisfying (3.1). If Sk(W ) = Sk(W̃ ), then u− ũ ∈ Span{x1, ..., xn+1} on Sn.

Proof of Theorem 3.2. We follow the same lines as in [7]. Since u is non-
negative and Sk(W ) is positive, we conclude that u is positive almost everywhere
on Sn. By the hyperbolicity of Sk, ∀W i ∈ Γk, i = 1, ..., k,

Sk(W 1, ..., W k) ≥ Sk(W 1) · · ·Sk(W k),(3.2)
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with the equality holds if and only if the k matrices are pairwise proportional.

Suppose Sk(W ) = Sk(W̃ ) on Sn, where W = {uij +δiju} and W̃ = {ũij +δij ũ}
The left hand side of the integral formula (2.9) in Corollary 2.3 is non-positive.
The same is therefore true of the right hand side of (2.9). The latter is anti-
symmetric on the two function u and ũ, and hence must be zero. It follows that
Pk−1,1 = P0k by (3.2). Again, the equality gives that W and W̃ are proportional.
Since Sk(W ) = Sk(W̃ ), we conclude that W = W̃ at each point of Sn, that is,
u− ũ ∈ Span{x1, ..., xn+1}. ¤

The following is an infinitesimal version of Theorem 3.2, which we will use in
our proof of the generalized Alexandrov-Fenchel inequality.

Proposition 3.3. For any C2 function u, let Lu be the linearized operator of the
Hessian operator Sk({uij + δiju}). Then Lu is self-adjoint. If in addition, u is
nonnegative admissible solution of (3.1), the kernel of Lu is Span{x1, ..., xn+1}.

When u is a support function of some convex body, the above proposition is
well-known (e.g., see [16]). The proposition is a special case of the following
result.

Proposition 3.4. ∀u2, ..., uk ∈ C2(Sn) fixed, define

L(v) = Ω(1, v, u2..., uk, 1, ..., 1),(3.3)

then, L is self-adjoint. If in addition, u2, ..., uk are k-convex, and at least one of
them is nonnegative, the kernel of L is Span{x1, ..., xn+1}.

Proof of Proposition 3.4. First if u ∈ C3, the linearized operator Lu of Sk

is self-adjoint (see, e.g., [17]). Let t2, ..., tk be real numbers, let ut =
∑k

l=2 tlu
l,

the operator L in (3.3) is the coefficient of the linearized operator Lut of t2 · · · tk.
Since Lut is self-adjoint for all t = (t2, ..., tk), we conclude that L is self-adjoint,if
ul ∈ C3,∀2 ≤ l ≤ k. By approximation, the same conclusion is true for C2

functions.

To compute the kernel, we may assume u2 is nonnegative. Since u2 is k-convex,
it is positive almost everywhere. Suppose v is in kernel of L, i.e.,

L(v) = 0.(3.4)
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Simple calculation shows that

Ω(1, v, v, u3, ..., uk, 1, ..., 1) = Sk(A,A, W 3, ..., W k)ds,

where A = {vij + δijv} and W l = {ul
ij + δiju

l}.
We claim that, if (3.4) holds, then

Sk(A,A, W 3, ..., W k) ≤ 0,(3.5)

with equality if and only if A = 0, i.e., v ∈ Span{x1, ..., xn+1}.
We note that,

0 =
∫

Sn

vL(v) =
∫

Sn

Ω(v, v, u2, u3, ..., uk, 1, ..., 1)

= V (v, v, u2, u3, ..., uk, 1, ..., 1) = V (u2, v, v, u3, ..., uk, 1, ..., 1)

=
∫

Sn

u2Ω(1, v, v, u3, ..., uk, 1, ..., 1)

=
∫

Sn

u2Sk(A,A, W 3, ..., W k)ds.

If the claim is true, we will conclude that v is in Span{x1, ..., xn+1} since u2 is
positive almost everywhere.

To prove the claim, we make use of the result of Garding [9] result on hyperbol-
icity of Sk in the cone Γk (see also [14]). Since ul is k-convex, W l ∈ Γk,∀2 ≤ l ≤ k.
For W 3, ..., W k fixed, the polarization Sk(B,B,W 3, ..., W k) is also hyperbolic and
complete for B ∈ Γk. Let Wt = W 2 + tA, we have

Sk(Wt,Wt,W
3, ...W k) = Sk(W 2,W 2,W 3, ..., W k)

+2tSk(A,W 2,W 3, ..., W k) + t2Sk(A,A, W 3, ..., W k).

Since
Sk(W 2,W 2,W 3..,W k) > 0,

and
Sk(A,W 2, ..., W k) = 0.

By the hyperbolicity, Sk(Wt,Wt,W
3, ..., W k) has only real roots in t variable, so

(3.5) must be true. If in addition, Sk(A,A, W, ...,W ) = 0, we would have

Sk(Wt,Wt,W, ..., W ) = Sk(W, ..., W ),

for all t ∈ R. By the completeness, A = 0. The claim is proved. ¤
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4. k∗-convex bodies and Alexandrov-Fenchel inequality

For any n ≥ k ≥ 1 fixed, set uk+2 = ... = un+1 = 1 we define ∀u1, ..., uk+1 ∈
C2(Sn),

Vk+1(u1, u2, ..., uk+1) = V (u1, u2, ..., un+1).(4.1)

Now we state a form of Alexandrov-Fenchel inequality for positive k-convex func-
tions.

Theorem 4.1. If u1, ..., uk are k-convex, and u1 positive, and at least one of ul

is nonnegative on Sn (for 2 ≤ l ≤ k), then ∀v ∈ C2(Sn),

V 2
k+1(v, u1, ..., uk) ≥ Vk+1(u1, u1, u2, ..., uk)Vk+1(v, v, u2, ..., uk),(4.2)

the equality holds if and only if v = au1+
∑n+1

i=1 aixi for some constants a, a1, ..., an+1.

Our proof of the theorem follows the similar arguments of Alexandrov’s second
proof of Alexandrov-Fenchel inequality in [2] (see also [14]), which in turn is
adapted from Hilbert’s proof of the Brunn-Minkowski inequality when n = 3.
Instead of using Alexandrov’s inequality for mixed discriminants in his original
proof, we will make use of the hyperbolicity of the elementary symmetric functions
as in [14]. This replacement enables us to drop the convexity assumption. We
sketch here some key steps.

Proof.

Statement: If

Vk+1(v, u1, u2, ..., uk) = 0, for some v ∈ C2(Sn),(4.3)

then

Vk+1(v, v, u2, ..., uk) ≤ 0,(4.4)

with equality if and only if v =
∑n+1

i=1 aixi.

The theorem follows directly from above statement. The proof of the State-
ment will be reduced to an eigenvalue problem for certain elliptic differential
operators.

First, for u2, ..., uk ∈ Γk fixed, we set

L(v) = Ω(1, v, u2..., uk, 1, ..., 1).
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By Garding [9] L(v) > 0 if v is k-convex. We claim that L is an elliptic differential
operator with negative principal symbol. This can be done following the same
line as in [14]. The principal symbol of L at the co-tangent vector θ = (θ1, ..., θn)
is obtained when A is replaced by −θ ⊗ θ in

Sk(A,W 2, ..., W k).

So it is equal to
−Sk(θ ⊗ θ, W 2, ..., W k).

Since Sk is hyperbolic with respect to the positive cone Γk, and θ ⊗ θ is semi-
positive definite and is not a 0 matrix if θ not 0. By the complete hyperbolicity,

−Sk(θ ⊗ θ, W 2, ..., W k) < 0.

We now use continuity method to finish the job. For 0 ≤ t ≤ 1, let ui
t =

(1− t) + tui, and set

ρt =
Ω(1, u1

t , u
2
t ..., u

k
t , 1, ..., 1)

u1
t

,

We examine the eigenvalue problem:

Lt(v) = λρtv.(4.5)

If for we set Qt(u, v) =
∫
Sn uLt(v), the eigenvalue problem (4.5) is corresponding

to the quadratic form Qt with respect to the inner-product < u, v >ρt=
∫
Sn uvρt.

We want to show Claim: λ = 1 is the only positive eigenvalue of multiplicity
1 with eigenfunction u1

t , and λ = 0 is the eigenvalue of multiplicity n + 1 with
the eigenspace Span{x1, ...., xn+1} for the eigenvalue problem of (4.5).

We note that u1
t is an eigenfunction corresponding to the eigenvalue λ = 1. If

the Claim is true, (4.3) implies that v is orthogonal to the eigenspace correspond-
ing to λ = 1 with respect to the inner product < ., . >ρ1 . Then the Statement
follows from the standard spectral theory of self-adjoint elliptic operators.

We now prove the Claim. When t = 0, the problem can be reduced to the
following simple form by straightforward calculations:

∆v + nv = nλv.

The eigenvectors of ∆ are the spherical harmonics of degree ν = 0, 1, ..., with
the corresponding eigenvalues −ν(ν + n − 1). ν = 0 corresponds to λ = 1 and
ν = 1 corresponds to λ = 0 in the eigenvalue problem (4.5) respectively in this
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special case. And λ < 0 when ν > 1. It is well known that spherical harmonics of
degree 0 are constants, and spherical harmonics of degree 1 are linear functions,
i.e., Span{x1, ..., xn+1}. Therefore, the Claim is true for t = 0. For arbitrary t,
since 1 is an eigenvalue of the problem (4.5) with eigenfunction u1

t , by the theory
of elliptic equations, we only need to prove that 0 is the eigenvalue of multiplicity
n + 1. It’s obvious that x1, ..., xn+1 are the eigenfunctions of L corresponding to
the eigenvalue 0. The theorem now follows from Proposition 3.4. ¤

Now, we consider a class of domains which will be named k∗-convex. They
can be viewed as a generalization of convex bodies via polar dual. Let D be a
star-shaped bounded domain in Rn+1 with C2 boundary. The distance function
of D is defined as,

u(x) = min{λ|x ∈ λD}, ∀x ∈ Sn.(4.6)

When D is convex, the distance function is also called the gauge function of
D.

Definition 4.2. Let D be a star-shaped bounded domain in Rn+1 with C2 bound-
ary. We say D is k∗-convex if its distance function u is k-convex on Sn. We say
D is polar centrized if its distance function u satisfies

∫

Sn

xju(x)ds = 0, ∀j = 1, 2, ..., n + 1.

If D1, ..., Dk+1 are k∗-convex bodies, let u1, ..., uk+1 are the corresponding dis-
tance functions, and W1, ..., Wk+1 be the corresponding Hessians of the gauge
functions. For 0 ≤ l ≤ k, we define mixed polar surface area functions

Sl(D1, ..., Dl, x) = Sl(W1, ..., Wl).(4.7)

We call Sl(D, x) = Sl(W, ..., W ) the lth polar surface are function of D. We also
define a mixed polar volume,

V ∗
k+1(D1, ..., Dk+1) =

1
Vk+1(u1, ..., uk+1)

(4.8)

where Vk+1(u1, ..., uk+1) defined as in (4.1). We also write, ∀0 ≤ l ≤ k + 1,
V ∗

l (D) = V ∗
k+1(D, ..., D, B, ..., B), where B is the unit ball centered at the origin

in Rn+1, D appears l times, and B appears k + 1− l times in the formula.
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We note that if D is convex, D is polar centerized if and only if the Steiner
point of the polar of D is the origin. If D is convex, V ∗

l (D) in Definition 4.2
is the reciprocal of the lth quermassintegral of the polar of D. These geometric
quantities of D and its polar D∗ in this case are related by some important
inequalities, like the Blaschke-Santalo inequality.

As an application, we have the following consequences of Theorem 3.2 and
Theorem 4.1.

Theorem 4.3. Suppose D1, D2 are two k∗-convex domains in Rn+1. If the kth
polar surface area functions of D1 and D2 are the same, i.e.,

Sl(D1, x) = Sl(D2, x), ∀x ∈ Sn,

then, the distance functions of D1, D2 are equal up to a linear function. In par-
ticular, if both D1 and D2 are polar centrized, then D1 = D2.

Theorem 4.4. Suppose D1, ..., Dk+1 are k∗-convex domains in Rn+1,then we
have the following Alexandrov-Fenchel inequality for the mixed polar volumes:

(V ∗
k+1(D1, ..., Dk+1))2 ≤ V ∗

k+1(D1, D1, D3..., Dk+1)V ∗
k+1(D2, D2, D3..., Dk+1),

with the equality if and only if the distance functions of D1 and D2 are equal
up to a linear function. In particular, if both D1, D2 are polar centerized, then
D1 = λD2 for some λ > 0.

The above theorem shows that the reciprocal of the mixed polar volume is
log-concave. Therefore, one may deduce a sequence of inequalities for k∗-convex
domains from Theorem 4.1 as in the convex case (see section 20 in [4], section
6.4 in [18] and appendix in [14]). In particular, one can obtain the corresponding
Brunn-Minkowski inequality and quermassintegral inequalities for V ∗.

Corollary 4.5. Suppose D1, D2 are k∗-convex, then for 0 ≤ t ≤ 1,

V ∗
k+1((1− t)D1 + tD2)

−1
k+1 ≥ (1− t)V ∗

k+1(D1)
−1
k+1 + tV ∗

k+1(D2)
−1
k+1 ,

if D1, D2 are polar centralized, the equality for some 0 < t < 1 holds if and only
if D1 = λD2 for some λ > 0. If D is k∗-convex, then for 0 ≤ i < j < l ≤ k + 1,

(V ∗
j (D))l−i ≤ (V ∗

i (D))l−j(V ∗
l (D))j−i.
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If D is polar centralized, the equality holds if and only if D is a ball centered at
the origin. In particular, if we let σn be the volume of the unit ball B in Rn+1,

σi−j
n (V ∗

j (D))k−i ≤ (V ∗
i (D))k−j ,

if D is polar centralized, the equality holds if and only if D is a ball centered at
the origin.

We discuss some problems arising from the subject we treated.

(1) The first one is prescribing k∗ surface area function problem. The equiva-
lent analytical problem is to find a positive solution of the equation (3.1).
Of course, ϕ has to satisfy

∫
Sn xϕ(x) = 0. The existence and regularity of

admissible solutions have been established in [13]. The questions is when
an admissible solution is positive? We note that if u is a solution of (3.1),
u(x) + l(x) is also a solution for any linear function l(x). Therefore, it is
required to put some restriction on the solutions. One of that is to require
u orthogonal to the span of x1, ..., xn+1, that corresponds to find a polar
centralized k∗-convex body. The uniqueness of the positive solutions for
the problem is a consequence of Theorem 3.2.

(2) Equation (3.1) has another important geometric connection, it is related
to the Christoffel-Minkowski problem. In that case, one looks for convex
solutions of (3.1). The intermediate Christoffel-Minkowski problem is still
unsolved. A sufficient condition was obtained in recent paper [12] (see also
[19]).

(3) Equation (3.1) is a model case for general equations of the form:

F ({uij + δiju) = ϕ.,

where F is assumed to be elliptic and concave. When F is a quotient of
Hessians, the equation is related to prescribing Weingarten curvatures on
outer normals. We refer [3], [7], [10], [13] and [19] for further references.

(4) The paper [20] deals with the k-convex version of the last inequality in
Corollary 4.5, but the proof in general is incomplete. This inequality has
been verified for the star shaped case in [11] and for the case k = 1 under
outward minimizing condition in [15].
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