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A classification theorem for static vacuum black holes
Part II: the study of the asymptotic

Martín Reiris Ithurralde

Abstract: This is the second article of a series of two, proving a
generalisation of the uniqueness theorem of the Schwarzschild solu-
tion. The theorem to be shown classifies all (metrically complete)
solutions of the static vacuum Einstein equations with compact but
non-necessarily connected horizon without any further assumption
on the topology or the asymptotic. Specifically, it is shown that any
such solution is either: (i) a Boost, (ii) a Schwarzschild black hole,
or (iii) is of Myers/Korotkin-Nicolai type, that is, it has the same
topology and Kasner asymptotic as the Myers/Korotkin-Nicolai
black holes.

In this Part II we show that the only end of a static black hole
data set is either asymptotically flat or asymptotically Kasner. This
proves the third and last step required in the proof of the classifi-
cation theorem, as was explained in Part I. The analysis requires a
thorough study of static data sets with a free S1-symmetry and a
delicate investigation of the geometry of static black hole ends with
sub-cubic volume growth. Many of the conclusions of this article
are hitherto unknown and have their own interest.
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1. Introduction

This is the second of two articles intended to prove the following classification
theorem of vacuum static black holes,

Theorem 1.0.1 (The classification Theorem). Any static black hole data set
is either,

(I) a Schwarzschild black hole, or,
(II) a Boost, or,

(III) is of Myers/Korotkin-Nicolai type.

For a contextual discussion of Theorem 1.0.1 including the notion of static
black hole data set and a detailed description of each family see the introduc-
tion of Part I, [10].

In Part I it was proved that static black holes data sets have only one end
and that the horizons are weakly outermost. This accomplished the first two
of the three steps required for the proof of Theorem 1.0.1, as was explained in
subsection 1.1 of Part I. In this Part II we prove the third step, namely that
the end is either asymptotically flat or asymptotically Kasner. The results of
this article are found in Sections 3 and 4. Section 3, which is independent
of Section 4, has interest in itself and gives a thorough discussion of free S1-
symmetric data sets. This section is used in Section 4 where it is proved that
black hole ends are either asymptotically flat or asymptotically Kasner. The
techniques introduced for the asymptotic study are so far new and are based
upon a careful analysis of static solutions on metrically collapsed annuli. Many
of the conclusions are hitherto unknown and have their own interest.

In the next subsection 1.0.1 we recall the basic background material that
will be convenient to explan in full detail in Subsection 1.1 the structure of
the article, the ideas of the different proofs and the relations between them.

1.0.1. Recalling the setup In this section we make a succinct account
of the background material. Full information is found in the background sec-
tion 2 containing in particular the background material of Part I.

Formally, a (vacuum) static black hole data set (Σ; g,N) consists of a non-
compact orientable three-manifold Σ with compact and non-empty boundary
∂Σ, a three-metric g such that (Σ; g) is metrically complete, and a non-
negative lapse function N that is zero on ∂Σ (the horizons) and positive in
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the interior Σ◦ = Σ\∂Σ of Σ, satisfying the static vacuum Einstein equations

NRic = ∇∇N, ΔN = 0.(1.0.1)

A static black hole data set (Σ; g,N) gives rise to a vacuum static black hole
spacetime1 (Ric = 0),

Σ = R× Σ, g = N2dt2 + g,(1.0.2)

where ∂t is the static Killing field. Conversely, a static black hole spacetime of
the form (1.0.2), gives rise to a static black hole data set (Σ; g,N). Throughout
this article we will work with data sets rather than spacetimes. In other words,
we work at the ‘initial data level’.

The data sets of the Schwarzschild black holes are,

Σ = R
3 \B(0, 2m), g = 1

1 − 2m/r
dr2 + r2dΩ2 and N =

√
1 − 2m/r

(1.0.3)

where m > 0 is the ADM-mass and B(0, 2m) is the open ball of radius 2m.
The Boost data sets are,

Σ = [0,∞) × T2, g = dx2 + h, N = x(1.0.4)

where h is any flat metric on the two-torus T2 = S1 × S1. Finally a data
set (Σ; g,N) is of Myers/Korotkin-Nicolai type if Σ has the topology of an
open solid three-torus minus a finite number of open three-balls, and if the
asymptotic is Kasner.

The Kasner spaces (that define the asymptotic) are defined as any Z×Z-
quotient of the data,

Σ̃ = (0,∞) × R
2; g̃ = dx2 + x2αdy2 + x2βdz2, Ñ = xγ ,(1.0.5)

where y and z are coordinates on each of the factors R of R2, and α, β and γ
are any numbers satisfying,

α + β + γ = 1, α2 + β2 + γ2 = 1(1.0.6)

(see Fig. 1). The group Z × Z acts freely on the factor R
2 by translations

and therefore the quotient manifold is diffeomorphic to (0,∞)×T2. Observe
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Figure 1: The circle that defines the range of the Kasner parameters α, β, γ.

that the diameters of the ‘transversal tori’ {x} × T2 are determined by the
Z× Z-action and can be therefore arbitrarily small.

The Kasner spaces with (α, β, γ) = (0, 0, 1) are the Boosts and are the
Kasner data with faster growth of the lapse (linear). They are the only Kasner
that are static black hole data sets,2 the other being singular as x → 0. We
denote the Boosts by the letter B. The Kasner spaces (α, β, γ) = (1, 0, 0)
and (α, β, γ) = (0, 1, 0), that have constant lapse and are therefore flat, are
denoted respectively by the letters A and C. In simple terms, a data set
is asymptotically Kasner if it approaches a particular Kasner data, at any
order of differentiability, faster than any inverse power of the distance (see
Definition 2.1.6).

In this article we will use mainly the harmonic presentation of data sets,
namely we will use (Σ; g, U) instead of (Σ; g,N) where,

g = N2g, U = lnN.(1.0.7)

The static equations (1.0.1) now are,

Ricg = 2∇U∇U, ΔgU = 0,(1.0.8)

and have several geometric advantages. In particular, the Ricci curvature of
g is non-negative, and is zero iff U is constant.

1The exterior communication region of it.
2One must include {0} × T2 to the manifold.
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Figure 2: The ellipse that defines the range of the parameters a, b and c.

The Kasner spaces in the harmonic presentation are now Z×Z-quotients
of,

Σ̃ = (0,∞) × Σ, g̃ = dx2 + x2ady2 + x2bdz2, Ũ = c ln x(1.0.9)

where a, b and c satisfy

2c2 + (a− 1
2)2 + (b− 1

2)2 = 1
2 and a + b = 1(1.0.10)

Thus, the circle (1.0.6), (see Fig. 1), is seen as an ellipse in the plane a +
b = 1, (see Fig. 2). The g-flat solutions A,C and B are now (a, b, c) =
(1, 0, 0), (0, 1, 0), and (1/2, 1/2, 1/2), respectively.

The study of the asymptotic will be done by looking at rescaled annuli.
Let k ≥ 1, r > 0 and let Ag(2−kr, 2kr) be the annulus,

Ag(2−kr, 2kr) := {p ∈ Σ : 2−kr < dg(p, ∂Σ) < 2kr}(1.0.11)

where dg(p, ∂Σ) is the g-distance from p to the boundary ∂Σ. Fixed k, we
will let r increase, and, over the annulus Ag(2−kr, 2kr) we will look at the
rescaled metrics gr := g/r2. Anderson’s estimates (see Theorem 3.2.2 in Part
I) show that Ricgr and ∇U are uniformly bounded (i.e. their gr-norms have
bounds that do not depend on r), as so are any derivatives of them. This
fundamental property will permit first the analysis of the geometry of rescaled
annuli, and then, by suitable concatenation, the analysis of the asymptotic.
We will discuss all that in the next subsection.

As a result of the different proofs it will be clear that, if the asymptotic
is Kasner, then the parameter c is positive, c > 0. Hence the Kasner spaces
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with c > 0 will be the ones more relevant to us. Still, the Kasner A and
C, that have c = 0, will also come into play often but for technical reasons.
There is a significant difference between A and C on one side, and the Kasner
with c > 0 on the other side: the diameter of the transversal tori {x} × T2

grows linearly with the distance x in the first case but sub-linearly in the
second case. Thus, if c > 0, the diameters of the tori {x} × T2 with respect
to gx = g/x2, tend to zero as x → ∞. Another way to say this is: fixed
k ≥ 1, the Riemannian annuli (Agx(2−k, 2k); gx) metrically collapse, as x
tends to infinity, to a segment of length 2k − 2−k but there is no such type of
collapse if the Kasner is A or C, they metrically collapse to a two-dimensional
flat annulus, (for metric-collapse see Subsection 2.4). As said, these global
differences will cause technical difficulties while studying Kasner asymptotic.
We will resume this point in Subsection 1.1.

We move now to explain the structure of the article and the route behind
the series of results and their proofs. In particular the claims of Section 4 are
somehow interrelated and therefore it is useful to have a clear overview.

1.1. The content and the structure of this article (Part II)

Section 2 contains the background material, including notation and terminol-
ogy. Subsection 2.1 contains the main definitions, as the one of static black
hole data set or Kasner asymptotic, and states again the classification the-
orem as Theorem 1.0.1. Subsection 2.2 defines annuli and partitions cuts,
that are technically useful to study asymptotic properties. All that is the
background material that was already introduced in Part I. The rest of the
background material is special for this Part II and is the following. Also inside
Subsection 2.2, we pay special attention to ‘scaling’, and notations related to
it that will be used massively when studying ends in section 4 (it is impor-
tant to keep track of them). Scaling techniques are useful due to the scale
invariance of Anderson’s decay estimates for the curvature and for the gra-
dient of the logarithm of the lapse, see the Theorems 3.2.1 and 3.2.2 in Part
I. Furthermore the study of ends through scaling requires a minimum ma-
terial on the Cheeger-Gromov-Fukaya theory of convergence and collapse of
Riemannian manifolds under curvature bounds that is shortly introduced in
Subsection 2.4. Subsection 2.5 contains a careful account of Kasner spaces
and a suitable proof of their (well known) uniqueness, which will be used
throughout section 4 when we discuss asymptotic. This ends the background
section.

Section 3 begins with the results of Part II whose final goal is to describe
in Section 4 the asymptotic of ends of black hole data sets. Section 3 studies
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various aspects of data sets that are free S1-symmetric. Free S1-symmetric
data sets appear naturally as ‘limits’ of rescaled annuli over ends having sub-
cubic volume growth, and come therefore into play when studying asymptotic
through scaling. Besides the applications to section 4, the section 3 has inter-
est in itself and proves a number of novel results on these types of spaces. The
contents are as follows. Subsection 3.1 presents the reduced equations, that is,
the fields and the equations that are obtained after the quotient by S1 of a free
S1-symmetric static data set, Proposition 3.1.2. The reduced data (S; q, U, V )
of a static data set (Σ; g, U), with a S1-symmetry generated by a Killing field
ξ, consists of a two-manifold S, a Riemannian metric q on S, and two fields,
the usual field U = lnN , and V = ln Λ with Λ = |ξ|g. Relevant examples of
reduced data sets are discussed in the subsections 3.2 and 3.3. Subsection 3.2
discusses the reduced Kasner spaces (this subsection can be skipped). Subsec-
tion 3.3 makes a thorough description of another reduced data that we call the
‘cigars’ (due to their geometric shape). Subsection 3.3.1 proves a uniqueness
statement for the cigars and Subsection 3.3.2 characterises the cigars as the
data that model high-curvature regions. These properties of the cigars play
an essential role in Subsection 3.4, where it is proved that |∇U |2, |∇V |2 and
κ (the Gaussian curvature of q), have quadratic decay at infinity on (S; q),
(provided (S; q) is metrically complete and ∂S is compact). A few comments
are in order here. The discussion of such decay depends on whether the twist
Ω of ξ, which is a constant, is zero or not. When it is zero, the quadratic decay
can be obtained using the same techniques á la Bakry-Émery used to prove a
generalised Anderson’s decay in Part I for the gradient of the logarithm of the
lapse, Proposition 3.4.1. However, it turns out that such techniques do not
entirely apply when the twist Ω is not zero. For this reason, quadratic decay
in such case is proved arguing by contradiction, explaining why we studied
high-curvature regions in Subsection 3.3.2. Continuing with the presentation
of the contents of Section 3, in the same Subsection 3.4 it is shown, using the
decay previously proved, that S has only a finite number of simple ends, each
diffeomorphic to [0,∞)×S1. Furthermore it is proved in Proposition 3.4.6 that
U has a limit U∞ at infinity, −∞ ≤ U∞ ≤ ∞. These last two are the most
important results of Section 3 and are the ones used in Section 4. Concretely,
they will be used in Subsection 4.2.3, (when we return to the study of free
S1-symmetric states), to prove Theorem 4.2.7 showing that free S1-symmetric
ends with U ≤ U∞ are either flat with U constant or AK different from A or
C. Theorem 4.2.7 is the exact piece of information about free S1-symmetric
spaces necessary to prove that static black hole ends with subcubic volume
growth are AK. We will come back to this point later. (Theorem 4.2.7 was
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excluded from Section 3 as it requires introducing techniques that are also
necessary to study of the asymptotic of general ends).

Altogether Section 4 proves that black hole data sets are either asymp-
totically flat or asymptotically Kasner. The two types of asymptotic, that are
discussed separately in Subsections 4.1 and 4.2, are distinguished by the type
of volume growth of the end (Σ; g), which is at most cubic by the Bishop-
Gromov volume comparison. In Subsection 4.1 it is shown that if the volume
growth of the static black hole end is cubic then the end is asymptotically
flat, whereas in Subsection 4.2, which has four subsections, it is shown the
fundamental Theorem 4.2.1 stating that, if the volume growth is sub-cubic,
then the asymptotic is Kasner. It is important to remark that as a byproduct
of the proofs it will be shown that the Kasner asymptotic is indeed different
from the flat Kasner A or C, and of course from any Kasner with parameter
γ less than zero, (or c < 0 if we work in the harmonic presentation), that are
ruled out by the maximum principle (as then N → 0 at infinity). This be-
haviour is compatible with the asymptotic of Myers/Korotkin-Nicolai black
holes that can be that of any Kasner different from A, B, C and different
from those with γ < 0. We leave it as an open problem to prove that the only
static black hole data sets asymptotic to a Boost are in fact the Boosts. A
more elaborated discussion on this point can be found in the introduction of
Part I.

Let us describe more in detail now the four subsections 4.2.1, 4.2.2, 4.2.3,
4.2.4, of Subsection 4.2.

The preliminary Subsection 4.2.1 discusses metrics on two-tori under con-
ditions on the curvature and the diameter, and is used fundamentally in the
next subsection to study the geometry of the (toroidal) level sets of the lapse
on (almost) one-collapsed annuli (that is, annuli whose geometry is ‘near’
one-dimensional in the Gromov-Hausdorff metric, see Subsection 3.5).

Subsection 4.2.2 proves a sufficient condition for a static end (non-nec-
essarily a static black hole end) to have Kasner asymptotic different from
A or C, Theorem 4.2.6. Roughly speaking, the sufficient criteria says that if
the rescaled geometry of a sufficiently one-collapsed annulus has |∇U |gr �= 0,
then the end is asymptotic to a Kasner different from A or C. The proof
of Theorem 4.2.6 necessitates of two propositions that we now comment in
big terms. First, Proposition 4.2.4 shows, roughly (see the hypothesis), that
any rescaled annulus that is sufficiently one-collapsed and has |∇U |gr �= 0, is
‘Ck-close’ to a Kasner space. More importantly, it estimates (using crucially
Subsection 4.2.1) the ‘Ck-distance’ to the Kasner space, to any order of dif-
ferentiability k, in terms of any power of the diameter of the transversal tori
(i.e. the level sets of the lapse). The proof requires a very detailed study of
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one-collapsed annuli, done (in part) by carefully inspecting the geometry of
the transversal tori, whose second fundamental forms is fully controlled as
an easy consequence of Anderson’s estimates. Second, Proposition 4.2.5 com-
pares the geometry of two consecutive annuli and thus prepares the ground for
a ‘bootstrapping’ procedure that we carry out in the proof of Theorem 4.2.6,
basically showing that if the rescaled geometry of an annulus is ‘close in Ck’
to a Kasner different from A and C, then the rescaled geometry of a next
annulus (following the one before) is even ‘closer in Ck’ to an annulus of a
Kasner different from A and C. The basic reason why such bootstrapping is
possible is rooted in Anderson’s a priori estimates for the curvature and for
the gradient of the lapse. Resumming, the proof of Theorem 4.2.6, is reached
by roughly using Proposition 4.2.4 first, and then using repeatedly Proposi-
tion 4.2.5 to conclude the KA.

The sufficient criteria for Kasner asymptotic of Theorem 4.2.6 is the one
leading ultimately to the proof of Theorem 4.2.1 showing, as said, the KA
of black hole data sets with sub-cubic volume growth. But granting that the
geometry of at least one rescaled annulus satisfies the hypothesis of Theo-
rem 4.2.6 is unfortunately not direct. The proof of Theorem 4.2.1 is reached
indeed through a more elaborated series of arguments which requires Subsec-
tions 4.2.3 and 4.2.4. We describe them below.

As previously commented, Subsection 4.2.3 returns to the study of free
S1-symmetric data sets (Σ; g, U) by analysing the asymptotic of their ends
under the natural condition U ≤ U∞. It is shown in Theorem 4.2.7 that, for
such data, either the asymptotic is Kasner different from A or C or the whole
data is flat and U is constant. The proof of this follows as the corollary of
various propositions. First we use the results of section 3 to prove that such
ends, when non-flat, are �-static (Definition 4.2.8, meaning in this case that
the level sets of U near U∞ are connected, compact and of genus greater than
zero), Proposition 4.2.9. It is then proved that either the asymptotic is Kasner
different from A and C or it has sub-quadratic curvature decay, Proposition
4.2.10. Finally, sub-quadratic curvature decay is ruled out by making use of
the monotonic quantity (4.2.120) along the level sets of U , Proposition 4.2.11.

The Theorem 4.2.7, on free S1-symmetric data sets, is needed a couple of
times in Subsection 4.2.4, (that we discuss next), to show finally the afore-
mentioned non-trivial Theorem 4.2.1. Free S1-symmetric reduced data sets
show up often as the ‘collapsed limit’ of rescaled annuli. Thus, as we study
ends precisely via rescaled annuli, it is natural to expect Theorem 4.2.7 to en-
ter into scene in the analysis at some moment. Let us elaborate on this point
a bit more. If an end has sub-cubic volume growth, then (sub)sequences of
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rescaled annuli either metrically collapse to a one-dimensional space and un-
wrap (i.e. after considering covers) to a T2-symmetric (Kasner) static data or
metrically collapse to a two-dimensional orbifold (S; q) and locally unwrap to
a free S1-symmetric static data (these are standard facts about convergence
and collapse of Riemannian manifolds that we discuss in Subsection 2.4).
Two-dimensional reduced ends arising as such scaled limits are described in
Subsection 3.5, (which is the last of Section 3 earlier discussed), and can
have only a finite number of orbifold points. Thus, by the results of Subsec-
tion 4.2.3, if the limit state is non-flat then the asymptotic is Kasner different
from A and C. This crucial information is used at a certain moment during
the proof of Theorem 4.2.17, stating that the asymptotic of static ends with
sub-cubic volume growth is Kasner different from A and C or the curvature
decays sub-quadratically along a suitable set (precisely, a ray union a simple
cut). Thus, to prove the main Theorem 4.2.1 after having Theorem 4.2.17,
one must rule out the sub-quadratic decay. This is done by showing through
various propositions that static black hole ends with sub-cubic volume growth
are �-static, and then using Proposition 4.2.11 that forbids such type of decay
for �-static data by appealing to the monotonic quantity (4.2.120). To prove
that such ends are �-static, we prove first in Proposition 4.2.19 that U has a
limit U∞ at infinity. Second, we prove that if a regular value U1 is sufficiently
close to U∞ then U−1

1 (the pre-image of the regular value) is connected and
not a sphere. For this we rely on Propositions 4.2.20 and 4.2.22 showing that
there is a sequence of divergent two-tori Ti enclosing solid tori minus a finite
number of balls (the ‘black holes’). Though the existence of such sequence
does not fix the topology of Σ itself, it provides enough information to show
that, if there is a sequence of regular values Ui → U∞ such that each U−1

i is
a two-sphere, then Σ is necessarily diffeomorphic to R

3 minus a finite num-
ber of three-balls. Once this topology is granted, we use a result from [14]
to conclude that (Σ; g) must have cubic volume growth which is against the
hypothesis.

The proof of the classification theorem is done in Section 5 by carefully
putting together all the previous results as was explained in Section 1.1 of
Part I.

2. Background material

2.1. Static data sets and the main theorem

Manifolds will always be smooth (C∞). Riemannian metrics as well as tensors
will also be smooth. If g is a Riemannian metric on a manifold Σ, then

dg(p, q) = inf
{
Lg(γpq) : γpq smooth curve joining p to q

}
,(2.1.1)
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is a metric, where Lg is the notation we will use for length (when it is clear
from the context we will remove the sub-index g and write simply d and L). A
Riemannian manifold (Σ; g) is metrically complete if the metric space (Σ; d)
is complete. If (Σ; g) is metrically complete and ∂Σ = ∅ then the manifold is
geodesically complete and we say simply as usual that (Σ; g) is complete.

Definition 2.1.1 (Static data sets). A static (vacuum) data set (Σ; g,N)
consists of an orientable three-manifold Σ, possibly with boundary, a Rie-
mannian metric g, and a function N , such that,

(i) N is strictly positive in the interior Σ◦(= Σ \ ∂Σ) of Σ,
(ii) (g,N) satisfy the vacuum static Einstein equations,

NRic = ∇∇N, ΔN = 0(2.1.2)

The definition is quite general. Observe in particular that Σ and ∂Σ could
be compact or non-compact. To give an example, a data set (Σ; g,N) can
be simply the data inherited on any region of the Schwarzschild data. This
flexibility in the definition of static data set allows us to write statements
with great generality.

A horizon is defined as usual.

Definition 2.1.2 (Horizons). Let (Σ; g,N) be a static data set. A horizon is
a connected component of ∂Σ where N is identically zero.

Note that the Definition 2.1.1 doesn’t require ∂Σ to be a horizon, though
the data sets that we classify in this article are those with ∂Σ consisting of
a finite set of compact horizons (Σ is a posteriori non compact). It is known
that the norm |∇N | is constant on any horizon and different from zero. It is
called the surface gravity.

It is convenient to give a name to those spaces that are the final object of
study of this article. Naturally we will call them static black hole data sets.

Definition 2.1.3 (Static black hole data set). A static data set (Σ; g,N)
with ∂Σ = {N = 0} and ∂Σ compact, is called a static black hole data set.

In order to study the asymptotic of ends of black hole data sets it will
be more convenient to work with ‘static data ends’ that are simply data sets
with one end and compact boundary.

Definition 2.1.4 (Static data end). A metrically complete static data set
(Σ; g,N) with ∂Σ compact and Σ containing only one end, will be called a
static data end.
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As was shown in Part I, black hole data sets have only one end and so
they are static data ends themselves. On the other hand, static data ends do
not necessarily arise from them. Hence, several of the theorems in this article,
that are proved for static data ends, have a large range of applicability.

The following definition, taken from [6], recalls the notion of weakly out-
ermost horizon.

Definition 2.1.5 (Galloway, [6]). Let (Σ; g,N) be a static black hole data
set. Then, a horizon H is said weakly outermost if there are no embedded
surfaces S homologous to H having negative outwards mean curvature.

The following is the definition of Kasner asymptotic. It requires a de-
cay into a background Kasner space faster than any inverse power of the
distance. The definition follows the intuitive notion and it is written in the
coordinates of the background Kasner, very much in the way AF is written
in Schwarzschildian coordinates.

Definition 2.1.6 (Kasner asymptotic). A data set (Σ; g,N) is asymptotic to
a Kasner data (ΣK; gK, NK), ΣK = (0,∞) × T2, if for any m ≥ 1 and n ≥ 0
there is c > 0, a bounded closed sets K ⊂ Σ, KK ⊂ ΣK and a diffeomorphism
φ : Σ \K → ΣK \KK such that,

|∂I(φ∗g)ij − ∂Ig
K

ij | ≤
c

xm
,(2.1.3)

|∂I(φ∗N) − ∂IN
K| ≤ c

xm
,(2.1.4)

for any multi-index I = (i1, i2, i3) with |I| = i1 + i2 + i3 ≤ n, where, if x, y
and z are the coordinates in the Kasner space, then ∂I = ∂i1

x ∂
i2
y ∂

i3
z .

The next is the definition of data set of Myers/Korotkin-Nicolai type that
we use.

Definition 2.1.7 (Black holes of M/KN type). A static data set (Σ; g,N) is
of Myers/ Korotkin-Nicolai type if

1. ∂Σ consist of h ≥ 1 weakly outermost (topologically) spherical horizons,
2. Σ is diffeomorphic to a solid three-torus minus h-open three-balls,
3. the asymptotic is Kasner.

It is worth to restate now the main classification theorem that we shall
prove

Theorem 2.1.8 (The classification Theorem). Any static black hole data set
is either,
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(I) a Schwarzschild black hole, or,
(II) a Boost, or,

(III) is of Myers/Korotkin-Nicolai type.

As an outcome of the proof it will be shown that the Kasner asymptotic
of the static black holes of type (III), that is of M/KN type, is different from
the Kasner A and C (of course it can’t be asymptotic to a Kasner with γ < 0
by the maximum principle). We leave it as an open problem to prove that the
only static black hole data sets asymptotic to a B are the Boosts.

Problem 2.1.9. Prove that the Boosts are the only static black hole data
sets asymptotic to a Boost.

We do not know if the only solutions of type (III) are the Myers/Korotkin-
Nicolai solutions (see Part I). We state this as an open problem.

Problem 2.1.10. Prove or disprove that the only static solutions of type
(III) are the Myers/Korotkin-Nicolai solutions.

On a large part of the article we will use the variables (g, U) with g = N2g
and U = lnN , instead of the natural variables (g,N). The data (Σ; g, U) is
the harmonic presentation of the data (Σ; g,N). The static equations in these
variables are,

Ricg = 2∇U∇U, ΔgU = 0(2.1.5)

and therefore the map U : (Σ; g) → R is harmonic, (hence the name).

2.2. Scaling, annuli and partitions

1. Metric balls. If C is a set and p a point then dg(C, p) = inf{dg(q, p) :
q ∈ C}. Very often we take C = ∂Σ. If C is a set and r > 0, then, define
the open ball of ‘center’ C and radius r as,

Bg(C, r) = {p ∈ Σ : dg(C, p) < r}(2.2.1)

2. Scaling. Very often we will work with scaled metrics. To avoid a cum-
bersome notation we will use often the subindex r (the scale) on scaled
metrics, tensors and other geometric objects. Precisely, let r > 0, then
for the scaled metric g/r2 we use the notation gr, namely,

gr := 1
r2 g(2.2.2)
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Similarly, dr(p, q) = dgr(p, q), 〈X, Y 〉r = 〈X, Y 〉gr , |X|r = |X|gr , and
for curvatures and related tensors too, for instance if R is the scalar
curvature of g, then Rr is the scalar curvature of gr.
This notation will be used very often and is important to keep track of
it.

3. Annuli. Let (Σ; g) be a metrically complete and non-compact Rieman-
nian manifold with non-empty boundary ∂Σ.

– Let 0 < a < b, then we define the open annulus Ag(a, b) as

Ag(a, b) = {p ∈ Σ : a < dg(p, ∂Σ) < b}(2.2.3)

We write just A(a, b) when the Riemannian metric g is clear from
the context.

– When working with scaled metrics gr, we will alternate often be-
tween the following notations

Ar(a, b), Agr(a, b), Ag(ra, rb),(2.2.4)

(to denote the same set), depending on what is more simple to
write or to read. For instance we could write A2j (1, 2) instead of
Ag2j

(1, 2) or Ag(2j , 21+j). If the metric is clear from the context
we will use the first notation Ar(a, b).

– If C is a connected set included in Ag(a, b), then we define,

Ac
g(C; a, b)(2.2.5)

to denote the connected component of Ag(a, b) containing C. The
set C could be for instance a point p in which case we write
Ac

g(p; a, b).
4. Partitions cuts and end cuts. To understand the asymptotic ge-

ometry of data sets, we will study the geometry of scaled annuli. Some-
times however it will be more convenient and transparent to use certain
sub-manifolds instead of annuli that can have a rough boundary. For
this purpose we define partitions, partition cuts, end cuts, and simple
end cuts.

Assumption: Below (inside this part) we assume that (Σ; g) is a metrically
complete and non-compact Riemannian manifold with non-empty and com-
pact boundary ∂Σ.
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Figure 3: The figure shows the annuli A(21+2j , 22+2j), A(23+2j , 24+2j) and the
two components, for m = 1, 2 of Pm

j,j+1.

Definition 2.2.1 (Partitions). A set of connected compact three-submani-
folds of Σ with non-empty boundary

{Pm
j,j+1, j = j0, j0 + 1, . . . ; m = 1, 2, . . . ,mj ≥ 1},(2.2.6)

(j0 ≥ 0), is a partition if,

(a) Pm
j,j+1 ⊂ A(21+2j , 24+2j) for every j and m.

(b) ∂Pm
j,j+1 ⊂ (A(21+2j , 22+2j) ∪ A(23+2j , 24+2j)) for every j and m.

(c) The union ∪j,mPm
j,j+1 covers Σ \B(∂Σ, 22+2j0).

Fig. 3 shows schematically a partition. The existence of partitions is done
(succinctly) as follows. Let j0 ≥ 0 and let j ≥ j0. Let f : Σ → [0,∞) be a
(any) smooth function such that f ≡ 1 on {p : d(p, ∂Σ) ≤ 21+2j} and f ≡ 0
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on {p : d(p, ∂Σ) ≥ 22+2j}.3 Let x be any regular value of f in (0, 1). For each
j ≥ j0 let Qj be the compact manifold obtained recursively as the union of
the closure of the connected components of Σ \ {f = x} containing at least a
component of ∂Σ. Then the manifolds Pm

j,j+1, m = 1, . . . ,mj , are defined as
the connected components of Qj+1 \ Q◦

j .
We let ∂−Pm

j,j+1 be the union of the connected components of ∂Pm
j,j+1

contained in A(21+2j , 22+2j). Similarly, we let ∂+Pm
j,j+1 be the union of the

connected components of ∂Pm
j,j+1 contained in A(23+2j , 24+2j).

Definition 2.2.2 (Partition cuts). If P is a partition, then for each j we let

{Sjk, k = 1, . . . , kj}(2.2.7)

be the set of connected components of the manifolds ∂−Pm
j,j+1 for m =

1, . . . ,mj . The set of surfaces {Sjk, j ≥ j0, . . . , k = 1, . . . , kj} is called a
partition cut.

Definition 2.2.3 (End cuts). Say Σ has only one end. Then, a subset,
{Sjkl , l = 1, . . . , lj} of a partition cut {Sjk, k = 1, . . . , kj} is called an end
cut if when we remove all the surfaces Sjkl , l = 1, . . . , lj , from Σ, then every
connected component of ∂Σ belongs to a bounded component of the resulting
manifold, whereas if we remove all but one of the surfaces Sjkl , then at least
one connected component of ∂Σ belongs to an unbounded component of the
resulting manifold.

If Σ has only one end, then one can always remove if necessary manifolds
from a partition cut {Sjk, k = 1, . . . , kj} to obtain an end cut. End cuts
always exist.

Definition 2.2.4 (Simple end cuts). Say Σ has only one end. If an end cut
{Sjkl , j ≥ j0, l = 1, . . . , lj} has lj = 1 for each j ≥ j0 then we say that the
end is a simple end cut and write simply {Sj}.

Simple end cuts do not always exist. If {Sj} is a simple end cut and
j0 ≤ j < j′ we let Uj,j′ be the compact manifold enclosed by Sj and Sj′ . This
notation will be used very often.

3Consider a partition of unity {χi} subordinate to a cover {Bi} where the neigh-
bourhoods Bi are small enough that if Bi ∩ {p : d(p, ∂Σ) ≤ 21+2j} �= ∅ then
Bi ∩ {p : d(p, ∂Σ) ≥ 22+2j} = ∅. Then define f =

∑
i∈I χi, where i ∈ I iff

Bi ∩ {p : d(p, ∂Σi) ≤ 21+2j} �= ∅.
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2.3. The ball-covering property and a Harnak-type of estimate for
the lapse

Let (Σ; g,N) be a static data set with ∂Σ compact. In [2], Anderson observed
that, as the four-metric N2dt2 + g is Ricci-flat, then Liu’s ball-covering prop-
erty holds, [7] (the compactness of ∂Σ is necessary here because Liu’s theorem
is for manifolds with non-negative Ricci curvature outside a compact set).
Namely, for any b > a > δ > 0 there is n and r0 such that for any r ≥ r0 the
annulus A(ra, rb) can be covered by at most n balls of g-radius rδ centred
in the same annulus (equivalently Ar(a, b) can be covered by at most n balls
of gr-radius δ centred in the same annulus). Hence any two points p and q
in a connected component of Ar(a, b) can be joined through a chain, say αpq,
of at most n + 2 radial geodesic segments of the balls of radius δ covering
Ar(a, b). On the other hand Anderson’s estimate implies that the gr-gradient
|∇ lnN |r is uniformly bounded (i.e. independent on r) on Ar(a−δ, a+δ) and
therefore uniformly bounded over any curve αpq. Integrating |∇ lnN |r along
the curves αpq and using the bound we arrive at a relevant Harnak estimate
controlling uniformly (i.e. independently of r) the quotients N(p)/N(q). The
estimate is due to Anderson and is summarised in the next Proposition (for
further details, see [13]).

Proposition 2.3.1 (Anderson, [2]). Let (Σ; g,N) be a metrically complete
static data set with ∂Σ compact, and let 0 < a < b. Then,

1. There is r0 and η > 0, such that for any r > r0 and for any set Z
included in a connected component of Ar(a, b) we have,

max{N(p) : p ∈ Z} ≤ ηmin{N(p) : p ∈ Z}(2.3.1)

2. Furthermore, if ri → ∞ and if Zi is a sequence of sets included, for
each i, included in a connected component Ac

ri(a, b) of Ari(a, b), and we
have,

max{|∇ lnN |ri(p) : p ∈ Ac
ri(a/2, 2b)} → 0(2.3.2)

then,

max{N(p) : p ∈ Zi}
min{N(p) : p ∈ Zi}

→ 1.(2.3.3)

as i → ∞.
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Let (Σ; g, U) be a static data set in the harmonic presentation (assume
N > 0 and ∂Σ compact). We have shown in Part I that (Σ; g) is metrically
complete and that |∇U |2g decays quadratically. But as Ricg ≥ 0 Liu’s ball
covering property [7] also holds on (Σ; g) provided it is metrically complete
and ∂Σ is compact. Repeating then Anderson’s argument we arrive at the
following Harnak estimate but in the harmonic presentation.

Proposition 2.3.2 (Anderson, [2]). Let (Σ; g, U) be a metrically complete
static data set with ∂Σ compact and let 0 < a < b. Then,

1. There is r0 > 0 and η > 0, such that for any r > r0 and set Z included
in a connected component of Ar(a, b) we have,

max{U(q) : q ∈ Z} ≤ η + min{U(q) : q ∈ Z},(2.3.4)

2. Furthermore, if ri → ∞ and if Zi is a sequence of sets included for each
i in a connected component Ac

ri(a, b) of Ari(a, b), and we have,

max{|∇U |ri(q) : q ∈ Ac
ri(a/2, 2b)} → 0(2.3.5)

then,

max{U(q) : q ∈ Zi} − min{U(q) : q ∈ Zi} → 0(2.3.6)

as i → ∞.

Both propositions will be used later.

2.4. Facts about convergence and collapse of Riemannian
manifolds

In some parts of this article we will use well known techniques in convergence
and collapse of Riemannian manifolds. We recall here the concepts and the
results that we will use.

We first recall the basic definition of C∞-convergence (the presentation
is in the category of C∞ tensors adjusted to our needs). We refer the reader
to [9] for more general definitions.

A sequence of smooth compact Riemannian manifolds with smooth bound-
ary (Mi; gi) converges in C∞ to a smooth compact Riemannian manifold with
smooth boundary (M∞; g∞), if there are smooth diffeomorphisms φi : M∞ →
Mi such that φ∗gi converges to g∞ in Ck

g∞ for all k ≥ 0. That is,

‖φ∗
i gi − g∞‖Ck

g∞ (M∞) → 0(2.4.1)



286 Martín Reiris Ithurralde

where the Ck
g∞(M)-norm of a smooth tensor field W on a manifold M is,

‖W‖2
Ck

g (M) := sup
x∈M

{ i=k∑
i=0

|∇(i)W |2g(x)
}

where ∇(i)W = ∇ . . .∇︸ ︷︷ ︸
i-times

W(2.4.2)

To fix ideas, the sequence of Riemannian manifolds,

Mi = [1/2, 3/4] × S1 × S1, gi = (1 + xi)dx2 + dθ2
1 + dθ2

2(2.4.3)

converges in C∞ to,

M∞ = [1/2, 3/4] × S1 × S1, g∞ = dx2 + dθ2
1 + dθ2

2(2.4.4)

If a sequence of manifolds (Mi; gi) grow in diameter, then there is no
convergence in the previous sense but there can be convergence in the pointed
sense to a pointed non-compact manifold (M∞, p∞; g∞). This means that
there is a sequence of points pi ∈ Mi and for each compact sub-manifold N ⊂
M∞ containing p∞, there are diffeomorphisms into the image φi : N → Mi

such that φi(p∞) = pi and such that (N ;φ∗
i gi) converges in C∞ to (N, g∞).

For instance, the sequence of manifolds,

Mi = [0, i] × S1 × S1, gi = (1 + 1
(1 + x)i )dx

2 + dθ2
1 + dθ2

2(2.4.5)

converges in C∞ and in the pointed sense to,

M∞ = [0,∞) × S1 × S1, g∞ = dx2 + dθ2
1 + dθ2

2(2.4.6)

It can happen that a sequence of manifolds metrically collapses into a
manifold of lower dimension. For example, consider the sequence of Rieman-
nian manifolds,

Mi = [0, 1/2] × S1 × S1, gi = dx2 + xidθ2
1 + dθ2

2(2.4.7)

where the coefficient xi, over the first factor S1 tends uniformly to zero as
i → ∞. This sequence of manifolds metrically collapse to the two-dimensional
Riemannian manifold,

M∞ = [0, 1/2] × S1, g∞ = dx2 + dθ2
2.(2.4.8)

Similarly, the sequence of Riemannian manifolds,

Mi = [0, 1/2] × S1 × S1, gi = dx2 + xidθ2
1 + xidθ2

2(2.4.9)
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metrically collapse to the one-dimensional Riemannian manifold,

M∞ = [0, 1/2], g∞ = dx2(2.4.10)

that is, to the interval [0, 1/2] with the usual metric. Metric collapse means
that the Gromov-Hausdoff distance (GH-distance and denoted by dGH) be-
tween them, as metric spaces, tends to zero (see [9]). It is a general fact that
collapse with bounded curvature is always into a one-dimensional manifold,
or a two-dimensional orbifold. We discuss below the only results that we will
use in this respect.

The context will be always that of metrically complete static data sets
(Σ; g, U) with Σ non-compact and ∂Σ compact. Let γ be a ray emanating from
∂Σ, that is, an infinite geodesic γ(s) such that γ(0) ∈ ∂Σ and d(γ(s), ∂Σ) = s

(when the data is a static black hole data set then we assume, because g is
singular on ∂Σ, that γ is a ray from the boundary of a compact neighbourhood
of ∂Σ).

The first result we will use is the following. Suppose that for a divergent
sequence of points pi ∈ γ, the rescaled annuli (Ac

ri(pi; a, b); gri) metrically
collapse to ([a, b]; dx2). Note that by Anderson’s estimates (see Part I), the
collapse is with bounded curvature (and bounded derivatives of the curva-
ture). Then, there is a sequence Bi of neighbourhoods of Ac

ri(pi; a, b) and
finite covers B̃i such that (B̃i; g̃i) converges in C∞ to a T2-symmetric Rie-
mannian space ([a, b]×T2; g̃).4 Here it is important that the points pi belong
to γ otherwise the existence of such coverings may be not true (this is well
known, see examples in [14] for instance).

The second result we will use is the following. Suppose that for a diver-
gent sequence of points pi ∈ γ, the rescaled annuli (Ac

ri(pi; a, b); gri) metri-
cally collapse, but not into a segment. By Anderson’s estimates again, the
collapse is with bounded curvature (and bounded derivatives of the curva-
ture). Then, there is a sequence Bi of neighbourhoods of Ac

ri(pi; a, b) collaps-
ing into a two dimensional Riemannian orbifold with orbifold points of angles
2π/2, 2π/3, 2π/4, . . . Furthermore, if a sequence of points qi converges to a
non-orbifold point q then there are neighbourhoods Ui of qi and finite covers
(Ũi; g̃i) converging in C∞ to an S1-symmetric Riemannian manifold, whose

4Another way to state this is the following. Given ε > 0 there are δ > 0 and r0 > 0
such that for any p ∈ γ with r = r(p) ≥ r0, such that the annulus (Ac

r(p; a, b); gr) is
δ-close in the GH-distance to the segment [a, b], then there is a neighbourhood B of
Ac

r(p; a, b) and a finite cover B̃ such that (B̃; g̃r) is ε-close in Ck to a T2-symmetric
flat space ([a, b] × T2; g̃).
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quotient by S1 is isometric to a neighbourhood of the limit point q in the
limit Riemannian manifold.

For the collapse of a sequence of two-dimensional manifolds, the situation
is similar but simpler. We will use the following. Let (S; q) be a non-compact
Riemannian manifold with non-empty boundary and let γ be a ray from ∂S.
Let pi ∈ γ be a divergent sequence of points. Suppose that (Ac

ri(pi; a, b); qi)
metrically collapses with bounded curvature. Then it does so into an interval
[a, b] and there is a sequence of neighborhoods Bi of Ac

ri(pi; a, b) and finite
covers B̃i, such that (B̃i; qi) converges in C∞ to a S1-symmetric Riemannian
manifold, whose quotient by S1 is [a, b].

The existence of the coverings for each case described above follows from
Theorem 12.1 in [4]. The orbifold structure when there is two-dimensional
metric collapse follows from Proposition 11.5 in [4].

2.5. The Kasner solutions

2.5.1. Explicit form and parameters The Kasner data, denoted by K,
are R

2-symmetric solutions explicitly given by

g = dx2 + x2αdy2 + x2βdz2, N = xγ(2.5.1)

with (x, y, z) varying in the manifold R
+ ×R×R, and where (α, β, γ) satisfy

α + β + γ = 1 and α2 + β2 + γ2 = 1(2.5.2)

but are otherwise arbitrary (see Fig. 1). The solutions corresponding to two
different triples (α, β, γ) and (α′, β′, γ′) are equivalent (i.e. isometric) iff α =
β′, β = α′ and γ = γ′.

The metrics (2.5.1) are flat only when (α, β, γ) = (1, 0, 0), (0, 1, 0) or
(0, 0, 1). We will give them the following names,

A : (α, β, γ) = (1, 0, 0), C : (α, β, γ) = (0, 1, 0), B : (α, β, γ) = (0, 0, 1)
(2.5.3)

The solution B is the Boost.
Z-actions, Z × (0,∞) × R

2 → (0,∞) × R
2, are given by fixing a (non-

zero) vector field X, combination of ∂y and ∂z, and letting n× p → p + nX.
The quotients are S1-symmetric static solutions. Similarly, Z2 quotients give
S1 × S1-symmetric static solutions. Z2-quotient of the Kasner space will also
be called Kasner spaces and denoted too by K. These are the spaces defining
Kasner asymptotic.
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2.5.2. The harmonic presentation The Kasner spaces in the harmonic
presentation are

g = dx2 + x2ady2 + x2bdz2, U = c ln x(2.5.4)

where a, b and c satisfy

2c2 + (a− 1
2)2 + (b− 1

2)2 = 1
2 and a + b = 1(2.5.5)

Thus, the circle (2.5.2), (see Fig. 1), is seen now as an ellipse in the plane
a + b = 1, (see Fig. 2). The g-flat solutions A,B and C are,

A : (a, b, c) = (1, 0, 0), C : (a, b, c) = (0, 1, 0),
B : (a, b, c) = (1/2, 1/2, 1/2)(2.5.6)

The Kasner solutions (2.5.4) are scale invariant. Namely, for any λ > 0,
(R+ × R

2;λ2g) represents the same Kasner space as (R+ × R
2; g) does. This

can be seen by making the change

x = λx, y = λ1−ay, z = λ1−bz(2.5.7)

that transforms (2.5.4) into

g = dx2 + x2ady2 + x2bdz2, U = c ln x− c lnλ(2.5.8)

Another way to say this is that (1 − 2c)t∂t + x∂x + (1 − a)y∂y + (1 − b)z∂z
is a homothetic Killing of the space-time. The scale invariance can of course
be seen also in the original space (R+ × R

2; g,N). Note that in general, the
isometry that exists between (R+ × R

2; g) and (R+ × R
2;λ2g) does not pass

to the quotient by a Z× Z-action.

2.5.3. Uniqueness The Kasner data are the only data with a free R×R-
symmetry other than the Minkowski data

Σ = R
3, g = dx2 + dy2 + dz2, N = 1.(2.5.9)

We give now a proof of this fact in a way that becomes useful when we study
the Kasner asymptotic later in Section 4.2.

The proof is as follows. We work in the harmonic presentation (Σ; g, U),
therefore geometric tensors are defined with respect to g. If the data set
(Σ; g, U) has a free R

2-symmetry, and is not the Minkowski solution, then U
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can be taken as a harmonic coordinate with range in an interval I. Then, on
R

2 × I we can write

g = λ2dU2 + h(2.5.10)

where λ = λ(U), and where h = h(U) is a family of flat metrics on R
2.

Without loss of generality assume that U = 0 at the left end of I. Let (z1, z2)
be a (flat) coordinate system on R

2×{0}. In the coordinate system (z1, z2, U)
the static equation Ricg = 2∇U∇U reduces to

∂UhAB = 2λΘAB,(2.5.11)
∂UΘAB = λ(−θΘAB + 2ΘACΘC

B),(2.5.12)

ΘABΘAB − θ2 = − 2
λ2 ,(2.5.13)

where Θ is the second fundamental form of the leaves R2 ×{U} and θ = Θ A
A

is the mean curvature. The static equation ΔgU = 0 reduces to

∂U

(√
|h|
λ

)
= 0(2.5.14)

where |h| is the determinant of hAB. Hence

Γ
√
|h| = λ(2.5.15)

for a constant Γ > 0. This can be inserted in (2.5.11)-(2.5.12) to get the
autonomous system of ODE

∂UhAB = 2Γ
√
|h|ΘAB,(2.5.16)

∂UΘAB = Γ
√
|h|(−θΘAB + 2ΘACΘC

B),(2.5.17)

The equation (2.5.13) transforms into

ΘABΘAB − θ2 = − 2
Γ2|h| ,(2.5.18)

and (it is direct to see) that it holds for all U provided it holds for U = 0
and (2.5.16) and (2.5.17) hold for all U . The (2.5.18) is thus only a ‘con-
straint” equation. Therefore the system (2.5.11)-(2.5.13) is solved by giving
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hAB(0),ΘAB(0) and Γ > 0 satisfying (2.5.18), then running (2.5.16)-(2.5.17)
and finally obtaining λ from (2.5.15).

To solve (2.5.16)-(2.5.17) first change variables from U to s, where ds =
Γ
√
|h|dU . The system (2.5.16)-(2.5.17) now reads

∂shAB = 2ΘAB,(2.5.19)
∂sΘAB = −θΘAB + 2ΘACΘC

B,(2.5.20)

Use these equations to check that

∂sθ = −θ2,(2.5.21)
∂sΘ12 = (Θ11h

11 + Θ22h
22 − 2Θ12h

12)Θ12(2.5.22)

Thus, θ has its own evolution equation which gives θ(s) = 1/(s + 1/θ(0)).
Moreover if we choose (z1, z2) on {U = 0} to diagonalise h(0) and Θ(0) si-
multaneously (i.e. h11(0) = 1, h22 = 1, h12(0) = 0 and Θ12(0) = 0), then
(2.5.22) shows that Θ12 = 0 and h12 = 0 for all s and therefore that the evo-
lutions for h11 and h22 decouple to independent ODEs. With this information
it is straightforward to see that the solutions to (2.5.21)-(2.5.22), which at
the initial times satisfy also (2.5.18) are only the Kasner solutions.

We will use all the previous discussion later in Section 4.2.

3. Free S1-symmetric solutions

This section studies various aspects of data sets which are free S1-symmetric.
The contents are as follows. Subsection 3.1 presents the reduced equations,
Proposition 3.1.2. Subsection 3.2 discusses the reduced Kasner spaces and
Subsection 3.3 describes thoroughly a reduced data that we call the ‘cigars’
(due to their geometric shape). Subsection 3.3.1 proves the cigar’s uniqueness
and Subsection 3.3.2 characterises the cigars as the data that model high-
curvature regions. These properties of the cigars play an essential role in
Subsection 3.4, where it is proved that |∇U |2, |∇V |2 and κ (the Gaussian
curvature of q), have quadratic decay at infinity on (S; q), provided (S; q) is
metrically complete and ∂S is compact. The discussion of such decay depends
on whether the twists Ω of ξ, which is a constant, is zero or not. In the
same Subsection 3.4 it is shown, using the decay previously proved, that S
has only a finite number of simple ends, each diffeomorphic to [0,∞) × S1.
Furthermore it is proved in Proposition 3.4.6 that U has a limit U∞ at infinity,
−∞ ≤ U∞ ≤ ∞. Finally, Subsection 3.5 describes the global structure of
reduced data sets arising as collapsed limits that will be relevant to study the
asymptotic of static ends through scaling.
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3.1. The reduced data and the reduced equations

Let (Σ; g, u) be a static data set invariant under a free S1-action. The action
induces a foliation of Σ by S1-invariant circles. We will quotient the data
(Σ; g, U) by the Killing field and study the reduced system.

The complete list of reduced variables and other necessary notation, is
the following.

– As usual let g = N2g,
– let ξ be the Killing field generating the S1-action.
– let Λ = |ξ|g be the g-norm of ξ,
– let Ω = εgabcξ

a∇bξc be the g-twist of ξ (εg is the g-volume form and ∇
any cov. der.),

– let U = lnN ,
– let V = ln Λ,
– let S be the quotient manifold of Σ by the S1-action,
– let q be the quotient two-metric of g,
– let κ be the Gaussian curvature of q.

With all this at hand the following is the definition of a reduced static
data set.

Definition 3.1.1 (Reduced static data set). A data set (S; q, U, V ) arising
from reducing a S1-invariant static data set is a reduced static data set.

The next proposition presents the reduced equations of a reduced data
set.5 The equations involve only q, U and V , therefore the tensor Ric and the
operators, Δ, ∇ and 〈 , 〉 are with respect to q.

Proposition 3.1.2. The (reduced) static equations of a reduced data set
(S; q, U, V ) are,

Ric = ∇∇V + ∇V∇V + 1
2Ω2e−4V q + 2∇U∇U,(3.1.1)

ΔV + 〈∇V,∇V 〉 = 1
2Ω2e−4V ,(3.1.2)

ΔU + 〈∇U,∇V 〉 = 0.(3.1.3)

where Ω (introduced earlier) is constant. Moreover Ω is zero iff ξ is hypersur-
face orthogonal inside Σ.

5We haven’t found a reference for these equations though most likely they are
given somewhere.
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Before passing to the proof let us make some comments on the reduced
equations.

– When Ω = 0 the system (3.1.1)-(3.1.2) is locally equivalent to the Weyl
equations around any point where ∇Λ �= 0. We won’t use this informa-
tion however in the rest of the article.

– The solutions to (3.1.1)-(3.1.3) are invariant under the simultaneous
transformations

q → λ2q, V → V + 1
2 ln ν, U → U + μ, Ω → ν

λ
Ω(3.1.4)

for any λ > 0, ν > 0 and μ. Namely, if we replace (q, V, U) and Ω in
(3.1.1)-(3.1.3) for (λ2q, V + 1

2 ln ν, U + μ) and νΩ/λ respectively, then
the equations are still verified. We will call them simply ‘scalings” and
denote them by (λ, ν, μ).

– Given a solution to (3.1.1)-(3.1.2), the metric g can be recovered using
the expression

g = habdx
adxb + Λ2(dϕ + θidx

i)2(3.1.5)

where (x1, x2) are coordinates on S and where the one form θ is found
by solving

d(θidxi) = Ω
Λ3

√
|q|dx1 ∧ dx2(3.1.6)

where |q| is the determinant of qij and where ∂ϕ = ξ is the original
Killing field. As ξ is the generator of a S1-action, the range of ϕ is
[0, 2π). Without this information the range of ϕ is undetermined. This
is related to the fact that, locally, the reduction procedure requires only
that ξ is a non-zero Killing field. If the orbits of ξ do not close up in
parametric time 2π, still the reduced equations (3.1.1)-(3.1.3) hold, and
to recover g using (3.1.5) and (3.1.6) the right range of ϕ needs to be
provided.
This indeterminacy gives rise to two globally inequivalent ways to scale
data (Σ; g, U ; ξ) giving rise to the same reduced variables and equations.
We assume that ξ �= 0 and has closed orbits. The first is the scaling,

g → λ2g, ξ →
√
ν

λ
ξ(3.1.7)
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the second is (recall g = qijdx
idxj + Λ2(dϕ + θidx

i)2),

g → λ2qijdx
idxj + νΛ2(dϕ + λ

ν1/2 θidx
i)2, ξ → ξ(3.1.8)

In either case, the reduced variables (q, U, V ) scale in the same way
(3.1.4). The two new three-metrics are locally isometric but the new
length of the orbits of the killing field ξ do not necessarily coincide.
The length of the orbits is scaled by λ in the first case, and by

√
ν in

the second case.
– As in dimension two we have Ric = κq, then (3.1.1)-(3.1.2) imply that

the Gaussian curvatures acquires the expression

κ = 3
4Ω2e−4V + |∇U |2.(3.1.9)

In particular κ is non-negative. This will be an important property when
analysing the geometry of the reduced data.

The proof of Proposition 3.1.2 is just computational and relies on formulae in
[3]. We include it for the sake of completeness, but it can be skipped otherwise.

Proof of Proposition 3.1.2. We use calculations from [3], but the notation is
different. Precisely we use the following notation: N is the quotient of the
spacetime manifold M by the S1-action, ωa is the twist one form of the Killing
field ξ in the spacetime and λ its norm. Naturally, we have the commutative
diagram

� �

Σ M�
iΣ

S N�
iS

π π

where the π’s are the projections into the quotient spaces and the inclusions
iΣ and iS are totally geodesic, namely the second fundamental form K of Σ
in M and the second fundamental form χ of S in N , are both zero. Let n be
the normal to S in N .

Equation (45) from [3] implies n(λ) = 0 and i∗Sωa = 0. Using this infor-
mation inside (18) of [3] we obtain,

∇̃a∇̃
a
λ = ω(n)2

2λ3(3.1.10)
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where ∇̃a is the covariant derivative of the quotient metric on N . We compute

∇̃a∇̃
a
λ = −nanb∇̃a∇̃bλ + Δλ = 〈∇N

N
,∇λ〉 + Δλ(3.1.11)

where now Δ and 〈 , 〉 are defined with respect to the quotient two-metric
over S that we denote by h. Thus

Δλ + 〈∇N

N
,∇λ〉 = ω(n)2

2λ3(3.1.12)

On the other hand as N is harmonic in (Σ, g) we have

ΔN + 〈∇N,
∇λ

λ
〉 = 0(3.1.13)

where the operators are again with respect to h. Finally, the equations (26)
and (30) in [3] give

κh = Δλ

λ
+ 1

4
ω(n)2

λ4(3.1.14)

where κh is the Gaussian curvature of h. Now, q = N2h, hence

N2κ = κh − Δ lnN = κ̂− ΔN

N
+ |∇N |2

N2(3.1.15)

where again Δ and | | are with respect to h. Combining (3.3.14), (3.1.13)
and (3.1.15) we obtain

κ = 3
4
ω(n)2

N2λ4 + |∇N |2
N4(3.1.16)

Now, the spacetime expression

∂a
t εabcdξ

b∇cξd = Nω(n)(3.1.17)

is well known to be constant where ∇ is the spacetime covariant derivative
and ε the spacetime volume form (see [16] Theorem 7.1.1). On the other hand

Ω = Nεabcξ
a∇bξc = ∂a

t εabcdξ
b∇cξd(3.1.18)

where εgabc is the g-volume form. Expressing (3.1.12), (3.1.13), (3.1.16) and
(3.1.18) in terms of U, V , and expressing the Laplacians and norms in terms
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of q we obtain (3.1.2)-(3.1.3). To obtain (3.1.1) use

κhhab = ∇a∇bλ

λ
+ ω(n)2

2λ4 hab + ∇a∇bN

N
(3.1.19)

taken from eqs. (20) and (25) in [3], and re-express it in terms of qab and its
covariant derivative.

3.2. Example: the reduced Kasner

The most simple examples of reduced static data sets come from reducing
the Kasner solutions through suitable Killing fields. Below we describe the
reduced Kasner in detail. This subsection can be skipped.

Recall that the Kasner data sets (in the harmonic representation) are

g = dx2 + x2ady2 + x2bdz2, U = U1 + c ln x(3.2.1)

where c, a and b satisfy c2 + (a − 1
2)2 = 1

4 and a + b = 1. If we reduce these
metrics through the Killing field ξ = λ∂z we obtain the reduced data (q, U, V ),

q = dx2 + x2adϕ2,(3.2.2)
U = U1 + c ln x,(3.2.3)
V = V1 + b ln x(3.2.4)

where of course

c2 + (a− 1
2)2 = 1

4 , a + b = 1.(3.2.5)

and also

Ω = 0(3.2.6)

Above we made V1 = ln λ, (note that V1 = V (1) and that U1 = U(1)). If we
make this solution periodic along ϕ and vary a, (hence b and c) and λ we
obtain all the possible reduced solutions with Ω = 0 and with a S1-symmetry
(in ϕ).

More general than this we can quotient the Kasner solutions by the Killing
field

ξ = λ(cosω ∂y + sinω ∂z)(3.2.7)
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for any λ > 0 and ω ∈ [0, 2π), (fixed). A direct calculation shows that the
reduced data set (q, U, V ) is

q = dx2 +
[

x2

x2a cos2 ω + x2b sin2 ω

]
dϕ2,(3.2.8)

U = U1 + c ln x,(3.2.9)

V = V1 + 1
2 ln(x2a cos2 ω + x2b sin2 ω),(3.2.10)

where of course

c2 + (a− 1
2)2 = 1

4 , a + b = 1.(3.2.11)

and furthermore

Ω2 = 4e4V1(a− b)2 cos2 ω sin2 ω(3.2.12)

Above we made eV1 = λ, (note that V1 = V (1) and that U1 = U(1)). If we
make this solution periodic along ϕ and vary a, (hence b and c) and λ and
ω, we obtain all the possible reduced solutions with a Ω �= 0 and with a
S1-symmetry (in ϕ).

A simple computation shows that as long as Ω �= 0 the norm Λ of the
Killing field ξ grows at least as fast as the square root of the distance to the
boundary of the data set. More precisely we have

Λ2 ≥ η|Ω|x(3.2.13)

where η does not depend on the data set. As we will see later this is indeed
a general property for the asymptotic of any reduced data set.

3.3. A subclass of the reduced Kasner: the cigars

When either (a, b) = (1, 0) or (a, b) = (0, 1) and ω /∈ {0, π/2, π, 3π/2} we ob-
tain an important class of solutions that we will call the cigars (motivated by
their shape, see Fig. 4). Their metrics are complete in R

2. After a convenient
change of variables, the cigars are given by

U = U0, V = V0 + 1
2 ln(1 + r2) and q = 4Ω−2e4V0

(
dr2 + r2

1 + r2 dϕ
2)

(3.3.1)
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Figure 4: Representation of the cigar.

where U0 and V0 are arbitrary constants and where r is the radial coordi-
nate from the origin and ϕ is the polar angle ranging in [0, 2π), (note that
V0 = V (r = 0)). The asymptotic metric is q = 4Ω−2e4V0(dr2 + dϕ2), hence
cylindrical of section equal to 4πΩ−1e2V0 .

As U is constant, then the lapse N is also constant and the original static
solution, (from where the data (3.3.1) is coming from), is flat. Let us explain
now which quotient of R3 gives rise to the cigars. For any positive δ we let Tδ

be the translation in R
3 of magnitude δ along the z-axis and for any ϕ we let

Rϕ be the rotation in R
3 of angle ϕ around the z-axis. Consider the isometric

R-action I on R
3 given by

I : (t) × (x, y, z) −→ TteV0

(
RtΩ(e−V0 )/2(x, y, z)

)
(3.3.2)

Now, we quotient R
3 as follows: two points (x, y, z) and (x′, y′, z′) are iden-

tified iff (x′, y′, z′) = I(2πn, (x, y, z)) for some n ∈ Z. The quotient is free
S1-symmetric where the action is by restricting I to [0, 2π). A straight for-
ward calculation shows that the quotient data (q, U, V ) is the cigar solution.

3.3.1. The cigars’s uniqueness The cigars (3.3.1) are the only complete
non-compact boundary-less solutions to (3.1.1)-(3.1.3) with Ω �= 0. To see
this observe that any complete non-compact solution must have U constant
because U satisfies

|∇U |(p) ≤ η

d(p, ∂S)(3.3.3)

and if S is complete and non-compact then d(p, ∂S) = ∞ and U is constant
(this decay is direct from Anderson’s estimate; We will make another proof of
it in Proposition 3.4.1). Thus, as before, the original static (Σ; g,N) solution
is flat (and a S1-bundle). It is not difficult to see that the only possibility
must be a quotient of R3 as described above. However in Proposition 3.3.2 we
give an alternative proof whose technique will be useful later when we present
the cigar as the singularity model. Before and for the sake of completeness
we prove that the only complete (reduced) data set with Ω = 0 is flat with U
constant.
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Proposition 3.3.1. The only complete boundary-less (reduced) static data
with Ω = 0 is flat with U constant.

Proof. As U = U0 and Ω = 0 then ∇∇Λ = 0 (eq. (3.1.1)). This implies that
Λ is linear along geodesics. Thus, as the space is complete and Λ > 0 then Λ
must be constant and q flat. The result follows.

Proposition 3.3.2. The only complete boundary-less (reduced) static data
with Ω �= 0 are the cigars.

Proof. The estimate (3.3.3) shows that U must be constant, i.e. U = U0.
Hence, making Λ =

√
2/Ω Λ we have

∇∇Λ = 1
Λ3 q, κ = 3

Λ4(3.3.4)

The first is an equation of Killing type and can be integrated easily along
geodesics. If γ(s) is a geodesic parametrised by arc-length then we have Λ′′ =
Λ−4 (make Λ(γ(s)) = Λ(s)) which has the solutions

Λ2(s) = 1
(Λ′2

0 + 1/Λ2
0)
(
1 + (Λ0Λ

′
0 + (Λ′2

0 + 1/Λ2
0)s)2

)
(3.3.5)

where Λ0 = Λ(0) and Λ′
0 = Λ′(0). We have thus the bound

Λ2(s) ≥ 1
(|∇Λ0|2 + 1/Λ2

0)
(3.3.6)

where |∇Λ0| = |∇Λ|(0). This lower bound is achieved only at s = Λ0|∇Λ0|/
(|∇Λ2

0 + 1/Λ2
0) on the geodesic that points in the direction of least Λ′

0, i.e.
when it is equal to −|∇Λ0|. Therefore at the point p where the minimum is
achieved we have ∇Λ(p) = 0. Hence, along any geodesic γ(s) emanating from
p, (i.e. γ(0) = p), we have

Λ2 = Λ2
0

(
1 + s2

Λ4
0

)
(3.3.7)

Thus, near p we can write

q = ds2 + �2dϕ2(3.3.8)
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with � = �(s) satisfying

�′′ = −κ� = − 3
Λ4 �(3.3.9)

and with �(0) = 0 and �′(0) = 1. The solution is

�2 = s2(
1 + s2/Λ4

0
)(3.3.10)

recovering (3.3.1) at least near p. It is simple to see that this q indeed repre-
sents the metric all over S which in turn must be diffeomorphic to R

2.

3.3.2. The cigars as models near high-curvature points

Lemma 3.3.3. Let (Si; pi; qi, Vi, Ui) be a pointed sequence of metrically com-
plete (reduced) static data sets all having the same Ω �= 0. Suppose that

dqi(pi, ∂Si) ≥ d0 > 0(3.3.11)

and that either

κqi(pi) → ∞, or |∇Vi|qi(pi) → ∞(3.3.12)

Then, there are scalings (λ̂i, ν̂i, μ̂i) such that the scaled sequence (Si; pi; q̂i,
V̂i, Ûi) converges in C∞ and in the pointed sense to either a flat cylinder or
a cigar with the same Ω.

Notation: To simplify notation inside the proof, we will use the notation
κi for κqi and |∇Vi| for |∇Vi|qi , (the index ‘i’ is from the sequence and of
course does not represent a scaling).

Proof. The proof is divided in various cases.
Case I. Suppose that |∇Vi|(pi) diverges but that κi(pi) remains uniformly

bounded. To start on we make scalings (λi, νi, μi) where

λi = |∇Vi|(pi), νi = e−2Vi(pi), μi = −Ui(pi).(3.3.13)

Let (qi, V i, U i) be the scaled variables. Observe that Ω scales to Ωi = νiΩ/λi.
We have

Λi(pi) = 1, |∇Λi|(pi) = 1,(3.3.14)
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where, recall, Λi = eV i . Consider now the three-dimensional static pointed
data set (Σi; oi; gi, U i) whose reductions are the (Si; pi; qi, V i, U i). The oi are
points in Σi projecting into the pi’s. Let ξi be the scaling of ξi. In this context
the relations (3.3.14) are

|ξi|(oi) = 1, |∇|ξi||(oi) = 1,(3.3.15)

where the norms are with respect to gi. Moreover, Ωi = νiΩ/λi → 0 because
the νi are bounded and the λi tend to infinity. Let us study now the conver-
gence of the derivatives (∇ ξi)(oi) of the Killings ξi at the points oi. For nota-
tional simplicity we will remove for a moment the subindexes ‘i’ (but we keep
them in mind). For the calculation we consider g-orthonormal basis {e1, e2, e3}
around the points o, with e3(o) = ξ(o)/|ξ|(o) and (∇eiej)(o) = 0. Then, using
the relation Ω = εabcξ

a∇b
ξ
c and the Killing condition ∇aξb + ∇bξa = 0, the

components of ∇ ξ are computed as,

〈∇ejξ, ej〉 = 0,(3.3.16)

〈∇e1ξ, e2〉 = −〈∇e2ξ, e1〉 = Ω
|ξ|

,(3.3.17)

〈∇e3ξ, ej〉 = −〈∇ejξ, e3〉 = −∇ej |ξ|.(3.3.18)

If furthermore e1(o) and e2(o) are chosen such that ∇e1(o)|ξ| = 0 and
∇e2(o)|ξ| = 1 then, (restoring now the indexing ‘i’), the components
〈∇ejξi, ek〉(oi) are either zero or tend to zero as i goes to infinity except
for 〈∇e1ξi, e3〉(oi) and 〈∇e3ξi, e1〉(oi) that are constant and equal to one and
minus one respectively.

Now we observe that

dgi
(oi, ∂Σi) = λidgi(oi, ∂Σi) = λidqi(pi, ∂Si) ≥ λid0 → ∞.(3.3.19)

Therefore by Anderson’s estimates, the curvature of the gi over balls of centers
oi and any fixed radius tend to zero. Hence, there are neighbourhoods Bi of
oi and covers B̃i such that the pointed sequence (B̃i; õi; gi) converges in C∞

and in the pointed sense to the Euclidean three-space (for the cover metric
we use also gi). We claim that the lift of the Killing fields ξi to the B̃i, (that
we will denote too by ξi) converge in C∞ to the generator of a (non-trivial)
rotation of R

3. To see this recall first that for any Killing field χ it holds
∇a∇bχc = −Rm d

bca χd. Thus, at any point x we can find ξi(x) by integrating
a second order linear ODE along a geodesic that extends from γ(0) = õi to x,
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Figure 5: Representation of the construction inside Lemma 3.3.3.

given the initial data ξi(γ(0)) and ∇γ′(0)ξi. As it was shown earlier that the
data ξi(õi) and (∇ξi)(õi) converges, hence so does ξi and the perpendicular
distribution of the limit Killing field ξ∞ is integrable because lim Ωi = 0.
Thus, ξ∞ generates a rotation in R

3. As |ξ∞|(õ∞) = 1 and |∇|ξ∞||(õ∞) = 1
it must be that õ∞ is at a distance one from the rotational axis. In coordinates
(x, y, z) of R3 the limit vector field would be, (for instance), x∂y − y∂z and
the limit point would be, (for instance), (1, 0, 0).

This convergence of ξi to the generator of a rotation will be used in the
following to extract a pair of relevant informations.

First we show that inside the surfaces Si there are geodesic loops �i,
based at the points pi, whose qi length tends to zero. Let us see this. For i
large enough, the orbit of the Killing ξi inside B̃i, that starts at the point õi,
twists around an ‘axis’ and come very close to close up into a circle when it
approaches again the point õi (see Fig. 5). Hence, a small two-dimensional
disc formed by short geodesic segments emanating perpendicularly to ξi(õi)
at õi must intersect the orbit at a nearby point õ′i. Moreover the geodesic
segment joining õi and õ′i, projects into a geodesic loop �i on Si based at pi.
The length of the loops �i clearly tend to zero as i goes to infinity.

Second, for i ≥ i0 large enough, the norm of the Killings ξi over the balls
Bgi

(oi, 1/2) ⊂ B̃i is bounded below by 1/4. Hence, Λi is bounded below by
1/4 over the balls Bqi(pi, 1/2) in Si. More importantly the Gaussian curvature
κi is bounded above by 100Ω2

i also on Bqi(pi, 1/2).
From these two facts we conclude that the geometry near the points oi is

collapsing with bounded curvature. This implies that if we scale up qi to have
the injectivity radius at oi equal to one, then the new scaled spaces converge
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in the pointed sense to a flat cylinder. The composition of this last scaling
and the one we performed first is the scaling (λ̂i, ν̂i, μ̂i) we were looking for.

Case II. Suppose now that both |∇Vi|(pi) and κi(pi) are diverging. If
the quotient κi(pi)/|∇Vi|2(pi) tends to zero, then we can perform a scal-
ing (λi, νi, μi) that leaves Ω invariant and that makes κi(pi) bounded and
|∇V i|(pi) diverging. We can then repeat the step in Case I with (qi, V i, U i)
instead of (qi, Vi, Ui) to prove the Lemma in this case too.

Assume therefore that the quotient κi(pi)/|∇Vi|2(pi) remains bounded.
Perform again a scaling (λi, νi, μi) that leaves Ω invariant and makes κi(pi) =
1 and therefore makes |∇V i|(pi) bounded because κi(pi)/|∇Vi|2(pi) is invari-
ant. Note that as dqi(pi, ∂Si) → ∞, the estimate (2.5.10) impose that |∇U i|
must tend uniformly to zero over balls of centers pi and fixed but arbitrary
radius. We claim that the curvature κi remains uniformly bounded on balls
of centers pi and fixed radius. Let L > 0, let x be a point in Bqi(pi, L) and let
γ(s) be a length-minimising geodesic joining pi to x. Let Λi(s) = Λi(γ(s)).
Then, the value of Λi at x is found by solving the second order ODE

Λ′′
i = Ω2

4Λ3 + (|∇U |2 − 2U ′2)Λ(3.3.20)

subject to the initial data Λi(0) = Λi(γ(0)) and Λ′
i(0) = ∇γ′(0)Λi, and evalu-

ating at s = dqi(x, pi). If ∇U i were identically zero then the solutions would
be exactly (3.3.5) and we would have the bound

Λ2
i (s) ≥

1
(Λ′

i(0))2 + 1/(Λi(0))2
(3.3.21)

for all s ≥ 0. In particular, if Λi(0) is bounded below by A and |Λ′
i(0)| is

bounded above by B then Λi(s) is bounded below by
√

1/(B2 + 1/A2). But
as |∇U i| tends to zero uniformly over balls or radius L, then the solutions to
the ODE tend to (3.3.5) with initial data Λi(0) and Λ′

i(0). Now, as κi(pi) = 1
and |∇V i|(pi) is bounded, there are constants A and B such that

Λi(0) ≤ A, and |Λ′
i(0)| ≤ B(3.3.22)

no matter which the geodesic γ is. Therefore if i ≥ i0(L) is big enough then
Λi(x) ≤ 2

√
1/(B2 + 1/A2). Hence, κi ≥ 3Ωi(B2 + 1/A2)2/32 everywhere on

Bqi(pi, L).
The bound we proved for the curvature implies that if for a certain sub-

sequence the injectivity radius at the points pi tends to zero then there are
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finite covers that converge to a cigar. But this is impossible because the cigars
do not admit any non-trivial quotient. Hence the injectivity radius remains
bounded away from zero and the pointed sequence (Si; pi; qi, V i, U i) must sub-
converge in the pointed sense to a solution with U constant. By uniqueness
it is always a cigar and we are done.

Let us make an extra observation about a construction made inside the
proof. Recall that the spaces (B̃i, gi) converge to R

3 and the Killings ξi con-
verge to the generator of a rotation. Let zi be points where (∇|ξi|)(zi) = 0.
These points one can think that lie in the ‘axis’ of rotation. Naturally if we
quotient the balls of centers zi and radius two we obtain a two-disc. This disc
projects into a ‘cup’ on Si containing pi (see Fig. 5). In the metric qi, the
‘radius’ of this cup (i.e. the maximum distance from a point to the boundary)
goes to zero.

The Lemma 3.3.3 provides models for the scaled geometry near points of
high curvature or high V -gradient, but it does not say how such points affect
the unscaled geometry nearby. This is an important information that we will
need later. In rough terms, what occurs is that at any finite distance from such
a point the (unscaled) geometry becomes one dimensional, pretty much like a
cigar highly scaled down. The next Lemma 3.3.4 explains the phenomenon. In
few words it explains how the geometry looks like near geodesics joining high
curvature points or with high V -gradient, to the boundary of the surfaces Si.
This basic information will be sufficient to extract conclusions later.

The scaled geometry around points in such geodesics will be model essen-
tially as regions of the cigar whose curvature at the origin is conventionally
κ0 = 3(2π)2 and therefore whose metric is

q0 = 1
(2π)2

(
dr2 + r2

1 + r2 dϕ
2)(3.3.23)

where r ≥ 0. Let us describe the models more explicitly. A pointed space
({0 ≤ r ≤ 40};x; q0), where x be a point in this cigar with r(x) ≤ 25,
is a model of type Ci (from ‘cigar”). A pointed space ({r(x) − 10 ≤ r ≤
r(x) + 10};x; q0), where x be a point with r(x) > 25, is a model of type Cy
(from ‘cylinder”). The Fig. 6 sketches these two types of models.

Lemma 3.3.4. Let (Si; pi; qi, Vi, Ui) be a pointed sequence of metrically com-
plete (reduced) static data sets all having the same Ω �= 0 and suppose that

dqi(pi, ∂Si) ≥ d0 > 0(3.3.24)
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Figure 6: Representation of the cigar’s models.

and that either

κqi(pi) → ∞, or |∇Vi|qi(pi) → ∞.(3.3.25)

For every i let γi be a geodesic segment joining pi to ∂Si and minimising the
distance between them (if ∂Si = ∅ let γi be an infinite ray). Fix a positive d1
less than d0.

Then, for every k ≥ 1, ε > 0 there exists i0 such that for any i ≥ i0 and
for any xi ∈ γi with dqi(xi, pi) ≤ d1 there exist a neighbourhood Bi of xi and a
scaled metric qi = λ

2
i qi such that (Bi;xi; qi) is ε-close in Ck to either a model

space Ci or a model space Cy.

Notation: Again to simplify notation inside the proof, we will use the
notation κi for κqi and |∇Vi| for |∇Vi|qi .
Proof. Half of the work has been done essentially already in Lemma 3.3.3
because the geometry near points of high curvature or high V -gradient are
model locally (at a right scale) by a space Ci or a space Cy. We say this
formally as follows: given ε > 0 and k ≥ 1 there are K0 > 0 and i1 > 0 such
that for any i ≥ i1 and xi ∈ γi such that di(xi, pi) ≤ d1 and either κi(xi) ≥ K0
or |∇Vi|(xi) ≥ K0, then the conclusions of the Lemma hold. Thus, it is left to
show that the conclusions hold too for points on γi that do not have ‘high”
curvature or high gradient, that is for which κi(xi) ≤ K0 and |∇Vi|(xi) ≤ K0.
We prove that in what follows.

We will show that there is i2 ≥ i1 such that for any i ≥ i2 and for any
xi ∈ γi such that di(xi, pi) ≤ d1, κi(xi) ≤ K0 and |∇Vi|(xi) ≤ K0, the
conclusion of the Lemma also holds and the local model is of type Cy.
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Given i, let xi be a point such that xi ∈ γi such that di(xi, pi) ≤ d1,
κi(xi) ≤ K0 and |∇Vi|(xi) ≤ K0. We begin claiming that there are r0 <
(d0 − d1)/2 and K1 > 0 independent of i such that κi(x) ≤ K1 for all x ∈
Bqi(xi, r0). Let r0 be any number less than (d0 − d1)/2 and let x be a point
such that d(x, xi) ≤ r0. Let αi(s) be a length minimising geodesic joining xi
to x (αi(0) = xi). Denote Vi(s) := Vi(αi(s)). Let,

V̂i(s) = Vi(s) − Vi(0)(3.3.26)

Then we have,

V̂i(0) = 0, and |V̂ ′
i (0)| ≤ K0(3.3.27)

where the first equation is by the definition of V̂i(0) and the second follows by
assumption. On the other hand V̂i(s) satisfies the differential equation (3.1.1),
namely,

V̂ ′′
i + V̂i

′2 =
(1
2Ω2e−4Vi(0))e−4V̂i + (|∇U |2 − 2U ′2)(3.3.28)

where the last expression in parenthesis is evaluated of course on αi(s).
Let us make two comments on this equation. First, the coefficient

Ω2e−4Vi(0)/2 is less or equal than κi(xi) and thus less or equal than K0 by
assumption. Second, the summand (|∇U |2 − 2U ′2)(s) is uniformly bounded,
say by K2 > 0, independently of s, x, xi and i. This follows from the estimate
(3.3.3) and dqi(αi(s), ∂Si) ≥ (d1 − d0)/2; This last inequality is due to,

dqi(αi(s), ∂Si) ≥ dqi(xi, ∂Si) − dqi(αi(s), xi)(3.3.29)

and the inequalities dqi(xi, ∂Si) ≥ (d1 − d0) and dqi(αi(s), xi) ≤ dqi(x, xi) ≤
(d1 − d0)/2.

Until now we have shown control on the ODE (3.3.28) and the initial data
(3.3.27). Therefore by standard ODE analysis, it follows that one can chose
r0 small enough such that |V̂i(s)| ≤ K1, (i.e. preventing blow up), for a K1
independent on s, x, xi and i. This bound on Vi(x) (we removed the hat now)
and the bound on |∇U |2(x) gives the desired bound on κi(x).

We have proved a curvature bound κi(x) ≤ K1 for all x ∈ Bqi(xi, r0).
Using this bound we are going to show that the injectivity radius at xi,
namely injqi(xi), tends to zero as i tends to infinity. Indeed, if on the contrary
injqi(xi) ≥ r1 > 0 for some r1 > 0, then because the curvature is bounded on
Bqi(xi, r0), there is v > 0 and r2 ≤ min{r0, r1}/2 such that the area of the



A classification theorem for static vacuum black holes 307

ball Bqi(xi, r2) is greater or equal than v. As Bqi(xi, r2) ⊂ Bqi(pi, d0) then we
have

Ai(Bqi(pi, d0))
d2

0
≥ v

d2
0

(3.3.30)

On the other hand observe that by Lemma 3.3.3 the geometry near the points
pi is locally collapsing (at a right scale) to a line or to half a line. Thus, there
is i3 such that for i ≥ i3 there is δi → 0, such that the quotient

Ai(Bqi(pi, δi))
δ2
i

(3.3.31)

is less or equal than v/(2d2
0) (in fact the quotient tends to zero). But by

Bishop-Gromov the function

s → Ai(Bqi(pi, s))
s2(3.3.32)

is monotonically decreasing and therefore we should have

v

2d2
0
≥ Ai(Bqi(pi, d0))

d2
0

≥ v

d2
0

(3.3.33)

which is impossible. Thus the injectivity radius at xi tends to zero. Therefore
the balls Bqi(xi, r0) collapse with bounded curvature and the existence of a
scaling whose limit is a cylinder (Cy) is now direct.

The Lemma 3.3.4 gives a local model for the collapsed geometry around
points on the geodesics γi. The concatenation of the local models provide a
global picture that is summarised in the next corollary (whose proof is now
direct), see Fig. 7.

Corollary 3.3.5. Let (Si; pi; qi, Vi, Ui) be a pointed sequence of metrically
complete (reduced) static data sets all having the same Ω �= 0 and suppose
that

dqi(pi, ∂Si) ≥ d0 > 0(3.3.34)

and that either

κqi(pi) → ∞, or |∇Vi|qi(pi) → ∞.(3.3.35)
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Figure 7: Representation of the geometry described in Corollary 3.3.5.

For every i let γi be a geodesic segment joining pi to ∂Si and minimising the
distance between them (if ∂Si = ∅ let γi be an infinite ray). Fix a positive d1
less than d0.

Then there is i0 such that for any i ≥ i0 there is a neighbourhood Bi of the
ball Bqi(pi, d1), diffeomorphic to a disc and metrically collapsing to a segment
of length d1 as i goes to infinity.

3.4. Decay of the fields at infinity and asymptotic topology

We know already that the gradient of U decays quadratically at infinity. In
this section we show that also the gradient of V and the Gaussian curvature
κ decay quadratically (∂S must be compact). The proof depends on whether
Ω is zero or not. The case Ω = 0 is simple and relies only on the techniques
a la Bakry-Émery used earlier. As a by product we re-prove the quadratic
decay of the gradient of U , valid when Ω = 0 or not. When Ω �= 0, the proof
requires the use of Corollary 3.3.5.

3.4.1. Case Ω = 0
Proposition 3.4.1. There is a constant η > 0 such that for every metrically
complete (reduced) static data set we have

|∇U |2(p) ≤ η

d2(p, ∂S) .(3.4.1)

Moreover when Ω = 0 we have

|∇V |2(p) ≤ η

d2(p, ∂S) ,(3.4.2)
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hence also

κ(p) ≤ η

d2(p, ∂S) .(3.4.3)

Proof. Write (3.1.1) as

Ricαf = 1
2Ω2e−4V q + 2∇U∇U ≥ 0(3.4.4)

with f = −V , α = 1, and recall from (3.1.3) that ΔfU = 0. Then, using
(3.2.11) with ψ = U we obtain

Δf |∇U |2 ≥ 4|∇U |4(3.4.5)

and hence (3.4.1) by Lemma 3.2.3.
Similarly, if Ω = 0 we have ΔfV = 0 and using (3.2.11) again but with

ψ = V we obtain

Δf |∇V |2 ≥ 2|∇V |4(3.4.6)

and hence (3.4.2) by Lemma 3.2.3.

The next proposition describes in simple form the asymptotic topology
of data sets (S; q, U, V ) when Ω = 0. Observe however that we require ∂S
compact and of course (S; q) metrically complete.

Proposition 3.4.2. Let (S; q, U, V ) be a metrically complete (reduced) static
data set with Ω = 0, S non-compact and ∂S compact. Then there is a set K
with compact closure, such that

S = K ∪
(
∪i=n
i=1 Ei

)
(3.4.7)

where every Ei is diffeomorphic to [0,∞) × S1.

Proof. First we observe that as κ ≥ 0 and ∂S is compact, Liu’s ball covering
property holds (indeed regardless of whether Ω = 0 or not). Hence, S has a
finite number of ends. In particular we can write S as the union of a set with
compact closure and a finite number of surfaces Ei, i = 1, . . . , iS , each with
compact boundary and containing only one end.

It is sufficient to work with the surfaces Ei, that we denote generically
as E. By Bishop-Gromov we have A(B(∂E,r))

r2 ↘ μ. The analysis depends on
whether μ = 0 or μ > 0.
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Case μ = 0. Let γ be a ray from ∂E and let pi ∈ γ with r(pi) = ri = 2i,
for i = 0, 1, 2, . . .. If μ = 0, then the sequence of annuli (Ac

ri(pi, 1/4, 4); qri)
collapses in volume (in area) with bounded curvature. As we have explained
earlier, this type of collapse is only through thin (finite) cylinders. Thus,
(outside a compact set) E is formed by an infinite concatenation of finite
cylinders, (i.e. each diffeomorphic to [0, 1] × S1).

Case μ > 0. As κ ≥ 0 and κ has quadratic decay, if μ > 0 then (E; q) is
asymptotic to a flat cone (C; qμ) where

C := R
2 \ {(0, 0)}, qμ = dr2 + 4μ2r2dϕ2(3.4.8)

(r is the radius and ϕ is the polar angle in R
2). It then follows that, outside a

compact set of compact closure, E is diffeomorphic to [0,∞)× S1 as wished.

3.4.2. Case Ω �= 0 The following lemma is the analogous to Lemma 3.4.1
in the case Ω = 0. Note however that, contrary to the case Ω = 0, we assume
that ∂S is compact. We do not know if this condition can be removed or not.

Lemma 3.4.3. Let (S; q, U, V ) be a metrically complete (reduced) static data
set with Ω �= 0, S non-compact and ∂S compact. Then,

|∇U |2(p) ≤ η

d2(p, ∂S) , |∇V |2(p) ≤ η

d2(p, ∂S) ,(3.4.9)

and,

κ(p) ≤ η

d2(p, ∂S)(3.4.10)

where η > 0 is independent on the data. In particular

Λ2(p) ≥ η′Ω d(p, ∂S)(3.4.11)

where η′ > 0 is also independent on the data.

Proof. The proof requires using Corollary 3.3.5. Without loss of generality
assume that S is an end. Let γ be a ray from ∂S. For every j ≥ 0 let rj = 22j

and let pj ∈ γ be such that d(pj , ∂S) = rj .
The first goal will be to prove that κ and |∇V |2 decay quadratically along

the union of annuli ∪j≥0Ac
rj (pj ; 1/8, 8). We will prove later that this union

covers γ except for a finite segment of it (a priori that may not be the case).
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Let xji be any sequence of points such that xji ∈ Ac
rji

(pji ; 1/8, 8) for
every i ≥ 0. Each xji can be joined to pji through a continuous curve αi

entirely inside the annulus Ac
rji

(pji ; 1/8, 8). Concatenating αi with the part
of γ extending from pji to infinity, we obtain a curve, say α̂i, extending from
xji to infinity, and never entering the ball B(∂S, 1/8), namely, keeping at a
qrj -distance of 1/8 from ∂S. We will use the existence of this curve below to
reach a contradiction.

Suppose now that either,

κ(xji)d2(xji , ∂S) → ∞, or |∇V |2(xji)d2(xji , ∂S) → ∞(3.4.12)

We perform a sequence of scalings (λi, νi, μi) = (rji , rji , 0) leading to the new
fields,

q → qi = 1
r2
ji

q, V → Vi = V + 1
2 ln rji , U → Ui = U(3.4.13)

With this scaling we obtain then a sequence of reduced data (S; qi, Vi, Ui) all
having the same Ω (recall Ω → Ωi = (νi/λi)Ω = Ω). At the same time we
have 1/8 ≤ di(xji , ∂S) ≤ 8. Because of this, we can rewrite (3.4.12) as,

κi(xji) → ∞, or |∇Vi|2i (xji) → ∞,(3.4.14)

(where κi = κqi and |∇Vi| = |∇Vi|qi). Taking a subsequence if necessary we
can assume that di(xji , ∂S) → d∗ (where di = dqi).

We are clearly in the hypothesis of Corollary 3.3.5. Choosing d1 (see the
hypothesis of Corollary 3.3.5) as d1 = d∗ + (d∗ − 1/8)/2, we conclude that
there is a sequence of neighbourhoods Bi containing Bi(xji , d1) such that
(Bi; qi) metrically collapses to a segment of length d1 (where Bi = Bqi).
The neighbourhood Bi essentially wraps around a geodesic βi joining xji and
∂S and minimising the distance between them, and ‘covering’ the part of it
at a distance less or equal than d1 from xji . Hence, for i large enough, the
boundary of the Bi is inside the ball Bi(∂S, 1/8). Therefore for i large enough,
the curve α̂i must enter Bi(∂S, 1/8) before going to infinity. We reach thus a
contradiction.

We have then that for each j, the scaled curvature κrj is bounded on each
of the annuli Ac

rj (pj ; 1/8, 8). Consider the areas Arj of the annuli Ac
rj (pj ;

1/8, 8) with respect to qrj . If Arj tend to zero then the annuli (Ac
rj (pj ; 1/8, 8),

qrj ) collapse with bounded curvature and thus become thinner and thinner
finite cylinders. The end S is then (except for a set of compact closure) a con-
catenation of the annuli Ac

rj (pj ; 1/8, 8) and the quadratic curvature decay
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in the whole end follows as well as the quadratic decay of |∇V |2 follows. If
instead a sequence Arji

of the areas is bounded below away from zero then,
due to the Bishop-Gromov monotonicity A(B(∂S, r))/r2 ↘ μ > 0. This to-
gether with the curvature bound implies that the geometry of the annuli
(Ac

rj (pj ; 1/8, 8); qrj ) becomes more and more that of a flat annulus. Once a
piece sufficiently close to a flat annulus forms then the whole end must be
asymptotic to a flat annulus (for a detailed proof in dimension three see [12]).
Again, the quadratic decay of κ and |∇V |2 on the whole end follows.

The following version of Proposition 3.4.2 but when Ω �= 0 is now straight
forward after Proposition 3.4.3 and the proof of Proposition 3.4.2 itself.

Proposition 3.4.4. Let (S; q, U, V ) be a metrically complete (reduced) static
data set with Ω �= 0, S non-compact and ∂S compact. Then there is a set K
with compact closure, such that

S = K ∪
(
∪i=n
i=1 Ei

)
(3.4.15)

where every end Ei is diffeomorphic to [0,∞) × S1.

Taking into account the previous proposition we say that (E; q, U, V ) is a
(reduced) static ends if E ∼ [0,∞) × S1 and (E; q) is metrically complete.

From the description of the asymptotic geometry of (reduced) static ends
(E; q, U, V ), (E ∼ [0,∞) × S1), we can easily find a simple end cut {�j ; j =
1, 2, . . .}. Each �j is of course isotopic to ∂E and embedded in A(21+2j , 22+2j).
Let us be a bit more precise. Let rj = 21+2j and as usual let qrj = q/r2

j .
If μ = 0 then the annuli (Arj (1, 2); qrj ) metrically collapse to the segment
[1, 2] and therefore the loops �j can be chosen to have qrj -length tending
to zero. If instead μ > 0 then the loops can be chosen to converge to the
radial circle {x = 3/2} as the annuli (Arj (1, 2); qrj ) converge to the annulus
([1, 2] × S1; dx2 + 4μ2x2dϕ2) as explained earlier.

Let Σ be the three-manifold whose quotient by the S1-Killing field is E.
Let π : Σ → E be the projection. The tori Sj := π−1(�j) form obviously a
simple cut of (Σ; g). Let us state this in a proposition that will be recalled
later.

Proposition 3.4.5. Let (Σ; g, U) be a free S1-symmetric metrically complete
static data set such that the reduced data set (E; q, U, V ) is a reduced end.
Then, Σ and E admit simple cuts.

The next proposition shows that U tends uniformly to a constant U∞,
on any (reduced) static end (E; q, U, V ). The constant U∞ satisfies −∞ ≤
U∞ ≤ ∞. The proposition will be used in Section 4.2.3.
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Proposition 3.4.6. Let (E; q, U, V ) be a metrically complete reduced static
end. Then, U → U∞ where the arrow signifies uniform convergence and the
constant U∞ satisfies −∞ ≤ U∞ ≤ ∞.

Proof. Note that the maximum principle is also applicable to U because
(3.1.3) can be written as div(eV∇U) = 0. We will use this several times
below.

Let {�j , j = 0, 1, 2, . . .} be a simple cut of E as described above. Let
rj = 21+2j .

Assume that μ = 0. Then, as said, the qrj -length of the loops �j tends to
zero. At the same time the norm |∇U |rj restricted to the loops �j remains uni-
formly bounded. Therefore, by a simple integration along the �j it is deduced
that,

(max{U(q) : q ∈ �j} − min{U(q) : q ∈ �j}) → 0(3.4.16)

If instead μ > 0 then the qrj -length of the loops �j remains uniformly bounded
while the norm |∇U |rj , over the loops �j , tends to zero. So by a simple inte-
gration along the loops �j we deduce again (3.4.16).

Now suppose that for a certain sequence pi ∈ �ji , U(pi) tends to a constant
−∞ ≤ U∞ ≤ ∞. Then by (3.4.16), the maximum and the minimum of U
over �ji also tend to U∞. We use now the maximum principle to write for any
i < i′

max{U(q) : q ∈ �ji ∪ �ji′} ≥max{U(q) : q ∈ Lji,ji′} ≥(3.4.17)
≥min{U(q) : q ∈ Lji,ji′} ≥(3.4.18)
≥min{U(q) : q ∈ �ji ∪ �ji′}(3.4.19)

where Lji,j′i
is the compact region enclosed by �ji and �ji′ . Letting i′ tend to

infinity we deduce,

max{max{U(q) : q ∈ �ji}, U∞} ≥ max{U(q) : q ∈ Lji,∞} ≥
(3.4.20)

≥min{U(q) : q ∈ Lji,∞} ≥ min{min{U(q) : q ∈ �ji}, U∞}(3.4.21)

where Lji,∞ is the region enclosed by �ji and infinity. As the left hand side
of (3.4.20) and the right hand side of (3.4.21) tend to U∞ then U must tend
also uniformly to U∞.
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3.5. Reduced data sets arising as collapsed limits

In this last subsection about S1-symmetric data sets, we discuss the geometry
of reduced data arising from scaled limit of data sets. This discussion will be
recalled later in Section 4.2.4 where we prove that the asymptotic of static
black hole data sets with sub-cubic volume growth is Kasner.

Let (Σ; g, U) be a data set, and let γ be a ray from ∂Σ. Let pn ∈ γ
be a divergent sequence of points. Suppose there are neighbourhoods Bn of
Ac

rn(pn, 1/2, 2) such that (Bn; grn) collapses to a two-dimensional orbifold.
Having this, by a diagonal argument, one can find a subsequence of it (also
indexed by n) and neighbourhoods Bn of Ac

rn(pn; 1/2, 2kn), with kn → ∞, and
collapsing to a two-dimensional orbifold (S∞; q∞). As the collapse is along S1-
fibers (hence defining asymptotically a symmetry), we obtain, in the limit,
a well defined reduced data (S; q, Ū , V ) where U is obtained as the limit of
Un := U − U(pn). On smooth points the scalar curvature κ is non-negative.
Orbifold points are conical with total angles an integer fraction of 2π (2π/2,
2π/3, 2π/4, etc) hence can be thought as having also non-negative curvature
(they can be rounded off to have a smooth metric with κ ≥ 0). Therefore
(S; q) has only a finite number of ends. Note that it has at least one end
containing a limit, say γ, of the ray γ. Let us denote that end by Sγ .

We claim that every end has only a finite number of orbifold points. This
is the result of a simple application of Gauss-Bonnet. Indeed, let S be an end.
Let �j , j = 1, 2, 3, . . ., be one-manifolds embedded for each j in A(22j , 22j+3)
such that �1 and �j enclose a connected manifold Ω1j . Let O be the set of
orbifold points in S. By Gauss-Bonnet we have

−
∫
�1

kdl −
∫
�j

kdl =
∫

Ω1j\O
κdA +

∑
p∈Ω1j∩O

2π
(
i(p) − 1
i(p)

)
(3.5.1)

where k is the mean-curvature (or first variation of logarithm of length) on
the one-manifolds �j and the angle at each orbifold point p ∈ O is 2π/i(p).
As the right hand side is greater or equal than the number of orbifold points
in Ω1j , that is �{Ω1j ∩ O}. Thus, if the left hand side remains bounded as
j → ∞ then the number of orbifold points must be finite. To see the existence
of such one-manifolds �j for which the left hand side remains bounded just
argue as follows. First note that the left hand side is scale invariant. Second
observe that as for each j the scaled annuli (A(22j , 22j+3); q22j ) in S are scaled
limits of annuli in (Σ; g), (which has quadratic curvature decay), then one
can always chose a suitable subsequence ji such that as i → ∞ the annuli
(A(22ji , 22ji+3); q22ji ) either converge of collapse to a segment. The selection
of the �i is then evident.
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4. Volume growth and the asymptotic of ends

The asymptotic of ends is markedly divided by the volume growth. We discuss
first cubic volume growth, which is the simplest and that implies AF. Then
we discuss sub-cubic volume growth which implies (under certain hypothesis)
AK. This last case requires an elaborated and long analysis.

4.1. Cubic volume growth and asymptotic flatness

Suppose (Σ; g, U) is a static end with cubic volume growth. Cubic volume
growth, non-negative Ricci curvature and quadratic curvature decay, implies
that the end is asymptotically conical, (i.e. the metric is asymptotic to a
metric of the form dr2+a2r2dΩ2 in R

3). Hence, outside an open set of compact
closure, Σ is diffeomorphic to R

3 minus a ball. It was proved in [11], [12] that
the data is then asymptotically flat (indeed asymptotically Schwarzschild).

4.2. Sub-cubic volume growth and Kasner asymptotic

The goal of this section will be to prove that the asymptotic of any static
black hole data set with sub-cubic volume growth is Kasner different from a
Kasner A or C. Observe that the claim is for the asymptotic of black hole
data sets, and not just that of any end with sub-cubic volume growth.

We aim therefore to prove the following theorem.

Theorem 4.2.1. Let (Σ; g, U) be a static black hole data set with sub-cubic
volume growth. Then the data is asymptotically Kasner, different from a Kas-
ner A or C.

To achieve this we provide first a necessary and sufficient condition for
Kasner asymptotic different from A or C. This is the content of Proposi-
tion 4.2.6 for which we dedicate the whole subsection 4.2.2. In second place,
we analyse the asymptotic of free S1-symmetric static ends (Σ; g, U) under the
natural condition that U(p) ≤ U∞ (recall that U∞, the limit of U at ∞, ex-
ists by Proposition 3.4.6). We dedicate subection 4.2.3 to show Theorem 4.2.7
claiming that, for such a data, either the asymptotic is Kasner different from
A or C, or the whole data is flat and U is constant. The proof requires the
results we have obtained for reduced data sets in Section 3, as well as the de-
velopment of an interesting monotonic quantity along the leaves of the level
sets of U , that in turn will be used again in the proof of Theorem 4.2.1.
Finally, Subsection 4.2.4 uses the results of the previous two subsections to
prove the desired Theorem 4.2.1.
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4.2.1. Preliminaries, Ck-norms on two-tori We prove here a series
of results on the Ck-norm of tensor field on two-tori that will be used in
Section 4.2.2.

We begin recalling the definition of the Ck-norms of a tensor with respect
to a background metric. Let (M ; g) be a smooth Riemannian manifold. Let
W be a smooth tensor of any valence. We denote by |W |g(x) the g-norm of
W at x ∈ M . Given k ≥ 0, the Ck-norm of W with respect to g is defined as

‖W‖2
Ck

g
:= sup

x∈M

{ i=k∑
i=0

|∇(i)W |2g(x)
}

where ∇(i)W = ∇ . . .∇︸ ︷︷ ︸
i-times

W(4.2.1)

Proposition 4.2.2. Let (T ;hF ) be a flat two-torus. Let W be a smooth tensor
field (of any valence), equal to zero at some point. Then for any 0 ≤ j ≤ k
we have

‖W‖Cj
hF

≤ c(kij) diamk−j
hF

(T ) ‖W‖Ck
hF

(4.2.2)

Proof. We will prove the inequality for functions. To prove it for tensors use
the expansion W =

∑
fIωI , where ωI is an orthonormal and parallel basis

(i.e. δII′ =< ωI , ωI′ >g and ∇ωI = 0), and then use the result obtained for
functions.

We will work in (R2; gR2) thought as the universal cover of (T ;hF ). In
particular π∗hF = gR2 where π : R2 → T is the projection. On a Cartesian
coordinate system (x1, x2) we have

gR2 = dx2
1 + dx2

2(4.2.3)

and

‖f‖2
Cj

hF

= ‖f‖2
Cj

g
R2

= sup
x∈R2

{ |I|=j∑
|I|=0

|∂If |2(x)
}

(4.2.4)

where for any multi-index I = (i1, . . . , i|I|), il ∈ {1, 2}, we denote ∂I =
∂xi1

. . . ∂xi|I|
.

We will need to rely on the existence of a coordinate system (x1, x2) on
R

2 on which the metric gR2 is written as

gR2 = dx2
1 + α(dx1dx2 + dx2dx1) + dx2

2,(4.2.5)

where α is a constant such that |α| ≤ 1/2, and where the directions ∂x1

and ∂x2 are periodic of period less than 6diamhF (T ), that is, any line in the
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direction of either ∂x1 or ∂x2 projects into a circle in T of length less that
6diamhF (T ). For the calculations that follow we assume that the coordinates
(x1, x2) are given. We will prove their existence at the end.

Observe that the norm (4.2.4), which is defined with respect to the metric
(4.2.3) and the norm

‖f‖2
Cj

g
R2

= sup
{ |I|=j∑

|I|=0
|∂If |2

}
, ∂I = ∂xi1

. . . ∂xi|I|
,(4.2.6)

which is defined with respect to the metric

gR2 = dx2
1 + dx2

2,(4.2.7)

are equivalent, namely c1(j)‖f‖Cj
g
R2

≤ ‖f‖Cj

g
R2

≤ c2(j)‖f‖Cj
g
R2

. This is proved

by noting that the family of metrics (4.2.5) with |α| ≤ 1/2 is compact. Thus,
to prove (4.2.2) it is enough to prove

‖W‖Cj

g
R2

≤ c(k) diamk−j
hF

(T ) ‖W‖Ck
g
R2

(4.2.8)

Again we prove this for functions. We show it in what follows.
We claim first that for any function ψ which is zero at some point, say

(x0
1, x

0
2), we have

sup
{
|ψ|

}
≤ 12diamhF (T ) sup

{
|∂x1ψ|, |∂x2ψ|

}
(4.2.9)

This is seen by just writing

ψ(x1, x2) =
∫ x1−x0

1

0
∂x1ψ

∣∣∣∣
(x0

1+s,x0
2)
ds +

∫ x2−x0
2

0
∂x2ψ

∣∣∣∣
(x1,x

0
2+s)

ds(4.2.10)

and using that |x1 − x0
1| and |x2 − x0

2| are less or equal than 6diamhF (T ).
We use (4.2.9) to prove (4.2.8). We observe first that, for any ψ and multi-

index I, (|I| ≥ 1), the function ∂Iψ has also a zero. To see this just fix xi,
for all i �= i1 (at any values), and observe that the function ψ as a function
of xi1 is the xi1-derivative of a periodic function. Having the observation at
hand, start with ψ = f and use (4.2.9) repeatedly to obtain (4.2.8).

It remains to show the existence of the coordinates (x1, x2). In the carte-
sian system (x1, x2), the balls B((4diamR2 , 0), diamR2(T )) and B((0, 4diamR2),
diamR2(T )), possess points q1 and q2 projecting (in T ) to the same point as
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the point q0 = (0, 0) does. Define the directions ∂x1 and ∂x1 as, respectively,
those defined by q0, q1 and q0, q2, and finally define the origin of the coordi-
nates (x1, x2) to be (x1, x2) = (0, 0). It is direct to check that the coordinates
(x1, x2) thus constructed enjoy the required properties.

Proposition 4.2.3. Let (T ;h) be a Riemannian two-torus and let p ∈ T .
Then there is a unique flat metric hF , conformally related to h and equal to
h at p. Moreover, for any integer k ≥ 1, and reals K1 > 0 and Kk > 0 there
is D(K1) > 0 (small enough) and C(k,Kk) > 0 such that if

‖κ‖C1
h
≤ K1, ‖κ‖Ck

h
≤ Kk, and diamh(T ) ≤ D(4.2.11)

where κ is the Gaussian curvature, then,

e−ChF ≤ h ≤ eChF(4.2.12)

and

‖h‖Ck
hF

≤ C.(4.2.13)

Proof. We will use that there is D(K1), (small enough), such that if
diamh(T ) ≤ D(K1) then there is a finite cover π : (T̃ ; h̃) → (T ;h), (i.e.
π : T̃ → T and h̃ = π∗h), such that, (i) diamh̃(T̃ ) ≤ 1, and (ii) injh̃(p) ≥
i0(K1) for all p ∈ T̃ . Because (T̃ ; h̃) is a cover of (T ;h) we also have (iii)
‖κ̃‖Ck

h̃
≤ Kk. The claims, (i) and (ii), are well known from the standard the-

ory of diameter-collapse with bounded curvature. In simple terms they follow
easily from the fact that the exponential map exp : TpT → T restricted to
a small ball in TpT is an immersion and then finding an appropriate funda-
mental domain on TpT around p that will define T̃ . We will not discuss this
further, rather we will use it from now on.

The properties (i) and (ii) imply that the geometry of (T̃ ; h̃) is controlled6

in C2 by K1. Moreover if the geometry of (T̃ ; h̃) is controlled in C2 by K1
and (iii) above holds, then the geometry of (T̃ ; h̃) is controlled in Ck+1 by
Kk. This allows us to make standard elliptic analysis in (T̃ ; h̃) as if working
in a fixed manifold.

6To be precise: A geometry is controlled in Ck by K if there is a cover of T̃
by n(K)-harmonic charts, with Lebesgue number δ(K), such that, on each chart
(x1, x2), we have (i) eK

′(K)δij ≤ h̃ij ≤ eK
′(K)δij and (ii) ‖h̃ij‖Ck

δij

≤ K ′(K). See
[9].
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Let φ̃ be the solution to

Δh̃φ̃ = κ̃, with
∫
T̃
φ̃ dAh̃ = 0(4.2.14)

With such φ̃, the conformal metric h̃F = e2φ̃h̃ is flat. Multiply (4.2.14) by φ̃,
integrate and use Cauchy-Schwarz to obtain

∫
T̃
|∇φ̃|2

h̃
dAh̃ ≤

( ∫
T̃
κ̃2 dAh̃

) 1
2
( ∫

T̃
φ̃2 dAh̃

) 1
2(4.2.15)

Now, we can use the Poincaré inequality
∫
T̃
φ̃2 dAh̃ ≤ I(K1)

∫
T̃
|∇φ̃|2 dAh̃(4.2.16)

in the right hand side of (4.2.15) to obtain an upper bound on ‖∇φ̃‖L2
h̃
, (that

I = I(K1) is justified because the geometry of T̃ is controlled in C2). Such
bound can be used in turn again in (4.2.16) to obtain ‖φ̃‖L2

h̃
≤ B1(K1). Using

this L2-bound together with standard elliptic estimates on (4.2.14) we obtain

‖φ̃‖Ck
h̃
≤ B2(k,Kk).(4.2.17)

As k ≥ 1, we deduce

|φ̃| ≤ B2(k,Kk),(4.2.18)

This implies that for a C1(k,Kk) > 0 we have

e−C1 h̃ ≤ h̃F ≤ eC1 h̃(4.2.19)

Moreover the covariant derivative ∂ of h̃F is related to the covariant derivative
∇ of h̃ by

∂A = ∇A + (∇Aφ)hC
B + (∇Bφ)hC

A − (∇Cφ)hAB(4.2.20)

Now (4.2.17), (4.2.19) and (4.2.20) (to compute ∂(j)) imply the bound

‖φ̃‖Ck
h̃F

≤ B3(k,Kk).(4.2.21)

By the uniqueness of solutions to (4.2.14), φ̃ has to coincide with its average by
the Deck-transformations. Hence, φ̃ and h̃F descend respectively to a function
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φ and a flat metric hF . As the bound (4.2.21) is local we also have

‖φ‖Ck
hF

≤ B3(k,Kk).(4.2.22)

Finally define φ = φ−φ(p). With this definition we have h(p) = hF (p). From
the bound |φ| ≤ B2(k,Kk) we obtain the bound |φ| ≤ 2B2(k,Kk) hence
(4.2.12). Also from |φ| ≤ 2B(k,Kk) and (4.2.22) we deduce,

‖φ‖Ck
hF

≤ B4(k,Kk).(4.2.23)

hence (4.2.13).

4.2.2. Necessary and sufficient condition for KA different from A or
C Before passing to the next crucial propositions we make a pair of geomet-
ric observations about the Kasner solutions and introduce some terminology.

On R
+ × R

2 consider a Kasner solution

g = dx2 + x2ady2 + x2bdz2,(4.2.24)
U = c ln x(4.2.25)

and assume that c ∈ (0, 1/2]. Quotient the space by a Z×Z action to obtain
a Kasner solution on R

+ ×T2. For every x let Tx be the two-torus {x}×T2.
Fixed c, there are two possibilities for (a, b), (a−, b−) and (a+, b+) = (b−, a−).
In either case, and because c ∈ (0, 1/2], we have 0 < a < 1, 0 < b < 1. Let

a∗ = max
{
e2/(1−a), e2/(1−b)}(4.2.26)

Observe that, as a + b = 1 we have a∗ ≥ 4. Note that if a ≥ a∗ then

diamga
(Ta) ≤

1
e2 diamg(T1)(4.2.27)

where, recall former notation, ga = g/a2. To see this simply note that

1
a2 (a2ady2 + a2bdz2) = (a2a−2dy2 + a2b−2dz2) ≤ 1

e4 (dz2 + dy2)(4.2.28)

so (4.2.27) holds no matter how we quotient R
2. Thus, the diameter of Ta

with respect to ga, is at least 1/e2 of the diameter of T1 with respect to g.
In the following propositions we will use the notation ρ = |∇U |, ρr =

|∇U |r and λ = 1/ρ, λr = 1/ρr. Also, given 0 < ρ∗ ≤ 1/2 we let

a∗ = max{a∗(c) : c ∈ [ρ∗/4, 1/2]}.(4.2.29)
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The reader must keep this notation in mind.
Terminology: We will also use the following definition. Let W be a tensor

of any valence defined at just one point x of a flat torus (T ;hF ). Then the
hF -extension of W is the tensor field defined by translating W to all T by its
isometry group.

Proposition 4.2.4. Let (Σ; g, U) be a static end, and let γ be a ray emanating
from ∂Σ. Let 0 < ρ∗ ≤ 1/2 and let integers j∗ ≥ 0 and m∗ ≥ 1. Then, there
exist positive constants ε∗, μ∗ ≤ ρ∗/2, r∗, c∗, such that if at a point p ∈ γ with
r = r(p) ≥ r∗ we have,

(a) dGH

((
Ac

r(p; 1/2, 2); dr
)
,
(
[1/2, 2]; | . . . |

))
≤ ε∗, and,

(b) |ρr(p) − ρ∗| ≤ μ∗,

then,

(I) there is a neighbourhood Up of Ac
r(p; 1/(2a∗), 2a∗) foliated by level sets

of U each of which is a two-torus, and,
(II) there is a Kasner space (UK; gK, UK), Z2-quotient of the Kasner,

ŨK = I × R
2, g̃K = dx2 + x2ady2 + x2bdz2, ŨK = d + c ln x

(4.2.30)

(I is some interval) and a smooth diffeomorphism φ : Up → UK = I×T2

such that

φ∗U = UK,(4.2.31)
‖φ∗gr − gK‖

cj
∗

gK

≤ C∗diamm∗

gK

(
φ(Tp)

)
(4.2.32)

where Tp is the level set of U containing p.

Proof. (I) Proceeding by contradiction, assume that for every ε∗i = 1/i,
μ∗
i = 1/i and r∗ = i, with i ≥ i0, there is pi ∈ γ with ri = r(pi) ≥ r∗i

for which (a) and (b) hold but for which the neighbourhood Up with the
desired properties does not exist. But if (a) holds and pi belongs to a ray
then the space (Ac

ri(pi; 1/(2a
∗), 2a∗); dri) necessarily metrically collapses to

a segment of length 2a∗ − 1/(2a∗). Thus there are neighbourhoods Bi of
Ac

r(pi; 1/(2a∗), 2a∗) and covers πi : B̃i → Bi such that (B̃i; g̃ri , Ũi) converges
to a S1 × S1-symmetric data set. The limit data set has non-constant ρ be-
cause by (b) it must be ρ̃ri(pi) → ρ∗ and 0 < ρ∗ ≤ 1/2. Hence the limit space
is a Kasner space different from A and C. Therefore for i large enough the
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level sets of Ũ foliate B̃i and hence Bi. Thus the neighbourhoods Upi with the
desired properties exist for i large enough, which is a contradiction.

It is direct to see from the argumentation above that, after choosing ε∗

smaller if necessary and r∗ bigger if necessary, ρr is uniformly bounded above
and below away from zero; that is, for some 0 < ρ < ρ, the bound 0 < ρ ≤
ρr ≤ ρ holds on Up, for any p ∈ γ with r(p) ≥ r∗ for which (a) and (b) hold. In
the proof of part (II) we will assume that ε∗ and r∗ were chosen accordingly.
As the proof progresses the values of ε∗ and r∗ will be adjusted a few times.

Note that the estimates (3.2.27) of Part I and the uniform bound for ρr
show that for any i ≥ 0, |∇(i)ρr|r is uniformly bounded (without the need
to adjust ε∗ or r∗ for each i). Similarly for any i ≥ 0, |∇(i)λr|r is uniformly
bounded.

Terminology: It is natural then to introduce the following terminology
that will be used throughout the proof of (II) below. Let G be a geometric
quantity defined on each of the neighbourhoods Up (for instance G = λr).
Then G is uniformly bounded if one can find a constant C > 0 such that
G ≤ C holds on Up, for any p with r(p) ≥ r∗ for which (a) and (b) hold.

(II) The construction of the Kasner space and the map φ is done in the
three progressive steps (II)-A, (II)-B and (II)-C below. In (II)-A we define a
map φ from U into a product space I × T2. Then, also in (II)-A, we define a
product metric gF on I×T2 that will be used as a support metric, and prove
its main properties. In (II)-B, we use gF to define a good S1 × S1-symmetric
approximation ğ to φ∗g. Finally in (II)-C we show that (λ̆, ğ) ‘almost’ satisfy
the ODEs defining Kasner metrics that were discussed in Subsection 2.5.3
and make the error explicit. We show that the Kasner solution defined out of
such ODEs with an initial data equal to that of (λ̆, ğ) at an initial slice, gives
the wished Kasner metric gK and UK.

Notation: Throughout this part (II) we will be working on the neighbour-
hoods Up and at the scaled geometry, namely dealing with gr rather than
g. However to prevent a cumbersome notation we will omit the subindex r

everywhere. The reader should be aware of that.
(II)-A. The trivialisation φ and the flat metric gF . Given q ∈ Up

let ζq(U) be the integral curve of the vector field ∇aU , extending throughout
Up and parametrised by U . Then define φ : Up → Tp × I by φ(q) = (Tp ∩
ζq, U(q)). We will be identifying Up with Tp × I via the diffeomorphism φ.

On Tp × I the metric g is written as

g = λ2dU2 + h(4.2.33)
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where λ = 1/ρ and h is the induced metric on the tori TU := Tp ×U . Denote
by D the intrinsic covariant derivative on the TU ’s. As TU(p) will appear often
we will use the simpler notation Tp.

Let hF be the metric on Tp that is conformally related to h|Tp and that
is equal to h at p (Proposition 4.2.3). On Tp × I define

gF = dU2 + hF .(4.2.34)

Around any point q ∈ Tp we can consider coordinates (z1, z2) such that hF =
dz2

1 + dz2
2 . On every patch (z1, z2, U) we have gF = dU2 + dz2

1 + dz2
2 . For this

reason the hF -covariant derivative on the tori TU will be denoted by ∂A or
simply ∂.

We claim that,

(i) e−C0hF ≤ h ≤ eC0hF , where C0 > 0 is uniform,
(ii) for any i ≥ 0 and l ≥ 0, |∂l

U∂
(i)h|hF and |∂l

U∂
(i)λ|hF are uniformly

bounded.

Of course these uniform bounds should be understood to hold at every
point of every TU in Up.

We prove first (i). We start showing that for every i ≥ 0, |Diλ|h, |D(i)Θ|h
and |Diθ|h are uniformly bounded. Let v and w be two unit vectors tangent
to a TU at one point. A normal unit vector to TU is na = λ∇aU . Then we
compute,

Θ(v, w) = 〈∇v(λ∇U), w〉 =
(
λ∇a∇bU + (∇aλ)∇bU

)
vawb(4.2.35)

By the estimates (3.2.27) of Part I, |∇aU |g and |∇a∇bU |g are uniformly
bounded. Similarly, as mentioned in (I), λ and |∇λ|g are uniformly bounded.
Hence |Θ|h is uniformly bounded. For the same reason ∇-derivatives of Θ
are uniformly bounded, and therefore are the D-derivatives because ∇ and
D differ from each other in Θ. These bounds imply the uniform bounds also
for |Diλ|h and |Diθ|h.

Recall that the Gaussian curvature κ of the metric h on a slice TU is given
by

2κ = −|Θ|2 − θ2 − 2
λ2 .(4.2.36)

The previous estimates then show that for every i ≥ 0, |D(i)κ|h is also uni-
formly bounded.
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So far these uniform bounds hold without the need to adjust ε∗ or r∗,
because they are due essentially to the bounds (3.2.27) of Part I and the
uniform bounds for ρ. In the sequel we may need however further adjustment.
Chose then ε∗ sufficiently small such that diamh(Tp) is small enough that we
can use Proposition 4.2.3 on Tp to conclude first that

e−K0hF ≤ h
∣∣
Tp

≤ eK0hF(4.2.37)

where K0 > 0 is uniform and second that for any i ≥ 1, |∂(i)h|Tp |hF is
uniformly bounded.

Now we explain how (i) is a simple consequence of the boundedness of
the second fundamental forms. Recall that

∂Uh = 2λΘ(4.2.38)

As λ is uniformly bounded and as e−K1h ≤ Θ ≤ eK1h at every TU and for
some uniform K1 > 0, we deduce that e−K2h ≤ ∂Uh ≤ eK2h for some uniform
K2 > 0. After integration in U we obtain e−K3h|Tp ≤ h ≤ eK3h|Tp for some
uniform K3 > 0, which is equivalent to e−C0hF ≤ h ≤ eC0hF for a uniform
C0 > 0 because of (4.2.37).

We turn to prove (ii). We have mentioned already that |∇λ|g is uniformly
bounded. Thus, |∂Uλ|(= |ρ2〈∇U,∇λ〉|) is uniformly bounded and so is |∂λ|hF

by (4.2.37). We prove then that |∂Uh|hF and |∂h|hF are uniformly bounded.
The uniform bound for |∂Uh|hF follows directly from the formula (4.2.38), the
uniform bound of λ and of |Θ|h, and (i). Let us turn now to prove the uniform
bound for |∂h|hF . We work in coordinates. We compute

∂U∂ChAB = 2(∂Cλ)ΘAB + 2λ∂CΘAB(4.2.39)

where we can write

∂CΘAB = DCΘAB + ΓM
CAΘMB + ΓM

CBΘAM(4.2.40)

with the Levi-Civita connection ΓC
AB being

ΓC
AB = 1

2{∂AhMB + ∂BhAM − ∂MhAB}hMC(4.2.41)

Hence, relying on the estimates previously obtained we can write

∂U (∂ChAB) = X C′A′B′
CAB (∂C′hA′B′) + YCAB(4.2.42)
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where |X C′A′B′
CAB | and |YCAB| are uniformly bounded. Using this system of

first order ODEs and the uniform bound for |∂h|Tp |hF at the initial slice Tp,
we get directly the desired uniform boundedness of |∂ChAB|.

Proving that for every i ≥ 0 and l ≥ 0, |∂l
U∂

(i)λ|hF and |∂l
U∂

(i)h|hF are
uniformly bounded, is done by the iteration of the same arguments.

(II)-B. A ‘good’ S1 × S1
-symmetric approximation ğ of g. We

explain first how to define ğ and then we explain how well it does approximate
g. Let p0 be a point in Tp where the Gaussian curvature is zero. The choice
of p0 will play some role that we will explain later. Then define

ğ = λ̆2dU2 + h̆(4.2.43)

where λ̆ and h̆ are, at every leaf TU , simply the hF -extensions of λ(ζp0(U))
and h|ζp0 (U) respectively (recall the notion of hF -extension right before the
statement of the proposition). Note, in particular, that h − h̆ and λ − λ̆ are
zero all over ζp0(U).

We prove now that for every i ≥ 0 and l ≥ 0 there is a uniform C > 0
such that

|∂l
U∂

(i)(h− h̆)|hF ≤ Cdiamm∗

hF
(Tp),(4.2.44)

|∂l
U∂

(i)(λ− λ̆)|hF ≤ Cdiamm∗

hF
(Tp)(4.2.45)

Fix i and l. In a coordinate patch (z1, z2, U) around ζp0 = p0×I, (p0 = (0, 0)),
we have

h̆AB(z1, z2, U) = hAB(0, 0, U), λ̆(z1, z2, U) = λ(0, 0, U)(4.2.46)

for all (z1, z2, U). Taking ∂U -derivatives we deduce that for every l′ ≥ 0, also
(∂l′

U h̆)|TU and (∂l′
U λ̆)|TU are the hF -extensions of (∂l′

Uh)|ζp0 (U) and (∂l′
Uλ)|ζp0 (U)

respectively. Therefore ∂l′
U (h − h̆) and ∂l′

U (λ − λ̆) are zero at every point on
ζp0(U). If we prove that in addition for every i′ ≥ 0 and l′ ≥ 0, |∂(i′)∂l′

U (h −
h̆)|hF is uniformly bounded then the Ci+m∗

hF
-norm of ∂l

U (h − h̆) on every TU

would be uniformly bounded. We could then use Proposition 4.2.2 at every
tori TU , (in Proposition 4.2.2 use W = ∂l

U (h− h̆), k = i + m∗ and j = i), to
conclude (4.2.44) and (4.2.45). Let us prove then these bounds.

First, as (∂l′
U h̆)|TU is the hF extension of (∂l′

Uh)|ζp0 (U), then at every point
q in a torus TU we have |∂l′

U h̆|hF (q) = |∂l′
U h̆|hF (ζp0(U)) = |∂l′

Uh|hF (ζp0(U)). But
by (ii), for every l′ ≥ 0, |∂l′

Uh|hF is uniformly bounded, hence |∂l′
U (h− h̆)|hF (≤

|∂l′
Uh|hF + |∂l′

U h̆|hF ), is uniformly bounded.
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In second place, as (∂l′
U h̆)|TU and (∂l′

U λ̆)|TU are the hF -extensions of
(∂l′

Uh)|ζp0 (U) and (∂l′
Uλ)|ζp0 (U) respectively then for any i′ ≥ 1 we have

∂(i′)∂l′
U h̆ = 0 and ∂(i′)∂l′

U λ̆ = 0. Therefore,

∂l
U∂

(i′)(h− h̆) = ∂l
U∂

(i′)h and ∂l
U∂

(i′)(λ− λ̆) = ∂l
U∂

(i′)λ(4.2.47)

By the estimates (i) and (ii) in (I), the hF -norm of the right hand side of
each of these expressions is uniformly bounded. This concludes the proof of
the bounds that we claimed above.

These estimates imply now, for any i ≥ 0 and l ≥ 0, we have

|∂l
U∂

(i)DD(λ− λ̆)|hF ≤ Clidiamm∗

hF
(Tp),(4.2.48)

where the Cli are uniform (use that D = ∂ + Γ). This is the estimate that
will be used in (II)-C.

(II)-C. The Kasner approximation gK of g. In coordinates (z1, z2, U)
the static equations are

∂UhAB = 2λΘAB,(4.2.49)
∂UΘAB = −DADBλ + λ(2κhAB − θΘAB + 2ΘACΘC

B),(4.2.50)

∂U

(√
|h|
λ

)
= 0,(4.2.51)

ΘABΘAB − θ2 = − 2
λ2 − 2κ,(4.2.52)

DAΘAB = DBθ,(4.2.53)

where, as earlier, θ = Θ A
A . The equation (4.2.51) is the same as ΔU = 0 and

is equivalent to

∂Uλ = λ2θ(4.2.54)

We will use this equation instead of (4.2.51).
Evaluating (4.2.49), (4.2.50), (4.2.52), (4.2.54) and (4.2.53) at ζp0(U) and

(4.2.52) at p0 we get,

∂U h̆AB = 2λ̆Θ̆AB,(4.2.55)
∂U Θ̆AB = λ̆(2κh̆AB − θ̆Θ̆AB + 2Θ̆ACΘ̆C

B) + O∞
AB(diamm∗

hF
(Tp)),(4.2.56)

∂U λ̆ = λ̆2θ̆,(4.2.57)



A classification theorem for static vacuum black holes 327

(
Θ̆ABΘ̆AB − θ̆2)∣∣∣∣

p0

= − 2
λ̆2

∣∣∣∣
p0

,(4.2.58)

∂̆AΘ̆AB = ∂B θ̆,(4.2.59)

where κ is defined as

κ =
[
− 1

λ̆2
− 1

2
(
Θ̆ABΘ̆AB − θ̆2)]∣∣∣∣

p0

(4.2.60)

(and is not the Gaussian curvature of h̆ which is zero) and where O∞
AB is

O∞
AB = −DADBλ.(4.2.61)

This notation is to stress that, as was shown in (4.2.48), for any l ≥ 0 we
have

|∂l
UO

∞
AB|hF ≤ Cldiamm∗

hF
(Tp)(4.2.62)

where Cl is uniform.
Consider now the metric

gK = (λK)2dU2 + hK,(4.2.63)

where λK = λK(U) and hK = hK(U) solve

∂Uh
K

AB = 2λKΘK

AB,(4.2.64)
∂UΘK

AB = λK(−θKΘK

AB + 2ΘK

ACΘKC
B ),(4.2.65)

∂Uλ
K = (λK)2θK(4.2.66)

subject to the initial data

hK

AB(0) = h̆AB(0), ΘK

AB(0) = Θ̆AB(0) and λK(0) = λ̆(0).(4.2.67)

Following the discussion in Section 2.5.3, we see that (λK(U), hK(U)) satisfy
(2.5.11), (2.5.12) and (4.2.66) for all U , and (2.5.13) at the initial time, hence
is a Kasner solution. Hence

0 = − 1
(λK)2 − 1

2
(
ΘK

ABΘKAB − (θK)2
)

(4.2.68)
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on each TU . Thus, (4.2.65) is equivalent to

∂UΘK

AB = λK(2κK − θKΘK

AB + 2ΘK

ACΘKC
B ),(4.2.69)

where κK is the right hand side of (4.2.68) and is zero. Therefore, thought as
ODE’s, the system (4.2.55), (4.2.56), (4.2.57) is a perturbation of the system
(4.2.64), (4.2.65), (4.2.66) where the ‘perturbation’ is O∞

AB and should be
thought as depending only on U . Both systems have also the same initial
data. Therefore, using (4.2.61) and standard ODE analysis we obtain

|∂l
U (h̆− hK)|hF ≤ C∗

l diamm∗

hF
(Tp),(4.2.70)

|∂l
U (λ̆− λK)| ≤ C∗

l diamm∗

hF
(Tp)(4.2.71)

for any l ≥ 0, where the C∗
l are uniform. Now note that because ∂(i)hK =

∂(i)h̆ = 0 then for every i ≥ 1 we have

∂l
U∂

(i)(h− hK) = ∂l
U∂

(i)(h− h̆),(4.2.72)
∂l
U∂

(i)(λ− λK) = ∂l
U∂

(i)(λ− λ̆)(4.2.73)

Thus, from (4.2.44) and (4.2.45) we obtain

|∂l
U∂

(i)(h− hK)|hF ≤ C∗
lidiamm∗

hF
(Tp),(4.2.74)

|∂l
U∂

(i)(λ− λK)|hF ≤ C∗
lidiamm∗

hF
(Tp)(4.2.75)

where the C∗
li are uniform.

The estimates (4.2.31) claimed in (II) are equivalent to (4.2.74),(4.2.75).
This finishes the proof of the Proposition.

Proposition 4.2.5. Let (Σ; g, U) be a static end, and let γ be a ray. Let
0 < ρ∗ ≤ 1/2 and let j∗ ≥ 1 and m∗ ≥ 2. Let ε∗, μ∗, r∗, C∗, be as in Propo-
sition 4.2.4. Then, there exist positive δ∗, �∗ and B∗ such that if p is a point
in γ with r = r(p) ≥ r∗ satisfying,

(a) dGH

((
Ac

r(p; 1/2, 2); dr
)
,
(
[1/2, 2]; | . . . |

))
≤ ε∗,

(b) |ρr(p) − ρ∗| ≤ μ∗,
(c) |θr(p) − 1| ≤ δ∗,
(d) diamgK(φ(Tp)) ≤ �∗,

(where Up, (UK; gK, UK) and φ : Up → UK are respectively the neighbour-
hood, the Kasner data and the diffeomoprhisms from (I) and (II) of Proposi-
tion 4.2.4), and p′ is a point in γ with r′ := r(p′) = a∗r, then the following
holds,
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(I) dGH

((
Ac

a∗r(p′; 1/2, 2); da∗r
)
,
(
[1/2, 2]; | . . . |

))
≤ ε∗/2,

(II) diamgK

a∗
(Tp′) ≤ diamgK(Tp)/2,

(III) |θr′(p′) − 1| ≤ B∗diam2
gK(Tp) + |θr(p) − 1|/2,

(IV) |ρr′(p′) − ρr(p)| ≤ B∗diam2
gK(Tp) + |θr(p) − 1|/2.

Proof. Proceeding by contradiction we assume that for each δ∗i = 1/i, �∗i = 1/i
and B∗

i = i, there is pi ∈ γ with r(pi) ≥ r∗ satisfying (a)-(d), and there is
p′i ∈ γ with r′i = r(p′i) = a∗r(pi) such that either (I), (II), (III) or (IV) does
not hold.

We prove now that for i ≥ i0 with i0 large enough, indeed all (I), (II),
(III) and (IV) must hold.

(I) As diamgK

i
(φ(Tpi)) → 0, then the metric distance between (Upi ; gri)

and (Tpi × Ii; gKi
i ) tends to zero as i → ∞ and at the same time the spaces

(Tpi × Ii; gKi
i ) collapse metrically to a segment of length (2a∗ − 1/(2a∗)).

Hence so does (Upi ; gri). As Upi contains Ac
ri(pi; 1/(2a

∗), 2a∗) and therefore
Ac

r′i
(p′i; 1/2, 2), these last annuli metrically collapse to a segment of length

2 − 1/2. Hence (I) must hold for i sufficiently large.
(II) Let ci be the Kasner parameter of the Kasner space Ki. Then by (b),

for sufficiently large i we have ci > ρ∗/4 hence (II) must hold by the definition
(4.2.26) of a∗.

(III) We write

|θr′i(p
′
i) − 1| ≤ |θr′i(p

′
i) − θKi

a∗ (p′i)| + |θKi
a∗ (p′i) − 1|(4.2.76)

where θKi
a∗ (Tp′i

) is the mean curvature of the slice Tp′i
with respect to the Kasner

metric (1/a∗)2gKi , namely θKi
a∗ (Tp′i

) = a∗θKi(Tp′i
). Similarly, as r′i = a∗ri we

have θr′i(p
′
i) = a∗θri(p′i). Therefore for the first term in the right hand side of

(4.2.76) we can write

|θr′i(p
′
i) − θKa∗(p′i)| = a∗|θri(p′i) − θK(p′i)| ≤ C∗

1diam2
hKi

(Tpi)(4.2.77)

where the last inequality is from (II) in Proposition 4.2.5 with m∗ ≥ 2, j∗ ≥ 1.
Write the Kasner metric gKi as

gKi = dx2 + x2aidϕ2
1 + x2bidϕ2

2 = (λKi)2dU2 + hKi(4.2.78)

and let x(pi) = xi and x(p′i) = x′i. Then,

θKi(pi) = 1
xi
, and θKi(p′i) = 1

x′i
(4.2.79)
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and,

x′i − xi =
∫

λKidU(4.2.80)

where the integral is along any integral line of ∇aU .
On the other hand the gri-length of the segment of γ between pi and

p′i, is equal to a∗ − 1. This length is equal, up to an O(diam2
hKi (Tpi)) to the

gri-length of any integral line of ∇aU between Tpi and Tp′i
. So,

a∗ − 1 =
∫

λridU + O(diam2
hKi (Tpi))(4.2.81)

But by Proposition 4.2.4 we have |λri − λKi | ≤ O(diam2
hKi

(Tpi)). Subtract
(4.2.80) and (4.2.81) to get

x′i = xi + (a∗ − 1) + O(diam2
hKi

(Tpi))(4.2.82)

Thus

θKi
a∗ (p′i) = a∗

xi + a∗ − 1 + O(diam2
hKi

(Tpi))
(4.2.83)

Then we calculate

|θKi
a∗ (p′i) − 1| =

∣∣∣∣ xi − 1 + O(diam2
hKi

(Tpi))
xi + a∗ − 1 + O(diam2

hKi
(Tpi))

∣∣∣∣(4.2.84)

≤ 1
2

∣∣∣∣ 1
xi

− 1
∣∣∣∣ + C∗

3diam2
hKi

(Tpi)(4.2.85)

where to obtain the bound we used that xi → 1 and that a∗ ≥ 4 (see definition
of a∗). But

1
xi

= θKi(pi) = θKi(p0i) = θri(p0i)(4.2.86)

where p0i is the point over Tpi that is used in the construction of gKi in (II)-C
in Proposition 4.2.4. But again by Proposition 4.2.4 we have,

|θri(pi) − θri(p0i)| ≤ C∗
4diam2

hKi
(Tpi)(4.2.87)
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and thus
∣∣∣∣ 1
xi

− 1
∣∣∣∣ = |θri(p0i) − 1| ≤ |θri(pi) − 1| + C∗

4diam2
hKi

(Tpi)(4.2.88)

Combining now (4.2.76), (4.2.77), (4.2.84)-(4.2.85) and (4.2.88) we deduce
that (III) also holds for i sufficiently large.

(IV) This follows the same arguments as in (III). Write,

|ρr′i(p
′
i) − ρri(pi)| ≤ |ρr′i(p

′
i) − ρKi

a∗ (p′i)| + |ρKi(pi) − ρri(pi)|(4.2.89)
+ |ρKi

a∗ (p′i) − ρKi(pi)|(4.2.90)

The two terms on the right hand side of (4.2.89) are bounded by
O(diam2

hKi
(Tpi)) by Proposition 4.2.4 with m∗ ≥ 2. On the other hand fol-

lowing notation as in (III), write UKi = ci ln x with ci → ρ∗. Then the term
in (4.2.90) is equal to

∣∣∣∣a∗ cix′i −
ci
xi

∣∣∣∣(4.2.91)

and using (4.2.82) we can easily manipulate this expression to obtain the
bound

|xi − 1|/2 + O(diam2
hKi

(Tpi))(4.2.92)

because a∗ ≥ 4 and ρ∗ > 0. Finally use (4.2.88) to bound this expression once
more and obtain (IV).

Theorem 4.2.6. (A characterisation of KA �= A,C) Let (Σ; g, U) be a static
end. Let γ be a ray and suppose that there is a sequence pi ∈ γ such that
ρri(pi) → ρ∗, with 0 < ρ∗ ≤ 1/2 and that (Ac

ri(pi; 1/2, 2); gri) metrically
collapses to a segment ([1/2, 2]; | . . . |). Then the end is asymptotically Kasner
different from A and C..

Proof. For the ρ∗ given in the hypothesis and for any integers j∗ ≥ 1 and
m∗ ≥ 2 let ε∗, μ∗, r∗ and C∗ be as in Proposition 4.2.4, and let δ∗, �∗ and B∗

be as in Proposition 4.2.5. We begin proving that there are μ∗∗ ≤ μ∗, δ∗∗ ≤ δ∗

and �∗∗ ≤ �∗ such that if for i big enough the point p0 := pi is such that,

(a′) dGH

((
Ac

r(p0; 1/2, 2); dr
)
,
(
[1/2, 2]; | . . . |

))
≤ ε∗,

(b′) |ρr0(p0) − ρ∗| ≤ μ∗∗,
(c′) |θr0(p0) − 1| ≤ δ∗∗,
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(d′) diamh
K0 (φ(Tp0)) ≤ �∗∗,

then for all pn ∈ γ such that rn := r(pn) = (a∗)nr(p0) we have

(a) dGH

((
Ac

rn
(pn; 1/2, 2); drn

)
,
(
[1/2, 2]; | . . . |

))
≤ ε∗,

(b) |ρrn(pn) − ρ∗| ≤ μ∗,
(c) |θrn(pn) − 1| ≤ δ∗,
(d) diamhKn (φ(Tpn)) ≤ �∗2−n.

To choose ε∗∗, δ∗∗ and μ∗∗ we make the following observation. Suppose that
for some μ∗∗ ≤ μ∗, δ∗∗ ≤ δ∗ and �∗∗ ≤ �∗, (a), (b), (c) and (d) hold for pn for
n = 0, 1, 2, 3, . . . ,m ≥ 1. Then, after using the conclusions (I), (II) and (III) in
Proposition 4.2.5 m-times (each time use Prop 4.2.5 with p = pn, p′ = pn+1)
one obtains without difficulty the bounds,

diamhKm (φ(Tpm)) ≤ �∗∗

2m−1 ,(4.2.93)

|θrm(pm) − 1| ≤ mB∗�∗∗

2m−1 + δ∗∗

2m ,(4.2.94)

|ρrn(pn) − ρr0(p0)| ≤
n=m∑
n=1

(
B∗(�∗∗)2

22(n−1) + nB∗�∗∗

2n + δ∗∗

2n+1

)
(4.2.95)

With this information at hand, choose μ∗∗ = μ∗/4, and δ∗∗ ≤ δ∗ and �∗∗ ≤ �∗

such that the right hand side of (4.2.94) is less or equal than δ∗/2 for all
m ≥ 1 and, when in (4.2.95) we consider m = ∞ (i.e. the infinite sum), this
sum is less or equal than μ∗/4. Chosen that way it is then trivial that (a),
(b), (c) and (d) in this theorem indeed hold for all pn, n = 0, 1, 2, 3, . . . ,∞.

Having now (a) and (b) for all pn, we can use Proposition 4.2.4 to conclude
that, for each n,

1. there are neighbourhoods Un, each covering Arn(pn; 1/(2a∗), 2a∗) and
their union covering the end of Σ, and,

2. there are Kasner spaces (UKn ; gKn , UKn), T2-quotients of,

In × R
2, g̃Kn = dx2 + x2andy2 + x2bndy2, ŨKn = dn + cn ln x

(4.2.96)

and,
3. there are diffeomorphisms φn : Un → UKn = In×T 2

n (T 2
n is the quotient

of R2) such that,

φn∗U = UKn ,(4.2.97)
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‖φn∗grn − gKn‖
Cj∗

gKn
(UKn ) ≤ C∗diamm∗(φ∗(Tpn))(4.2.98)

What we have so far is close to the Definition 2.1.6 of Kasner asymptotic,
except that we still need one single Kasner space and one global map φ. Its
construction is what we do next.

We will work with the ‘un-scaled’ metrics defined by,

ĝKn := (rn)2gKn = g
Kn

1/rn ,(4.2.99)

and leave UKn = U unchanged. Thus, we will work with the data sets,
(UKn ; ĝKn , UKn).

From the construction of the trivialisations φ in step (II)-A of Proposi-
tion 4.2.4, we obtain that the transition functions,

φn−1 ◦ φ−1
n : φn(Un−1 ∩ Un)(⊂ UKn) → φn−1(Un−1 ∩ Un)(⊂ UKn−1)

(4.2.100)

are defined by just one map ψn−1,n : T 2
n → T 2

n−1, namely, there is ψn−1,n such
that if

φn−1 ◦ φ−1
n ((xn, tn)) = (xn−1, tn−1)(4.2.101)

where xn−1 ∈ In−1, tn−1 ∈ T 2
n−1, xn ∈ In and tn ∈ T 2

n , then

tn−1 = ψn−1,n(tn).(4.2.102)

We can use this fact to extend the Kasner data (UKn ; ĝKn , UKn) to a Kasner
data on UKn ∪# UKn−1 where # means we use the identification φn−1 ◦ φ−1

n .
The extension is performed as follows. Instead of the coordinate x we use
U . So, on UKn−1 , U ranges between Un−1

1 , and Un−1
2 , and on UKn , U ranges

between Un
1 and Un

2 . Now, extend ĝKn given by (4.2.99) from [Un
1 , U

n
2 ] × T 2

n

to [Un−1
1 , Un

2 ] × T 2
n in the obvious way (by using in (4.2.96) use U instead of

x), and then identify [Un−1
1 , Un−1

2 ]× T 2
n to [Un−1

1 , Un−1
2 ]× T 2

n−1 by (U, tn) →
(U, ψn−1,n(tn)). In this way we can extend uniquely ĝKn , from UKn , to UKn−1 ,
then to UKn−2 and so on until, say, UKn0 . Thus we have a Kasner data,

(UKn0 ∪# . . . ∪# UKn ; ĝKn , U)(4.2.103)

and we can use the map,

φ : Un0 ∪ . . . ∪ Un → UKn0 ∪# . . . ∪# UKn(4.2.104)
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defined by,

φ(p) = φj(p), if p ∈ Uj(4.2.105)

to translate it back to a Kasner data on Un0 ∪ . . . ∪ Un. It is important to
keep in mind in the following that, for each n, the metrics φ∗ĝKn are defined
indeed on Un0 ∪ . . .∪Un. The point now is that, as was mentioned earlier, one
can take a convergent subsequence of the metrics ĝKn , and that will define
the Kasner metric we were looking for. We pass to explain the calculations
justifying the convergence.

We observe the following inequalities for any n0 < i < n,

‖ĝKi − ĝKn‖
Cj∗

ĝ
Ki

(UKi )

≤ ‖ĝKi − ĝKi+1‖
Cj∗

ĝ
Ki

(UKi ) + ‖ĝKi+1 − ĝKn‖
Cj∗

ĝ
Ki

(UKi )(4.2.106)

‖ĝKi − ĝKi+1‖
Cj∗

ĝ
Ki

(UKi ) ≤ c0‖ĝKi − ĝKi+1‖
Cj∗

ĝ
Ki

(UKi∩#UKi+1 )(4.2.107)

‖ĝKi − ĝKi+1‖
Cj∗

ĝ
Ki

(UKi∩#UKi+1 ) ≤
c1

2im∗(4.2.108)

‖ĝKi+1 − ĝKn‖
Cj∗

ĝ
Ki

(UKi ) ≤ c2‖ĝKi+1 − ĝKn‖
Cj∗

ĝ
Ki+1

(UKi+1 )(4.2.109)

Briefly: The inequality (4.2.106) is the triangle inequality. The inequality
(4.2.108) follows by first adding and subtracting φi∗g inside the norm, then
use the triangle inequality and finally use (4.2.98) after noting that scaling
the metric by (rn)2 decreases the norm (observe that (4.2.98 involves scaled
metrics). The inequalities (4.2.107) and (4.2.109) follow by noting that, be-
cause Kasner metrics are determined by an ODE, the norms on the right or
the left hand sides are controlled by the Cj-norms at just one level set of U
i.e. just one torus. The constant c0 and c2 are independent on n and m∗, and
c1 is independent on n but may depend on j∗ and m∗.

Putting all together we have the following recursive inequality,

‖ĝKi − ĝKn‖
Cj∗

ĝ
Ki

(UKi ) ≤
c4

2im∗ + c2‖ĝKi+1 − ĝKn‖
Cj∗

ĝ
Ki+1

(UKi+1 )(4.2.110)

from which we deduce,

‖ĝKi − ĝKn‖
Cj∗

ĝ
Ki

(UKi ) ≤
c4

2im∗ + c4c2
2(i+1)m∗ + c4c

2
2

2(i+2)m∗ + . . . + c4c
n−i
2

2(i+n−i)m∗

(4.2.111)
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= c4
2im∗

l=n−i∑
l=0

(
c2

2m∗

)l

(4.2.112)

Playing with the fact that c2 does not depend on m∗, we take m such that
2m∗

> c2, thus making the series
∑l=∞

l=0
(

c2
2m∗

)l convergent. The work is essen-
tially done. Using this bound we let n → ∞ and we can take a subsequence
of the metrics ĝKn convergent in Cj∗−1

ĝKi
(UKi) for every i > n0.

Say the limit is ĝK∞ . Then we have the bounds,

‖ĝKi − ĝK∞‖
Cj∗−1

ĝ
Ki

(UKi ) ≤
c5

2im∗(4.2.113)

for every i > n0. Making 2 = a
ln 2/ ln a∗
∗ we get 2im∗ = a

i(m∗ ln 2/ ln a∗)
∗ and

recalling that rn = r(pn) = an∗r(p0) we get without difficulty,

‖g− φ∗ĝK∞‖
Cj∗

g
(p) ≤ cm∗,j∗

(dg(p, ∂Σ))m∗(ln 2/ ln a∗)(4.2.114)

Playing with the freedom in j∗ and m∗ and passing back to the variables
(g,N), KA is obtained as wished.

4.2.3. The asymptotic of free S1-symmetric data sets Free S1-sym-
metric ends have a well defined limit of U at infinity that we denoted by U∞
(Proposition 3.4.6). In this section we study free S1-symmetric ends with the
property that,

U(p) ≤ U∞(4.2.115)

for all p. We aim to prove the following theorem.

Theorem 4.2.7. Let (Σ; g, U) be a free S1-symmetric static end such that
U(p) ≤ U∞ for all p ∈ Σ. Then, either the data set is flat and U is constant,
or is asymptotic to a Kasner different from A and C.

Suppose (Σ; g, U) is a data set as in the last proposition. If U(p) = U∞
at some p ∈ Σ◦ then U is constant by the maximum principle and the data
set is flat. Due to this, from now on we are concerned with the case when
U < U∞.

A large part of the proof of Theorem 4.2.7 is indeed quite general and
is valid too for a class of data sets that will show up again crucially in the
next section. They are the �-static ends that we define below (the ‘�” is just
a notation).
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The level sets of U will be denoted as follows,

U−1
∗ = {p ∈ Σ : U(p) = U∗}(4.2.116)

For instance U−1
1 = {p ∈ Σ : U(p) = U1} and so forth. As for the critical and

regular values of U , it follows from Theorem 1 in [15] that the set of critical
values of U is discrete. We will use this information below. Besides of this,
the critical set {|∇U | = 0} is well understood but this won’t be necessary
here, (see [1]).
Definition 4.2.8 (�-static end). Let (Σ; g, U) be a (non-necessarily free S1-
symmetric) static end. Then, we say that (Σ; g, U) is a �-static end iff

1. the limit of U at infinity exists (denote it by U∞ ≤ ∞),
2. U < U∞ everywhere,
3. there is a regular value U0 of U , with U0 > sup{U(p) : p ∈ ∂S}, such

that for any regular value U1 ≥ U0, U−1
1 is a compact and connected

surface of genus greater than zero.

Note that condition 2 implies that �-ends are non-flat. It is also easy to
see that any two regular values U2 > U1 greater or equal than U0, enclose a
compact region Ω12, that is ∂Ω12 = U−1

1 ∪ U−1
2 .

The proof of Theorem 4.2.7 follows from the next three propositions.
Proposition 4.2.9. Let (Σ; g, U) be a free S1-symmetric static end such that
U(p) < U∞ for all p. Then (Σ; g, U) is a �-static end and has a simple cut
{Sj}.
Proposition 4.2.10. Let (Σ; g, U) be a static free S1-symmetric end such
that U(p) < U∞ for all p. Then the end is asymptotic to a Kasner different
from A and C, or has sub-quadratic curvature decay.
Proposition 4.2.11. Let (Σ; g, U) be a �-static end and let γ be a ray. Sup-
pose that the data set has a simple cut {Si}. Then the curvature does not
decay sub-quadratically along γ ∪ (∪jSj).
Proof of Theorem 4.2.7. Direct from Propositions 4.2.9, 4.2.10 and 4.2.11.

Propositions 4.2.9 and 4.2.10 concern only free S1-symmetric ends and
are simple to prove.

Proof of Proposition 4.2.9. We need to show only 2 of Definition 4.2.8, items
1 and 3 are verified by hypothesis. Without loss of generality we can as-
sume that the quotient manifold S is diffeomorphic to S1 × [0,∞) (Propo-
sitions 3.4.2, 3.4.4). We work on (S; q, U, V ) in particular we think U as a
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function from S into R. Clearly there is a regular value U0 such that for any
regular value U1 ≥ U0, U−1

1 is compact, that is, a collection of circles. None
of such circles can be contractible otherwise we would violate the maximum
principle. But if there are two such circles, then they enclose a compact man-
ifold (a finite cylinder) hence the maximum principle would be also violated.
Therefore U−1

1 is just diffeomorphic to S1. Now thinking U as a function
from Σ to R, we have that U−1

1 is diffeomorphic to a torus, hence of genus
greater than zero. The existence of a simple cut {Si} was shown in Proposi-
tion 3.4.5.

Proof of Proposition 4.2.10. We work on (S; q, U, V ). Let μ := limA(B(∂S,
r))/r2. If μ > 0 then (S; q) is asymptotic to a two-dimensional cone. Hence
κ decays sub-quadratically and therefore so does |∇U |2 by (3.1.9). Suppose
now that μ = 0. Let γ be a ray from ∂S. If μ = 0 then any sequence of
annuli (Ac

ri(pi; 1/2, 2); qri), with pi ∈ γ, metrically collapses to the segment
[1/2, 2]. For this reason, if |∇U |2 decays sub-quadratically along any sequence
pi ∈ γ then indeed |∇U |2 decays sub-quadratically along the end. On the
other hand if for a certain sequence pi, |∇U |2ri(pi) ≥ ρ∗ > 0 (ρ∗ a given
constant), then the end (Σ; g, U) is indeed asymptotic to a Kasner different
from A and C by Proposition 4.2.6. (There is a caveat here. Proposition 4.2.6
requires that for i large enough, the annulus (Ari(pi; 1/2, 2); gri) (annulus
in Σ) to be metrically close to the segment [1/2, 2]. For i large enough the
annulus (Ari(pi; 1/2, 2); qri) (annulus in S) is close to the segment [1/2, 2],
then, if necessary, just make a scaling as in (3.1.8), with λi = 1, μi = 0 and
with νi small enough that also the annulus (Ari(pi; 1/2, 2); gri) is close to
[1/2, 2]. Note that such scaling only changes the g-length of the S1-fibers in
Σ and so doesn’t affect the norm |∇U |2).

The proof of Proposition 4.2.11 will be carried out through several steps
(Proposition 4.2.12, 4.2.13, 4.2.14, Corollary 4.2.15, and Proposition 4.2.16).

Proposition 4.2.12. Let (Σ; g, U) be a �-static end. Let U0 be a regular
value as in Definition 4.2.8 and consider another regular value U1 ≥ U0.
Then, the set of points in U−1

0 reaching U−1
1 in time U1 − U0 under the flow

of ∂U = ∇iU/|∇U | is a set of total measure on U−1
0 and its image under the

flow is a set of total measure in U−1
1 .

Proof. Denote by Ω01 the manifold enclosed by U−1
0 and U−1

1 . Let C = {p :
∇U(p) = 0} ∩ Ω01 be the set of critical points in Ω◦

01. The closed set of
points C (note the font) in U−1

0 that do not reach U−1
1 in time U1 −U0 under

the flow of ∂U = ∇iU/|∇U |2, end in a smaller time at a point in C. Let
φ(x, t) : C × [0,∞) → Ω01 be the map generated by the flow of the vector
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field ∇iU , (not the collinear field ∂U ), that is, that takes a point x in C and
moves it a time t by the flow of ∇iU (note that indeed if x ∈ C, then the orbit
under the flow of ∇iU remains in Ω01 and is defined for all time). Suppose
that the area of C is positive. Then the set

C1 = {φ(x, t) : x ∈ C, 0 ≤ t ≤ 1}(4.2.117)

has positive volume V (C1). But as U is harmonic the flow of ∇iU preserves
volume and so we have V (φ(C1, t)) = V (φ(C1, 0)) for all t ≥ 0. Let ε > 0 be
small enough that

V (B(C, ε) \ C) < V (C1)/2(4.2.118)

where B(C, ε) is the ball of points at a distance less than epsilon from C.
Then a contradiction is reached by choosing t large enough that φ(C1, t) ⊂
B(C, ε) \ C because then it would be

V (C1) = V (φ(C1, t)) ≤ V (B(C, ε) \ C) < V (C1)/2(4.2.119)

To show that the image of U−1
0 \ C under the flow of ∂U is a set of total

measure in U−1
1 just reverse the argument using the flow of −∂U from U−1

1
to U−1

0 .

The following function of the level sets of U , (U ≥ U0), will be central in
the analysis later,

G(U) :=
∫
U−1

|∇U |2dA(4.2.120)

The function G(U) is well defined at least for regular values of U . It is also
well defined at the critical values but this won’t be needed. As mentioned
before Definition 4.2.8, critical values of U are discrete and, as we will show
next, the lateral limits of G(U) at any critical value Uc coincide (and are
finite). Let us see this property. Let U2 > U1 be any two regular values
with U2 > Uc > U1 ≥ U0 and let Ω12 be the region enclosed them. As in
Proposition 4.2.12 let C be the closed set of points in U−1

1 that do not reach
U−1

2 in time U2 − U1 under the flow of ∂U . For any ε > 0 small enough let
R(ε) be an open region in U−1

1 , with smooth boundary, containing C, and
inside the ball B(C, ε). Let C1(ε) = U−1

1 \ R(ε). Let Ω12(ε) be the union of
the set of integral curves (inside Ω12) of ∂U starting from points in C1(ε) and
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ending in U−1
2 , and let C2(ε) be the union of the end-points in U−1

2 of these
integral curves. Then the divergence theorem gives

∫
C1(ε)

|∇U |2dA−
∫
C2(ε)

|∇U |2dA =
∫

Ω12(ε)
〈∇∇U,

∇U

|∇U |∇U〉dV(4.2.121)

Take the limit ε → 0 and use Proposition 4.2.12 to deduce,

G(U2) −G(U1) =
∫

Ω′
12

〈∇∇U,
∇U

|∇U |∇U〉dV(4.2.122)

where Ω′
12 is the union of the set of integral curves of ∂U starting from points

in U−1
1 \ C and ending in U−1

2 and is equal to Ω′
12 minus a set of measure

zero. Observe that the integrand is bounded. Take finally the limit U1 ↑ Uc

and U2 ↓ Uc and note that the volume of Ω12 tends to zero (this is easy to
see) to get

lim
U1↑Uc

G(U) = lim
U2↓Uc

G(U)(4.2.123)

as claimed.
The function G(U) will be thought as defined for all U ≥ U0, continuous

everywhere and differentiable except perhaps on a discrete set (the critical
values of U). The continuity will be used implicitly several times in what
follows.

Proposition 4.2.13. Let (Σ; g, U) be a �-static end. Let U0 be a regular value
as in Definition 4.2.8. Then for any two regular values U2 > U1 ≥ U0 we have,

G′(U2) ≥ G′(U1)(4.2.124)

where G′ = dG/dU .

Proof. Let U∗ be a regular value. Identify nearby level sets U−1 to U−1
∗

through the flow of ∂U := ∇iU/|∇U |2 = n/|∇U | where n is the unit normal
to U−1. As U is harmonic, the form |∇U |dA is preserved. Abusing notation
we write |∇U |dA = |∇U∗|dA∗. Thus,

G(U) =
∫
U−1

|∇U ||∇U∗|dA∗(4.2.125)

Therefore

G′(U) =
∫
U−1

(∇n|∇U |) |∇U∗|
|∇U | dA∗ =

∫
U−1

∇n|∇U |dA(4.2.126)
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Let Ω12 be the region enclosed by U−1
1 and U−1

2 . Now let ε2 > 0 be a regular
value of |∇U |2 smaller than the minimum of |∇U |2 over U−1

1 and U−1
2 . Let

E = {p ∈ Ω12 : |∇U |(p) ≤ ε}. The divergence theorem gives us
∫
U−1

2

∇n|∇U |dA =
∫
U−1

1

∇n|∇U |dA +
∫

Ω12\E◦
Δ|∇U |dV +

∫
∂E

∇nout |∇U |dA

(4.2.127)

The last term on the right hand side is positive, and the second from last is
non-negative because Δ|∇U | ≥ 0 (use Bochner or just see [2] Lemma 3.5).
The proposition follows.

Proposition 4.2.14. Let (Σ; g, U) be a �-static end. Let U0 be a regular value
as in Definition 4.2.8. Then, for any two regular values U2 ≥ U1 ≥ U0, we
have

(
G′

G

)
(U2) ≥

(
G′

G

)
(U1)(4.2.128)

where G′ = dG/dU .

Proof. First, recall that the set of critical values of U is discrete. We start
proving that for any two regular values U2 > U1 with no critical value in
between, the inequality (4.2.128) holds.

We write

g = 1
|∇U |2 dU

2 + h(4.2.129)

where h is a two-metric over the leaves U−1 between U−1
1 and U−1

2 . Denote
with a prime (′) the derivative with respect to ∂U = ∇iU/|∇U |2. We will use
again the notation λ := 1/|∇U |. Let Θ and θ be the second fundamental form
and mean curvature respectively of the leaves U−1.

Fix a leaf U−1
∗ . Identify the leaves U−1 to U−1

∗ through the flow of ∂U . As
U is harmonic we have |∇U |dA = |∇U∗|dA∗. Hence

G =
∫
U−1

|∇U |2dA =
∫
U−1

1
λ
|∇U∗|dA∗.(4.2.130)

As dA = λ|∇U∗|dA∗ and θ = (∂ndA)/dA we deduce θ = −(1/λ)′. Thus,

G′ = −
∫
U−1

θ|∇U∗|dA∗(4.2.131)
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G′′ = −
∫
U−1

θ′|∇U∗|dA∗ = −
∫
U−1

θ′

λ
dA(4.2.132)

We use now that in dimension three θ′ has the standard expression,

θ′ = −Δλ− (−2κ + trhRic + θ2)λ(4.2.133)

to deduce,

G′′ = −4πχ +
∫
U1

( |∇λ|2
λ2 + trhRic

)
dA +

∫
U−1

θ2dA(4.2.134)

where χ is the Euler characteristic of the leaves U−1. On the right hand side
of this expression the first two terms are non-negative. For the last term we
have

∫
U−1

θ2dA =
∫
U−1

θ2λ|∇U∗|dA∗ ≥

( ∫
U−1 θ|∇U∗|dA∗

)2

∫
U−1

1
λ |∇U∗|dA∗

= G′2

G
(4.2.135)

Therefore,

G′′ ≥ G′2

G
(4.2.136)

which is equivalent to (G′/G)′ ≥ 0 from which (4.2.128) follows.
We prove now that (4.2.128) also holds when U2 > U1 are two regular

values, and between them there is only one critical value Uc. This would
complete the proof of the proposition. To see this we just compute,

(
G′

G

)
(U2) ≥ lim

U→U+
c

(
G′

G

)
(U) =

( limU→U+
c
G′(U)

G(Uc)

)
(4.2.137)

≥
( limU→U−

c
G′(U)

G(Uc)

)
= lim

U→U−
c

(
G′

G

)
(U)(4.2.138)

≥
(
G′

G

)
(U1)(4.2.139)

where to pass from (4.2.137) to (4.2.138) we use Proposition 4.2.13 (note
G(U) > 0 for all U).
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Corollary 4.2.15. Let (Σ; g, U) be a �-static end. Then, there is a divergent
sequence of points pi, and constants C > 0 and D > 0 such that

|∇eCU |(pi) ≥ D(4.2.140)

Proof. From Proposition 4.2.14 we get

G(U) ≥ G(U0)e−C(U−U0)(4.2.141)

where C = −G′(U0)/G(U0). If C ≤ 0 then G(U) ≥ G(U0). But

G(U) =
∫
U−1

|∇U ||∇U0|dA0(4.2.142)

which has a fixed integration measure |∇U0|dA0. It follows that there must
be a divergent sequence of points pi for which |∇U |(pi) is bounded away from
zero (which is not the case). Thus C > 0. In this case we have

G(U)eCU ≥ G(U0)eCU0 > 0.(4.2.143)

But as

G(U)eCU =
∫
U−1

1
C
|∇eCU ||∇U0|dA0(4.2.144)

again we conclude that there must be a divergent sequence of points pi and
a constant D > 0 for which (4.2.140) holds.

Proposition 4.2.16. Let (Σ; g, U) be a �-static end and let γ be a ray. Sup-
pose that the data set has a simple cut {Si} and that the curvature decays
sub-quadratically along γ ∪ (∪jSj). Then, for any constant C > 0, |∇eCU |
tends to zero at infinity.
Proof. Let γ(s) be a ray from ∂Σ and parametrised by arc-length s, (i.e.
d(γ(s), ∂Σ) = s). As we have done before, we will use the notation r(p) =
d(p, ∂Σ), for p ∈ Σ. Thus r(γ(s)) = s.

As |∇U |2 decays faster than quadratically along γ we have,

r|∇U |(r) → 0 as r → ∞,(4.2.145)

where we have denoted |∇U |(γ(r)) by |∇U |(r). Let r0 be such that for all
r ≥ r0 we have |∇U |(r) ≤ 1/(2Cr). Integrating we obtain

|U(r) − U(r0)| ≤
1

2C ln r

r0
(4.2.146)
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where to simplify notation we made U(r) := U(γ(r)). Thus,

eCU(r) ≤ c1r
1/2(4.2.147)

We will use this inequality below.
The ray γ intersects Sj and Sj+1. So let αj,j+1 be the segment of γ inter-

secting Sj and Sj+1 only at its end points. Let rj be the number such that
γ(rj) is the end point of αj,j+1 in Sj . The connected set

Zj = Sj ∪ αj,j+1 ∪ Sj+1(4.2.148)

is included inside A(21+2j , 24+2j). So by Proposition 2.3.2 (with Z = Zj) we
deduce,

U(q) ≤ η + U(γ(rj))(4.2.149)

for any q in Sj ∪ Sj+1, and where η does not depend on j.
Let Uj,j+1 be the compact manifold enclosed by Sj and Sj+1. By the

maximum principle, the maximum of U on Uj,j+1 takes place at a point, say
xj , in Sj ∪ Sj+1. So,

U(x) ≤ U(xj)(4.2.150)

for any x ∈ Uj,j+1. Combining this with (4.2.149), with q = xj , we obtain,

eCU(x) ≤ c2e
CU(γ(rj))(4.2.151)

for any x ∈ Uj,j+1 and where the constant c2 does not depend on j.
Now, Sj is included in A(21+2j , 22+2j) and so we have,

rj ≤ 22+2j(4.2.152)

which plugged in (4.2.147) gives

eCU(γ(rj)) ≤ c121+j(4.2.153)

Combining this bound and (4.2.151) we deduce

eCU(x) ≤ c42j(4.2.154)

for any x ∈ Uj,j+1 and where c4 does not depend on j.
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On the other hand we also have Δ|∇U |2 ≥ 0 and thus the maximum of
|∇U |2 over Uj,j+1 is reached again at Sj ∪ Sj+1. From this fact we conclude
that for every point x ∈ Uj,j+1 it must be,

|∇U |(x) ≤ max{|∇U |(q) : q ∈ Sj ∪ Sj+1} ≤ c5
22j(4.2.155)

where the constant c5 does not depend on j and where to obtain the last
inequality it was used that |∇U |(q) ≤ K/r(q) (Anderson’s estimate) and the
bound r(q) ≥ 21+2j for any q ∈ Sj ∪ Sj+1 because Sj ∪ Sj+1 is included in
A(21+2j , 24+2j).

Let pj be any divergent sequence such that pj ∈ Uj,j+1 for each j. Then,
using (4.2.154) and (4.2.155) we reach,

|∇eCU |(pj) = CeCU(pj)|∇U |(pj) ≤
c6
2j(4.2.156)

where c6 does not depend on j. Thus |∇eCU |(pj) tends to zero as j goes to
infinity. As the sequence pj is arbitrary we have proved the proposition.

4.2.4. Proof of the KA of static black hole ends In this section we
aim to prove finally Theorem 4.2.1 stating that a static black hole data set
with sub-cubic volume growth is indeed AK.

Terminology. Let Σ be the manifold of a static black hole data. An em-
bedded connected surface S is disconnecting if Σ \ S has two connected com-
ponents one of which contains ∂Σ and the other infinity. The closure of the
component of Σ \ S containing ∂Σ is denoted by Ω(∂Σ,S). For instance, the
surfaces Sj of a simple cut are disconnecting.

For any disconnecting surface S on a static black hole data we have,

max{U(p) : p ∈ Ω(∂Σ, S)} = max{U(p) : p ∈ S}(4.2.157)

by the maximum principle. We will use this simple fact in the proof of the
next proposition.
Proposition 4.2.17. Let (Σ; g, U) be a static black hole end with sub-cubic
volume growth. Let γ be a ray and let {Sj} be a simple cut. Then the end is
either asymptotically Kasner different from A and C or the curvature decays
sub-quadratically along the set γ ∪ (∪jSj).
Proof. Suppose that there is a sequence of points pn ∈ γ ∪ (∪jSj) such that
for some ρ∗ > 0,

|∇U |rn(pn) ≥ ρ∗(4.2.158)
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If a subsequence of the annuli (Ac
rn(pn, 1/2, 2); grn) collapses to a segment

then γ must pass through the annuli Ac
rn(pn, 1/2, 2) and the end must be

asymptotically Kasner by Theorem 4.2.6. If no subsequence of these annuli
metrically collapses to a segment then one can find a subsequence (also in-
dexed by n) and neighbourhoods Bn of Ac

rn(pn, 1/2, 2) such that (Bn; grn)
collapses to a two-dimensional orbifold. Having this, by a diagonal argument,
one can find a subsequence of it (also indexed by n) and neighbourhoods
Bkn of Ac

rn(pn; 1/2, 2kn), with kn → ∞, and collapsing to a two-dimensional
orbifold (S∞; q∞). As the collapse is along S1-fibers (hence defining asymp-
totically a symmetry), we obtain, in the limit, a well defined reduced data
(S; q, Ū , V ) where U is obtained as the limit of Un := U − U(pn). This data
has |∇U |q ��= 0 by (4.2.158) and therefore is non flat. Moreover it has at least
one end containing a limit, say γ, of the ray γ. Let us denote that end by Sγ .

As observed in subsection 3.5 the limit orbifold has only a finite number
of conic points, therefore the basic structure of the asymptotic of the reduced
data on the end Sγ is described by Propositions 3.4.1, 3.4.2, 3.4.3 and 3.4.4.
Furthermore U has a limit value U∞ ≤ ∞ at infinity by Proposition 3.4.6.

We claim that we must have U ≤ U∞. Let us see this. Assume U∞ < ∞
otherwise there is nothing to prove. Let jn be an integer such that jn ≤ rn =
r(pn) ≤ jn+1. As γ intersects all the surfaces Sj , then fixed an integer k ≥ 1,
the surfaces Sjn+k ‘collapse into sets’ in Sγ as n → ∞. The bigger k is, the
farther away the sets ‘collapse’. As U → U∞ over the end Sγ then one can
find a sequence kn → ∞ such that Un converges to U∞ (as n → ∞) when
restricted to the surfaces Sjn+kn . Then, by (4.2.157), we have

max{Un(p) : p ∈ Ω(∂Σ, Sjn+kn)} = max{Un(p) : p ∈ Sjn+kn} → U∞

(4.2.159)

and the claim follows because if U(q) ≥ U∞ + ε for some ε > 0 and for
some q ∈ Sγ then there is a sequence of points qn ∈ Ω(∂Σ, Sjn+kn) with
Un(qn) > U∞ + ε/2 if n ≥ n0, that would eventually violate (4.2.159).

As (Sγ ; q, U, V ) is non-flat then it has to be AK different from the Kasner
A and C by Proposition 4.2.7. Therefore one can find a sequence kn such that
the annuli

(Ac(γ(rn2kn); rn2kn−1, rn2kn+1); grn2kn ),(4.2.160)

neighbouring the points γ(rn2kn), collapse to a segment [1/2, 2] while having

|∇U |grn2kn
(γ(rn2kn)) ≥ ρ∗∗(4.2.161)
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for some ρ∗∗ > 0. Then the end must be asymptotically Kasner by Theo-
rem 4.2.6. We reach thus a contradiction. Hence, the curvature decays sub-
quadratically along the set γ ∪ (∪jSj).

Corollary 4.2.18. Let (Σ; g, U) be a static black hole data set with sub-cubic
volume growth that is not AK. Then

(max{U(p) : p ∈ Sj ∪ Sj+1} − min{U(p) : p ∈ Sj ∪ Sj+1}) → 0(4.2.162)

where {Sj} is a simple cut.
Proof. If the data is not AK, then we deduce by Proposition 4.2.17 that for
any sequence of points pj ∈ Sj we have

|∇U |rj (pj) → 0,(4.2.163)

where rj = r(pj) as usual. Now, if pj ∈ Sj then 21+2j ≤ rj ≤ 24+2j , thus
(4.2.163) implies right away that,

max{|∇U |r̂j (q) : q ∈ Sj−1 ∪ Sj+2} → 0,(4.2.164)

as j → ∞, where we made r̂j = 22j . Now, as the maximum of |∇U |r̂j on
Uj−1,j+2 is reached at Sj−1 ∪ Sj+2 we conclude that,

max{|∇U |r̂j (q) : q ∈ Uj−1,j+2} → 0(4.2.165)

as j → ∞. Observe that because Sj and Sj+1 are intersected by any ray
γ ({Sj} is a simple cut), they belong to the same connected component of
A(21+2j , 24+2j) = Ar̂j (2, 4). Denote that component by Ac

r̂j
(2, 4). We have,

Sj ∪ Sj+1 ⊂ Ac
r̂j (2, 4) ⊂ Ac

r̂j (1/2, 2
6) ⊂ Uj−1,j+2(4.2.166)

and remember that by (4.2.165) the maximum of |∇U |r̂j over Ac
r̂j

(1/2, 26)
tends to zero. So (4.2.162) is exactly item 2 in Proposition 2.3.2 with a = 2,
b = 4 and Zj = Sj ∪ Sj+1.

Proposition 4.2.19. Let (Σ; g, U) be a static black hole data set with sub-
cubic volume growth. Then U tends uniformly to a constant U∞ ≤ ∞ at
infinity.
Proof. The claim is obviously true if the end is AK. Let us assume then that
the end is not AK. Let {Sj} be a simple cut and γ a ray. By Corollary 4.2.18
we have,

(max{U(p) : p ∈ Sj ∪ Sj+1} − min{U(p) : p ∈ Sj ∪ Sj+1}) → 0(4.2.167)
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And by the maximum principle,

max{U(p) : p ∈ Sj ∪ Sj+1} ≥ max{U(p) : p ∈ Uj,j+1} ≥
(4.2.168)

≥ min{U(p) : p ∈ Uj,j+1} ≥ min{U(p) : p ∈ Sj ∪ Sj+1}(4.2.169)

Therefore the function U is becoming more and more constant over the man-
ifolds Uj,j+1 enclosed by Sj and Sj+1. A simple application of this fact is that
if there is a sequence of manifolds Uji,ji+1 over which U tends to infinity then
U must tend to infinity over any other sequence Uj′i,j

′
i+1, as if not then for

some i1 < i2 the minimum of U over the manifold Uji1 ,ji2
enclosed by Sji1

and
Sji2

would not be reached at a point on either Sji1
or Sji2

, but rather at a
point on a manifold Uj,j+1 with ji1 < j and j+1 < ji2 . This would violate the
maximum principle. For the same reason if U tends to a finite constant over
a sequence of manifolds Uj,j+1 then it must tend also to the same constant
over any other sequence.

Notation: Let Σ and H be two manifolds with diffeomorphic compact
boundaries and let # : ∂H → ∂Σ be a diffeomorphism. Then we denote by
Σ#H the manifold that is obtained by identifying ∂Σ to ∂H through #.

We know from Part I that, if a static black hole data set (Σ; g,N) is not
the Boost, then every horizon component is a two-sphere. In that case, to
every connected component of ∂Σ we can glue a three-ball (in a unique way).
Following the notation above we denote by H the set of balls and by Σ#H
the resulting boundary-less manifold. We will use this notation below.

Proposition 4.2.20. Let (Σ; g, U) be a static black hole data set with sub-
cubic volume growth. Then, either the data set is a Boost, is asymptotic to
a Boost or there is a divergent sequence of disconnecting tori embedded in Σ
and enclosing solid tori in Σ#H.

Proof. Let us assume that the data set is not a Boost and in particular that
the horizon components are spheres. Furthermore, let us assume that the data
it is not asymptotic to B, a Boost.

By Galloway’s [5] (see comments in footnote (6) in section 1.1 of Part I),
if there is a divergent sequence of disconnecting tori Ti having outwards mean
curvature positive in (Σ; g) (not in the space (Σ; g)), then they bound solid
tori in Σ ∪ H (see definition of H above). Let us prove below the existence of
such tori under the mentioned assumptions.

If the data is asymptotic to a Kasner space, hence different from B by
assumption, then the existence of disconnecting tori with outwards mean cur-
vature positive is direct (see further comments in subsection 1.1 of Part I).



348 Martín Reiris Ithurralde

On the other hand if the asymptotic is not a Kasner space then by Proposi-
tion 4.2.17 the curvature of g must decay sub-quadratically along γ ∪ (∪jSj)
where γ is a ray and {Sj} is a simple cut. So, let us assume furthermore this
decay, and hence that the asymptotic is not Kasner different from A and C.

Let pj be, for each j, a point in γ ∩ Sj . If for some subsequence pji the
annuli (Ac

rji
(pji ; 1/2, 2); grji ) collapse to a segment [1/2, 2], then there are

neighbourhoods Bi of Ac
ri(pji ; 1/2, 2) and finite coverings B̃i such that the

sequence (B̃i; grji ) converges to a S1 × S1-symmetric flat space ([1/2, 2] ×
T ; gF ). The limit is flat due to the sub-quadratic curvature decay along the
ray γ that is crossing Bi. For the same reason the lifts of U − U(pj) to B̃i

converge to the constant zero. Hence the lifts of N/N(pj) converge to the
constant one. Let Ti be a sequence of embedded tori in Bi such that the
coverings T̃i converge (in C2) to the torus {1} × T on [1/2, 2] × T . Observe
that, as the disconnecting surfaces Sji are embedded in Bi, the tori Ti are
also disconnecting. If the outwards mean curvature of the torus {1} × T is
negative, then so is the mean curvature of the tori Ti for i sufficiently large.
But this is not possible because as Ric ≥ 0 any ray from Ti would develop
a focal point at a finite distance from Ti. On the other hand if the outwards
mean curvature is positive, then for i ≥ i0 with i0 large enough the mean
curvature of the tori Ti calculated using g is also positive because the lifts
of N/N(pj) converge to one (so g and g different essentially by a numeric
factor). Thus, the Ti are the tori we are looking for. So let us suppose that
the mean curvature of the torus {1} × T is zero and that this occurs for
every subsequence pji for which the annuli (Ac

rji
(pji ; 1/2, 2); grji ) collapse to

the segment [1/2, 2]. Note that in such case the S1 × S1-symmetric space
([1/2, 2] × T ; gF ) must be a flat metric product gF = dx2 + hF . In such
hypothesis we claim that if there is one such sequence then the end must be
diffeomorphic to [0,∞)×T 2. This intuitive fact was proved essentially in [14],
so let us postpone explaining it until later. Now, if the end is diffeomorphic
to [0,∞) × T 2, then, as proved in Proposition 4.2.21 below, it must be a
�-static end. Then, by Proposition 4.2.11, the curvature cannot decay sub-
quadratically along γ ∪ (∪Sj) which is against the hypothesis. We reach thus
a contradiction.

So let us assume now that there are no sequence of points pji with the
property that the annuli (Ac

rji
(pj ; 1/2, 2); grji ) collapse to a segment. Then,

exactly as was done inside the proof of proposition 4.2.17, we can find a
subsequence pji and a sequence of neighbourhoods Bki of Ac

rji
(pji ; 1/2, 2ki)

over which the static data collapses to a reduced data (S; q, U, V ), having
at least one end (without orbifold points), containing a limit of the ray γ.



A classification theorem for static vacuum black holes 349

Furthermore, over that end we have U ≤ U∞ ≤ ∞. Let (Σ; g, U) be a static
data reducing to (E; q, U, V ), found by taking a limit of covers (unwrappings)
of (regions of) the manifolds Bki . Then, by Proposition 4.2.7, either the end
(Σ; g, U) is asymptotic to a Kasner space different from A and C, or it is flat
and U is constant. If it is asymptotic to a Kasner space different from A and
C then we one can easily find a sequence of points p′i in γ ∩ Bki such that
(make r′i = r(p′i)) the annuli (Ac

r′i
(p′i; 1/2, 2); gr′i) metrically collapses to the

interval [1/2, 2] while ρ(p′i) → ρ∗ > 0. It follows then from Theorem 4.2.6 that
the end is asymptotically Kasner different from A and C which is against the
assumption made earlier. Suppose now that (Σ; g) is flat. Again, we need to
find a convex S1-symmetric torus on Σ, from which we can obtain a sequence
of convex disconnecting tori Ti on the neighbourhoods Bki . To prove this we
will rely on the results obtained for reduced data. Indeed we know that E
is diffeomorphic to S1 × [r0,∞) and that, if the area growth is quadratic,
then q has the asymptotic form dr2 + μ2r2dϕ2 with κ and |∇V |2 = |∇ ln Λ|2
decaying sub-quadratically. On the other hand g has de form,

g = qijdx
idxj + Λ2(dϕ + θidx

i)2(4.2.170)

where (x1, x2) = (r, θ). For r0 sufficiently large, the mean curvature of the
torus {r = r0} on Σ is approximated by ∂rΛ/Λ+1/r0 ∼ 1/r0, hence positive.
This provides the torus we are looking for. On the other hand if the area
growth of (E; q) is less than quadratic, then, for any divergent sequence of
points ti, the annuli (A(ti; 1/2, 2); qri) metrically collapse to [1/2, 2]. Using
this, one can easily find a sequence of points pjl on γ∪{Sj} such that the annuli
(Ac

rjl
(pjl ; 1/2, 2); grjl ) collapse to the segment [1/2, 2], reaching a contradiction

as we are assuming such a sequence does not exist.
To conclude let us explain the claim that was left to be proved. Assume

then that for every subsequence pji (of the original sequence pj) for which
the annuli (Ac

rji
(pji ; 1/2, 2); grji ) collapse to the segment [1/2, 2] there are

neighbourhoods Bi of Ac
ri(pji ; 1/2, 2) and finite coverings B̃i such that the

sequence (B̃i; grji ) converges to a S1 × S1-symmetric flat space ([1/2, 2] ×
T ; gF = dx2 + hF ) where hF is a flat metric on T .

We recall first a fact from [14]: for any δ > 0 sufficiently small and a ≤ 1/2
and b ≥ 2, there is ε(δ), such that if (A(pj ; a, b); grj ) is ε(δ)-close in the
Gromov-Hausdorff metric to the segment [a, b], then there is a neighbourhood
Bj of the annulus A(pj ; a, b), diffeomorphic to [a, b] × T 2, on which grj has
the form,

grj = α2dx2 + h(4.2.171)
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and where the function α and the family of metrics h(x) on T 2, satisfy,

1 − δ ≤ α ≤ 1 + δ, (1 − δ)h(x′) ≤ h(x) ≤ (1 + δ)h(x′)(4.2.172)

Furthermore the Gromov-Hausdorff distance is controlled by the h(x)-dia-
meter of T 2 (for any x), namely it is between c1diamh(x)(T 2) and
c2diamh(x)(T 2) where c1 and c2 do not depend on ε, a or b.

Using this fact, we fix δ small, let k ≥ 1, and find ε(k) ≤ ε(δ) small enough
that if (A(pj ; 1/2, 2); grj ) is ε(k)-close to [1/2, 2] then (A(pj ; 1/2, 2k); grj ) is
ε(δ)-close to [1/2, 2k]. But then the relations (4.2.172) hold for all x ∈ [1/2, 2k],
hence also for x ∈ [1/2, 2], and then the Gromov-Hausdorff distance from
(A(pj ; 1/2, 2k); grj ) to [1/2, 2k] is less or equal than c3ε(k) where c3 does
not depend on k. Thus, if k is big enough the Gromov-Hausdorff distance
between (A(pj+k; 1/2, 2); grj+k

) and [1/2, 2] is less than ε(k)/2 (observe here
that rj+k ≥ 22krj and thus grj+k

≤ 2−4kgrj ). Therefore, if for some j∗ the GH-
distance from (A(pj∗ ; 1/2, 2); grj∗ ) and the interval [1/2, 2] is less or equal than
ε(k), then the same occurs for the annuli (A(pj∗+mk; 1/2, 2); grj∗+mk

) for any
m ≥ 1. Then the end must then be diffeomorphic to [0,∞) × T 2.

The following proposition completes the proof of the previous proposition.

Proposition 4.2.21. Let (Σ; g, U) be a static end with Σ diffeomorphic to
T2× [0,∞). Suppose that the limit of U at infinity exists and that U < U∞(≤
∞) everywhere. Then, (Σ; g, U) is a �-static end.

Proof. Let U0 be a regular value of U sufficiently close to U∞ such that for
any regular value U1 > U0, U−1

1 is a compact manifold without boundary
embedded in Σ◦. Let H be a solid torus and consider Σ#H. Let us prove
first that U−1

1 is connected. Suppose U−1
1 has components S1, . . . , Sm, m ≥ 2.

Then, each Sk encloses a bounded region Ωk in Σ#H (think Σ#H as an open
solid torus embedded in R

3). If one of the Ωk does not contain H then U
must be constant by the maximum principle which is against the hypothesis.
Therefore if Si �= Sj then either Ωi ⊂ Ωj or Ωj ⊂ Ωi. Whatever the case, the
surfaces Si and Sj bound a compact region inside Σ which again is impossible
by the maximum principle. So U−1

1 = S1, is connected. Finally, U−1
1 cannot

be a sphere because if so the region Ω enclosed by it must be a ball containing
H but H is not contractible.

Proposition 4.2.22. Let (Σ; g, U) be a static black hole data set, asymptotic
to a Boost B but that is not a Boost. Then, Σ is diffeomorphic to an open
solid three-torus minus a finite number of open three-balls, and thus there is
a divergent sequence of disconnecting tori Ti enclosing solid tori in Σ#H.



A classification theorem for static vacuum black holes 351

Proof. Recall that a Boost has a data ΣB = [0,∞) × T2, gB = dx2 + h,
NB = x, where h is a flat metric on T2. Following the Definition 2.1.6 of
Kasner asymptotic, Let φ : Σ \K → ΣB \KK be a diffeomorphism into the
image such that the components (φ∗g)ij (and their derivatives) converge to
the components gB,ij (and their derivatives, i.e. zero) faster than any inverse
power of x. Denote by Tx the tori φ−1({x}×T2) (x ≥ x0 such that {x}×T2 ⊂
ΣK\KK). Note that by the fast decay, the Gaussian curvature and the second
fundamental forms of the tori Tx tend to zero faster than any inverse power
of x as x → ∞. Let A(Tx) be the area of Tx and A(T∞) = limx→∞A(Tx).

The key point to prove the theorem is to show that there is a torus, say T∗,
isotopic to the tori Tx and with area less than A(T∞). If this is the case, then
one can essentially use Galloway’s arguments in [5] to conclude that indeed
the tori Tx enclose solid tori in Σ#H (see footnote (6) in Part I). Shortly,
the argument would be as follows. Let Σx be the closure of the connected
component of Σ \ Tx containing ∂Σ. Let x1 be large enough that for any
x ≥ x1, the region near Tx is so close to flat that one can extend Σx by a
small (Riemannian) ring (diffeomorphic to [0, 1] × T2), in such a way that
the new boundary has positive outwards mean curvature, and furthermore
that, if a stable minimal surface intersects the ring then it has area greater
than A(T ∗). Granted this, there is always a sequence of tori Si isotopic to Tx,
disjoint from the ring and minimising area within the class of tori isotopic to
Tx. One can repeat Galloway’s argument directly.

Let us show now the existence of T ∗. It will follow from proving that
there is an suitable integrable congruence of geodesics {γ̄} with respect to
the optical metric ḡ = N−2g over the end of Σ. Integrable here means that
the distribution of planes perpendicular to the geodesics integrate to surfaces,
in this case two-tori. The congruence will cover Σ outside a bounded closed
set. Furthermore if we let T̄t be the family of ‘integral’ tori, where t is the
ḡ-distance between T̄t and T̄0, then the Gaussian curvature and second fun-
damental form of the T̄t tend to zero t → ∞. Suppose that we have such
a congruence. Let θ be, at every point, the g-mean curvature of the tori T̄t

passing through that point and with respect to the normal n = −∂t/|∂t|ḡ
(‘inwards’). Then, it was proved in [5] (see also [8]) that, the mean curvature
θ evaluated on a geodesic γ̄ is monotonically decreasing as t decreases. As the
mean curvature θ of the tori T̄t tends to zero as t → ∞, then θ ≤ 0 every-
where. As the areas of the tori T̄ tend to A(T∞) then, at any t, A(T̄t) < A(T∞)
unless the mean curvature is identically zero in all the region between T̄t and
infinity. If such is the case, it also follows from [5] that in that region the
metric is a flat product, which is not the case because by hypothesis the data
is not a Boost. So A(T̄t) < A(T∞) and we define T∗ = T̄t.
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The construction of the congruence of ḡ geodesics is as follows. Consider
the congruence of geodesics with respect to ḡ, emanating from Tx and per-
pendicularly to it, and towards ∂Σ (‘inwards’). Due to the fast decay of φ∗g
into gK, and of φ∗N to the function x (indeed the fast decays of φ∗N − x to
zero), the congruence converges as x → ∞, to a (smooth) congruence and
covering Σ outside a bounded closed set as wished.

The following proposition, that uses the previous ones, essentially proves
that static black hole ends are �-static ends.

Proposition 4.2.23. Let (Σ; g, U) be a static black hole data set with sub-
cubic volume growth. Then, there is a regular value U0 < U∞, such that for
any regular value U1 of U with U∞ > U1 ≥ U0, U−1

1 is a compact connected
surface of genus greater than zero.

Proof. If the data is a Boost then we are done, so let us assume from now on
that it is not.

Let Ω be a an open connected set with a closure Ω containing ∂Σ. Let
U0 < U∞ be a regular value such that the set {U < U0} contains Ω. Suppose
that for some regular value U1 > U0, U−1

1 has the connected components
S1, . . . , Sm, m ≥ 2. If for one of the components, say Si, Σ \ Si is connected,
then we can glue two copies of Σ \ Si along Si to make a static black hole
data set with more than one end which is not possible. So for every Sj , Σ\Sj

has two connected components, and because U1 > U0, one of the them must
contain Ω. Call the closure of that component Σj . We have ∂Σj = ∂Σ ∪ Sj .
Observe now that Σ \ Σ◦

j must be connected because first, no component of
it can be compact (that would violate the maximum principle) and second,
no two of the components can be non-compact (because there would be at
least two ends). Hence, if Σ \ Σ◦

j is non-compact then Σj must be compact
(if not there would be two ends again). In sum, every Sj is disconnecting,
and ∂Σj = ∂Σ ∪ Sj . Therefore if m ≥ 2 then, either Σ1 \ Σ2 or Σ2 \ Σ1 is a
compact manifold with U = U1 on its boundary contradicting the maximum
principle (here, following the notation above, Σ1 is connected component of
Σ \ S1 containing Ω and similarly for Σ2). So U−1

1 is connected for every
regular value U1 > U0.

Now, by contradiction suppose that there is a sequence of regular values
Ui > U1 tending to U∞ such that each U−1

i is a sphere. Clearly such se-
quence of spheres is divergent (i.e. escapes any compact set). Also, by Propo-
sitions 4.2.20 and 4.2.22, every sphere is embedded inside a solid torus in
Σ#H. Hence, every U−1

i bounds a ball. Thus Σ#H must be diffeomorphic to
R

3. Hence, the complement of an open set of Σ is diffeomorphic to S2× [0,∞)



A classification theorem for static vacuum black holes 353

and the end must have cubic-volume growth by [14] which is against the hy-
pothesis.

The next Corollary is direct from Propositions 4.2.19, 4.2.23.

Corollary 4.2.24. Let (Σ; g, U) be a static black hole data set with sub-cubic
volume growth. Then (Σ; g, U) is a �-static end.

We are now ready to prove the Theorem 4.2.1.

Proof of Theorem 4.2.1. Suppose that the data is not AK. Let {Si} be a
simple cut and let γ be a ray. Then, by Proposition 4.2.17, the curvature
decays sub-quadratically along γ ∪ (∪Si). By Corollary 4.2.24 the data is �-
static and by Proposition 4.2.11 the curvature cannot decay sub-quadratically
along γ ∪ (∪Si). We obtain a contradiction. Therefore the data is AK.

5. The proof of the classification theorem

Proof of the classification theorem 1.0.1. Let (Σ; g,N) be a static black hole
data set. By Proposition 3.4.3 we know that one of the following holds,

1. ∂Σ = H, where H is a two-torus, or,
2. ∂Σ = H1 ∪ . . . ∪Hh, h ≥ 1, where each Hj is a two-sphere, and (Σ; g)

has cubic volume growth, or,
3. ∂Σ = H1 ∪ . . . ∪Hh, h ≥ 1, where each Hj is a two-sphere, and (Σ; g)

has sub-cubic volume growth.

Then depending on whether 1, 2 or 3 holds, we can conclude the following,

1. If ∂Σ = H, then the data is a Boost as explained in Proposition 3.4.3.
2. In this case the data is asymptotically flat (with Schwarzschildian fall

off), as discussed in Section 4.1. By Galloway’s [5], Σ is diffeomorphic
to R

3 minus h-balls and the uniqueness theorem of Israel-Robinson-
Bunting-Masood-um-Alam, shows that the solution is Schwarzschild.

3. By Theorem 4.2.1 the data is asymptotically Kasner different from a
Kasner A or C. If the asymptotic is a Boost, that is B, then Σ is
diffeomorphic to a solid three-torus minus a finite number of open three-
balls, Proposition 4.2.22. If the asymptotic is different from B (and
also from A and C) then one can clearly find an embedded torus T
sufficiently far away that its outwards mean curvature is positive and
that separate Σ into (i) a compact manifold Σ∂ containing the horizons
(i.e. ∂Σ) and another manifold (the ‘end’) diffeomorphic to [0,∞)×T2.
It follows again by Galloway’s [5], that Σ∂ is diffeomorphic to a solid
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torus minus a finite number of open balls. Thus, Σ is diffeomorphic to a
solid three-torus minus a finite number of open balls. Hence, according
to Definition 2.1.7, (Σ; g,N) is of Myers/Korotkin-Nicolai type.
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