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Vanishing theorems for (k, s)-positive vector bundles on
weakly pseudoconvex Kähler manifolds

Kai Tang

Abstract: We will use analytic methods in this paper, based on
L2-methods for the ∂-equation, to obtain some new vanishing the-
orems for holomorphic vector bundles of (k, s)-positivity on weakly
pseudoconvex Kähler manifolds which generalize those obtained by
Demailly for s-positive vector bundles in his sense.
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1. Introduction

The subject of cohomology vanishing theorems for holomorphic vector bundles
on complex manifolds occupies a role of central importance in several complex
variables and algebraic geometry. The theory formally began in 1953 with the
Kodaira vanishing theorem, and its roots can be traced back to Riemann and
Roch for the case of curves and to Picard for surfaces.

In this paper, we will investigate vanishing theorems from the view-
point of complex differential geometry. Similarly, there are many excellent
researches on vanishing theorems in recent years, such as articles [14] by Liu-
Sun-Yang and [15] by Liu-Yang. Our original motivation was to understand
the Demailly s-positivity (see [6]), which is equivalent to the Griffiths posi-
tivity when s = 1 and to the Nakano positivity when s attains its maximum.
The Demailly s-positivity is a concept which is difficult to understand and
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to check. In [1], Yang introduce the notion of (k, s)-positivity from the view-
point of the theory of Hermitian forms in linear algebra. When k = 0, it is
equivalent to Demailly’s s-positivity; if s = 1 and in the case of line bundle,
it is just k-positivity used implicitly by Gigante and Girbau in [7, 8].

We will use the analytic methods, based on the theory of harmonic in-
tegrals or the L2-method for the ∂-equation, to study vanishing theorems
for holomorphic vector bundles of (k, s)-positivity on weakly pseudoconvex
Kähler manifolds.

The main result in this paper is the following Theorem 1.1,
Theorem 1.1. Let (X,ω) be a weakly pseudoconvex Kähler manifold of di-
mension n and E a hermitian holomorphic vector bundle of rank r on X such
that E >(k,s) 0. Then

Hn,q(X,E) = 0
for any q > k and s ≥ min{n− q + 1, r}.

If k = 0, the above theorem was firstly proved by Demailly in [2]. In
addition, when Kähler manifold is compact, the result was proved by Yang
in [1].

The following results follow immediately from Theorem 1.1:
Corollary 1.2. Let (X,ω) be a compact Kähler manifold of dimension n and
E a hermitian holomorphic vector bundle of rank r on X such that E >(k,s) 0.
Then for any nef line bundle F on X, we have

Hn,q(X,E ⊗ F ) = 0

for any q > k and s ≥ min{n− q + 1, r}.
As applications of Theorem 1.1, we get the following results.

Theorem 1.3. Let E be a Griffiths k-positive Hermitian holomorphic vector
bundle of rank r ≥ 2 on a weakly pseudoconvex Kähler manifold of dimen-
sion n. Then for any integer s ≥ 1, we have:

(1) Hq(X,KX ⊗ E ⊗ detE) = 0 for q > k;
(2) Hq(X,KX ⊗E∗ ⊗ (detE)s) = 0 for q > k and s ≥ min{n− q + 1, r}.
When k = 0, the above theorem covers the following corollary which was

proved by Demailly:
Corollary 1.4 ([2], 346). Let X be a compact n-dimensional complex mani-
fold, E a vector bundle of rank r ≥ 2 and m ≥ 1 an integer. Then

(a) E >Grif 0 ⇒ Hq(X,KX ⊗ E ⊗ detE) = 0 for q ≥ 1;
(b) E >Grif 0 ⇒ Hq(X,KX ⊗ E∗ ⊗ (detE)m) = 0 for q ≥ 1 and m ≥

min{n− q + 1, r}.
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2. Preliminaries

In this section we will collect some fundamental material.
Let X be a complex manifolds of dimension n and E a holomorphic vector

bundle of rank r over X. Now suppose that X is equipped with a Hermitian
metric g, and E is any complex vector bundle with a Hermitian metric h and a
Hermitian connection D, which splits in a unique way as a sum of a (1,0)- and
(0,1)-connection: D = D

′ +D
′′ . If E is a holomorphic vector bundle, there is a

unique Hermitian connection, called the Chern connection such that D′′ = ∂
and hence D′2 = D

′′2 = 0. Thus the curvature form Θh(E) = D
′
D

′′ +D
′′
D

′ is
an End(E)-valued(1,1)-form and iΘh(E) is called the Chern curvature form
of E. Let {zj} be the local holomorphic coordinate of X, {eα} an orthonormal
frame and {eα} the dual orthonormal frame of E. Let (gjk) and(hαβ) be the
Hermitian metrics on X and on E respectively, and their inverses denoted
respectively by (gij) and (hαβ). Then we can write the Kähler form and the
curvature form respectively as

(2.1) ω = igjkdz
j ∧ dzk, iΘh(E) = Rα

βjk
dzj ∧ dzk ⊗ eα ⊗ eβ ,

where

(2.2) Rα
βjk

= −hαγ∂j∂khβγ + hαγhλμ∂jhβμ∂khλγ .

For u = uα
J,K

dzJ ∧ dzK ⊗ eα ∈ Ωp,q
X (E), we have the following formula:

〈[iΘh(E),Λ]u, u〉ω = 1
(p− 1)!q!Rαβjkg

lkuα
lRp−1,Kq

uβ,jRp−1,Kq

+ 1
(p)!(q − 1)!Rαβjkg

jluα
Jp,lSq−1

uβ,Jp,kSq−1

− 1
(p)!q!Rαβjkg

jkuα
Jp,Kq

uβ
Jp,Kq

.

If we choose normal metrics both on the base X and the fiber E with gjk = δjk
and hαβ = δαβ, then we have the following simpler expression:

〈[iΘh(E),Λ]u, u〉ω =Rαβjku
α
kRp−1,Kq

uβ
jRp−1,Kq

(2.3)

+ Rαβjku
α
Jp,jSq−1

uβ
Jp,kSq−1

−Rαβjju
α
Jp,Kq

uβ
Jp,Kq
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where the summation is over all indices 1 ≤ j, k ≤ n, 1 ≤ α, β ≤ r and over
all multi-indices Jp, Kq, Rp−1, Sq−1 of an increasing order with |Jp| = p, |Kq =
q|, |Rp−1| = p− 1 and |Sq−1| = q − 1. However, it is still very hard to decide
when the expression (2.3) is positive, except in some special cases.

A first tractable case is that when p = n. Then in the first summation of
(2.3) we must have j = k and Rn−1 = {1, · · ·, n}\{j}. So the first summation
cancels the last summation.

In [6] Demailly introduced the notion of s-positivity for any integer 1 ≤
s ≤ r for a vector bundle E of rank r. We cited it as the Demailly s-positivity.
In particular, the Demailly one-positivity is just the Griffths-positivity and
the Demailly s-positivity for s ≥ min{r, n} is exactly the Nakano-positivity.

Definition 2.1 ([6]). A tensor u ∈ TX⊗E is called rank s if s is the smallest
non-negative interger such that u can be written as

u =
s∑

j=1
ξj ⊗ υj , ξj ∈ TX, υj ∈ E.

E is said to be Demailly s-positive if iΘh(E)(u, u) > 0 for any nonzero u ∈
TX ⊗E of rank≤ s. From this definition, the set of tensors whose rank is no
more than s, do not form a linear subspace since they are not closed under
addition. To capture the essence of it, we adopt the following formulation,
which uses the theory of Hermitian form and is a more general definition.

Definition 2.2 ([1]). A holomorphic vector bundle E of rank r with Her-
mitian metric h on a complex manifold X of complex dimension n is called
(k, s)-positive for 1 ≤ s ≤ r, if the following holds for any x ∈ X: For any
nonzero s-tuple vectors υj ∈ V, 1 ≤ j ≤ s, where V = Ex (respectively, TxX),
the Hermitian form

Qx(•, •) = iΘh(E)(
s∑

j=1
· ⊗ υj ,

s∑
j=1

· ⊗ υj), • ∈ W⊕s, · ∈ W

defined on W⊕ is semipositive and the dimension of its kernel is at most k,
where W = TxX (respectively, Ex). In this case we write as

iΘh(E) >(k,s) 0, E >(k,s) 0.

Clearly (0, s)-positivity is equivalent to Demailly s-positivity and Nakano-
posivity is equivalent to (0, s)-positivity if s ≥ min{n, r}. The (0, 1)-positivity
is equivalent to Griffiths-positivity. For general integer k, the (k, 1)-positivity
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is a semipositive version of Griffiths-positivity. A holomorphic vector bundle
E of arbitrary rank is called Griffiths k-positive if it is (k, 1)-positive.

Of course one such example is Grassmannian which was proved by Yang
in [1]:
Example 2.3. Let V be a complex vector space of dimension n and let
Gr(V, d) denote the Grassmannian of subspaces W of V of codimension d.
Yang explained in detail that the holomorphic tangent bundle of Gr(V, d) is
((d−1)(n−d−1), 1)-positive. Similar calculations indicate that the holomor-
phic tangent bundle of complex projective space P

n−1 is Nakano-semipositive
and ((n− 1)(s− 1), s)-positive for any 1 ≤ s ≤ n− 1.
Definition 2.4 ([2]). A complex manifold M is said to be weakly pseudocon-
vex if there exists an exhaustion function ψ ∈ C∞(M,R) such that i∂∂ψ ≥ 0
on X, i.e. ψ is plurisubharmonic (psh for short).
Remark 2.5. It is obvious that for domains Ω ⊂ C

n, the above weak pseu-
doconvexity notion is equivalent to pseudoconvexity (see [2]). Note that every
compact complex manifold is also weakly pseudoconvex (take ψ ≡ 0).
Definition 2.6. Let (M,ω) be a compact Kähler manifold. A line bundle
L over M is said to be nef, if for any ε > 0, there exists a (smooth) her-
mitian metric hL

ε on L such that the curvature
√
−1Θ(hL

ε ) of hL
ε satisfies√

−1Θ(hL
ε ) ≥ −εω.

3. Proof of Theorem 1.1, Corollary 1.2 and Theorem 1.3

In this section, we prove Theorem 1.1, Corollary 1.2 and Theorem 1.3. We
denote X a weakly pseudoconvex manifold of dimension n. In particular, we
may choose X to be a compact complex manifold. Assume that E (resp. L) is
a hermitian vector (resp. line) bundle over X of rank r. We need the following
Theorem 3.1, which plays a key role in proving all kinds of vanishing theorems
in non compact cases.
Theorem 3.1 ([3, 5]). Let (M,ω) be a Kähler manifold. Here M is not
necessarily compact, but we assume that the geodesic distance δω is complete
(i.e ω is complete) on M . Let E be a hermitian vector bundle of rank r over
M , and assume that the curvature operator A = Ap,q

E,h,ω = [
√
−1Θ(E, h),Λω]

is positive definite everywhere on Λp,qT ∗M ⊗ E, q ≥ 1. Then for any form
g ∈ L2(M,Λp,qT ∗M⊗E) satisfying ∂g = 0 and

∫
M (A−1g, g)dVω < +∞, there

exists f ∈ L2(M,Λp,q−1T ∗M ⊗ E) such that ∂f = g and∫
M

|f |2dVω ≤
∫
M

(A−1g, g)dVω.
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This famous result is essentially due to Hörmander in [5] and Andreotti-
Vesentini in [3]. Here we use the version suitable for our purpose as stated in
[4].

Recall from (2.3) we have

〈[iΘh(E),Λ]u, u〉ω =
∑

Sq−1,α,β,j,k

Rαβjku
α
jSq−1

uβkSq−1

for any (n, q)-form u =
∑

uα
K
dz1 ∧ · · ·∧dzn∧dzK ⊗ eα with value in E. Since

uα
jSq−1

= 0 for j ∈ Sq−1, so the rank (in the sense of Demailly) of (uα
j
)j,α is

in fact no more than min{n− q + 1, r}. Therefore we obtain:

Lemma 3.2 ([2], 341). Assume that E is Demailly s-positive. Then the Her-
mitian operator [iΘ(E),Λ] is positive definite on Λn,qT ∗X ⊗E for q ≥ 1 and
m ≥ min{n− q + 1, r}.

Now we are ready to prove the main result in this paper:

Theorem 3.3 (=Theorem 1.1). Let (X,ω) be a weakly pseudoconvex Kähler
manifold of dimension n and E a hermitian holomorphic vector bundle of
rank r on X such that E >(k,s) 0. Then

Hn,q(X,E) = 0

for any q > k and s ≥ min{n− q + 1, r}.

Proof of Theorem 3.3. We may assume k < n. since every weakly pseudocon-
vex Kähler manifold (X,ω) carries a complete Kähler ω̂ (see [2], page 372 ),
we will discuss the following proof in the sense of ω̂.

For any E-valued (n, q)-form

u =
∑

uα
K
dz1 ∧ · · · ∧ dzn ∧ dzK ⊗ eα ∈ Ωn,q(E)

by Definition 2.2, we could diagonalize the Hermitian form iΘh(E)(u, u) at
x ∈ X since it is semipositive. Therefore we could write

〈[iΘh(E),Λ]u, u〉ω̂ =
∑

Sq−1,α,β,j,k

Rαβjk(x)uα
jSq−1

uβkSq−1

=
∑

Sq−1,α,j

λα
j (x)uα

jSq−1
uαjSq−1
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Where the eigenvalues (λα
j )1≤j≤n,1≤α≤r are non-negative. For fixed α, without

loss of generality, assume that λα
1 ≤ λα

2 ≤ · · · ≤ λα
n with λα

k+1 > 0 ( by Def-
inition 2.2, the dimension of kernel is at most k). Put λ(x) = min{λα

k+1|1 ≤
α ≤ r}, Then λ is a positive number. If q > k, then

〈[iΘh(E),Λ]u, u〉ω̂ =
∑

j,Sq−1

∑
α

λα
j |uαjSq−1

|2

=
∑
k

∑
α

∑
j∈K

λα
j |uαK |2

≥
∑
K

∑
α

(λα
1 + λα

2 + · · · + λα
q )|uα

K
|2

≥ λ(x)(
∑
K

∑
α

|uα
K
|2)

= λ(x)|u|2
ω̂

Thus when q > k, then for any x ∈ X, [iΘh(E),Λ] is positive-definite on
E-valued (n, q)-forms.

Assume that the Hermitian operator AE,ŵ = [iΘh(E),Λ]. Let ψ ∈
C∞(X,R) be a exhaustive plurisubharmonic function. For any convex in-
creasing function χ ∈ C∞(R,R), we denote by Eχ the holomorphic vector
bundle E together with the modified metric |u|2χ = |u|2exp(−χ◦ψ(x)), u ∈ Ex.
We get

iΘ(Eχ) = iΘ(E) + id
′
d

′′(χ ◦ ψ) ⊗ IdE

Since we have

id
′
d

′′(χ ◦ ψ) = i(χ′ ◦ ψ)d′
d

′′
ψ + i(χ′′ ◦ ψ)d′

ψ ∧ d
′′
ψ

χ
′ ◦ ψ ≥ 0, χ′′ ◦ ψ ≥ 0, d′

d
′′
ψ ≥ 0, d′

ψ ∧ d
′′
ψ ≥ 0.

Therefore iΘ(Eχ)− iΘ(E) >(k,s) 0. Thus AEχ,ω̂
≥ AE,ω̂ > 0 in bidegree(n,q).

For g ∈ C∞
n,q(X,E) with D

′′
g = 0. The integrals

∫
X
〈A−1

Eχ,ω̂
g, g〉χdVω̂ =

∫
X
〈A−1

Eχω̂
g, g〉e−χ◦ψdVω̂

≤
∫
X
〈A−1

E,ω̂
g, g〉e−χ◦ψdVω̂ < +∞,

∫
X
|g|2e−χ◦ψdVω̂ < +∞

become convergent if χ grow fast enough. In fact, since ψ is an exhaustion
function, for every c ∈ R, the sublevel set Xc = {x ∈ M ;ψ(x) < c} is
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relatively compact in X, we can assume ψ ≥ 0. we can take χ, such that
∫
X
〈A−1

E,ω̂
g, g〉e−χ◦ψdVω̂ = lim

c→+∞

∫
Xc

〈A−1
E,ω̂

g, g〉e−χ◦ψdVω̂

= lim
n→+∞

n∑
k=0

∫
X{k≤ψ≤k+1}

〈A−1
E,ω̂

g, g〉e−χ◦ψdVω̂

≤ lim
n→+∞

n∑
k=0

e−χ(k)
∫
X(k≤ψ≤k+1)

〈A−1g, g〉dVω̂

≤ lim
n→+∞

n∑
k=0

3−k = 3
2 < +∞

We cen get g ∈ L2
n,q(X,Eχ, ω̂).

In conclusion, we have proved that for any g ∈ C∞
n,q(X,E) with D

′′
g = 0,

there exists a convex increasing function χ such that:
(1) AEχ,ω̂

> 0 on C∞
n,q(X,E)

(2) g ∈ L2
n,q(X,Eχ, ω̂)

By Theorem 3.1, we can find f ∈ L2
n,q−1(X,Eχ, ω̂) such that D

′′
f = g. By

a remark in [2], page 372, we conclude that f can be chosen smooth. So
Hn,q(X,E) = 0 for q > k and s ≥ min{n− q + 1, r}.

Especially, we can obtain the following result.

Corollary 3.4. (1) Let (X,ω) be a weakly pseudoconvex Kähler manifold of
dimension n and E a hermitian holomorphic vector bundle of rank r on X
such that E >(k,r) 0.Then

Hn,q(X,E) = 0, ∀ q > k

(2) Let (X,ω) be a weakly pseudoconvex Kähler manifold of dimension n and
E a hermitian holomorphic vector bundle of rank r on X such that E >(k,s) 0.
Then

Hn,n(X,E) = 0

If X is a compact complex manifold, then we can also deal with some nef
cases.

Corollary 3.5 (=Corollary 1.2). Let (X,ω) be a compact Kähler manifold
of dimension n and E a hermitian holomorphic vector bundle of rank r on X
such that E >(k,s) 0. Then for any nef line bundle L over X, we have

Hn,q(X,E ⊗ L) = 0
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for any q > k and s ≥ min{n− q + 1, r}.
Proof of Corollary 3.5. Similarly, for any E ⊗L-valued (n, q)-form u, we can
get

〈[iΘ(E),Λ]u, u〉 ≥ λ(x)|u|2ω, λ(x) > 0

Since X is compact, there exists a positive constant λ0, such that λ0 =
lim infx∈X{λ(x)} > 0. By definition of nef, we can take ε = −λ0

2q , there is
a metric hε on L, such that iΘL,hε ≥ εω = −λ0

2qω.
Note that iΘ(E⊗L) = iΘ(E)+IdE⊗iΘ(L) ≥ iΘ(E)+εω⊗IdE, Clearly,

we have

〈[iΘ(E ⊗ L),Λ]u, u〉ω ≥ 〈[iΘ(E),Λ]u, u〉ω + 〈[εω ⊗ IdE ,Λ]u, u〉ω

≥ λ0|u|2ω + εq|u|2ω = λ0

2

Thus [iΘ(E ⊗ L),Λ] acting on Λn,qT ∗X ⊗ E ⊗ L is positive definite. So we
have Hn,q(X,E ⊗ L) = 0, for any q > k and s ≥ min{n− q + 1, r}.

To show Theorem 1.3, we need give the following propositions and corol-
lary.

Proposition 3.6 (Yang, [1]). Let E be a rank r holomorphic vector bundle
with Hermitian metric h on a complex manifold X of dimension n. If E is
Griffiths k-positive, then for any integer 1 ≤ s ≤ min{r, n},

iΘh(E) + TrE(iΘh(E)) ⊗ h >(k,s) 0.

Proposition 3.7 (Yang, [1]). Let E be a holomrphic vector bundle of rank
r ≥ 2 with Hermitian metric h on a complex manifold X of dimension n. If
E is Griffiths k-positive, then for any integer 1 ≤ s ≤ max{r, n}, we have

sTrE(iΘh(E)) ⊗ h− iΘh(E) >(k,s) 0.

Corollary 3.8. Let E be a Griffith k-positive Hermitian holomorphic vector
bundle of rank r ≥ 2. Then for any integer m ≥ 1,

E∗ ⊗ (detE)s >(k,s) 0.

Proof. Apply Proposition 3.7 to E∗ ⊗ TX and note that
iΘ(E∗⊗(detE)s) = s(iΘ(detE))⊗h+iΘ(E∗) = sTrE(iΘ(E))⊗h−iΘ(E)t

and TrE(iΘ(E)) = TrE(iΘ(E)t).
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Theorem 3.3 in combination with Proposition 3.6 and Corollary 3.8 im-
mediately imply the following consequences:

Theorem 3.9 (=Theorem 1.3). Let E be a Griffiths k-positive Hermitian
holomorphic vector bundle of rank r ≥ 2 on a weakly pseudoconvex Kähler
manifold of dimension n. Then for any integer s ≥ 1, we have:

(1) Hq(X,KX ⊗ E ⊗ detE) = 0 for q > k;
(2) Hq(X,KX ⊗E∗ ⊗ (detE)s) = 0 for q > k and s ≥ min{n− q + 1, r}.
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