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Bloch’s conjecture for certain hyperkähler fourfolds
Robert Laterveer

Abstract: On a hyperkähler fourfold X, Bloch’s conjecture pre-
dicts that any involution acts trivially on the deepest level of the
Bloch–Beilinson filtration on the Chow group of 0–cycles. We prove
a version of Bloch’s conjecture when X is the Hilbert scheme of 2
points on a generic quartic in P3, and the involution is the non–
natural, non–symplectic involution on X constructed by Beauville.
This has interesting consequences for the Chow groups of the quo-
tient.
Keywords: Algebraic cycles, Chow groups, motives, Bloch’s con-
jecture, Bloch–Beilinson filtration, hyperkähler varieties, K3 sur-
faces, Hilbert schemes, non–symplectic involution, multiplicative
Chow–Künneth decomposition, “spread” of algebraic cycles in a
family.

1. Introduction

For a smooth projective variety X over C, let Ai(X) := CH i(X)Q denote the
Chow group of codimension i algebraic cycles modulo rational equivalence
with Q–coefficients. Let Ai

hom(X) and Ai
AJ(X) ⊂ Ai(X) denote the subgroups

of homologically trivial (resp. Abel–Jacobi trivial) cycles. Notoriously, Chow
groups of codimension i > 1 cycles are still but poorly understood. To cite
one prominent example, there is Bloch’s conjecture (which even for surfaces
of geometric genus 0 remains stubbornly conjectural, reminiscent of a castle
lying under siege for many years but showing no intention of being ready to
hoist the white flag of complete surrender):
Conjecture 1.1 (Bloch [6]). Let X be a smooth projective variety of dimen-
sion n. Let Γ ∈ An(X ×X) be a correspondence such that

Γ∗ = 0: Hp(X,OX) → Hp(X,OX) for all p > 0 .

Then
Γ∗ = 0: An

hom(X) → An
hom(X) .
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One could also state a variant of Bloch’s conjecture for codimension 2
cycles:

Conjecture 1.2. Let X be a smooth projective variety of dimension n. Let
Γ ∈ An(X ×X) be a correspondence such that

Γ∗ = 0: H2(X,OX) → H2(X,OX) .

Then
Γ∗ = 0: A2

AJ(X) → A2
AJ(X) .

Now, let us restrict focus to the realm of hyperkähler varieties (by which
we mean: projective irreducible holomorphic symplectic manifolds [2]). In this
case, H∗(X,OX) is generated by H2(X,OX) which is of dimension 1, and so
Conjecture 1.1 takes on a particularly appealing form:

Conjecture 1.3. Let X be a hyperkähler variety of dimension n. Let ω ∈
H2,0(X) be a holomorphic 2–form. Let Γ ∈ An(X ×X) be a correspondence
such that

Γ∗(ωr) = 0 for all r > 0 .

Then

Γ∗ = 0: An
hom(X) → An

hom(X) .

We also get the following particular case:

Conjecture 1.4. Let X be a hyperkähler variety of dimension n = 4m (where
m ∈ N). Let ι ∈ Aut(X) be an involution. Then

ι∗ = id: F nAn(X) → F nAn(X) .

Here F nAn(X) denotes the “deepest level” of the Bloch–Beilinson filtra-
tion, which conjecturally exists for all smooth projective varieties [18], [19],
[20], [25], [26], and for which good candidates are known to exist uncondition-
ally for certain hyperkähler varieties [35], [46]. (The point of Conjecture 1.4
is that the action of ι on F nAn(X) is conjecturally determined by the action
of ι on Hn,0(X) = H4m,0(X), which is the identity.)

In dimension n = 2, certain cases of Conjecture 1.3 have been proven:

Theorem 1.5 (Huybrechts [17], Voisin [41]). Let X be a K3 surface. Let
f ∈ Aut(X) be a finite order automorphism that is symplectic. Then

f∗ = id: A2(X) → A2(X) .
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That is, Conjecture 1.3 is true when X is a K3 surface and Γ = Γf −ΔX

(where Γf denotes the graph of f , and f is as in Theorem 1.5).
In dimension n > 2, certain cases of Conjecture 1.3 have been proven for

the Fano variety of lines on a cubic fourfold [15]. There is also a result for
what is perhaps the prime series of examples of hyperkähler fourfolds: the
Hilbert scheme S[2] of 2 points on a K3 surface S [35, Proposition 5.2]:

Theorem 1.6 (Shen–Vial [35]). Let S be a K3 surface, and let X = S[2].
Let f ∈ Aut(X) be a natural automorphism of finite order that is symplectic.
Then

f∗ = id: A4(X) → A4(X) ,

f∗ = id: A2
hom(X) → A2

hom(X) .

That is, Conjecture 1.3 is true for X = S[2] and Γ = Γf − ΔX .
Here, a natural automorphism is by definition an automorphism of X that

is induced by an automorphism of S. Theorem 1.6 is proven by reducing to
Theorem 1.5. The goal of this article is to go beyond Theorem 1.6, by also
considering non–natural and non–symplectic automorphisms of S[2].

Let X = S[2] be a Hilbert scheme with S a K3 surface, and assume that X
has an anti–symplectic involution ι. The involution ι, being anti–symplectic,
has the property that

ι∗ = − id : H2(X,OX) → H2(X,OX) .

Conjecture 1.2 thus predicts that

(1) ι∗
??= − id : A2

hom(X) → A2
hom(X) .

Can one prove this conjectural equality?
One classical case where an anti–symplectic involution exists is that of

the Hilbert scheme X = S[2], where S ⊂ P3 is a smooth quartic with Picard
number ρ(S) = 1. In this case, it is known ([9], cf. Theorem 2.21 below) that
the only non–trivial automorphism of X is the non–symplectic, non–natural
involution

ι : X → X

which was first studied by Beauville [1]. Our main result implies that in this
case, Conjecture 1.4 and a weak version of the conjectural equality (1) are
true:
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Theorem (=Theorem 4.1). Let S ⊂ P3 be a smooth quartic with Picard
number ρ(S) = 1, and let X = S[2]. Let ι ∈ Aut(X) be the non–symplectic
involution of [1]. Then

ι∗ = − id : Ai
(2)(X) → Ai

(2)(X) for i = 2, 4 ;
ι∗ = id: A4

(j)(X) → A4
(j)(X) for j = 0, 4 .

Here, A∗
(∗)(X) denotes the bigraded ring structure constructed by Shen–

Vial [35] using (their version of) the Fourier transform. To establish equality
(1) for X as in Theorem 4.1, it remains to prove the conjectural equality

(2) A2
(2)(X) ??= A2

hom(X) .

Unfortunately, equality (2) does not seem to be known for any Hilbert square
X = S[2]. Some evidence for equality (2) is that it is true if there exists
a Bloch–Beilinson filtration on A∗(X) of which the Fourier decomposition
A∗

(∗)(X) is a splitting; more concretely, equality (2) is equivalent to Murre’s
conjecture D for X [35, Theorem 3.3].

Theorem 4.1 has a nice implication for the quotient (this quotient is a
slightly singular Calabi–Yau variety):

Corollary (=Corollary 5.4). Let X and ι be as in Theorem 4.1, and let
Y := X/ι be the quotient. For any r ∈ N, let

E∗(Y r) ⊂ A∗(Y r)

be the subring generated by (pullbacks of) A1(Y ) and A2(Y ). The cycle class
map

Ek(Y r) → H2k(Y r)

is injective for k ≥ 4r − 1.

In particular, taking r = 1, we find that the subspaces

Im
(
A2(Y ) ⊗ A1(Y ) → A3(Y )

)
,

Im
(
A2(Y ) ⊗ A2(Y ) → A4(Y )

)
are of dimension 1 (Corollary 5.6). This is analogous to known results for 0–
cycles on K3 surfaces [5] and on complete intersection Calabi–Yau varieties
[40], [14] (cf. Remark 5.7 below).
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To prove Theorem 4.1, we employ the technique of “spread” of algebraic
cycles in a family, as developed by Voisin in her work on the Bloch/Hodge
equivalence for complete intersections [42], [43], [44], [45]. At the heart of our
proof is a result of Voisin about the triviality of certain Chow groups of the
relative fourfold fibre product of the family of all smooth quartics, provided
the (Lefschetz or Voisin) standard conjecture is true ([42, Proposition 4.11], cf.
also Theorem 4.5 below). The most delicate part of the proof is to circumvent
recourse to the standard conjectures in Voisin’s result; in this case, this works
because we can reduce the problem to a certain relative correspondence of
codimension 2 (rather than 4).

Another case where an anti–symplectic involution exists on X = S[2] is
when S is a degree 2 K3 surface (i.e., a double cover of the plane ramified
along a smooth sextic). In this case, the anti–symplectic involution is natural
(induced by the covering involution of S), and the statement of Theorem 4.1
can be easily proven for this case (cf. Proposition 3.1). Other cases where
an anti–symplectic involution exists on X = S[2] are when S is a generic
K3 of degree 20, 26 or 34 (Theorem 2.21). Proving the statement of Theo-
rem 4.1 for these cases would be interesting, but appears to be difficult (cf.
Question 6.3).

Conventions. In this article, the word variety refers to a reduced irreducible
scheme of finite type over C. A subvariety is a (possibly reducible) reduced
subscheme which is equidimensional.

All Chow groups will be with rational coefficients: we denote by
Aj(X) the Chow group of j–dimensional cycles on X with Q–coefficients; for
X smooth of dimension n the notations Aj(X) and An−j(X) will be used
interchangeably.

The notations Aj
hom(X), Aj

AJ(X) will be used to indicate the subgroups of
homologically trivial, resp. Abel–Jacobi trivial cycles. For a morphism
f : X → Y , we will write Γf ∈ A∗(X × Y ) for the graph of f . The con-
travariant category of Chow motives (i.e., pure motives with respect to ratio-
nal equivalence as in [34], [26]) will be denoted Mrat.

We will write Hj(X) to indicate singular cohomology Hj(X,Q).
Given an involution ι on X, we will write Aj(X)ι (and Hj(X)ι) for the

subgroup of elements fixed by ι.
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2. Preliminary

2.1. Quotient varieties

Definition 2.1. A projective quotient variety is a variety

X = Y/G ,

where Y is a smooth projective variety and G ⊂ Aut(Y ) is a finite group.

Proposition 2.2 (Fulton [16]). Let X be a projective quotient variety of
dimension n. Let A∗(X) denote the operational Chow cohomology ring. The
natural map

Ai(X) → An−i(X)

is an isomorphism for all i.

Proof. This is [16, Example 17.4.10].

Remark 2.3. It follows from Proposition 2.2 that the formalism of correspon-
dences goes through unchanged for projective quotient varieties (this is also
noted in [16, Example 16.1.13]). We can thus consider motives (X, p, 0) ∈
Mrat, where X is a projective quotient variety and p ∈ An(X ×X) is a pro-
jector. For a projective quotient variety X = Y/G, one readily proves (using
Manin’s identity principle) that there is an isomorphism

h(X) ∼= h(Y )G := (Y,ΔG
Y , 0) in Mrat ,

where ΔG
Y denotes the idempotent 1

|G|
∑

g∈GΓg.

2.2. MCK decomposition

Definition 2.4 (Murre [25]). Let X be a smooth projective variety of dimen-
sion n. We say that X has a CK decomposition if there exists a decomposition
of the diagonal

ΔX = ΠX
0 + ΠX

1 + · · · + ΠX
2n in An(X ×X) ,

such that the ΠX
i are mutually orthogonal idempotents and (ΠX

i )∗H∗(X) =
H i(X).

(NB: “CK decomposition” is shorthand for “Chow–Künneth decomposi-
tion”.)
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Remark 2.5. The existence of a CK decomposition for any smooth projective
variety is part of Murre’s conjectures [25], [18].

Definition 2.6 (Shen–Vial [35]). Let X be a smooth projective variety of
dimension n. Let ΔX

sm ∈ A2n(X ×X ×X) be the class of the small diagonal

ΔX
sm :=

{
(x, x, x) | x ∈ X

}
⊂ X ×X ×X .

An MCK decomposition is a CK decomposition {ΠX
i } of X that is multiplica-

tive, i.e. it satisfies

ΠX
k ◦ ΔX

sm ◦ (ΠX
i × ΠX

j ) = 0 in A2n(X ×X ×X) for all i + j 	= k .

(NB: “MCK decomposition” is shorthand for “multiplicative Chow–Kün-
neth decomposition”.)

Remark 2.7. The small diagonal (seen as a correspondence from X × X
to X) induces the multiplication morphism

ΔX
sm : h(X) ⊗ h(X) → h(X) in Mrat .

Suppose X has a CK decomposition

h(X) =
2n⊕
i=0

hi(X) in Mrat .

By definition, this decomposition is multiplicative if for any i, j the composi-
tion

hi(X) ⊗ hj(X) → h(X) ⊗ h(X) ΔX
sm−−→ h(X) in Mrat

factors through hi+j(X). It follows that if X has an MCK decomposition, then
setting

Ai
(j)(X) := (ΠX

2i−j)∗Ai(X) ,

one obtains a bigraded ring structure on the Chow ring: that is, the intersec-
tion product sends Ai

(j)(X) ⊗ Ai′

(j′)(X) to Ai+i′

(j+j′)(X).
The property of having an MCK decomposition is severely restrictive, and

is closely related to Beauville’s “weak splitting property” [3]. For more ample
discussion, and examples of varieties with an MCK decomposition, we refer
to [35, Section 8] and [39] and [36].

Lemma 2.8 (Vial [39]). Let X,X ′ be birational hyperkähler varieties. Then
X has an MCK decomposition if and only if X ′ has one.
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Proof. This is noted in [39, Introduction]; the idea (as indicated in loc. cit.) is
that Rieß’s result [33] implies that X and X ′ have isomorphic Chow motives
and the isomorphism is compatible with the multiplicative structure. (For
more details, cf. [22, Lemma 2.13].)

2.3. MCK for K3[2]

Theorem 2.9 (Shen–Vial [35]). Let S be a K3 surface, and X = S[2]. There
exists an MCK decomposition {ΠX

j } for X. In particular, setting

Ai
(j)(X) := (ΠX

2i−j)∗Ai(X)

defines a bigraded ring structure A∗
(∗)(X) on A∗(X). Moreover, A∗

(∗)(X) co-
incides with the bigrading defined by the Fourier transform.

Proof. The existence of {ΠX
j } is a special case of [35, Theorem 13.4]. The

“moreover” part is [35, Theorem 15.8].

Remark 2.10. The first statement of Theorem 2.9 actually holds for X =
S[r] for any r ∈ N [39].

Any K3 surface S has an MCK decomposition [35]. Since this prop-
erty is stable under products, S2 has an MCK decomposition. The following
lemma records a basic compatibility between the bigradings on A∗(S[2]) and
on A∗(S2):

Lemma 2.11. Let S be a K3 surface, and X = S[2]. Let Ψ ∈ A4(X ×S2) be
the correspondence coming from the diagram

S[2] ←− S̃2

h ↓ ↓
S(2) g←− S2

(the arrow labelled h is the Hilbert–Chow morphism; the right vertical arrow
is the blow–up of the diagonal). Then

(Ψ)∗R(X) ⊂ R(S2) ,

(tΨ)∗R(S2) ⊂ R(X) ,

where R = A4
(4) or A4

(2) or A2
(2) or A2

(0) ∩ A2
hom.
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Proof. We prove the statement for tΨ and R = A2
(2) or A2

(0)∩A2
hom, which are

the only cases we’ll be using (the other statements can be proven similarly).
By construction of the MCK decomposition for X (cf. [35, Theorem 13.4]),
there is a relation

(3) ΠX
k = 1

2
tΨ ◦ ΠS2

k ◦ Ψ + Rest in A4(X ×X) , (k = 0, 2, 4, 6, 8) ,

where {ΠS2

k } is a product MCK decomposition for S2, and “Rest” is a term
coming from ΔS ⊂ S×S which does not act on A4(X) and on A2

AJ(X). Since
1
2

tΨ ◦ Ψ is the identity on A2
hom(X) = A2

AJ(X), we can write

(tΨ)∗(ΠS2

k )∗ = (tΨ◦ΠS2

k )∗ = (1
2

tΨ◦Ψ◦tΨ◦ΠS2

k )∗ : A2
hom(S2) → A2

hom(X) .

In view of Sublemma 2.12 below, this implies

(tΨ)∗(ΠS2

k )∗ = (1
2

tΨ ◦ ΠS2

k ◦ Ψ ◦ tΨ)∗ : A2
hom(S2) → A2

hom(X) .

But then, plugging in relation (3), we find

(tΨ)∗(ΠS2

k )∗A2
hom(S2) ⊂ (ΠX

k )∗A2
hom(X) .

Taking k = 2, this proves

(tΨ)∗A2
(2)(S2) ⊂ A2

(2)(X) .

Taking k = 4, this proves

(tΨ)∗
(
A2

(0)(S2) ∩ A2
hom(S2)

)
⊂ A2

(0)(X) ∩ A2
hom(X) .

Sublemma 2.12. There is commutativity

Ψ ◦ tΨ ◦ ΠS2

k = ΠS2

k ◦ Ψ ◦ tΨ in A4(S4) .

To prove the sublemma, we remark that h∗h
∗ = 2 id: Ai(S(2)) → Ai(S(2)),

and so

(Ψ ◦ tΨ)∗ = 2 g∗g∗ = 2(ΔS2 + Γι)∗ : Ai(S2) → Ai(S2) ,

where ι denotes the involution switching the two factors. But {ΠS2

k }, being a
product decomposition, is symmetric and hence

Γι ◦ ΠS2

k ◦ Γι = (ι× ι)∗ΠS2

k = ΠS2

k in A4(S4) .
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This implies commutativity

Γι ◦ ΠS2

k = ΠS2

k ◦ Γι in A4(S4) ,

which proves the sublemma.

Remark 2.13. Lemma 2.11 is probably true for any (i, j) (i.e., Ψ should be
“of pure grade 0” in the language of [36, Definition 1.1]). I have not been able
to prove this.

2.4. MCK for S × S

Notation 2.14. Let S → B be a family (i.e., a smooth projective morphism).
For r ∈ N, we write Sr/B for the relative r–fold fibre product

Sr/B := S ×B S ×B · · · ×B S

(r copies of S).
Proposition 2.15. Let S → B be a family of K3 surfaces. There exist
relative correspondences

ΠS2/B

j ∈ A4(S4/B) (j = 0, 2, 4, 6, 8) ,

such that
(i) for each b ∈ B, the restriction

Π(Sb)2
j := ΠS2/B

j |(Sb)4 ∈ A4((Sb)4)

defines a self–dual MCK decomposition for (Sb)2;
(ii) there is a decomposition

ΠS2/B

2 = P1 ◦Q1 + P2 ◦Q2 in A4(S4/B) ,

where Pi ∈ A2(S4/B) and Qi ∈ A6(S4/B) for i = 1, 2.
Proof. (i) On any K3 surface Sb, there is the distinguished 0–cycle oSb

such
that c2(Sb) = 24oSb

[5]. Let pi : S×BS → S, i = 1, 2, denote the projections to
the two factors. Let TS/B denote the relative tangent bundle. The assignment

ΠS
0 := (p1)∗

( 1
24c2(TS/B)

)
∈ A2(S ×B S) ,

ΠS
4 := (p2)∗

( 1
24c2(TS/B)

)
∈ A2(S ×B S) ,

ΠS
2 := ΔS − ΠS

0 − ΠS
4
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defines (by restriction) an MCK decomposition for each fibre:

ΠSb
j := ΠS

j |Sb×Sb
∈ A2(Sb × Sb) (j = 0, 2, 4)

is an MCK decomposition [35, Example 8.17].
Next, we consider the fourfold relative fibre product S4/B. Let

pij : S4/B → S2/B (1 ≤ i < j ≤ 4)

denote projection to the i-th and j-th factor. We set

ΠS2/B

j :=
∑

k+�=j

(p13)∗(ΠS
k ) · (p24)∗(ΠS

� ) ∈ A4(S4/B) , (j = 0, 2, 4, 6, 8) .

By construction, the restriction to each fibre induces an MCK decomposition
(the “product MCK decomposition”)

Π(Sb)2
j := ΠS2/B

j |(Sb)4 =
∑

k+�=j

ΠSb

k × ΠSb

� ∈ A4((Sb)4) , (j = 0, 2, 4, 6, 8) .

Since the ΠSb
j are self–dual, so are the Π(Sb)2

j . (ii) Define

P1 := (p13)∗(ΠS
2 ) ∈ A2(S4/B) ,

Q1 := (p134)∗(ΔS,sm) · (p2)∗
( 1
24c2(TS/B)

)
∈ A6(S4/B) ,

P2 := (p24)∗(ΠS
2 ) ∈ A2(S4/B) ,

Q2 := (p234)∗(ΔS,sm) · (p1)∗
( 1
24c2(TS/B)

)
∈ A6(S4/B) .

Here p134 : S4/B → S3/B is projection on the first, third and fourth factor
(and similarly for p2, etc.), and ΔS,sm is the “relative small diagonal” (i.e.,
the image of the natural morphism S → S3/B.

We will now show that for each b ∈ B, there is equality

(P1 ◦Q1)|(Sb)4 = ΠSb
2 × ΠSb

0 ∈ A4((Sb)4) ,
(P2 ◦Q2)|(Sb)4 = ΠSb

0 × ΠSb
2 ∈ A4((Sb)4) .

(4)

This suffices to prove the proposition, because it implies that P1◦Q1+P2◦Q2
restricts to

Π(Sb)2
2 = ΠSb

2 × ΠSb
0 + ΠSb

0 × ΠSb
2 ∈ A4((Sb)4) ,
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which is part of a product MCK decomposition on each fibre.
For a given Sb let x = oSb

∈ A2(Sb) denote the distinguished 0–cycle of
[5]. We note that

(P1 ◦Q1)|(Sb)4 = (P1|(Sb)4) ◦ (Q1|(Sb)4)
= ((p13)∗(ΠSb

2 )) ◦ ({(s, x, s, s) ∈ (Sb)4})

= (p1256)∗
(
(p35)∗(ΠSb

2 ) · ({(s, x, s, s)} × Sb × Sb)
)

= (p1256)∗
(
(p15)∗(ΠSb

2 ) · ({(s, x, s, s)} × Sb × Sb)
)

= (p13)∗(ΠSb
2 ) · ({(s, x)} × Sb × Sb) in A4((Sb)4)

= ΠSb
2 × x× Sb in A4((Sb)4) .

Likewise,

(P2 ◦Q2)|(Sb)4 = (P2|(Sb)4) ◦ (Q2|(Sb)4)
= ((p24)∗(ΠSb

2 )) ◦ ({(x, s, s, s) ∈ (Sb)4})

= (p1256)∗
(
(p46)∗(ΠSb

2 ) · ({(x, s, s, s)} × Sb × Sb)
)

= (p1256)∗
(
(p26)∗(ΠSb

2 ) · ({(x, s, s, s)} × Sb × Sb)
)

= (p24)∗(ΠSb
2 ) · ({(x, s)} × Sb × Sb) in A4((Sb)4)

= x× Sb × ΠSb
2 in A4((Sb)4) .

This proves the equalities (4), and so the proposition is proven.

2.5. Relative MCK for K3[2]

Proposition 2.16. Let S → B be a family of K3 surfaces (i.e. each fibre Sb

is a K3 surface), and let X → B be the family of associated Hilbert schemes
(i.e., a fibre Xb is (Sb)[2]). There exist relative correspondences

ΠX
j ∈ A4(X ×B X ) (j = 0, 2, 4, 6, 8) ,

such that for each b ∈ B, the restrictions

ΠXb
j := ΠX

j |Xb×Xb
∈ A4(Xb ×Xb) (j = 0, 2, 4, 6, 8)

define an MCK decomposition for Xb.
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Proof. The construction of an MCK decomposition for Xb given in [35, The-
orem 13.4] can be done in a relative setting. That is, let {ΠS

j } be a relative
MCK decomposition for S as in Proposition 2.15, and let {ΠS2/B

j } be the
induced relative MCK decomposition for S2/B as in Proposition 2.15. Let

Z → B

be the family obtained by blowing–up S×B S along the relative diagonal ΔS .
As in the proof of [35, Propositions 13.2 and 13.3]1, one can use {ΠS2/B

j } and
{ΠS

j } to define relative correspondences

ΠZ
j ∈ A4(Z ×B Z) (j = 0, 2, 4, 6, 8) ,

which restrict to an MCK decomposition of each fibre Zb. Let

p : Z → X

denote the morphism of B-schemes induced by the action of the symmetric
group S2, and let Γp ∈ A4(Z ×B X ) be the graph of p. We define

ΠX
j := 1

2Γp ◦ ΠZ
j ◦ tΓp ∈ A4(X ×B X ) (j = 0, 2, 4, 6, 8) .

The restrictions ΠXb
j := ΠX

j |Xb×Xb
define an MCK decomposition for each

fibre by [35, Theorem 13.4].

2.6. Multiplicative structure of Chow ring of K3[2]

Theorem 2.17 (Shen–Vial [35]). Let S be a K3 surface, and X = S[2].
(i) Intersection product induces a surjection

A2
(2)(X) ⊗ A2

(2)(X) � A4
(4)(X) .

(ii) There is a distinguished class l ∈ A2
(0)(X) such that intersection induces

an isomorphism
·l : A2

(2)(X)
∼=−→ A4

(2)(X) .

Proof. This is [35, Theorem 3].
1The statement and proof of [35, Proposition 13.2] should be slightly modified,

as noted in [36, Remark 2.8].
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2.7. Refined CK decomposition

Theorem 2.18 (Vial [38]). Let X be a smooth projective variety of dimension
n ≤ 5. Assume the Lefschetz standard conjecture B(X) holds (in particular,
the Künneth components πi ∈ H2n(X × X) are algebraic). Then there is a
splitting into mutually orthogonal idempotents

πi =
∑
j

πi,j ∈ H2n(X ×X) ,

such that
(πi,j)∗H∗(X) = grj

Ñ
H i(X) ,

where Ñ∗ denotes Vial’s niveau filtration [38].
In particular,

(π2,1)∗Hj(X) = H2(X) ∩ F 1 ,

(π2,0)∗Hj(X) = H2
tr(X) .

(Here F ∗ denotes the Hodge filtration, and H2
tr(X) is the orthogonal comple-

ment to H2(X) ∩ F 1 under the pairing

H2(X) ⊗H2(X) → Q ,

a⊗ b �→ a ∪ hn−2 ∪ b .)

The projector π2,1 is supported on C×D, where C ⊂ X is a curve and D ⊂ X
is a divisor.

Proof. This is [38, Theorem 1], plus the fact that gr1
Ñ
H2(X) = H2(X) ∩ F 1

is the Néron–Severi group of X (cf. loc. cit.).

Remark 2.19. Vial’s niveau filtration [38] is conjecturally (but not prov-
ably) the same as the coniveau filtration. The construction of Theorem 2.18
is inspired by [21], where for any surface S, the “transcendental part of the
Chow motive of S” is constructed.

2.8. The automorphism group of K3[2]

Proposition 2.20 (Boissière et al. [9]). Let S be a projective K3 surface of
Picard number ρ(S) = 1, and let X = S[2]. Suppose Pic(S) is generated by a
divisor H with H2 = 2. Then Aut(X) = Z/2Z, and the non–trivial involution
ι of X is anti–symplectic, induced by the covering involution of S.
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Proof. This is [9, Proposition 5.1].

Theorem 2.21 (Boissière et al. [9]). Let S be a projective K3 surface of
Picard number ρ(S) = 1. Suppose Pic(S) is generated by a divisor H with
H2 = 2t, t ≥ 2.
(i) The Hilbert scheme X = S[2] has a non–trivial automorphism if and only
if there exists an ample divisor D ∈ Pic(X) of square 2 (with respect to the
Beauville–Bogomolov quadratic form). This is the case for t = 1, 10, 13, 17, . . .
(ii) If Aut(X) 	= 0 then Aut(X) = Z/2Z and the only non–trivial automor-
phism is an anti–symplectic involution ι leaving the divisor D invariant (i.e.
ι∗(D) = D in NS(X)).

Proof. Statement (i) is [9, Theorem 5.5] (combined with results concerning
solutions of Pell’s equation to compute the first values of t; these values are
stated in [9, Introduction]). Statement (ii) is [9, Lemma 5.3].

Proposition 2.22 (Beauville [1]). Let S ⊂ P3 be a smooth quartic with
Picard number ρ(S) = 1, and let X = S[2]. Let G denote the Grassmannian
of lines in P3, and let φ : X → G be the morphism sending a length–two
subscheme Z to its one–dimensional span < Z >⊂ P3.
(i) There exists an anti–symplectic involution

ι : X → X ,

defined by sending Z ∈ X to the residual subscheme of < Z > ∩S, i.e.

< Z > ∩S = Z � ι(Z) .

(ii) There exists an ample divisor D ∈ A1(X) of square 2 (with respect to
the Beauville–Bogomolov form), and such that the linear system |D| is base–
point–free. Define the morphism f as the composition

f : X φ−→ G
ψ−→ P5 ,

where ψ is the Plücker embedding. Then f is the same as the morphism defined
by |D|.
(iii) The involution ι acts on NS(X) as reflection in the span of D.
(iv) The involution ι is non–natural (i.e., there exists no pair (S′, τ) with S′

a K3 surface and τ ∈ Aut(S′) and such that (X, ι) = ((S′)[2], τ [2])).

Proof. Statement (i) is [1, Section 6]. Statements (ii) and (iii) are contained
in [28, Section 4.1.2], or [9, Section 6.1]. Finally, point (iv) is proven in [10,
page 6] by computing the index λ(ι) (as defined in loc. cit.) of ι.
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Remark 2.23. Let X be the Hilbert scheme X = S[2] of a generic quartic S ⊂
P3. Combining Proposition 2.22 and Theorem 2.21, it follows that Beauville’s
involution ι is the unique non–trivial automorphism of X.

Remark 2.24. Let S ⊂ P3 be a smooth quartic of any Picard number, and
let X = S[2]. Clearly, the above construction gives a rational map

ι : X ��� X ,

which is well–defined outside of the locus of zero–dimensional subschemes
contained in a line on S.

Remark 2.25. Oguiso [32, Section 4 Example 2] has used Beauville’s in-
volution to construct interesting automorphisms of S[2] where S ⊂ P3 is a
certain quartic of Picard number 2. These automorphisms are non–natural
and of positive entropy.

Remark 2.26. The (X, ι) as in Proposition 2.22 form a 19–dimensional
family. It is known that this family is a degeneration of the 20–dimensional
family (Z, i), where Z is a double EPW sextic (in the sense of [29], [30], [31])
and i is the anti–symplectic involution such that the quotient Z/i is an EPW
sextic. This degeneration is explained in [13, Section 4], and also noted in
[4, Section 3.5]. In the notation of Proposition 2.22, the morphism f = φ|D|
(given by the linear system of D) admits a factorization

f = ψ ◦ φ : X
φ−→ G

ψ−→ P5

↓ ↗
Y := X/ι

where φ is generically 6 to 1. It follows that the image φ|D|(X) ⊂ P5 is 3Q
(the Plücker quadric Q with multiplicity 3), which can be seen as a degenerate
EPW sextic. It also follows that the quotient Y is the triple cover of the
quadric Q ⊂ P5.

3. Degree 2 K3 surfaces

As a warm–up before proving the main result (which is about the Hilbert
square of K3 surfaces of degree 4), we consider the Hilbert square of K3
surfaces of degree 2. This case is easy, because the anti–symplectic involution
is natural.



Bloch’s conjecture for certain hyperkähler fourfolds 655

Proposition 3.1. Let S be a K3 surface of degree 2 (i.e. there exists an
ample divisor H ∈ Pic(S) with H2 = 2) and with ρ(S) = 1. Let X = S[2], and
let ι ∈ Aut(X) be the unique non–trivial automorphism of Proposition 2.20.
Then

ι∗ = − id : Ai
(2)(X) → Ai

(2)(X) (i = 2, 4) ,

ι∗ = id: A4
(4)(X) → A4

(4)(X) .

Proof. The natural correspondence Ψ ∈ A4(X×S2) induces a a split injection

Ψ∗ : A4(X) → A4(S2) ,

which is compatible with the bigrading A4
(j) for j = 2, 4 (Lemma 2.11). The

involution ι being natural (i.e. induced by the covering involution i of S),
there is a commutative diagram

(5)
A4

(j)(X) Ψ∗−→ A4
(j)(S2)

↓ ι∗ ↓ (i×i)∗

A4(X) Ψ∗−→ A4(S2)

for j = 2, 4. We are thus reduced to proving a statement for S2.

Lemma 3.2. Set–up as in Proposition 3.1. Then

A2
hom(S)i = 0 .

Proof. The quotient variety S/i has geometric genus 0. Since quotient singu-
larities are rational singularities, there exists a resolution Y → S/i with
pg(Y ) = 0. Since Y is not of general type, Bloch’s conjecture is known
to hold for Y [7], i.e. A2

hom(Y ) = 0. This implies that also A2
hom(S/i) =

A2
hom(S)i = 0.

Lemma 3.2 implies that i acts as − id on A2
hom(S). Looking at the action

of i on H2,2(S) ∼= C, one finds that i acts as id on A2
(0)(S). This implies that

(i× i)∗ = − id : A4
(2)(S2) → A4(S2) ,

(i× i)∗ = id: A4
(2)(S2) → A4(S2) .

Using diagram (5), this proves Proposition 3.1 for A4
(2) and for A4

(4).
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It remains to prove the statement for A2
(2)(X). This can be done as follows:

the above implies there is a decomposition

A4(X) = A4(X)ι ⊕ A4
(2)(X) ,

and so the correspondence

Γ := ΠX
6 ◦ (Γι + ΔX) ∈ A4(X ×X)

acts trivially on 0–cycles:

Γ∗A
4(X) = 0 in A4(X) .

Using the Bloch–Srinivas argument [8], this implies Γ is supported on D×X,
where D ⊂ X is a divisor. This holds for any MCK decomposition {ΠX

i } for
X. Let us now take an MCK decomposition of X that is self–dual (this exists:
[36, Remark 2.8]). The transpose

tΓ = (Γι + ΔX) ◦ ΠX
2 ∈ A4(X ×X)

is supported on X ×D. As such, it does not act on A2
hom(X) = A2

AJ(X):

(tΓ)∗ = 0: A2
hom(X) → A2

hom(X) .

Since A2
(2)(X) = (ΠX

2 )∗A2
hom(X), this implies

(Γι + ΔX)∗ = 0: A2
(2)(X) → A2(X) ,

proving the statement for A2
(2)(X).

4. Main result

This section contains the proof of the main result of this note (Theorem 4.1).
The global strategy is as follows: we start by proving (Theorem 4.2) that the
involution ι has the expected action on A2

(2)(X). As will be apparent to the
well–informed reader, the proof of Theorem 4.2 is directly inspired by Voisin’s
seminal work on the Bloch/Hodge equivalence for complete intersections [42],
[43], [45], reasoning family–wise and spreading out correspondences to the
family. At the heart of our proof is a result of Voisin [42] concerning the trivi-
ality of certain Chow groups of the fourfold relative fibre product S4/B of the
family of smooth quartic surfaces (Theorem 4.5). Voisin’s result is conditional
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to the standard conjectures; however, we manage to bypass the need for the
standard conjectures by only using Voisin’s result in codimension 2, where it
is unconditional.

Next, we consider the action of the involution ι on 0-cycles (Theorem 4.15).
Here, we rely on the result for A2

(2)(X), plus the relations in A∗(X) discovered
by Shen–Vial (Theorem 2.17). In order to be able to use these relations, we
apply once again (Proposition 4.16) Voisin’s method of “spread”. This second
application of the method of “spread” is easier than the first, as everything
happens on S ×B S, rather than on the fourfold relative fibre product S4/B.

Here is the main result of this note:
Theorem 4.1. Let S ⊂ P3 be a smooth quartic with Picard number ρ(S) = 1,
and let X = S[2]. Let ι ∈ Aut(X) be the non–symplectic involution of Beauville
(cf. Proposition 2.22). Then

ι∗ = − id : Ai
(2)(X) → Ai

(2)(X) for i = 2, 4 ;
ι∗ = id: A4

(j)(X) → A4
(j)(X) for j = 0, 4 .

Theorem 4.1 is a combination of Theorems 4.2 and 4.15.

4.1. Action on A2
(2)

Theorem 4.2. Let X and ι be as in Theorem 4.1. Then

ι∗ = − id : A2
(2)(X) → A2

(2)(X) .

Proof. We consider the family

S → B

of all smooth quartics Sb with Picard number ρ(Sb) = 1. Here the base B
is a Zariski–open in a projective space B ⊂ B̄ := PH0(P3,OP3(4)

)
. We will

denote
X → B

the family of Hilbert schemes, and we write Xb = (Sb)[2] for a fibre of X → B.
It will be convenient to also consider the family S ×B S (whose fibres are
products Sb × Sb). This family is related to the family X → B by a “hat” of
morphisms over B

(6)
S̃ ×B S

↙ ↘
X S ×B S
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where S̃ ×B S is the blow–up of S ×B S with centre the relative diagonal.
This diagram (6) gives rise to relative correspondences

Ψ ∈ A4(X ×B S ×B S) , tΨ ∈ A4(S ×B S ×B X ) .

(For details on relative correspondences, cf. [26], and also [12], [11], [27].)
Restricting to a fibre over b ∈ B, diagram (6) induces the familiar diagram

S̃b × Sb

↙ ↘
Xb = (Sb)[2] Sb × Sb

(where S̃b × Sb is the blow–up of Sb × Sb along the diagonal), and the (abso-
lute) correspondences

Ψb ∈ A4(Xb × Sb × Sb) , tΨb ∈ A4(Sb × Sb ×Xb) .

The morphism φb : Xb → G (where G is the Grassmannian of lines in P3)
extends to the family, in the sense that there is a morphism of B–schemes

φ : X → G := G×B

such that the restriction to a fibre gives φb. This implies that the Beauville
involution also extends to the family: there exists an involution of B–schemes

ι : X → X ,

such that restriction to a fibre gives the involution ιb : Xb → Xb of Proposi-
tion 2.22.

Let Γι ∈ A4(X ×B X ) denote the graph of ι. The fact that ιb acts as −1
on H2,0(Xb) for all b ∈ B implies that

(Γιb + ΔXb
)∗H2

tr(Xb) = 0 ∀b ∈ B .

In view of the refined Chow–Künneth decomposition (Theorem 2.18, which
applies since Xb verifies the standard conjectures), this implies that

(7) (Γιb + ΔXb
) ◦ (πXb

2 ) = γb in H8(Xb ×Xb) , ∀b ∈ B ,

where γb is some cycle supported on Yb × Yb, for Yb ⊂ Xb a divisor.
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Let {ΠX
j } be a relative MCK decomposition as in Proposition 2.16. The

relation (7) implies the following: the relative correspondence

Γ0 := (Γι + ΔX ) ◦ ΠX
2 ∈ A4(X ×B X )

has the property that for each b ∈ B, there exists a divisor Yb ⊂ Xb and a
cycle γb supported on Yb × Yb such that

(Γ0)|Xb×Xb
= γb in H8(Xb ×Xb) .

At this point, we recall Voisin’s “spread–out” result:

Proposition 4.3 (Voisin [42]). Let X → B be a smooth projective morphism
of relative dimension n. Let Γ ∈ An(X ×B X ) be a cycle such that for all
b ∈ B, there exists a closed algebraic subset Yb ⊂ Xb of codimension c, and a
cycle γb ∈ An(Yb × Yb) such that

Γ|Xb×Xb
= γb in H2n(Xb ×Xb) .

Then there exists a closed algebraic subset Y ⊂ X of codimension c, and a
cycle γ ∈ A∗(Y ×B Y) such that

Γ|Xb×Xb
= γ|Xb×Xb

in H2n(Xb ×Xb) ∀b ∈ B.

Proof. This is a Hilbert schemes argument [42, Proposition 3.7].

Applying Proposition 4.3 to Γ0, it follows there exists a divisor Y ⊂ X
and a cycle γ ∈ A∗(Y ×B Y) such that

(Γ0 − γ)|Xb×Xb
= 0 in H8(Xb ×Xb) , ∀b ∈ B .

That is, the relative correspondence

Γ1 := Γ0 − γ ∈ A4(X ×B X )

has the property of being homologically trivial on every fibre:

(Γ1)|Xb×Xb
= 0 in H8(Xb ×Xb) , ∀b ∈ B.

At this point, it is convenient to consider the family S ×B S (of products
of surfaces Sb × Sb), rather than the family X (of Hilbert schemes (Sb)[2]).
That is, we consider the relative correspondence

Γ2 := Ψ ◦ Γ1 ◦ tΨ ∈ A4(S4/B) ,
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where
S4/B := S ×B S ×B S ×B S .

Since
(Γ2)|(Sb)4 = (Ψb) ◦ ((Γ1)|Xb×Xb

) ◦ tΨb in A4((Sb)4)

(restriction and composition of relative correspondences commute), the rel-
ative correspondence Γ2 has the property of being homologically trivial on
every fibre:

(Γ2)|(Sb)4 = 0 in H8((Sb)4) , ∀b ∈ B.

Thanks to the following result, we can improve this fibre–wise homological
vanishing to a global homological vanishing:

Proposition 4.4 (Voisin [42]). Let Γ ∈ A4(S4/B) be such that

Γ|(Sb)4 = 0 in H8((Sb)4) ∀b ∈ B .

Then, after shrinking B to a non–empty Zariski–open subset, we have

Γ +
6∑

j=1
ψj = 0 in H8(S4/B) ,

where ψ1 (resp. ψ2, . . . , ψ6) is the restriction of a cycle on B×P3×P3×S×BS
(resp. on a copy of B × P3 × P3 × S ×B S, where the factors are permuted).

Proof. This is an extension of the Leray spectral sequence argument [42,
Lemmas 3.11 and 3.12] to the fourfold relative fibre product S4/B. The fact
that such an extension is true is stated in [42, Proof of Theorem 4.10], which
also uses the fourfold relative fibre product S4/B.

Applying Proposition 4.4 to Γ2, we obtain a relative correspondence

Γ3 := Γ2 + ψ ∈ A4(S4/B)

that is homologically trivial (i.e. Γ3 ∈ A4
hom(S4/B). Here ψ is a cycle of the

form
ψ = ψ1 + · · · + ψ6 ∈ A4(S4/B) ,

where ψ1, . . . , ψ6 are restrictions of cycles coming from larger varieties as in
Proposition 4.4.

We now come to the “trivial Chow groups” statement which is at the
heart of our proof:
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Theorem 4.5 (Voisin [42]). Let S → B denote the family of all smooth
hypersurfaces Sb ⊂ P3 of a given degree d (where d ≥ 3). Let

i : S4/B
0 ⊂ S4/B

denote the complement of the small relative diagonal S ⊂ S4/B. There exists
a smooth proper surjective morphism

f : ˜S4/B
0 → S4/B

0 ,

and a smooth quasi–projective variety M containing ˜S4/B
0 as a Zariski–open

and such that
Ai

hom(M) = 0 ∀i ≤ 4 .

Proof. This is (contained in the proof of) [42, Proposition 4.11]. The variety
M is constructed as a projective bundle over the variety (̃P3)40 of [42, Lemma
4.12].

The relative correspondence Γ3 being homologically trivial, we also have
that

Γ4 := f∗i∗(Γ3) ∈ A4(˜S4/B
0 )

is homologically trivial. Now, if we assume the Lefschetz standard conjecture
(or the Voisin standard conjecture [42, Conjecture 1.6], [45, Conjecture 2.29])
is true, we can find a cycle

Γ̄4 ∈ A4(M)
which restricts to Γ4 and is homologically trivial. In view of Theorem 4.5, we
then obtain a rational equivalence

Γ̄4 = 0 in A4(M) ,

and we can conclude the argument. However, as we do not want to end up
with a conditional statement we need to avoid recourse to the Voisin (or
Lefschetz) standard conjecture. To this end, we slightly modify the relative
correspondence Γ3, by defining

Γ5 := Γ3 ◦ ΠS2/B

2 ∈ A4(S4/B) ,

where ΠS2/B
2 is part of a “relative MCK decomposition” for S2/B as in Propo-

sition 2.15. Since Γ3 is homologically trivial, Γ5 is so as well:

Γ5 ∈ A4
hom(S4/B) .
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Now, using the factorization ΠS2/B
2 = P1 ◦ Q1 + P2 ◦ Q2 of Proposition 2.15,

we obtain a factorization

Γ5 = Γ3 ◦ P1 ◦Q1 + Γ3 ◦ P2 ◦Q2 in A4(S4/B) ,

where Γ3 ◦ Pj ∈ A2(S4/B) and Qj ∈ A6(S4/B) for j = 1, 2. Moreover,

Γ3 ◦ P1 , Γ3 ◦ P2 ∈ A2
hom(S4/B)

(since Γ3 is homologically trivial). It follows that the pullbacks

Γ6,j := f∗i∗(Γ3 ◦ Pj) ∈ A2(˜S4/B
0 ) (j = 1, 2)

are also homologically trivial. But the cycles Γ6,j can be extended to M , i.e.
there exist

Γ̄6,j ∈ A2(M) (j = 1, 2)

which restrict to Γ6,j and are homologically trivial (indeed, the Voisin stan-
dard conjecture is true in codimension 2, essentially because the Hodge conjec-
ture is true in codimension 1 [42, Lemma 2.1]). But then, using Theorem 4.5,
we find that

Γ̄6,j = 0 in A2(M) ,

and so

Γ6,j = 0 in A2(˜S4/B
0 ) (j = 1, 2) .

It follows that also

Γ3 ◦ Pj = i∗f∗f
∗i∗(Γ3 ◦ Pj) = 0 in A2(S4/B) (j = 1, 2)

(note that i∗i∗ = id on codimension 2 cycles, for dimension reasons), and so

Γ5 = Γ3 ◦ P1 ◦Q1 + Γ3 ◦ P2 ◦Q2 = 0 in A4(S4/B) .

In particular, restricting to a fibre, we obtain

(8) (Γ5)|(Sb)4 = 0 in A4((Sb)4) ∀b ∈ B .

We now make the connection with the relative correspondence Γ0 that we
started out with.
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Claim 4.6. We have(
(Ψ◦Γ0 ◦ tΨ+γ′+ψ′)|(Sb)4

)
∗ = 0: A2

AJ(Sb×Sb) → A2
AJ(Sb×Sb) ∀b ∈ B ,

where γ′ is a cycle supported on D ×B D for some divisor D ⊂ S ×B S,
and ψ′ is a sum of restrictions of cycles coming from larger varieties as in
Proposition 4.4.

Proof. Recall that Γ0 was defined as

Γ0 := (Γι + ΔX ) ◦ ΠX
2 ∈ A4(X ×B X ) ,

and Γ1 was defined as the difference

Γ1 := Γ0 − γ ∈ A4(X ×B X ) ,

where γ is a cycle supported on Y ×B Y for some divisor Y ⊂ X . The next
step was to define

Γ2 := Ψ ◦ Γ1 ◦ tΨ ∈ A4(S4/B) ,

and then
Γ3 := Γ2 + ψ ∈ A4(S4/B) ,

where ψ is a sum of restrictions of cycles coming from larger varieties as in
Proposition 4.4. This implies that

(9) Γ3 = Ψ ◦ Γ0 ◦ tΨ + γ1 + ψ ∈ A4(S4/B) ,

where γ1 = Ψ ◦ γ ◦ tΨ is supported on D×B D for some divisor D ⊂ S ×B S.
The relative correspondence Γ5 was defined as Γ5 := Γ3 ◦ ΠS2/B

2 , and so (by
substituting using equality (9)) we find an equality

(10) Γ5 = Ψ ◦ Γ0 ◦ tΨ ◦ ΠS2/B

2 + γ′ + ψ′ ∈ A4(S4/B) ,

where γ′ := γ1 ◦ΠS2/B
2 is supported on D×B D, and ψ′ := ψ ◦ΠS2/B

2 is a sum
of restrictions of cycles coming from larger varieties as in Proposition 4.4.
But we know that Γ5 is rationally trivial on each fibre (equality (8)), and so
equality (10) implies

(11) (Ψ ◦ Γ0 ◦ tΨ ◦ΠS2/B

2 )|(Sb)4 + (γ′ + ψ′)|(Sb)4 = 0 in A4((Sb)4) ∀b ∈ B .

Applying both sides of the equality of correspondences (11) to codimen-
sion 2 cycles implies Claim 4.6, in view of the following lemma:
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Lemma 4.7. For any b ∈ B, there is equality(
(Ψ ◦ Γ0 ◦ tΨ ◦ ΠS2/B

2 )|(Sb)4
)
∗

=
(
(Ψ ◦ Γ0 ◦ tΨ)|(Sb)4

)
∗ : A2

AJ(Sb × Sb) → A2
AJ(Sb × Sb) .

Proof. We start by observing there is a commutativity relation

(12)
(
ΠXb

2 ◦ tΨb

)
∗ =

(
ΠXb

2 ◦ tΨb ◦ Π(Sb)2
2

)
∗ : A2

hom(Sb × Sb) → A2
hom(Xb) .

Indeed, we have seen (Lemma 2.11) that

(tΨ)∗A2
(2)(Sb × Sb) ⊂ A2

(2)(Xb) ,

(tΨb)∗
(
A2

(0)(Sb × Sb) ∩ A2
hom(Sb × Sb)

)
⊂ A2

(0)(Xb) ∩ A2
hom(Xb) ,

and so

(ΠXb
2 ◦ tΨb)∗ = 0: A2

(0)(Sb × Sb) ∩ A2
hom(Sb × Sb) → A2(Xb) .

Since

A2
hom(Sb × Sb) = A2

(2)(Sb × Sb) ⊕ A2
(0)(Sb × Sb) ∩ A2

hom(Sb × Sb) ,

it follows that

Im
(
A2

hom(Sb × Sb)
(tΨb)∗−−−−→ A2(Xb)

(ΠXb
2 )∗−−−−→ A2

(2)(Xb)
)

=

Im
(
A2

(2)(Sb × Sb)
(tΨb)∗−−−−→ A2(Xb)

(ΠXb
2 )∗−−−−→ A2

(2)(Xb)
)

=

Im
(
A2(Sb × Sb)

(Π(Sb)
2

2 )∗−−−−−→ A2
(2)(Sb × Sb)

(tΨb)∗−−−−→ A2(Xb)
(ΠXb

2 )∗−−−−→ A2
(2)(Xb)

)
.

This proves equality (12).
To prove Lemma 4.7, one notes that the left–hand–side of Lemma 4.7 is(
Ψb ◦ (Γ0)|(Sb)4 ◦ tΨb ◦ Π(Sb)2

2
)
∗ : A2

hom(Sb × Sb) → A2
hom(Sb × Sb) .

Plugging in the definition of Γ0, we obtain(
Ψb ◦ (Γ0)|(Sb)4 ◦ tΨb ◦ Π(Sb)2

2
)
∗

=
(
Ψb ◦ (Γιb + ΔXb

) ◦ ΠXb
2 ◦ tΨb ◦ Π(Sb)2

2
)
∗

=
(
Ψb ◦ (Γιb + ΔXb

) ◦ ΠXb
2 ◦ tΨb

)
∗

=
(
Ψb ◦ (Γ0)|Xb×Xb

◦ tΨb

)
∗ : A2

hom((Sb)2) → A2
hom((Sb)2) ,
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where the second equality is thanks to the relation (12).

This ends the proof of Claim 4.6. The next step is the following:

Claim 4.8. For all b ∈ B, we have(
(Ψ ◦ Γ0 ◦ tΨ + ψ′)|(Sb)4

)
∗ = 0: A2

AJ(Sb × Sb) → A2
AJ(Sb × Sb) ,

where ψ′ is a sum of restrictions of cycles coming from larger varieties as in
Proposition 4.4.

Proof. This follows from Claim 4.6, provided we manage to convince ourselves
that

(13)
(
γ′|(Sb)4

)
∗ = 0: A4(Sb × Sb) → A4(Sb × Sb) ∀b ∈ B .

For general b ∈ B, (13) is clearly true: by construction, γ′ is supported on
D×B D, and for general b the fibre (Sb)4 will meet the divisor D in a divisor
Db ⊂ (Sb)2; since a 0–cycle on (Sb)2 can avoid the divisor Db, the restriction
(γ′)|(Sb)4 does not act on 0–cycles.

Now let b0 ∈ B be any given point. The Hilbert schemes argument (Propo-
sition 4.3) can be made relative to b0, to the effect that one obtains a divisor
D in general position with respect to the fibre (Sb0)4. As above, one then
obtains the vanishing (13) for the fibre over b0.

The next step is a further improvement on Claim 4.8:

Claim 4.9. For all b ∈ B, we have(
(Ψ ◦ Γ0 ◦ tΨ)|(Sb)4

)
∗ = 0: A2

AJ(Sb × Sb) → A2
AJ(Sb × Sb) .

Proof. This follows from Claim 4.8, provided we manage to convince ourselves
that

(14)
(
ψ|(Sb)4

)
∗ = 0: A2

AJ(Sb × Sb) → A2
AJ(Sb × Sb) ∀b ∈ B ,

where ψ ∈ A4(S4/B) is a cycle which is coming from larger varieties as in
Proposition 4.4.

For a given b ∈ B, let us write

ψb := ψ|(Sb)4 ∈ A4((Sb)4) ,
ψb,j := (ψj)|(Sb)4 ∈ A4((Sb)4) (j = 1, . . . , 6) ,
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where
ψb = ψb,1 + · · · + ψb,6 in A4((Sb)4) ,

and ψb,1 (resp. ψb,2, . . . , ψb,6) is the restriction of a cycle on P3 ×P3 ×Sb ×Sb

(resp. on P3 × Sb × P3 × Sb, . . ., resp. on Sb × Sb × P3 × P3).
Obviously,

(ψb,j)∗ = 0: A2
AJ(Sb × Sb) → A2

AJ(Sb × Sb) for j = 1, 6

(Indeed, the action of ψb,1 factors over A4
AJ(P3 × P3) = 0, and the action of

ψb,6 factors over A2
AJ(P3 × P3) = 0).

For the ψb,j with j = 2, . . . , 5, some more work is needed. We will treat
the case of ψb,2 in detail (the argument for the cases j = 3, 4, 5 is the same,
up to permutation of the factors). Since

A4(P3 × Sb × P3 × Sb) =
⊕

k+�+m=4
Ak(Sb × Sb) ⊗ A�(P3) ⊗ Am(P3) ,

we can write ψb,2 uniquely as a sum

(15) ψb,2 =
∑

k+�+m=4
(hb)� × ab,k,�,m × (hb)m in A4((Sb)4) ,

where hb ∈ A1(Sb) is an ample class with (hb)2 = 16 in H4(Sb), and ab,k,�,m ∈
Ak(Sb × Sb) is understood to be in the 2nd and 4th factor. (More precisely,
expression (15) should be taken to mean that

ψb,2 =
∑

k+�+m=4
(p1)∗(hb)� · (p3)∗(hb)m · (p24)∗(ab,k,�,m) in A4((Sb)4) ,

where the pi and p24 denote the obvious projections.)
Likewise, the other ψb,j decompose as sums in A4((Sb)4):

ψb,1 =
∑

k+�+m=4
(hb)� × (hb)m × a1

b,k,�,m ,

ψb,3 =
∑

k+�+m=4
(p23)∗(a3

b,k,�,m) · (p1)∗(hb)� · (p4)∗(hb)m ,

ψb,4 =
∑

k+�+m=4
(p14)∗(a4

b,k,�,m) · (p2)∗(hb)� · (p3)∗(hb)m ,

ψb,5 =
∑

k+�+m=4
(p13)∗(a5

b,k,�,m) · (p2)∗(hb)� · (p4)∗(hb)m ,

ψb,6 =
∑

k+�+m=4
a6
b,k,�,m × (hb)� × (hb)m ,

(16)
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where ajb,k,�,m ∈ Ak(Sb × Sb).

Lemma 4.10. Let ab,k,�,m ∈ Ak(Sb × Sb) be as in expression (15). We have

(ψb,2)∗ = ((hb)2 × ab,2,2,0 × (hb)0)∗ : A2
AJ(Sb × Sb) → A2

AJ(Sb × Sb) .

Proof. Suppose (�,m) 	= (2, 0). Thanks to Lieberman’s lemma, there is a
factorization

A3
AJ(P3 × Sb)

(h�×ab,k,�,m×hm)∗−−−−−−−−−−−→ A2
AJ(P3 × Sb)

↑ ↓
A2

AJ(Sb × Sb)
((hb)�×ab,k,�,m×(hb)m)∗−−−−−−−−−−−−−−→ A2

AJ(Sb × Sb)

(where h ∈ A1(P3) denotes an ample class restricting to hb ∈ A1(Sb)). But

A3
AJ(P3 × Sb) = A1(P3) ⊗ A2

AJ(Sb) ,

i.e. any c ∈ A3
AJ(P3 × Sb) can be written c = h × d with d ∈ A2

AJ(Sb). It
follows that

(h� × ab,k,�,m × hm)∗(c) = (h� × hm)∗(h) × (ab,k,�,m)∗(d) = 0 ∈ A2(P3 × Sb)
for � 	= 2

(since clearly (h� × hm)∗(h) = 0 in A∗(P3) for all � 	= 2). Suppose now � = 2,
and so (by hypothesis) m = 1 or 2. Then

(h2 × ab,k,2,m × hm)∗(c) ∈ Am(P3) ⊗ A2−m(Sb) ⊂ A2(P3 × Sb) .

But (h2 × ab,k,2,m × hm)∗(c) is also Abel–Jacobi trivial, and so

(h2 × ab,k,2,m × hm)∗(c) ∈
(
Am(P3) ⊗ A2−m(Sb)

)
∩ A2

AJ(P3 × Sb) = 0

in A2(P3 × Sb) .

Lemma 4.11. Let ab,k,�,m ∈ Ak(Sb × Sb) be as in expression (15). Then
ab,k,�,m ∈ H2k(Sb × Sb) is in the image of the natural map(

Ak(P3 × Sb) ⊕ Ak(Sb × P3)
)

→ Ak(Sb × Sb) → H2k(Sb × Sb) ,
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i.e. there exist αb,k,�,m,p ∈ Ap(Sb) and αb,k,�,m,p′ ∈ Ap(Sb) such that there is
equality of cycles modulo homological equivalence

ab,k,�,m =
k∑

p=0
αb,k,�,m,p× (hb)k−p +

k∑
p′=0

(hb)k−p′ ×αb,k,�,m,p′ in H2k(Sb×Sb) .

Proof. By construction, ψb ∈ A4((Sb)4) is homologically trivial:

ψb = ψb,1 + ψb,2 + · · · + ψb,6 = 0 in H8((Sb)4) .

In particular, intersecting and pushing forward we find a vanishing

(17) 1
16(p24)∗

(
ψb · (p1)∗(hb)2−� · (p3)∗(hb)2−m

)
= 0 in H4(Sb × Sb) .

On the other hand,

1
16(p24)∗

(
ψb · (p1)∗(hb)2−� · (p3)∗(hb)2−m

)
= ab,k,�,m+

1
16

∑
j �=2

(p24)∗
(
ψb,j · (p1)∗(hb)2−� · (p3)∗(hb)2−m

)
in A2(Sb × Sb) .

Combined with the vanishing (17), we obtain

ab,k,�,m = − 1
16

∑
j �=2

(p24)∗
(
ψb,j · (p1)∗(hb)2−� · (p3)∗(hb)2−m

)
in H4(Sb × Sb) .

But we have seen (expressions (16)) that the ψb,j for j 	= 2 contain an element
(hb)i in either the 2nd or 4th factor, and so this proves Lemma 4.11. More in
detail: let us consider j = 1. Using (16), we find

(p24)∗
(
ψb,1 · (p1)∗(hb)2−� · (p3)∗(hb)2−m

)
= (p24)∗

( ∑
k+�′+m′=4

(
(hb)�

′ × (hb)m
′ × a1

b,k,�′,m′
)
· (p1)∗(hb)2−�

· (p3)∗(hb)2−m
)

=
∑

k+�′+m′=4
(p24)∗

((
(hb)2−�+�′ × (hb)m

′ × a1
b,k,�′,m′

)
· (p3)∗(hb)2−m

)
=

∑
k+�′+m′=4

�′=�

(p24)∗
((

(hb)2 × [Sb] × a1
b,k,�,m′

)
· (p3)∗(hb)2−m
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· (p24)∗
(
(hb)m

′ × [Sb]
))

=
∑

k+�+m′=4
(p24)∗

(
(hb)2 × [Sb] × a1

b,k,�,m′
)
· (p3)∗(hb)2−m

)
·
(
(hb)m

′ × [Sb]
)

=
∑

k+�+m′=4
(p24)∗

(
(hb)2 × [Sb] × (something)

)
·
(
(hb)m

′ × [Sb]
)

=
∑

k+�+m′=4

(
[Sb] × (something)

)
·
(
(hb)m

′ × [Sb]
)

=
∑

k+�+m′=4
(hb)m

′ × (something) in A2(Sb × Sb) .

This shows that

(p24)∗
(
ψb,1 · (p1)∗(hb)2−� · (p3)∗(hb)2−m

)
can be written in the form of the right–hand–side of Lemma 4.11. The proof
for the other ψb,j is similar.

We now upgrade (a weak version of the k = 2 part of) the equality of
Lemma 4.11 to rational equivalence:

Lemma 4.12. Let ab,k,�,m ∈ Ak(Sb × Sb) be as in expression (15). Then
ab,2,�,m ∈ A2(Sb × Sb) can be written

ab,2,�,m = γb,2,�,m,0 + γb,2,�,m,1 + γb,2,�,m,2 in A2(Sb × Sb) ,

where γb,2,�,m,j is supported on Vb,2,�,m,j × Wb,2,�,m,j for j = 0, 1, 2, and
Vb,2,�,m,j ⊂ Sb is closed of codimension j and Wb,2,�,m,j ⊂ Sb is closed of
codimension 2 − j.

Proof. This is another application of the technique of “spread” developed in
[42], [43]. The application in this instance is easier than the above, for we only
need to reason on the fibre product S ×B S, and not on the fourfold relative
fibre product S4/B.

The first thing to do is to find a relative cycle inducing the ab,2,�,m for the
various b. This can be done as follows: let us define

a2,�,m := 1
16(p24)∗

(
ψ2 · (p1)∗(H2−�) · (p3)∗(H2−m)

)
∈ A2(S ×B S) .
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(Here H ∈ A1(S) denotes a relatively ample class with (H2)|Sb
= 16 in

H4(Sb), and pi, p24 denote the obvious projections.) The relative cycle a2,�,m
has the property that the restriction to a fibre is

a2,�,m|(Sb)2 = 1
16(p24)∗

(
ψb,2 · (p1)∗((hb)2−�) · (p3)∗((hb)2−m)

)
= ab,2,�,m ∈ A2(Sb × Sb) ∀b ∈ B ,

in view of expression (15).
The next thing to do is to find a fibrewise homological property of the

relative cycle. Lemma 4.11 implies (after regrouping of the summands) that
for each b ∈ B, there exist closed subvarieties Vb,2,�,m,j and Wb,2,�,m,j ⊂ Sb of
codimension j resp. 2 − j (j = 0, 1, 2), and cycles

γb,2,�,m,j ∈ A2(Vb,2,�,m,j ×Wb,2,�,m,j) ,

such that

a2,�,m|(Sb)2 = γb,2,�,m,0 + γb,2,�,m,1 + γb,2,�,m,2 in H4(Sb × Sb) .

Applying Proposition 4.13 below, these fibrewise cycles can be spread out to
the family: there exist subvarieties

V2,�,m,j ⊂ S , W2,�,m,j ⊂ S

of codimension j resp. 2 − j, and relative cycles

γ2,�,m,j ∈ A∗(V2,�,m,j ×B W2,�,m,j) (j = 0, 1, 2) ,

such that for each b ∈ B, there is a homological equivalence

a2,�,m|(Sb)2 =
(
γ2,�,m,0 + γ2,�,m,1 + γ2,�,m,2

)
|(Sb)2 in H4(Sb × Sb) .

In other words, the relative cycle

C0 := a2,�,m − γ2,�,m,0 + γ2,�,m,1 + γ2,�,m,2 ∈ A2(S ×B S)

has the property of being homologically trivial on every fibre:

(18) C0|Sb×Sb
= 0 in H4(Sb × Sb) , ∀ b ∈ B .
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Applying the Leray spectral sequence argument [42, Lemmas 3.11 and
3.12], up to shrinking the base B one can render C0 globally homologically
trivial, i.e.

C1 := C0 + θ = 0 in H4(S ×B S) ,

where θ ∈ A2(S ×B S) is the restriction of a cycle in A2(B × P3 × P3). But

A2
hom(S ×B S) = 0

([42, Proposition 3.13], combined with the fact that the Voisin standard con-
jecture [42, Conjecture 1.6] is true in codimension 2), and so C1 is rationally
trivial. In particular, restricting to a fibre one obtains

(19) (C0 + θ)|Sb×Sb
= 0 in A2(Sb × Sb) , ∀ b ∈ B .

The restriction θ|Sb×Sb
(coming from A2(P3 × P3)) is of the form

∑
j(hb)j ×

(hb)2−j . Thus (after modifying the Vb,2,�,m,j and Wb,2,�,m,j), we find that

C0|Sb×Sb
=

(
a2,�,m − γ2,�,m,0 − γ2,�,m,1 − γ2,�,m,2

)
|Sb×Sb

= 0 in A2(Sb × Sb) ,

∀b ∈ B ,

proving Lemma 4.12 for the smaller base B. To extend to the original B, one
invokes [45, Lemma 3.2].

(Alternatively, using the approach of [43], one could forsake the Leray
spectral sequence argument in the above proof, and skip directly from equality
(18) to equality (19) by invoking [43, Proposition 1.6].)

Proposition 4.13. Let X → B be a smooth projective morphism of relative
dimension n, and let Γ ∈ An(X ×B X ). Assume that for the very general
b ∈ B, there exist closed subvarieties Vb,j ⊂ Xb, Wb,j ⊂ Xb of codimension j
resp. n− j, and cycles γb,j ∈ An(Vb,j ×Wb,j) such that

Γ|Xb×Xb
= γb,0 + · · · + γb,n in H2n(Xb ×Xb) .

Then there exist closed subvarieties Vj ⊂ X , Wj ⊂ X of codimension j resp.
n− j, and cycles γj ∈ A∗(Vj ×B Wj), such that

Γ|Xb×Xb
=

(
γ0 + · · · + γn

)
|Xb×Xb

in H2n(Xb ×Xb) ,

for all b ∈ B.
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Proof. This is the same Hilbert schemes argument as [42, Proposition 3.7]
(i.e., Proposition 4.3 above). The point is that the data of all the Vb,j ,Wb,j , γb,j
can be encoded by a countably infinite set of varieties. Since by assump-
tion, this countably infinite set dominates B, one of the varieties must dom-
inate B.

We are now in position to wrap up the proof of Claim 4.9. We have

(ψb,2)∗ = ((hb)2 × ab,2,2,0 × [Sb])∗

=
(
(hb)2 ×

( 2∑
j=0

γb,2,2,0,j
)
× [Sb]

)
∗

(∗)= 0 : A2
AJ((Sb)2) → A2

AJ((Sb)2) .

Here, the first equality is Lemma 4.10, and the second equality is
Lemma 4.12. As for the equality labelled (∗), this is true for dimension rea-
sons: indeed, there is a factorization

A2
AJ((hb)2 × ˜Vb,2,�,m,j) → Aj

AJ(W̃b,2,�,m,j × Sb)
↑ ↓

A2
AJ(Sb × Sb)

((hb)2×γb,2,2,0,j×[Sb])∗−−−−−−−−−−−−−→ A2
AJ(Sb × Sb) .

(Here the Ṽ and W̃ denote resolutions of singularities.) The upper–right cor-
ner Aj

AJ() is 0 unless j = 2. However, for j = 2 the dimension of (hb)2 ×
˜Vb,2,�,m,j is 0 and so in this case the upper–left corner is 0. This proves equal-

ity (∗) for general b ∈ B. For any given b0 ∈ B, the cycles γ2,2,0,j can be
moved in general position with respect to the fibre Sb0 × Sb0 , and then the
above argument applies to prove (∗) for Sb0 .

We have now proven that the correspondence ψb,2 does not act on
A2

AJ((Sb)2) for all b ∈ B. The same argument also proves that the corre-
spondences ψb,j , j = 3, 4, 5 do not act on A2

AJ((Sb)2) (the argument is only
notationally different), and so

(ψb)∗ = 0: A2
AJ((Sb)2) → A2

AJ((Sb)2) ∀b ∈ B .

This proves equality (14), and hence also Claim 4.9.

The last step is to return from the product Sb×Sb to the Hilbert scheme
Xb:
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Claim 4.14. For all b ∈ B, we have(
(Γ0)|Xb×Xb

)
)∗ = 0: A2

AJ(Xb) → A2(Xb) .

Proof. This is immediate from Claim 4.9, since

(tΨb)∗(Ψb)∗ = id: A2
AJ(Xb) → A2

AJ(Xb) .

By definition of Γ0, Claim 4.14 implies that

(Γιb + ΔXb
)∗(ΠXb

2 )∗ = 0: A2
AJ(Xb) → A2(Xb) ∀b ∈ B .

But ΠXb
2 is a projector on A2

(2)(Xb) ⊂ A2
AJ(Xb) and so

(Γιb + ΔXb
)∗ = 0: A2

(2)(Xb) → A2(Xb) ∀b ∈ B ,

which concludes the proof of Theorem 4.2.

4.2. Action on A4

In this subsection, we finish the proof of our main result (Theorem 4.1), by
checking that the involution ι has the expected action on A4:

Theorem 4.15. Let X and ι be as in Theorem 4.1. Then

ι∗ : A4
(j)(X) → A4(X) =

{
id if j = 0, 4 ;
− id if j = 2 .

Proof. The case j = 0 is easy: there is a ι–invariant ample divisor D (Propo-
sition 2.22). As D is ample, the intersection D4 is non–zero and so (since
D4 ∈ A4

(0)(X), and A4
(0)(X) is one–dimensional)

A4
(0)(X) = Q[D4]

is ι–invariant.
Next, let us consider the case j = 4. As we have seen (Theorem 2.17),

Shen–Vial have proven the multiplication map

A2
(2)(X) ⊗ A2

(2)(X) → A4
(4)(X)
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is surjective. Given b ∈ A4
(4)(X), we can thus write

b = a1
1 · a1

2 + · · · + ar1 · ar2 in A4(X) ,

where ak1, a
k
2 ∈ A2

(2)(X). But then, using Theorem 4.2 we find

ι∗(b) =
r∑

k=1
ι∗(ak1) · ι∗(ak2) =

r∑
k=1

(−ak1) · (−ak2) =
r∑

k=1
ak1 · ak2 = b in A4(X) .

It remains to prove Theorem 4.15 for j = 2. As we have seen (Theo-
rem 2.17), Shen–Vial have established an isomorphism

(20) · l : A2
(2)(X)

∼=−→ A4
(2)(X) .

Theorem 4.15 now follows, provided we understand the action of ι on the
class l ∈ A2(X). To this end, we will prove the following:

Proposition 4.16. Let X and ι be as in Theorem 4.1. Let l ∈ A2
(0)(X) be

the class as in Theorem 2.17. Then

ι∗(l) = ±l in A2(X) .

Proposition 4.16 suffices to prove Theorem 4.1. Indeed, let us suppose for
a moment that

ι∗(l) = −l in A2(X) .

Using the isomorphism (20) and Theorem 4.2, this would imply

ι∗ = id: A4
(2)(X) → A4(X) .

Since ι acts as the identity on A4
(j)(X) for j = 0, 4, this would imply

ι∗ = id: A4(X) → A4(X) .

Using the Bloch–Srinivas argument [8] applied to Γι −ΔX , this would imply
that

Γι − ΔX = γ in A4(X ×X) ,

where γ is a cycle supported on X × D for D ⊂ X a divisor. In particular,
this would imply

ι∗ = id: H2,0(X) → H2,0(X) ,
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which is absurd since we know that ι is non–symplectic. The minus sign in
Proposition 4.16 can thus be excluded; assuming Proposition 4.16 is true, we
must have ι∗(l) = l.

Now let c ∈ A4
(2)(X). Using the isomorphism (20), we can find a ∈ A2

(2)(X)
such that

c = l · a in A4(X) .

But then

ι∗(c) = ι∗(l) · ι∗(a) = l · (−a) = −l · a = −c in A4(X) .

Here, the second equality comes from Proposition 4.16 and Theorem 4.2. This
proves Theorem 4.1, assuming Proposition 4.16.

We now proceed with the proof of Proposition 4.16. The first step is to
prove the statement in homology:

Lemma 4.17. Let S be any K3 surface and let X = S[2]. Let l ∈ A2(X) be
the class of Theorem 2.17, and let ι ∈ Aut(X) be an involution. We have

ι∗(l) = ±l in H4(X) .

Proof. Shen and Vial have constructed a distinguished cycle L ∈ A2(X ×X)
(whose cohomology class is the Beauville–Bogomolov class denoted B in loc.
cit.), and an eigenspace decomposition

(21) A2(X) = Λ2
25 ⊕ Λ2

2 ⊕ Λ2
0 ,

where
Λi
λ := {a ∈ Ai(X) | (L2)∗(a) = λa} ,

and
Λ2

25 = Q[l]

(This is [35, Theorem 14.5, Propositions 14.6 and 14.8], combined with [35,
Theorem 2.2]).

We now observe the following commutativity relation in cohomology:

Lemma 4.18. Set–up as in Lemma 4.17. Then

(L2)∗ι∗ = ι∗(L2)∗ : H i(X) → H i(X) .
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Proof. Let L ∈ A2(X × X) be the Shen–Vial cycle as above. As proven in
[35, Proposition 1.3(i)], the Shen–Vial cycle satisfies a quadratic relation

(22) L2 = 2ΔX − 2
25(l1 + l2)L− 1

23 · 25(2l21 − 23l1l2 + 2l22) in H8(X ×X) ,

where l := (iΔ)∗(L) (and iΔ : X → X × X is the diagonal embedding) and
li := (pi)∗(l) (and pi are the obvious projections).

Let us define a modified cycle

L′ := Γι ◦ L ◦ Γι ∈ A2(X ×X) .

Using Lieberman’s lemma [37, Lemma 3.3] plus the fact that tΓι = Γι, we see
that

L′ = (ι× ι)∗(L) in A2(X ×X) .
Define also l′ := (iΔ)∗(L′) ∈ A2(X) and l′i := (pi)∗(l′) ∈ A2(X ×X), i = 1, 2.
Since the diagram

X ×X
pi−→ X

iΔ−→ X ×X
↓ ι× ι ↓ ι ↓ ι× ι

X ×X
pi−→ X

iΔ−→ X ×X

commutes, we have the relations

(23) l′i = (ι× ι)∗(li) in A2(X ×X) , i = 1, 2 .

Let us apply (ι× ι)∗ to the quadratic relation (22). The result is a relation

(ι× ι)∗(L2) = 2ΔX − 2
25(ι× ι)∗(l1 + l2)L′(24)

− 1
23 · 25(ι× ι)∗(2l21 − 23l1l2 + 2l22) in H8(X ×X) .

But

(25) (ι× ι)∗(L2) =
(
(ι× ι)∗L

)2 = (L′)2 in A4(X ×X) .

Plugging this in equality (24), and also using the relations (23), we find that
the cycle L′ satisfies a quadratic relation

(26)
(L′)2 = 2ΔX− 2

25(l′1 + l′2)L′− 1
23 · 25(2(l′1)2−23l′1l′2 +2(l′2)2) in H8(X×X) .
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But then, applying the unicity result [35, Proposition 1.3 (v)], we find
there is equality

L′ = ±L in H4(X ×X) .

In particular, there is equality

(L′)2 = L2 in H8(X ×X) .

In view of equality (25), this means

Γι ◦ (L2) ◦ Γι = L2 in H8(X ×X) ,

and so (by composing with Γι)

Γι ◦ (L2) = (L2) ◦ Γι in H4(X ×X) .

This proves Lemma 4.18.

The eigenspace decomposition (21) induces an eigenspace decomposition
modulo homological equivalence:

Im
(
A2(X) → H4(X)

)
= Λ2

25 + Λ2
2

A2
(0)(X) ∩ A2

hom(X)

(this is the algebraic part of the eigenspace decomposition of H4(X) given in
[35, Proposition 1.3(iii)]).

Lemma (4.18) implies ι preserves this eigenspace decomposition modulo
homological equivalence. In particular, ι∗Λ2

25 ⊂ Λ2
25 (modulo homologically

trivial cycles), and so
ι∗(l) = dl in H4(X) ,

for some d ∈ Q. Since A4
(0)(X) = Q[l2] [35, Theorem 4.6], we have

ι∗(l2) = l2 in H8(X) ,

and so d = ±1. This proves Lemma 4.17.

The next step (in proving Proposition 4.16) is to upgrade to rational
equivalence. Here, we use again the method of “spread” developed in [42],
[43]. As in the proof of Theorem 4.2, let S → B resp. X → B denote the
family of all smooth quartics Sb ⊂ P3 with Picard number 1, resp. of all
Hilbert schemes Xb = (Sb)[2]. We note that there exists a relative cycle

L ∈ A2(X )
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such that restriction

(27) L|Xb
= lb ∈ A2(Xb) ∀b ∈ B

is the distinguished class (denoted l in Theorem 2.17) for the fibre Xb. Indeed,
one defines L as

L := 5
6c2(TX/B) ∈ A2(X ) ,

where TX/B is the relative tangent bundle of the smooth morphism X → B.
Since for any b ∈ B there is a relation

lb = 5
6c2(Xb) in A2(Xb)

[35, Equation (93)], this implies (27).
The relative cycle

Γ0 := L ± Γι ◦ L ∈ A2(X )

is such that the restriction to each fibre is homologically trivial:

(Γ0)|Xb
= 0 in H4(Xb) .

(Here, “±” is taken to mean + (resp. −) if Lemma 4.17 is true with a + (resp.
a −).) Thus, the relative cycle

Γ1 := Ψ∗(Γ0) ∈ A2(S ×B S)

also is homologically trivial on each fibre. (Here, Ψ is the relative correspon-
dence from X to S ×B S as in the proof of Theorem 4.2.)

Applying [42, Lemma 3.12], up to shrinking B we can make Γ1 globally
homologically trivial. That is, there exists

ψ ∈ Im
(
A2(B × P3 × P3) → A2(S ×B S)

)
such that (after replacing B by a non–empty open subset B′ ⊂ B)

Γ2 := Γ1 + ψ ∈ A2(S ×B′ S)

is actually in A2
hom(S ×B′ S).
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But A2
hom(S×B′S) = 0 (this follows from [42, Proposition 3.13], combined

with the fact that the “Voisin standard conjecture” [42, Conjecture 1.6] is
known to hold in codimension 2), and so

Γ2 = 0 ∈ A2(S ×B′ S) .

Restricting to a fibre, we find

(Γ1)|Sb×Sb
+ ψ|Sb×Sb

= 0 in A2(Sb × Sb) ∀b ∈ B′ .

As Γ1 is fibrewise homologically trivial, the same goes for ψ:

(28) ψ|Sb×Sb
= 0 in H4(Sb × Sb) ∀b ∈ B′ .

But A2(P3 × P3) = ⊕iA
i(P3) ⊗ A2−i(P3) and so

ψ|Sb×Sb
= λ0[Sb] ×H2

b + λ1Hb ×Hb + λ2H
2
b × [Sb] in A2(Sb × Sb) ,

where λi ∈ Q and Hb ∈ A1(Sb) is an ample class on Sb. It follows from the
vanishing (28) that the λi must be 0, and so ψ|Sb×Sb

is rationally trivial, and
hence also

(Γ1)|Sb×Sb
= 0 in A2(Sb × Sb) .

Composing with tΨb, it follows that also

(tΨb)∗
(
(Γ1)|Sb×Sb

)
= (tΨb)∗(Ψb)∗

(
(Γ0)|Xb

)
= 0 in A2(Xb) ∀b ∈ B′ .

On the other hand, as we have seen above (Γ0)|Xb
∈ A2

hom(Xb) and (tΨb)∗(Ψb)∗
is the identity on A2

hom(Xb). It follows that

(Γ0)|Xb
=

(
lb ± (ιb)∗(lb)

)
|Xb

= 0 in A2(Xb) ∀b ∈ B′ .

This proves Proposition 4.16 for general b ∈ B. To extend to all b ∈ B,
one can invoke [45, Lemma 3.2]. Proposition 4.16 and Theorem 4.15 are now
proven.

For later use, we remark that the above argument also proves the following
statement:

Corollary 4.19. Let X and ι be as in Theorem 4.1. Then

ι∗A2
(0)(X) ⊂ A2

(0)(X) .
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Proof. Let b ∈ A2
(0)(X), and suppose

ι∗(b) = c0 + c2 in A2(X) ,

with c0 ∈ A2
(0)(X) and c2 ∈ A2

(2)(X).
Let l ∈ A2

(0)(X) be the distinguished class of Theorem 2.17. The 0–cycle
b · l is in A4

(0)(X), and so

ι∗(b · l) = b · l in A4
(0)(X)

On the other hand, we have

ι∗(b · l) = ι∗(b) · ι∗(l) = (c0 + c2) · l = c0 · l + c2 · l in A4(X) .

(Here we have used Proposition 4.16, which we have seen must be true with
a + sign.) Since c0 · l ∈ A4

(0)(X) and c2 · l ∈ A4
(2)(X), we must have

c0 · l = b · l in A4
(0)(X) , c2 · l = 0 in A4

(2)(X) .

Using the injectivity part of Theorem 2.17, this implies that c2 = 0.

Remark 4.20. Another way of proving the j = 2 case of Theorem 4.15 could
be as follows: define a relative correspondence

Γ′
0 := ΠX

6 ◦ (Γι + ΔX ) ∈ A4(X ×B X ) ,

and go through the proof of Theorem 4.2 with Γ′
0 instead of Γ0.

Remark 4.21. Can one prove the commutativity of Lemma 4.18 also modulo
rational equivalence, i.e. can one prove

(29) (L2)∗ι∗
??= ι∗(L2)∗ : Ai(X) → Ai(X) ?

This would imply that ι respects the eigenspace decomposition Λi
λ of [35] (and

in particular, that ι respects the bigraded ring structure A∗
(∗)(X)).

The proof of Lemma 4.18 given above does not extend to rational equiv-
alence, for the following reason: The quadratic relation (22) still holds mod-
ulo rational equivalence [35, Theorem 14.5], and so L′ satisfies the quadratic
relation (26) modulo rational equivalence. However, the unicity result ([35,
Proposition 1.3(v)]), that allowed us to conclude from this that L = ±L′, is
only known modulo homological equivalence.

(This unicity result modulo rational equivalence is conjecturally true, and
would follow from the Bloch–Beilinson conjectures [35, Proposition 3.4].)
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5. Complements

This section contains some corollaries and extensions of the main result.

Corollary 5.1. Let S ⊂ P3 be any smooth quartic. Let X = S[2], and let

ι : X ��� X

be the rational map defined in [1] (cf. Remark 2.24). Let X ′ be a hyperkähler
fourfold birational to X, and let

ι′ : X ′ ��� X ′

be the rational map induced by ι. Then

(ι′)∗ = − id : Ai
(2)(X ′) → Ai

(2)(X ′) for i = 2, 4 ;
(ι′)∗ = id: A4

(j)(X ′) → A4
(j)(X ′) for j = 0, 4 .

Proof. First, we note that X ′ has an MCK decomposition ([35] or Lemma 2.8
above), so the notation A∗

(∗)(X ′) makes sense. Since X and X ′ have isomorphic
Chow rings [33], it suffices to prove the statement for X. Let

S → Bρ , X → Bρ

denote the families of all smooth quartics Sb ⊂ P3, resp. of all Hilbert schemes
Xb = (Sb)[2]. Note that there is an inclusion

Bρ ⊃ B ,

where B is as before (parametrizing smooth quartics of Picard number 1),
and the complement Bρ \ B is the union of countably many closed proper
subsets (i.e., a very general point of Bρ is in B). Let Γ̄ι ∈ A4(X ×Bρ X )
denote the closure of the graph of the rational map

ι : X ��� X .

One can define relative correspondences Γ0, . . . ,Γ5 for this larger family just
as in the proof of Theorem 4.2. Since the restriction of Γ5 to the fibre over
a very general point of Bρ is rationally trivial, it follows (using [45, Lemma
3.2]) the same is true over every point of Bρ, i.e.

Γ5|(Sb)4 = 0 in A4((Sb)4) ∀ b ∈ Bρ .



682 Robert Laterveer

Just as in the proof of Theorem 4.2, one deduces from this that

(ιb)∗ = − id : A2
(2)(Xb) → A2

(2)(Xb) ∀ b ∈ Bρ .

To prove the result for A4, one extends (again using [45, Lemma 3.2])
Proposition 4.16 to all of Bρ, i.e.

(ιb)∗(lb) = lb in A2
(0)(Xb) ∀ b ∈ Bρ .

Then, just as in the proof of Theorem 4.15, using the Shen–Vial isomorphism
(Theorem 2.17), one finds that any a ∈ A4

(2)(Xb) can be written as a = lb · d
with d ∈ A2

(2)(Xb), and thus

(ιb)∗(a) = (ιb)∗(lb · d) !!= (ιb)∗(lb) · (ιb)∗(d) = −lb · d in A4
(2)(Xb) ∀ b ∈ Bρ .

(NB: On the boundary b ∈ Bρ \ B, ιb is not a morphism but only a rational
map. Yet, the equality labelled “!!” is still valid since d ∈ A2

AJ(Xb); this is
thanks to [35, Proposition B.6].)

Similarly, any a ∈ A4
(4)(Xb) can be written as a = d1·d2 with di ∈ A2

(2)(Xb)
(Theorem 2.17(i)). Again using [35, Proposition B.6], we find

(ιb)∗(a) = (ιb)∗(d1 ·d2) = (ιb)∗(d1) · (ιb)∗(d2) = d1 ·d2 in A4
(4)(Xb) ∀ b ∈ Bρ .

The case A4
(0) is easy: A4

(0)(Xb) is generated by (lb)2. Letting L ∈ A2(X )
be the relative cycle restricting to the distinguished class lb ∈ A2(Xb) on each
fibre (as in the proof of Theorem 4.15), we know from Theorem 4.15 that

L2 − ι∗(L2) ∈ A4(X )

is rationally trivial on a very general fibre b ∈ Bρ. Invoking [45, Lemma 3.2],
this implies L2 − ι∗(L2) must be rationally trivial on every fibre, i.e.

(lb)2 − (ιb)∗
(
(lb)2

)
= 0 in A4(Xb) ∀ b ∈ Bρ .

Corollary 5.2. Let X = S[2], where S ⊂ P3 is a quartic of Picard number 2
and not containing lines, as in [32, Section 4 Example 2]. Let g� ∈ Aut(X)
be the non–natural automorphism constructed in [32, Lemma 4.6]. Then

(g�)∗ = id: A4(X) → A4(X) ,

(g�)∗ = id: A2
hom(X) → A2

hom(X) .
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Proof. The automorphism g� is defined as

g� := (ι1 ◦ ι2)� ∈ Aut(X) ,

where ι1, ι2 are Beauville involutions corresponding to two different embed-
dings of S in P3. It follows from Corollary 5.1 that

(ι1 ◦ ι2)∗ = id: A4(X) → A4(X) ,

hence in particular g� acts as the identity on A4(X).
The second assertion follows from the first by a Bloch–Srinivas argument

[8].

Let X and ι be as in Theorem 4.1. As noted in the introduction, we are
not able to prove the expected equality

ι∗(a) ??= −a for all a ∈ A2
hom(X) .

This is because of the nuisance (already noted in [35]) of having the subgroup
A2

(0)(X) ∩ A2
hom(X) which is conjecturally, but not provably, zero. As shown

in the following corollary, at least this nuisance disappears when intersecting
with a divisor:

Corollary 5.3. Let X and ι be as in Theorem 4.1. Let a ∈ A2
hom(X) and

D ∈ A1(X). Then

ι∗(a ·D) = −a · ι∗(D) in A3(X) .

Proof. As shown by Shen–Vial [35, page 7],

Im
(
A2

(0)(X) ∩ A2
hom(X) ·D−→ A3(X)

)
= 0 .

The result now follows from Theorem 4.1.

The quotient of X under the anti–symplectic involution ι is a “singular
Calabi–Yau variety” (cf. Remark 2.26 for an interpretation of this quotient as
triple cover of a quadric). Since it is a quotient variety, the Chow groups with
Q–coefficients form a ring. The following result is about this ring structure:

Corollary 5.4. Let X and ι be as in Theorem 4.1, and let Y := X/ι be the
quotient. For any r ∈ N, let

E∗(Y r) ⊂ A∗(Y r)
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be the subring generated by (pullbacks of) A1(Y ) and A2(Y ). The cycle class
map

Ek(Y r) → H2k(Y r)

is injective for k ≥ 4r − 1.

Proof. The point is that X, and hence also Xr, has an MCK decomposition
[35]. Let p : X → Y denote the quotient morphism.

Lemma 5.5. We have

p∗A2(Y ) ⊂ A2
(0)(X) .

Proof. Clearly,
p∗A2(Y ) ⊂ A2(X)ι .

Given b ∈ A2(Y ), let us write

p∗(b) = c0 + c2 ∈ A2
(0)(X) ⊕ A2

(2)(X) .

Applying ι, we find

ι∗p∗(b) = c0 + c2 ∈ A2
(0)(X) ⊕ A2

(2)(X) .

On the other hand,

ι∗p∗(b) = ι∗(c0) + ι∗(c2) = ι∗(c0) − c2 ∈ A2
(0)(X) ⊕ A2

(2)(X)

(where we have used Corollary 4.19 to obtain that ι∗(c0) ∈ A2
(0)(X), and

Theorem 4.2 to obtain that ι∗(c2) = −c2). Comparing these two expressions,
we find

ι∗(c0) = c0 in A2
(0)(X) , −c2 = c2 in A2

(2)(X) ,

proving Lemma 5.5.

Lemma 5.5, combined with the obvious fact that A1(X) = A1
(0)(X), im-

plies that
(pr)∗E∗(Y r) ⊂ A∗

(0)(Xr) .

Since there is a commutative diagram

Ak
(0)(Xr) → H2k(Xr)
↑ (pr)∗ ↑ (pr)∗

Ek(Y r) → H2k(Y r) ,
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and the cycle class map

Ak
(0)(Xr) → H2k(Xr)

is known to be injective for k ≥ 4r − 1 ([39, Introduction]; this follows for
instance from [38, Section 4.3]), this establishes Corollary 5.4.

We single out a particular case of Corollary 5.4:

Corollary 5.6. Let X and ι be as in Theorem 4.1, and let Y := X/ι be the
quotient. The subspaces

Im
(
A2(Y ) ⊗ A1(Y ) → A3(Y )

)
,

Im
(
A2(Y ) ⊗ A2(Y ) → A4(Y )

)
are of dimension 1.

Proof. This follows from Corollary 5.4, combined with the fact that

N3(Y ) := Im
(
A3(Y ) → H6(Y )

)
is of dimension 1. To see this, since the pairing

NS(X)ι ⊗N3(X)ι → N4(X)ι ∼= Q

is non–degenerate, it suffices to prove that

dimNS(Y ) = dimNS(X)ι = 1 .

But ι acts on NS(X) as reflection in the span of D (Proposition 2.22), and
so NS(X)ι = Q[D] is of dimension 1.

Remark 5.7. It is instructive to compare Corollary 5.6 with known results
concerning the Chow ring of K3 surfaces and of Calabi–Yau varieties. For
any K3 surface S, it is known that

dim Im
(
A1(S) ⊗ A1(S) → A2(S)

)
= 1

[5]. For a generic Calabi–Yau complete intersection X of dimension n, it is
known that

dim Im
(
Ai(X) ⊗ An−i(X) → An(X)

)
= 1 , ∀0 < i < n
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[40], [14].
The new part of Corollary 5.6, with respect to these results, is the part

about
Im

(
A2(X) ⊗ A1(X) → A3(X)

)
.

We also get the following corollary, providing an alternative description
of the Fourier decomposition on A4(X):

Corollary 5.8. Let X and ι be as in Theorem 4.1, and let p : X → Y := X/ι
be the quotient morphism. Then

A4
(4)(X) = p∗A4

hom(Y ) ,

A4
(2)(X) = ker

(
A4(X) p∗−→ A4(Y )

)
.

Proof. Theorem 4.1 implies that

A4
(4)(X) = A4(X)ι ∩ A4

hom(X)

(which proves the first statement of the corollary), and also that

A4(X) = A4(X)ι ⊕ A4
(2)(X)

(which proves the second statement of the corollary).

Remark 5.9. Let X and Y be as in Corollary 5.8. It seems likely that also

A2
(2)(X) ??= ker

(
A2(X) p∗−→ A2(Y )

)
.

To prove this, it remains to establish that ι acts as the identity on A2
(0)(X)∩

A2
hom(X) (which is conjecturally 0).

6. Open questions

Question 6.1. Let X and ι be as in Theorem 4.1. Can one say anything
about the action of ι on A3(X)? This seems more difficult than Theorem 4.1.
Indeed, the action of ι on A2

hom and on A4 is determined by “behaviour up
to codimension 1 phenomena”. The action of ι on A3

(2), on the other hand,
should be determined by the action of ι on H3,1(X), which is not as neat as
the action on H2,0(X) and H4,0(X). I am not even sure what the conjectural
statement should be.
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Question 6.2. Let X and ι be as in Theorem 4.1. Does the quotient Y = X/ι
have a (self–dual) MCK decomposition? I have not been able to prove this
(essentially, this reduces to the problem of showing that ι is of pure grade 0,
in the sense of [36, Definition 1.1]).

Question 6.3. As we have seen (Theorem 2.21), other cases where a non–
symplectic, non–natural involution exists on S[2] is when S is a generic K3
surface of degree d = 20, 26, 34, ... (i.e., of genus g = 11, 14, 18, . . .). It would
be interesting to prove Bloch’s conjecture for these cases as well.

For the case d = 34 (i.e., g = 18), Mukai [24] has given a nice description
of S in terms of sections of a vector bundle on an orthogonal Grassmannian,
so there is at least some hope that the method of spread à la Voisin can be
employed in this case as well. Let S → B be the family of all smooth dimension
2 sections of this vector bundle. One major difficulty is in proving a version
of Theorem 4.5 for the fourfold relative fibre product of this family S → B,
i.e. one would need to prove

A2
hom(S4/B) = 0 .

Is this feasible?

Question 6.4. Let S be a generic K3 surface of degree d = 10 (i.e., of genus
g = 6). The Hilbert scheme X = S[2] has no non–trivial automorphisms
(Theorem 2.21), but there is a non–symplectic rational involution

ι : X ��� X ,

constructed by O’Grady [28, Section 4.3]. Can one prove the statement of
Theorem 4.1 in this set–up? Work of Mukai [23] realizes these K3 surfaces as
complete intersections in a certain Grassmannian. Again, the main difficulty
seems to consist in proving that

A2
hom(S4/B) = 0

for this family. Is this feasible?

Question 6.5. It would also be interesting to extend Theorem 4.1 to higher
dimensional Hilbert schemes S[r], r > 2. Let S ⊂ Pr+1 be a K3 surface of
degree 2r. The Hilbert scheme S[r] has an MCK decomposition [39], and so
there is a bigraded ring structure A∗

(∗)(S[r]). As noted by Beauville [1], there
is a non–trivial rational involution

ι : S[r] ��� S[r] .
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Can one prove something about the action of ι on A∗
(∗)(S[r])? Supposing one

wants to follow the approach of the present article, the main difficulty consists
in proving that

A2
hom(S2r/B) = 0

(or even Griff 2(S2r/B) = 0), where S → B is the family of all smooth K3
surfaces of degree 2r in Pr+1.
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