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inspired this paper. We wish him many many more productive, happy, and

healthy years to inspire many mathematicians.

Abstract: Strong stability preserving (SSP) Runge–Kutta meth-
ods are desirable when evolving in time problems that have dis-
continuities or sharp gradients and require nonlinear non-inner-
product stability properties to be satisfied. Unlike the case for L2
linear stability, implicit methods do not significantly alleviate the
time-step restriction when the SSP property is needed. For this
reason, when handling problems with a linear component that is
stiff and a nonlinear component that is not, SSP integrating fac-
tor Runge–Kutta methods may offer an attractive alternative to
traditional time-stepping methods. The strong stability properties
of integrating factor Runge–Kutta methods where the transformed
problem is evolved with an explicit SSP Runge–Kutta method with
non-decreasing abscissas was recently established. However, these
methods typically have smaller SSP coefficients (and therefore a
smaller allowable time-step) than the optimal SSP Runge–Kutta
methods, which often have some decreasing abscissas. In this work,
we consider the use of downwinded spatial operators to preserve
the strong stability properties of integrating factor Runge–Kutta
methods where the Runge–Kutta method has some decreasing ab-
scissas. We present the SSP theory for this approach and present
numerical evidence to show that such an approach is feasible and
performs as expected. However, we also show that in some cases the
integrating factor approach with explicit SSP Runge–Kutta meth-
ods with non-decreasing abscissas performs nearly as well, if not
better, than with explicit SSP Runge–Kutta methods with down-
winding. In conclusion, while the downwinding approach can be
rigorously shown to guarantee the SSP property for a larger time-
step, in practice using the integrating factor approach by including
downwinding as needed with optimal explicit SSP Runge–Kutta
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methods does not necessarily provide significant benefit over using
explicit SSP Runge–Kutta methods with non-decreasing abscissas.

1. Introduction

When numerically solving a hyperbolic conservation law of the form

Ut + f(U)x = 0,(1)

specially designed spatial discretizations are used to handle the discontinuities
in the solution that sometimes arise. These spatial discretizations typically
satisfy some nonlinear non-inner-product strong stability properties when
coupled with forward Euler time-stepping [3]. However, in practice we wish
to use higher order time discretizations, which preserve the strong stability
properties of the spatial discretization coupled with forward Euler.

Explicit strong stability preserving (SSP) Runge–Kutta methods were
first developed in [13, 14] to evolve the semi-discretization

ut = F (u),(2)

resulting from approximating f(u)x with a total variation diminishing (TVD)
spatial discretization. TVD spatial discretizations are specially designed to
ensure that the forward Euler time-step is strongly stable

‖un+1‖ = ‖un + ΔtF (un)‖ ≤ ‖un‖(3)

under some step size restriction

0 ≤ Δt ≤ ΔtFE.(4)

We wish to guarantee that the same type of strong stability property

‖un+1‖ ≤ ‖un‖(5)

is still satisfied when the TVD spatial discretization is coupled with a higher
order time-stepping method. To do this, we use the fact that many higher
order time discretization can be written as a convex combination of forward
Euler steps.

It is simple to show that if we can re-write a higher order time discretiza-
tion as a convex combination of forward Euler steps, then we can ensure
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that any convex functional property (5) that is satisfied by the forward Euler
method will still be satisfied by the higher order time discretization, perhaps
under a different time-step. For example, an s-stage explicit Runge–Kutta
method can be written as:

u(0) = un,

u(i) =
i−1∑
j=0

(
αi,ju

(j) + Δtβi,jF (u(j))
)
, i = 1, ..., s(6)

un+1 = u(s).

Each stage can be written as

u(i) =
i−1∑
j=0

αi,j

(
u(j) + Δt

βi,j
αi,j

F (u(j))
)

provided that a given αi,j is zero only if its corresponding βi,j is zero. Recall
that for consistency, we must have

∑i−1
j=0 αi,j = 1, so that as long as the

coefficients αi,j and βi,j are all non-negative, each stage can be rearranged
into a convex combination of forward Euler steps. Thus we have

‖u(i)‖ =

∥∥∥∥∥∥
i−1∑
j=0

(
αi,ju

(j) + Δtβi,jF (u(j))
)∥∥∥∥∥∥

≤
i−1∑
j=0

αi,j

∥∥∥∥∥u(j) + Δt
βi,j
αi,j

F (u(j)
∥∥∥∥∥ ≤ ‖un‖,

(where the final inequality follows from (3) and (4)), for any time-step that
satisfies

Δt ≤ min
i,j

αi,j

βi,j
ΔtFE.(7)

If any of the β’s are equal to zero, we consider the corresponding ratio to be
infinite.

In the case where a particular βi,j < 0, the SSP property can still be guar-
anteed provided that we modify the spatial discretization for these instances
[14]. When βi,j is negative, βi,jF (u(k)) is replaced by βi,jF̃ (u(k)), where F̃

approximates the same spatial derivative(s) as F , but the strong stability
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property ‖un+1‖ ≤ ‖un‖ holds for the first order Euler scheme, solved back-
ward in time, i.e.,

un+1 = un − ΔtF̃ (un)(8)

This can be achieved, for hyperbolic conservation laws, by solving the negative
in time version of (1),

Ut − f(U)x = 0.

Numerically, the only difference is the change of the upwind direction. Thus,
if αi,j ≥ 0, all the intermediate stages u(i) in (6) are convex combinations of
backward in time Euler and forward Euler operators, with Δt replaced by
|βi,j |
αi,j

Δt. Following the same reasoning as above, any strong stability bound
satisfied by the backward in time and forward in time Euler methods will
then be preserved by the Runge–Kutta method (6) where F is replaced by F̃
whenever the corresponding β is negative.

Clearly then, if we can re-write an explicit Runge–Kutta method as a
convex combination of forward Euler steps (or, in the downwinded case, of
forward Euler and backward in time Euler steps), the monotonicity condition
(3) will be preserved by the higher-order time discretizations, under a modified
time-step restriction Δt ≤ CΔtFE where C = mini,j

αi,j

|βi,j | . As long as C > 0,
the method is called strong stability preserving (SSP) with SSP coefficient
C [13]. Methods that use the downwinded operator F̃ as well as the operator
F are called downwinded methods [3].

In the original papers, the term ‖ · ‖ in Equation (3) above represented
the total variation semi-norm, and these methods were known as TVD time-
stepping methods [13, 14]. However, the strong stability preservation property
holds for any semi-norm, norm, or convex functional, as determined by the
design of the spatial discretization, provided only that the forward Euler
condition (3) holds, and that the time-discretization can be decomposed into
a convex combination of forward Euler and backward in time Euler steps with
C > 0.

The convex combination condition is not only a sufficient condition for
strong stability preservation, it is also necessary for strong stability preser-
vation [3, 10, 15]. This means that if a method cannot be decomposed into
a convex combination of forward Euler steps, then we can always find some
ODE with some initial condition such that the forward Euler condition is
satisfied but the method does not satisfy the strong stability condition for
any positive time-step [3].
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Not every method can be decomposed into convex combinations of for-
ward Euler steps with C > 0. For this reason, explicit SSP Runge–Kutta
methods cannot exist for order p > 4 [10, 12]. Furthermore, the SSP require-
ment is quite restrictive, so that all explicit s-stage Runge–Kutta methods
have an SSP bound C ≤ s [3]. Moreover, this upper bound cannot usually be
attained. Nevertheless, many efficient explicit SSP Runge–Kutta methods ex-
ist and are discussed in Section 3. Implicit SSP Runge–Kutta methods have
been an active area of investigation as well; these methods have an order
barrier of p ≤ 6, and seem to exhibit an SSP bound C ≤ 2s [3]. This disap-
pointing result limits the interest in implicit SSP Runge–Kutta methods, as
well as in implicit-explicit SSP Runge–Kutta methods, studied in [1].

Given a semi-discretized problem of the form

ut = Lu + N(u)

where L is a linear operator that significantly restricts the time-step, we typ-
ically turn to implicit-explicit methods to alleviate the time-step restriction.
However, when the time-step is restricted due to nonlinear non-inner-product
stability considerations, SSP methods are necessary, but implicit-explicit SSP
Runge–Kutta methods do not significantly alleviate the time-step restriction
[1]. This motivated our initial investigation into integrating factor methods
[7], where the linear component Lu is handled exactly, and then the allow-
able time-step depends only upon the nonlinear component N(u). In [7] we
discussed the conditions under which this process guarantees that the strong
stability property (5) is preserved. In that work, we showed that if we step the
transformed problem forward using an SSP Runge–Kutta method where the
abscissas (i.e. the time-levels approximated by each stage) are non-decreasing,
we obtain a method that preserves the desired strong stability property. These
non-decreasing abscissa SSP Runge–Kutta methods usually have smaller SSP
coefficients than the optimal explicit SSP Runge–Kutta methods. However,
there is an alternative approach inspired by classical SSP theory: for the
stages where the abscissas are decreasing, we can replace the operator L in
the exponential with the downwind operator L̃, and the resulting method will
be SSP with the original SSP time-step.

In the current work we discuss the downwinding approach in the context
of integrating factor Runge–Kutta methods. In our case, the Runge–Kutta
method does not have negative coefficients, but some stages the difference of
abscissas is negative (i.e. some of the abscissas are decreasing). To preserve
the SSP property we can replace the operator L with the downwind operator
L̃ for cases where the abscissas are decreasing. The extra cost of computing
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the exponential for L̃ can be significant if needed at each time-step; how-
ever, if the exponential operators for both L and L̃ are pre-computed, the
additional cost is negligible. In this paper we rigorously prove this approach
to be SSP and show how it works on simple test cases. Our conclusions are
that while this approach is viable, it is not necessarily more efficient than the
integrating factor approach using the non-descreasing abscissa Runge–Kutta
methods described in [7], particularly if the exponential operators are not
pre-computed.

In Section 2 we provide the SSP theory for integrating factor Runge–
Kutta methods. In Section 3 we review the optimal explicit SSP Runge–
Kutta methods that serve as a basis for the SSP integrating factor Runge–
Kutta methods, and provide their SSP coefficients. Next, in Section 4 we
demonstrate through numerical examples the need for downwinding in the
case where the explicit Runge–Kutta method has some decreasing abscissas,
and compare the use of downwinding to the non-decreasing abscissa approach.
We also show that although including downwinding changes the ODE, so that
time-refinement alone will not show convergence, refinement in both space
and time will show convergence to the solution of the PDE. We conclude that
downwinding is a numerically viable approach that can be rigorously shown
to preserve the strong stability properties when used with an integrating
factor Runge–Kutta approach, but may not be more beneficial than using
the integrating factor approach with Runge–Kutta methods that have only
non-decreasing abscissas.

2. SSP theory for explicit integrating factor Runge–Kutta
methods

We consider a hyperbolic PDE whose semi-discretization results in an ODE
system of the form

ut = Lu + N(u)(9)

with a nonlinear component N(u) that satisfies

‖un + ΔtN(un)‖ ≤ ‖un‖ for Δt ≤ ΔtFE(10)

and a linear constant coefficient component Lu that satisfies

‖un + ΔtLun‖ ≤ ‖un‖ for Δt ≤ Δ̃tFE(11)

for some convex functional ‖ · ‖. In this case, the allowable time-step for
the linear component is significantly smaller than the one for the nonlinear
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component, Δ̃tFE << ΔtFE. In such cases, stepping forward using an explicit
SSP Runge–Kutta method, or even an implicit-explicit (IMEX) SSP Runge–
Kutta method will result in severe constraints on the allowable time-step. We
seek a time-stepping approach that alleviates the time-step restriction while
preserving the monotonicity property ‖un+1‖ ≤ ‖un‖.

As in [7] we wish to treat the linear part exactly using an integrating
factor approach

e−Ltut − e−LtLu = e−LtN(u) −→
(
e−Ltu

)
t
= e−LtN(u).

Defining w = e−Ltu gives the ODE system

wt = e−LtN(eLtw) = G(w),(12)

which we then evolve in time using an explicit Runge–Kutta method of the
form (6). This approach is known as a Lawson-type method [11].

Each stage u(i) of (6) becomes

e−Ltiu(i) =
i−1∑
j=0

(
αi,je

−Ltju(j) + Δtβi,je
−LtjN(u(j))

)
,

or

u(i) =
i−1∑
j=0

(
αi,je

L(ti−tj)u(j) + Δtβi,je
L(ti−tj)N(u(j))

)
(13)

=
i−1∑
j=0

(
αi,je

L(ci−cj)Δtu(j) + Δtβi,je
L(ci−cj)ΔtN(u(j))

)
.(14)

This stage corresponds to the solution at time ti = tn + ciΔt, where each ci
is the abscissa of the method at the ith stage.

In our prior work, we used the two properties (10) and (11) to establish
the SSP properties of an integrating factor Runge–Kutta method in the case
where the abscissas are non-decreasing. In this work, we wish to allow de-
creasing abscissas in order to enlarge the SSP coefficient. For this purpose,
we also define the downwinded operator L̃ which approximates the same term
in the PDE as L, but satisfies the strong stability condition:

‖un − ΔtL̃un‖ ≤ ‖un‖ for Δt ≤ Δ̃tFE.(15)

For hyperbolic partial differential equations, this is accomplished by using the
spatial discretization that is stable for a downwind problem. This approach
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is similar to the one employed in the classical SSP literature, where negative
coefficients βi,j may be allowed if the corresponding operator is replaced by a
downwinded operator. However, in our case all the coefficients of the Runge–
Kutta methods are nonnegative, and the negative terms appear only in the
exponential, due to decreasing abscissas.
Theorem 1. (From [7]) If a linear operator L satisfies (11) for some value
of Δ̃tFE > 0, then

(16) ‖eτLun‖ ≤ ‖un‖ ∀ τ ≥ 0.

This theorem was proved in [7]. Clearly, if we simply replace L with −L̃,
and the corresponding condition (11) with (15) we obtain a similar result for
the downwinded operator:
Corollary 1. If a linear operator L̃ satisfies (15) for some value of Δ̃tFE > 0,
then

(17) ‖e−τL̃un‖ ≤ ‖un‖ ∀ τ ≥ 0.

Lemma 1. (From [7]) Given a linear operator L that satisfies (16) and a (pos-
sibly nonlinear) operator N(u) that satisfies (10) for some value of ΔtFE ≥ 0,
we have

(18) ‖eτL(un + ΔtN(un))‖ ≤ ‖un‖ ∀Δt ≤ ΔtFE, provided that τ ≥ 0.

This Lemma was also proved in [7]. Once again, simply replacing L with
−L̃, and the corresponding condition (16) with (17) we obtain a similar result
for the downwinded operator:
Corollary 2. Given a linear operator L̃ that satisfies (17) and a (possibly
nonlinear) operator N(u) that satisfies (10) for some value of ΔtFE ≥ 0, we
have

(19) ‖e−τL̃(un + ΔtN(un))‖ ≤ ‖un‖ ∀Δt ≤ ΔtFE, provided that τ ≥ 0.

The following theorem establishes the conditions under which an integrat-
ing factor Runge–Kutta method which incorporates the downwinded operator
L̃ is strong stability preserving:
Theorem 2. Given linear operators L and L̃ that satisfy (16) and (17),
respectively, a (possibly nonlinear) operator N(u) that satisfies (10) for some
value of ΔtFE > 0, and a Runge–Kutta integrating factor method of the form

u(0) = un,
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u(i) =
i−1∑
j=0

eL
∗
ij(ci−cj)Δt

(
αi,ju

(j) + Δtβi,jN(u(j))
)
, i = 1, ..., s(20)

un+1 = u(s)

where L∗
ij = L when ci ≥ cj, and L∗

ij = L̃ when ci < cj, then un+1 obtained
from (20) satisfies

(21) ‖un+1‖ ≤ ‖un‖ ∀Δt ≤ CΔtFE.

where
C = min

i,j

αi,j

βi,j
.

Proof. We observe that for each stage of (20)

‖u(i)‖ =

∥∥∥∥∥∥
i−1∑
j=0

eL
∗
ij(ci−cj)Δt

(
αi,ju

(j) + Δtβi,jN(u(j))
)∥∥∥∥∥∥

≤
i−1∑
j=0

∥∥∥eL∗
ij(ci−cj)Δt

(
αi,ju

(j) + Δtβi,jN(u(j))
)∥∥∥

≤
i−1∑
j=0

αi,j

∥∥∥∥∥eL∗
ij(ci−cj)Δt

(
u(j) + Δt

βi,j
αi,j

N(u(j))
)∥∥∥∥∥

where the last inequality follows from Lemma 1 and Corrolary 2.

The following example demonstrates the need for using the downwind
operator when the abscissas are decreasing.
Motivating Example: To demonstrate the practical importance of this the-
orem, consider the partial differential equation

Ut + aUx +
(1

2U
2
)
x

= 0 u(0, x) =
{

1, if 0 ≤ x ≤ 1/2
0, if x > 1/2

on the domain [0, 1] with periodic boundary conditions. We discretize the
spatial grid with 400 points and use a first-order upwind difference Lu ≈ −aux
for a > 0 defined by

(Lu)j = −a

(
uj − uj−1

Δx

)
(22)
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to semi-discretize the linear term. This operator satisfies the TVD condition

‖un + ΔtLu‖TV ≤ ‖un‖TV for Δt ≤ 1
a
Δx.

In this example, we use a = 10.
For the nonlinear terms, we use a fifth order WENO finite difference

method [8]

N(u) = WENO

(
−1

2u
2
)
≈ −

(1
2u

2
)
x

.

Although the WENO method is not guaranteed to preserve the total variation
behavior, in practice we observe that WENO seems to satisfy

‖un + ΔtN(u)‖TV ≤ ‖un‖TV for Δt ≤ 1
2Δx

for this problem.
For the time discretization, we use the integrating factor method based

on the explicit eSSPRK(3,3) Shu-Osher method (26):

u(1) = eLΔtun + eLΔtΔtN(un)

u(2) = 3
4e

1
2LΔtun + 1

4e
− 1

2LΔt
(
u(1) + ΔtN(u(1))

)
un+1 = 1

3e
LΔtun + 2

3e
1
2LΔt

(
u(2) + ΔtN(u(2))

)
.(23)

The appearance of negative exponents is due to the fact that the optimal
explicit eSSPRK(3,3) Shu-Osher method (26) has decreasing abscissas. These
terms threaten to destroy the TVD property.

To correct for these negative values, we use the integrating factor method
based on the same explicit eSSPRK(3,3) Shu-Osher method (26),

u(1) = eLΔtun + eLΔtΔtN(un)

u(2) = 3
4e

1
2LΔtun + 1

4e
− 1

2 L̃Δt
(
u(1) + ΔtN(u(1))

)
un+1 = 1

3e
LΔtun + 2

3e
1
2LΔt

(
u(2) + ΔtN(u(2))

)
.(24)

but here, whenever the abscissas are decreasing we use a downwinded operator
L̃ ≈ 10ux defined by

L̃u = −a

(
uj+1 − uj

Δx

)
.(25)
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Figure 1: Total variation behavior of the evolution over 25 time-steps evolv-
ing the integrating factor methods with the eSSPRK(3,3) Shu-Osher Runge–
Kutta method, (23) (red) and with the corresponding method with down-
winding (24) (blue). On the x-axis is the value of λ = Δt

Δx , on the y-axis is
log10 of the maximal rise in TV.

Note that in this case, L̃ = −LT . This operator satisfies the TVD condition

‖un − ΔtL̃u‖TV ≤ ‖un‖TV for Δt ≤ 1
a
Δx.

(Again, a = 10 in our case).
We selected different values of Δt and used each one to evolve the solution

25 time steps using the integrating factor Runge–Kutta methods (23) without
downwinding and (24) with downwinding. At each stage we calculated the
maximal rise in total variation for 25 time steps. In Figure 1 we show the
log10 of the maximal rise in total variation vs. the value of λ = Δt

Δx of the
evolution using the standard integrating factor Runge–Kutta method (23)
(in red) and the method with downwinding (24) (in blue). We observe that
when downwinding is not used there is a large maximal rise in total variation
even for very small values of λ. However, if we correct for the decreasing
abscissas by using the downwinded operator L̃, as in (24), the numerical
solution maintains a small maximal rise in total variation up to λ ≈ 0.65.
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Table 1: SSP coefficients of the opti-
mal eSSPRK(s,p) methods

s
p 2 3 4

1 - - -
2 1.0000 - -
3 2.0000 1.0000 -
4 3.0000 2.0000 -
5 4.0000 2.6506 1.5082
6 5.0000 3.5184 2.2945
7 6.0000 4.2879 3.3209
8 7.0000 5.1071 4.1459
9 8.0000 6.0000 4.9142
10 9.0000 6.7853 6.0000

Table 2: SSP coefficients of the op-
timal eSSPRK+(s,p) methods with
non-decreasing abscissas

s
p 2 3 4

1 - - -
2 1.0000 - -
3 2.0000 0.7500 -
4 3.0000 1.8182 -
5 4.0000 2.6351 1.3466
6 5.0000 3.5184 2.2738
7 6.0000 4.2857 3.0404
8 7.0000 5.1071 3.8926
9 8.0000 6.0000 4.6048
10 9.0000 6.7853 5.2997

3. Explicit SSP Runge–Kutta methods

In this section, we present some popular and efficient explicit SSP Runge–
Kutta methods. SSP Runge–Kutta methods of various stages and order were
reported in [3]. The SSP coefficients of optimal explicit SSP Runge–Kutta
methods of up to s = 10 stages and order p = 4 are in Table 1. Many of
these methods do not feature only non-decreasing abscissas (the second order
methods are an exception). In Table 2 we present the corresponding SSP co-
efficients of the explicit Runge–Kutta methods with non-decreasing abscissas.
Unfortunately, no methods of order p ≥ 5 with positive SSP coefficients can
exist [10, 12].

We use the notation eSSPRK(s,p) to denote an explicit SSP Runge–
Kutta method with s stages and of order p. As in [7] we use the notation
eSSPRK+(s,p) to denote the corresponding method with non-decreasing ab-
scissas. In this paper we consider the Shu-Osher method eSSPRK(3,3) as well
as the eSSPRK(4,3), eSSPRK(5,4), and eSSPRK(10,4). We selected these
methods by examining the SSP coefficients in Tables 1 and 2 above and
selecting the two methods for third order and fourth order for which the
SSP coefficient of the eSSPRK+(s,p) method is significantly smaller than the
corresponding eSSPRK(s,p) method. In fact, these are good methods to ex-
plore as the eSSPRK(3,3) and eSSPRK(10,4) are widely used methods. These
methods are given below:
eSSPRK(3,3):

u(1) = un + ΔtF (un)
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u(2) = 3
4u

n + 1
4u

(1) + 1
4ΔtF (u(1))

un+1 = 1
3u

n + 2
3u

(2) + 2
3ΔtF (u(2)).(26)

This method has C = 1. The abscissas are

(c1, c2, c3) = (0, 1, 1/2).

eSSPRK(4,3):

u(1) = un + 1
2ΔtF (un)

u(2) = u(1) + 1
2ΔtF (u(1))

u(3) = 2
3u

n + 1
3

(
u(2) + 1

2ΔtF (u(2))
)

un+1 = u(3) + 1
2ΔtF (u(3))(27)

This method has C = 2. The abscissas are

(c1, c2, c3, c4) = (0, 1/2, 1, 1/2).

No four stage fourth order explicit Runge–Kutta methods exist with a
positive SSP coefficient [4, 12]. However, fourth order methods with more
than four stages (s > p) do exist. A five stage fourth order method found by
Spiteri and Ruuth [16] is
eSSPRK(5,4):

u(1) = un + 0.391752226571890ΔtF (un)
u(2) = 0.444370493651235un + 0.555629506348765u(1)

+0.368410593050371ΔtF (u(1))
u(3) = 0.620101851488403un + 0.379898148511597u(2)

+0.251891774271694ΔtF (u(2))
u(4) = 0.178079954393132un + 0.821920045606868u(3)

+0.544974750228521ΔtF (u(3))
un+1 = 0.517231671970585u(2) + 0.096059710526147u(3)

+0.063692468666290ΔtF (u(3)) + 0.386708617503268u(4)

+0.226007483236906ΔtF (u(4)) ,
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The abscissas are

(c1, c2, c3, c4, c5) = (0, 0.391752226571889, 0.586079689311541,
0.474542363121399, 0.935010630967652).

A notable example of a fourth order methods with more than four stages
is Ketcheson’s eSSPRK(10,4) that has C = 6 and an attractive low storage
formulation [9]:
eSSPRK(10,4):

u(1) = un + 1
6ΔtF (un)

u(i+1) = u(i) + 1
6ΔtF (u(i)) i = 1, 2, 3

u(5) = 3
5u

n + 2
5

(
u(4) + 1

6ΔtF (u(4))
)

u(i+1) = u(i) + 1
6ΔtF (u(i)) i = 5, 6, 7, 8

un+1 = 1
25u

n + 9
25

(
u(4) + 1

6ΔtF (u(4))
)

+ 3
5

(
u(9) + 1

6ΔtF (u(9))
)

,

has C = 6. The abscissas are

(c1, c2, c3, c4, c5, c6, c7, c8, c9, c10) = (0, 1/6, 1/3, 1/2, 2/3, 1/3, 1/2, 2/3, 5/6, 1).

These four eSSPRK(s,p) methods have an SSP coefficient that is sig-
nificantly larger than the corresponding methods with only non-decreasing
abscissas, eSSPRK+(s,p), as we can see in Tables 1 and 2. This leads us to
expect that for these (s, p) combinations, using the downwinding operator L̃
to salvage the SSP property of the eSSPRK methods would be more efficient
than using the corresponding eSSPRK+ method with only non-decreasing
coefficients. In the following section, we use these methods in numerical tests
and compare their performance.

4. Numerical results

4.1. Sharpness of SSP time-step

As in the motivating example, we consider Burgers’ equation with a linear
advection term

Ut + 10Ux +
(1

2U
2
)
x

= 0 U(0, x) =
{

1, if 1/4 ≤ x ≤ 3/4
0, else
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on the domain x ∈ [0, 1] with periodic boundary conditions. We discretize the
spatial grid with 1000 points and use a first-order upwind difference Lu ≈
−10ux defined by (22) to semi-discretize the linear term. As mentioned above,
this operator satisfies the TVD condition

‖un + ΔtLu‖TV ≤ ‖un‖TV for Δt ≤ 1
10Δx.

When the abscissas decrease, the downwind operator is used instead, as in
(20). This downwind operator is defined by (25) and satisfies the TVD con-
dition

‖un − ΔtL̃u‖TV ≤ ‖un‖TV for Δt ≤ 1
10Δx.

For the nonlinear terms, we use a fifth order WENO finite difference
method [8]

N(u) = 1
2WENO

(
−u2

)
≈ −

(1
2u

2
)
x

.

Although the WENO method is not guaranteed to preserve the total variation
behavior, in practice we observe that WENO seems to satisfy

‖un + ΔtN(u)‖TV ≤ ‖un‖TV for Δt ≤ 1
2Δx

for this problem.
We measure the total variation of the numerical solution at each stage,

and compare it to the total variation at the previous stage. We are interested
in the size of time-step Δt at which the total variation begins to rise. We
refer to this value as the observed TVD time-step. We are interested in com-
paring this value with the expected TVD time-step dictated by the theory.
We call the SSP coefficient corresponding to the value of the observed TVD
time-step the observed SSP coefficient Cobs. In Figure 2 we show the log10
of the maximal rise in total variation versus the ratio λ = Δt

Δx , for meth-
ods with (s, p) = (3, 3), (4, 3), (5, 4), and (10, 4). In each graph, we compare
the integrating factor Runge–Kutta using the eSSPRK(s,p) method with and
without downwinding, to the integrating factor Runge–Kutta using the eS-
SPRK+(s,p) method.

The green lines in Figure 2 show that if we do not correct for the de-
creasing abscissas, the total variation is usually not well-controlled. This is
true for the methods with (s, p) = (3, 3), (4, 3), and (10, 4). However, the
eSSPRK(5,4) method works well without downwinding, and in fact its per-
formance is identical to that of the eSSPRK+(5,4) method. On the other
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Figure 2: Total variation behavior of the evolution over 25 time-steps evolv-
ing the integrating factor methods with the eSSPRK(s,p) Shu-Osher Runge–
Kutta method, (green) and with the corresponding method with down-
winding (blue), as well as a comparison with the eSSPRK+(s,p) method
with non-decreasing abscissas (red). The methods selected are (s, p) =
(3, 3), (4, 3), (5, 4), (10, 4). On the x-axis is the value of λ = Δt

Δx , on the y-
axis is log10 of the maximal rise in TV.

hand, downwinding negatively impacts the size of the time-step for which
the total variation begins to rise. Although the integrating factor approach
with eSSPRK(5,4) and downwinding behaves even better than predicted by
the theory, the eSSPRK+(5,4) method out-performs the theoretical bound by
more [7]. This highlights the fact that while downwinding guarantees that the
strong stability property will be preserved when the abscissas decrease, the
lack of this guarantee does not always mean that the strong stability property
will be violated.

Comparing the blue and red lines in Figure 2 we note that for the (s, p) =
(3, 3) method, the eSSPRK+(3,3) method with non-decreasing abscissas (red)
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out-performs the eSSPRK+(3,3) method with downwinding (blue). This may
be explained by the fact that this methods performed better than expected:
the solution was TVD for larger time-step than predicted by the SSP coeffi-
cient (see [7] for a discussion of this behavior).

For the methods with (s, p) = (4, 3) and (s, p) = (10, 4) we observe in
practice the behavior predicted by the theory: when the eSSPRK(s,p) method
is not corrected with downwinding (green line), we observe a rise in total vari-
ation for any value of λ. When the integrating factor eSSPRK(s,p) method
is corrected with downwinding when the abscissas decrease (blue) the allow-
able time-step for SSP is larger than for the eSSPIFRK+(s,p) method (red)
as predicted by the theory. As we noted in [7], the SSP coefficients of the
eSSPRK+(s,p) methods are approximately 10% smaller than those of the eS-
SPRK(s,p) methods, so the advantage of using downwind over using a method
with non-decreasing abscissas is relatively modest. In the case of (s, p) = (4, 3)
the increase is from λTV = 0.9 for the method with non-decreasing abscissas
to λTV = 1 for the methods with downwinding, and for (s, p) = (10, 4) the
increase is from λTV = 2.65 to λTV = 3.

4.2. Accuracy studies

Consider the problem

Ut + Ux +
(1

2U
2
)
x

= 0 U(0, x) = 1
2 (1 + sin(x))(28)

on the domain 0 ≤ x ≤ 2π. We use the fifth order WENO for the nonlinear
term, and upwind finite difference methods to spatially discretize the linear
advection term. For the time-discretization we step to final time Tf = 1.0
using an integrating factor Runge–Kutta approach with eSSPRK(3,3) and
eSSPRK(10,4) with and without downwinding.

To compute the highly accurate reference solution to the PDE we used
24,000 points in space and a spectral differentiation operator for the linear
advection term with a fifth order WENO for the nonlinear Burgers’ term;
for the time evolution we used MATLAB’s embedded ODE45 routine with
AbsTol = 10−14 and RelTol = 5 × 10−14. In this accuracy test, we have
a smooth solution (for the time interval selected), and so the spectral dif-
ferentiation operator, which does not have the nonlinear stability properties
needed for the solution of a problem with discontinuities, will be stable for
this smooth problem.
Test 1: space-time co-refinement study.
In our first test, we use Nx = [100, 200, 300, 400, 500, 600, 800] points in space
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Figure 3: Test 1: Log-log plot of the L2 errors vs. the timestep using the
integrating factor Runge–Kutta method eSSPRK(s,p) with downwinding
(with * markers) and the integrating factor Runge–Kutta method with non-
decreasing abscissas eSSPRK+(s,p) (with o markers). The blue line is for the
first order spatial operator L1Nx , the red line is for the second order spatial
operator L2Nx , and the green line for the spectral spatial operator LspecNx .
Left: (s, p) = (3, 3). Right: (s, p) = (10, 4).

and a time-step of Δt = Δx
4 . For the spatial discretization we use a first

order upwind operator L1Nx , the second order upwind operator L2Nx , and
the spectral operator LspecNx . For each value of Nx we compute the error
vector and calculate its L2 norm. In Figure 3 we compare the convergence of
the integrating factor Runge–Kutta method eSSPRK(3,3) with downwinding
to the integrating factor Runge–Kutta method with non-decreasing abscissas
eSSPRK+(3,3). We observe that when using a low-order spatial discretization
L1Nx and L2Nx for the linear advection term the spatial error is clearly dom-
inating, and the order of convergence is first and second order respectively.
The results are the same when we use eSSPRK(10,4) with downwinding and
eSSPRK+(10,4). When using the spectral discretization LspecNx for the lin-
ear advection term, we see convergence of order 3.5. This order is the same for
all the methods, whether using the third or fourth order time discretization,
so we conclude that here, too, the spatial error dominated.

This first test shows that the integrating factor approach using the op-
timal SSP Runge–Kutta method while incorporating downwinding converges
properly, and its errors are close to identical to the non-decreasing abscissa
approach described in [7]. This establishes that, as expected, downwinding is
an appropriate technique to employ when dealing with a PDE.
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It is important to keep in mind that while the PDE is being approximated
equally well whether downwinding is employed or not, this is not the case for
convergence to the ODE. This is due to the fact that while the ODE resulting
from discretizing (28) with L is

ut = Lu + N(u)(29)

the ODE that results from discretizing (28) with L̃ is

ut = L̃u + N(u),(30)

which is a different ODE, with a correspondingly different solution. We per-
form the following numerical test to see how downwinding impacts the solu-
tion to the ODE.
Test 2: ODE convergence study.
We chose Nx = 50 points and discretize the linear advection term using
L150, L250, and Lspec50. The nonlinear term is computed as above using
WENO, but with Nx = 50 points. The reference solution is found by evolving
the ODE resulting from this semi-discretization using MATLAB’s embedded
ODE45 routine with AbsTol = 10−14 and RelTol = 5 × 10−14.

We evolve this semi-discrete ODE using the integrating factor approach
based on the eSSPRK(s,p) methods with downwinding for the cases when
the abscissas decrease, and using the integrating factor Runge–Kutta methods
based on the eSSPRK+(s,p) methods, for Δt = λΔx where λ = 1

2 ,
1
4 ,

1
8 ,

1
16 ,

1
32 ,

1
64 . For each value of Δt we compute the error vector and calculate its L2
norm. We compare the convergence of the integrating factor Runge–Kutta
method eSSPRK(s,p) with downwinding to the integrating factor Runge–
Kutta method with non-decreasing abscissas eSSPRK+(s,p), for (s, p) =
(3, 3), (10, 4). In Figure 4 we observe that when the number of points in space
is fixed and only the time-step is refined, the integrating factor Runge–Kutta
method with downwinding has a large error which the solution hangs at about
3.8 × 10−3 (blue). We repeat this test with a second order upwind operator
L250 for the linear advection operator and observe that the solution hangs
at about 1.5 × 10−4 (red). In contrast, the methods without downwinding
exhibit the expected order of convergence in time, regardless of the order of
the spatial operator. For the spectral operator, L = L̃, so as expected, there
is no difference when downwinding is used. (Note that the accuracy results
when we use eSSPRK(s,p) without downwinding are similar to those of eS-
SPRK+(s,p)). This behavior is well-known in problems with downwinding
and discussed extensively in [6].
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Figure 4: Test 2: log-log plot of the L2 errors vs. the timestep using the
integrating factor Runge–Kutta method eSSPRK(s,p) with downwinding
(with * markers) and the integrating factor Runge–Kutta method with non-
decreasing abscissas eSSPRK+(s,p) (with o markers). The blue line is for the
first order spatial operator L150, the red line is for the second order spatial
operator L250, and the green line for the spectral spatial operator Lspec50.
Left: (s, p) = (3, 3). Right: (s, p) = (10, 4). Note that the markers look like
solid circles because the * markers overlap with the o markers.

5. Conclusions

In [7] we first considered the strong stability properties of integrating fac-
tor Runge–Kutta methods. In that work we presented sufficient conditions
for preservation of strong stability for integrating factor Runge–Kutta meth-
ods, which required the use of explicit SSP Runge–Kutta methods with non-
decreasing abscissas, denoted eSSPRK+ methods. When considering meth-
ods of order p = 3, 4 many of the eSSPRK+(s,p) methods have smaller SSP
coefficients (and therefore smaller allowable time-step) than the optimal eS-
SPRK(s,p) methods, which often have some decreasing abscissas.

In this work, we consider a different approach to preserving the strong
stability properties of integrating factor Runge–Kutta methods. In this case,
when the abscissas of the eSSPRK methods are decreasing, we replace the
spatial operator L with a downwinded spatial operator L̃ to preserve the
strong stability properties of integrating factor Runge–Kutta method. We
presented a complete SSP theory for this approach. However, our numerical
examples show that the downwinded spatial operators introduce some errors
that may adversely affect the accuracy of the methods, and that in most
cases the integrating factor approach with explicit SSP Runge–Kutta methods
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with non-decreasing abscissas performs nearly as well, if not better, than
with explicit SSP Runge–Kutta methods with downwinding. These results
lead us to conclude that the downwinding approach may not, in practice,
provide much benefit over using explicit SSP Runge–Kutta methods with
non-decreasing abscissas, as described in [7].
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