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Monotone iterative technique for delayed evolution
equation periodic problems in Banach spaces∗

Qiang Li

Abstract: In this paper, we deal with the existence of ω-periodic
mild solutions for the abstract evolution equation with delay in an
ordered Banach space E

u′(t) + Au(t) = F (t, u(t), u(t− τ)), t ∈ R,

where A : D(A) ⊂ E → E is a closed linear operator and −A
generates a positive C0-semigroup T (t)(t ≥ 0), F : R×E×E → E
is a continuous mapping which is ω-periodic in t, and τ ≥ 0 is
a constant. Under some weaker assumptions, we construct mono-
tone iterative method for the delayed evolution equation periodic
problems, and obtain the existence of maximal and minimal pe-
riodic mild solutions. The results obtained generalize the recent
conclusions on this topic. Finally, we present two applications to
illustrate the feasibility of our abstract results.
Keywords: Evolution equations with delay, upper and lower solu-
tions, existence, monotone iterative technique, positive C0-semigroup.

1. Introduction

Let E be an ordered Banach space, whose positive cone K = {u ∈ E| u ≥ θ} is
normal with normal constant N . In this paper, we use a monotone iterative
technique in the presence of the lower and upper solutions to discuss the
existence of the extremal periodic mild solutions to the periodic problem of
first order semilinear evolution equation with delay in ordered Banach space E

(1.1) u′(t) + Au(t) = F (t, u(t), u(t− τ)), t ∈ R,

where A : D(A) ⊂ E → E is a closed linear operator and −A generates a
positive strongly continuous semigroup (C0-semigroup, in short) T (t)(t ≥ 0)
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in E, the nonlinear function F : R × E × E → E is a continuous mapping
and for every x, y ∈ E, F (t, x, y) is ω-periodic in t and τ is positive constant
which denotes the time delay.

The theory of partial differential equations with delays is an important
branch of differential equation theory, which has extensive physical, biological,
economical, engineering background and realistic mathematical model. Hence,
the theory of partial differential equations with delays has been emerging as
an important area of investigation in the last few decades, and the numerous
properties of their solutions have been studied, see [16, 37] and references
therein.

The problem concerning periodic solutions of partial differential equations
with delay is an important area of investigation since they can take into
account seasonal fluctuations occurring in the phenomena appearing in the
models, and have been studied by some researchers in recent years. There has
been a significant development in periodic solution of evolution equation with
delay in Banach spaces, we refer to the references [5, 38, 29, 30, 31, 26, 18,
20, 36, 27, 28].

In [5], Burton and Zhang obtained the existence of periodic solutions
for an abstract evolution equation with infinite delay. In [38], under the as-
sumption that the corresponding initial value problem has a priori estimate,
Xiang and Ahmed showed an existence result of periodic solution to the de-
lay evolution equations in Banach spaces. In [29, 30, 31], Liu derived periodic
solutions from bounded solutions or ultimate bounded solutions for finite
or infinite delay evolution equations in Banach spaces. In [26], Li discussed
the periodic solutions of the evolution equation with delays and presented
essential conditions on the nonlinearity to guarantee that the equation has
periodic solutions. In [18], M. Kpoumiè et al. studied the existence of a pe-
riodic solution for some partial functional differential equations with infinite
delay in Banach spaces. Recently, some authors also discussed the periodic
solutions for some nonautonomous delay impulsive evolutionary equations
(see [27, 28, 36]). They established some existence results on periodic solu-
tions to the equations under the ultimate boundedness of the solutions of the
corresponding initial value problem.

In fact, in previous works, evolution equation periodic problems with delay
have been studied by many authors using different tools, such as Granas’s
fixed theorem, Banach contraction mapping principal, Schauder’s fixed-point
theorem, Horn’s fixed point theorem, Sadovskii’s fixed point theorem and
so on. However, to the best of our knowledge, few results yet exist for the
periodic problems with delay by using the method of the lower and upper
solutions coupled with the monotone iterative technique.
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It is well known that the monotone iterative technique of the lower and
upper solutions is an effective and flexible mechanism. It yields monotone
sequences of the lower and upper approximate solutions that converge to the
minimal and maximal solutions between the lower and upper solutions. Early
on, Du and Lakshmikantham [13], Sun and Zhao [35] investigated the exis-
tence of extremal solutions to the initial value problem of ordinary differential
equations without delay by using the method of the lower and upper solutions
coupled with the monotone iterative technique. Later, Li [22] applied lower
and upper solutions method to periodic solution problems for semilinear evo-
lution equations without delay in ordered Banach spaces, and obtained the
existence of maximal and minimal periodic solutions using the characteris-
tics of positive operators semigroups and the monotone iteration scheme. For
the abstract evolution equations, there are more results involving monotone
iterative techniques and operator semigroups theory, we can see [6, 7, 8, 9, 10].

Recently, in [19] we dealt with the second-order delayed ordinary differen-
tial equation periodic problem in ordered Banach spaces. With the nonlinear
function satisfying quasi-monotonicity, we obtained the existence of the min-
imal and maximal periodic solutions by monotone iterative technique of the
lower and upper solutions. And in [20], we also applied operator semigroup
theory and monotone iterative technique of lower and upper solutions to ob-
tain the existence and uniqueness of periodic mild solutions of the abstract
evolution equation under some quasi-monotone conditions.

Motivated by the papers mentioned above, the purpose of this paper is
to construct the general principle for lower and upper solutions coupled with
the monotone iterative technique for the evolution equation periodic problems
with delay, and obtain the existence of maximal and minimal periodic mild
solutions, which will make up the research in this area blank.

The paper is organized as follows. In Section 2, some notions, definitions,
and preliminary facts are introduced, which are used through this paper.
Under the different assumptions, the existence results of the extremal periodic
solutions of Equation (1.1) are given in Section 3. In Section 4, we give two
examples to illustrate our main results in Section 3.

2. Preliminaries

In this section, we introduce some notions, definitions, and preliminary facts
which are used through this paper.

Throughout this paper, we assume that E is an ordered Banach space,
whose positive cone K = {u ∈ E|u ≥ θ} is normal with normal constant N .
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Let A : D(A) ⊂ E → E is a closed linear operator and −A generate a C0-
semigroup T (t)(t ≥ 0) in E. For the theory of semigroups of linear operators
we refer to [33]. We only recall here some notions and properties that are
essential for us. For a general C0-semigroup T (t)(t ≥ 0), there exist M ≥ 1
and ν ∈ R such that (see [33])

(2.1) ‖T (t)‖ ≤ Meνt, t ≥ 0.

Let

ν0 = inf{ν ∈ R| There exists M ≥ 1 such that ‖T (t)‖ ≤ Meνt, ∀t ≥ 0},
(2.2)

then ν0 is called the growth exponent of the semigroup T (t)(t ≥ 0). Further-
more, ν0 can be also obtained by the following formula

ν0 = lim sup
t→+∞

ln ‖T (t)‖
t

.

Definition 2.1 ([4]). A C0-semigroup T (t)(t ≥ 0) on E is said to be positive,
if the order inequality T (t)x ≥ θ holds for each x ≥ θ, x ∈ E, and t ≥ 0.

It is easy to see that for any C ≥ 0, −(A + CI) also generates a C0-
semigroup S(t) = e−CtT (t)(t ≥ 0) in E. And S(t)(t ≥ 0) is a positive C0-
semigroup if T (t)(t ≥ 0) is a positive C0-semigroup. For more details of the
properties of the operator semigroups and positive C0-semigroup, we refer to
the monographs [32, 34] and the paper [21].

Let J denote the infinite interval [0,+∞) and h : J → E, consider the
initial value problem of the linear evolution equation

(2.3)
{

u′(t) + Au(t) = h(t), t ∈ J,
u(0) = x0.

It is well known [33, Chapter 4, Theorem 2,9], when x0 ∈ D(A) and h ∈
C1(J,E), the initial value problem (2.3) has a unique classical solution u ∈
C1(J,E) ∩ C(J,E1) expressed by

(2.4) u(t) = T (t)x0 +
∫ t

0
T (t− s)h(s)ds,

where E1 = D(A) is Banach space with the graph norm ‖ · ‖1 = ‖ · ‖+ ‖A · ‖.
Generally, for x0 ∈ E and h ∈ C(J,E), the function u given by (2.4) belongs
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to C(J,E) and it is called a mild solution of the linear evolution equation
(2.3).

Let Cω(R, E) denote the Banach space {u ∈ (R, E)| u(t) = u(t + ω),
t ∈ R} endowed the maximum norm ‖u‖C = maxt∈[0,ω] ‖u(t)‖. Evidently,
Cω(R, E) is an order Banach space with the partial order “≤” induced by the
positive cone KC = {u ∈ Cω(R, E)| u(t) ≥ θ, t ∈ R} and KC is also normal
with the normal constant N . For v, w ∈ Cω(R, E) with v ≤ w, we use [v, w]
to denote the order interval {u|v ≤ u ≤ w} in Cω(R, E), and [v(t), w(t)] to
denote the order interval {u(t)|v(t) ≤ u(t) ≤ w(t), t ∈ R} in E.

Given h ∈ Cω(R, E), for the following linear evolution equation corre-
sponding to Eq. (1.1)

(2.5) u′(t) + Au(t) = h(t), t ∈ R,

we have the following result.

Lemma 2.2 ([25]). If −A generates an exponentially stable positive C0-
semigroup T (t)(t ≥ 0) in E, that is ν0 < 0, then for h ∈ Cω(R, E), the
linear evolution equation (2.5) exists a unique ω-periodic mild solution u,
which can be expressed by

(2.6) u(t) = (I − T (ω))−1
∫ t

t−ω
T (t− s)h(s)ds := (Ph)(t),

and the solution operator P : Cω(R, E) → Cω(R, E) is a positive bounded
linear operator.

Proof. For any ν ∈ (0, |ν0|), there exists M > 0 such that

‖T (t)‖ ≤ Me−νt ≤ M, t ≥ 0.

In E, define the equivalent norm | · | by

|x| = sup
t≥0

‖eνtT (t)x‖,

then ‖x‖ ≤ |x| ≤ M‖x‖. By |T (t)| we denote the norm of T (t) in (E, | · |),
then for t ≥ 0, it is easy to obtain that |T (t)| < e−νt. Hence, (I − T (ω)) has
bounded inverse operator

(I − T (ω))−1 =
∞∑
n=0

T (nω),
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and its norm satisfies

(2.7) |(I − T (ω))−1| ≤ 1
1 − |T (ω)| ≤

1
1 − e−νω

.

Set

(2.8) x0 = (I − T (ω))−1
∫ ω

0
T (t− s)h(s)ds := Bh,

then the mild solution u(t) of the linear initial value problem (2.3) given by
(2.4) satisfies the periodic boundary condition u(0) = u(ω) = x0. For t ∈ R

+,
by (2.4) and the properties of the semigroup T (t)(t ≥ 0), we have

u(t + ω) = T (t + ω)u(0) +
∫ t+ω

0
T (t + ω − s)h(s)ds

= T (t)
(
T (ω)u(0) +

∫ ω

0
T (ω − s)h(s)ds

)
+

∫ t

0
T (t− s)h(s− ω)ds

= T (t)u(0) +
∫ t

0
T (t− s)h(s)ds = u(t).

Therefore, the ω-periodic extension of u on R is a unique ω-periodic mild
solution of Eq. (2.5). By (2.4) and (2.8), the ω-periodic mild solution can be
expressed by

u(t) = T (t)B(h) +
∫ t

0
T (t− s)h(s)ds

= (I − T (ω))−1
∫ t

t−ω
T (t− s)h(s)ds := (Ph)(t).(2.9)

It is easy to see that P : Cω(R, E) → Cω(R, E). Finally, by the positivity
of semigroup T (t)(t ≥ 0), we can obtain that (I − T (ω))−1 ≥ θ, it follows
that Ph ≥ θ for any h ∈ Cω(R, E) and h ≥ θ. Therefore, P : Cω(R, E) →
Cω(R, E) is a positive bounded linear operator. This completes the proof of
Lemma 2.2.

Next, we recall some properties of measure of noncompactness that will be
used in the proof of our main results. Let α(·) denote the Kuratowski measure
of noncompactness of the bounded set. For the details of the definition and
properties of the measure of noncompactness, see [3, 11, 14]. For any B ⊂
Cω(R, E) and t ∈ R, set B(t) = {u(t)|u ∈ B} ⊂ E. If B is bounded in
Cω(R, E), then B(t) is bounded in E, and α(B(t)) ≤ α(B).

The following lemmas are needed in our arguments.
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Lemma 2.3 ([3, 14, 15]). Let E be a Banach space and let B ⊂ C(J,E) be
bounded and equicontinuous, where J is a finite closed interval in R. Then
α(B(t)) is continuous on J , and

α(B) = max
t∈J

α(B(t)) = α(B(J)).

Lemma 2.4 ([17]). Let E be a Banach space, B = {un} ⊂ C(J,E) be a
bounded and countable set. Then α(B(t)) is Lebesgue integrable on J , and

α
({ ∫

J
un(s)ds

})
≤ 2

∫
J
α(B(t))dt.

Lemma 2.5 ([23]). Let E be a Banach space and D ⊂ E be bounded. Assume
that Q : E → E is linear bounded operator, then

α(Q(D)) ≤ ‖Q‖α(D).

3. Main results

Now, we are in the position to state and prove our main results. We will
apply monotone iterative method of the lower and upper ω-periodic solutions
to obtain the existence of ω-periodic mild solution for Eq. (1.1). To this end,
we define the ω-periodic lower and upper solutions of Eq. (1.1).

Definition 3.1. If a function v0 ∈ C1
ω(R, E) ∩ Cω(R, E1) satisfies

(3.1) v′0(t) + Av0(t) ≤ F (t, v0(t), v0(t− τ)), t ∈ R,

we call it an ω-periodic lower solution of Eq. (1.1). If the inequality of (3.1)
is inverse, we call it an ω-periodic upper solution of the Eq. (1.1).

Theorem 3.1. Let E be an ordered Banach space, whose positive cone K
is normal cone, let A : D(A) ⊂ E → E be a closed linear operator and −A
generate a positive compact semigroup T (t)(t ≥ 0), let f : R×E×E → E be
a continuous mapping which is ω-periodic in t. Assume Eq. (1.1) has lower
and upper ω-periodic solutions v0, w0 ∈ C1

ω(R, E) ∩ Cω(R, E1) with v0 ≤ w0.
If the following condition

(H1) there exists a constant C ≥ 0 such that for all t ∈ R, v0(t) ≤ x1 ≤
x2 ≤ w0(t), v0(t− τ) ≤ y1 ≤ y2 ≤ w0(t− τ),

F (t, x2, y2) − F (t, x1, y1) ≥ −C(x2 − x1)
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holds, then the periodic problem (1.1) has minimal and maximal ω-periodic
mild solution u, u between v0 and w0, which can be obtained by monotone
iterative sequences starting from v0 and w0.
Proof. Obviously, the periodic problem of evolution equation with delay (1.1)
is equal to the following periodic problem

(3.2) u′(t) + Au(t) + Cu(t) = F (t, u(t), u(t− τ)) + Cu(t), t ∈ R,

where the constant C is decided by the condition (H1).
Let C > |ν0| (otherwise replace C with C + |ν0|), then −(A + CI) gen-

erates an exponentially stable, compact and positive C0-semigroup S(t) =
e−CtT (t)(t ≥ 0) in E, whose growth exponent is −C + ν0. By Lemma 2.2, it
follows that the following linear evolution equation periodic problem

(3.3) u′(t) + Au(t) + Cu(t) = F (t, h(t), h(t− τ)) + Ch(t), t ∈ R

exists unique ω-periodic mild solution

u(t) = (I − S(ω))−1
∫ t

t−ω
S(t− s)(F (s, h(s), h(s− τ)) + Ch(s))ds := Ph(t).

(3.4)

From Definition 3.1, it is clear that [v0, w0] ⊂ Cω(R, E) and v0(t) ≤ w0(t) for
any t ∈ R. Define a mapping F : Cω(R, E) → Cω(R, E) by

(3.5) F(u)(t) = F (t, u(t), u(t− τ)) + Cu(t), u ∈ Cω(R, E), t ∈ R,

By the continuity of F , F : Cω(R, E) → Cω(R, E) is continuous. Define an
operator Q : [v0, w0] → Cω(R, X) as follows:

(3.6) Qu = (P ◦ F)u,

then we have

Qu(t) = (I − S(ω))−1
∫ t

t−ω
S(t− s)(F (s, u(s), u(s− τ)) + Cu(s))ds, t ∈ R,

(3.7)

and Q : [v0, w0] → Cω(R, X) is continuous. Therefore, by the definition of P ,
we can assert u ∈ [v0, w0] is the ω-periodic mild solution of Eq. (1.1) if and
only if u is the fixed point of the compound operator Q.

Now, we complete the proof by four steps.
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Step 1. We show that the following properties of the operator Q defined by
(3.6).

(i) v0 ≤ Qv0 and Qw0 ≤ w0,
(ii) Qu1 ≤ Qu2 for any u1, u2 ∈ [v0, w0] with u1 ≤ u2.

Since v0 ∈ C1
ω(R, E) ∩Cω(R, E1) is an ω-periodic lower solution of Eq. (1.1),

thus

(3.8) v′0(t) + Av0(t) + Cv0(t) ≤ F (t, v0(t), v0(t− τ)) + Cv0(t), t ∈ R.

Set h(t) = v′0(t) +Av0(t) +Cv0(t), by Lemma 2.2 and the positivity of semi-
group S(t)(t ≥ 0), one can obtain that

(3.9) v0(t) = Ph(t) ≤ P (F (t, v0(t), v0(t− τ)) + Cv0(t)) ≤ Qv0(t), t ∈ R,

which implies that v0 ≤ Qv0. Similarly, it can be shown that Qw0 ≤ w0.
For any u1, u2 ∈ [v0, w0] with u1 ≤ u2 and t ∈ R, we have v0(t) ≤ u1(t) ≤

u2(t) ≤ w0(t), v0(t− τ) ≤ u1(t− τ) ≤ u2(t− τ) ≤ w0(t− τ). By the condition
(H1) and the positivity of the operator P ,

Qu1(t) = P (F (t, u1(t), u1(t− τ)) + C1u(t))
≤ P (F (t, u2(t), u2(t− τ)) + Cu2(t)) = Qu2(t),(3.10)

it follows that Qu1 ≤ Qu2.
Therefore, Q : [v0, w0] → [v0, w0] is a continuous increasing operator.

Step 2. We define two sequences {vi} and {wi} in [v0, w0] by the iterative
scheme

(3.11) vi = Qvi−1, wi = Qwi−1, i = 1, 2, · · · .

Then from the monotonicity of the operator Q, it follows that

(3.12) v0 ≤ v1 ≤ v2 ≤ · · · ≤ vi ≤ · · · ≤ wi ≤ · · · ≤ w2 ≤ w1 ≤ w0,

and {vi}, {wi} ⊂ [v0, w0] are equicontinuous in R.
In fact, for any u ∈ [v0, w0], by the periodicity of u, we consider it on

[0, ω]. Set 0 ≤ t1 < t2 ≤ ω, we get that

Qu(t2) −Qu(t1)

= (I − T (ω))−1
∫ t2

t2−ω
S(t2 − s)(F (s, u(s), u(s− τ)) + Cu(s))ds
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− (I − T (ω))−1
∫ t1

t1−ω
S(t1 − s)(F (s, u(s), u(s− τ)) + Cu(s))ds

= (I − T (ω))−1
∫ t1

t2−ω
(S(t2 − s) − S(t1 − s))(F (s, u(s), u(s− τ)) + Cu(s))ds

− (I − T (ω))−1
∫ t2−ω

t1−ω
S(t1 − s)(F (s, u(s), u(s− τ)) + Cu(s))ds

+ (I − T (ω))−1
∫ t2

t1

S(t2 − s)(F (s, u(s), u(s− τ)) + Cu(s))ds

:= I1 + I2 + I3.

It is clear that

(3.13) ‖Qu(t2) −Qu(t1)‖ ≤ ‖I1‖ + ‖I2‖ + ‖I3‖.

Thus, we only need to check ‖Ii‖ tend to 0 independently of u ∈ [v0, w0] when
t2−t1 → 0, i = 1, 2, 3. For any u ∈ [v0, w0], from the condition (H1), it follows
that

F (t, v0(t), v0(t− τ)) + Cv0(t) ≤ F (t, u(t), u(t− τ)) + Cu(t)
≤ F (t, w0(t), w0(t− τ)) + Cw0(t).

By the normality of the cone K, there exists M2 such that

(3.14)
∥∥∥F (t, u(t), u(t− τ)) + Cu(t)

∥∥∥ ≤ M2, t ∈ R, u ∈ [v0, w0].

By the compactness of S(t)(t ≥ 0), it follows that S(t) is continuous in the
uniform operator topology for t > 0. Hence, it is easy to check ‖Ii‖ tend to 0
independently of u ∈ [v0, w0] when t2 − t1 → 0(i = 1, 2, 3), which means that
Q([v0, w0]) is equicontinuous.
Step 3. {vi(t)} and {wi(t)} are precompact on E for any t ∈ R.

Let B1 = {vi}, B2 = {wi} and B0
1 = B1 ∪ {v0}, B0

2 = B2 ∪ {w0}.
Obviously, B1(t) = (QB0

1)(t) and B2(t) = (QB0
2)(t) for t ∈ R.

We define a set (QεB1)(t) by

(3.15) (QεB
0
1)(t) := {(Qεvi)(t) | vi ∈ B0

1 , 0 < ε < ω, t ∈ R},

where

Qεvi(t) = (I − S(ω))−1
∫ t−ε

t−ω
S(t− s)

(
F (s, vi−1(t), vi−1(s− τ) + Cvi(s)

)
ds
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= (I − S(ω))−1S(ε)
∫ t−ε

t−ω
S(t− s− ε)

×
(
F (s, vi−1(t), vi−1(s− τ) + Cvi(s)

)
ds.

Then the set (QεB
0
1)(t) is relatively compact in E since the operator S(ε)

is compact in E (S(t) = e−CtT (t)(t ≥ 0) is compact semigroup). For any
vi ∈ B0

1 and t ∈ R, from the following inequality

‖Qvi(t) −Qεvi(t)‖

≤
∥∥∥(I − S(ω))−1

∫ t

t−ω
S(t− s)

(
F (s, vi−1(t), vi−1(s− τ)) + Cvi−1(s)

)
ds

− (I − S(ω))−1
∫ t−ε

t−ω
S(t− s)

(
F (s, vi−1(t), vi−1(s− τ)) + Cvi−1(s)

)
ds

∥∥∥
≤ ‖(I − S(ω))−1‖

∫ t

t−ε

∥∥∥S(t− s)
(
F (s, vi−1(t), vi−1(s− τ)) + Cvi−1(s)

)∥∥∥ds
≤ ‖(I − S(ω))−1‖M2

∫ t

t−ε
‖S(t− s)‖ds,

one can obtain that the set (QB0
1)(t) is relatively compact, which implies that

{vi(t)} = B1(t) = (QB0
1)(t) is relatively compact in E for t ∈ R. Similarly, it

can be shown that {wi(t)} is relatively compact in E for t ∈ R.
Therefore, {vi} and {wi} are relatively compact in Cω(R, E) by the Arzela-

Ascoli Theorem, so there are convergent subsequences in {vi} and {wi}, re-
spectively. Combining this with the monotonicity and the normality of the
cone KC , we can easily prove that {vi} and {wi} themselves are convergent,
i.e., there are u, u ∈ Cω(R, E) such that lim

i→∞
vi = u and lim

i→∞
wi = u.

Taking limit in (3.11), we have

(3.16) u = Qu, u = Qu.

Therefore u, u ∈ Cω(R, X) are fixed points of Q, and they are the ω-periodic
mild solutions of the periodic problem (1.1).

Step 4. We prove the minimal and maximal properties of u, u.
Assume that ũ is a fixed point of Q with ũ ∈ [v0, w0], then for every t ∈ R,

v0(t) ≤ ũ(t) ≤ w0(t),

(3.17) v1(t) = (Qv0)(t) ≤ (Qũ)(t) = ũ(t) ≤ (Qw0)(t) = w1(t), t ∈ R.

Similarly, v1(t) ≤ ũ(t) ≤ w1(t), t ∈ R. In general

(3.18) vi ≤ ũ ≤ wi, i = 1, 2, · · · .
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Taking limit in (3.18) as i → ∞, we get u ≤ ũ ≤ u. Therefore u, u are minimal
and maximal ω-periodic mild solutions of Eq. (1.1), and u, u can be obtained
by the iterative sequences defined in (3.11) starting from v0 and w0. This
completes the proof of Theorem 3.1.

Theorem 3.2. Let E be an ordered Banach space, whose positive cone K
is normal cone, let A : D(A) ⊂ E → E be a closed linear operator and
−A generate a positive equicontinuous C0-semigroup T (t)(t ≥ 0), let F :
R × E × E → E be a continuous mapping which is ω-periodic in t. Assume
the periodic problem (1.1) has lower and upper ω-periodic solutions v0, w0 ∈
C1

ω(R, E) ∩ Cω(R, E1) with v0 ≤ w0. If the condition (H1) and the following
condition

(H2) There exists a constant c ∈ [0, 1/4ωCsMS) such that for all t ∈ R

and monotonic sequences {un} ⊂ [v0, w0],

α({F (t, un(t), un(t− τ)) + Cun(t)}) ≤ c(α({un(t)}) + α({un(t− τ)}))

hold, then the periodic problem (1.1) has minimal and maximal ω-periodic
mild solution u, u between v0 and w0, which can be obtained by monotone
iterative sequences starting from v0 and w0, where CS = ‖(I − S(ω))−1‖,
MS = sup{‖S(t)‖ | t ≥ 0}.

Proof. From the proof of Theorem 3.1, we know that Q : [v0, w0] → [v0, w0]
is a continuous increasing operator and v0 ≤ Qv0, Qw0 ≤ w0. Hence, the
iterative sequences vi and wi defined by (3.11) satisfy (3.12). By T (t)(t ≥ 0)
is an equicontinuous C0-semigroup, it follows that S(t)(t ≥ 0) is also an
equicontinuous C0-semigroup. From the proof of Theorem 3.1, we obtain that
{vi}, {wi} are equicontinuous in R.

Next, we show that {vi}, {wi} are convergent in Cω(R, X).
Obviously, {vi} is a bounded countable set. By Lemma 2.4, Lemma 2.5

and the condition (H2), one can obtain that

α({vi(t)}) = α({Qvi−1(t)})

= α
({

(I − S(ω))−1
∫ t

t−ω
S(t− s)(F (s, vi−1(s), vi−1(s− τ)) + Cvi−1(s))ds

})
≤ 2‖(I − S(ω))−1‖ ·

∫ t

t−ω
‖S(t− s)‖

· α({F (s, vi−1(s), vi−1(s− τ)) + Cvi−1(s)})ds

≤ 2c‖(I − S(ω))−1‖ ·
∫ t

t−ω
‖S(t− s)‖ · (α({vi−1(s)}) + α({vi−1(s− τ)})ds
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≤ 2cCSMS

∫ t

t−ω
α({vi−1(s)}) + α({vi−1(s− τ)})ds,

from the periodicity of vi and definition of measure of noncompactness, it
follows that α({vi−1(s)}) = α({vi−1(s− τ)}), thus,

(3.19) α({vi(t)}) ≤ 4cωCSMS · max
t∈[0,ω]

α({vi(t)}) ≤ 4cωCSMS · αC({vi}).

Since {vi} is equicontinuous, from Lemma 2.3, it follows that

0 ≤ αC({vi}) ≤ 4cωCSMS · αC({vi}),

While 4cωCSMS < 1, hence αC({vi}) = 0. Similarly, we can prove αC({wi}) =
0. Therefore, {vi}, {wi} are relatively compact in Cω(R, X), so there are con-
vergent subsequences in {vi} and {wi}, respectively. Combining this with the
monotonicity and the normality of the cone KC , we can easily prove that {vi}
and {wi} themselves are convergent, i.e., there are u, u ∈ Cω(R, E) such that
lim
i→∞

vi = u and lim
i→∞

wi = u.
Therefore, from the proof of Theorem 3.1, u, u are minimal and max-

imal ω-periodic mild solutions of the periodic problem with delay (1.1) in
[v0, w0].

In the application of partial differential equations, we often choose Banach
space Lp(Ω)(1 ≤ p < ∞) as working space, which is weakly sequentially com-
plete space. Next, we discuss the existence of mild solutions for the periodic
problem with delay (1.1) in weakly sequentially complete Banach space.

Theorem 3.3. Let E be an ordered and weakly sequentially complete Ba-
nach space, whose positive cone K is normal, let A : D(A) ⊂ E → E
be a closed linear operator and −A generate a positive equicontinuous C0-
semigroup T (t)(t ≥ 0) in E, let F : R×E×E → E be a continuous mapping
which is ω-periodic in t. Assume the periodic problem (1.1) has lower and
upper ω-periodic solutions v0, w0 ∈ C1

ω(R, E)∩Cω(R, E1) with v0 ≤ w0. If the
condition (H1) holds, then the periodic problem (3.1) has minimal and max-
imal ω-periodic mild solution u, u between v0 and w0, which can be obtained
by monotone iterative sequences starting from v0 and w0.

Proof. From the proof of Theorem 3.1, it follows that the iterative sequences
vi and wi defined by (3.11) satisfy (3.12). Hence, for any t ∈ R, {vi(t)} and
{wi(t)} are monotone and order-bounded sequences in E. Noticing that E is a
weakly sequentially complete Banach space, from Theorem 2.2 in [12], one can
get that {vi(t)} and {wi(t)} are precompact in E for any t ∈ R. Combining
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this with the monotonicity (3.12), it follows that {vi(t)} and {wi(t)} are
uniformly convergent in E. Denote

(3.20) u(t) = lim
n→∞

vn(t), u(t) = lim
n→∞

wn(t), t ∈ R.

Obviously, {vn(t)}, {wn(t)} ⊂ Cω(R, X), and v0(t) ≤ u(t) ≤ u(t) ≤ w0(t)(t ∈
R). By (3.7), we have

vi(t) = Qvi−1(t)

= (I − S(ω))−1
∫ t

t−ω
S(t− s)(F (s, vi−1(s), vi−1(s− τ)) + Cvi−1(s))ds,

(3.21)

and

wi(t) = Qwi−1(t)

= (I − S(ω))−1
∫ t

t−ω
S(t− s)(F (s, wi−1(s), wi−1(s− τ)) + Cwi−1(s))ds.

(3.22)

Taking limit in (3.21) and (3.22) as i → ∞, from the Lebesgue dominated
convergence theorem, one can obtain

u(t) = (I − S(ω))−1
∫ t

t−ω
S(t− s)(F (s, u(s), u(s− τ)) + Cu(s))ds, t ∈ R,

(3.23)

and

u(t) = (I − S(ω))−1
∫ t

t−ω
S(t− s)(F (s, u(s), u(s− τ)) + Cu(s))ds, t ∈ R.

(3.24)

which implies that u, u ∈ Cω(R, X). Similar with the proof of Theorem 3.1,
we know that the u, u are minimal and maximal ω-periodic mild solutions of
the periodic problem with delay (1.1) in [v0, w0].

Remark 1. Analytic semigroup and differentiable semigroup are continuous
by operator norm for every t > 0 (see [33]). In the application of partial dif-
ferential equations, such as parabolic equations and strongly damped wave
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equations, the corresponding solution semigroup is analytic semigroup. There-
fore, Theorem 3.2 and Theorem 3.3 in this paper has broad applicability.

In the above works, the key assumption (H1) (the monotone on the third
variable of the nonlinear function) is employed. However, we hope that the
nonlinear function is quasi-monotonicity. In this case, the results have more
extensive application background.

In fact, we find that if the periodic problem (1.1) has lower and upper
ω-periodic solutions v0, w0 ∈ C1

ω(R, E) ∩ Cω(R, E1) with v0 ≤ w0 and

(H3) there is a sufficiently small constant C1 > 0, such that

u2(t) − u1(t) ≥ C1(u2(t− τ) − u1(t− τ)), t ∈ R,

for any u1, u2 ∈ [v0, w0] with u2 ≥ u1,

then the condition (H1) can be replaced by the following condition

(H4) there are nonnegative constants C2, C3, such that

F (t, x2, y2) − F (t, x1, y1) ≥ −C2(x2 − x1) − C3(y2 − y1),

for all t ∈ R, x1, x2, y1, y2 ∈ E with v0(t) ≤ x1 ≤ x2 ≤ w0(t), v0(t − τ) ≤
y1 ≤ y2 ≤ w0(t− τ).

In fact, for every t ∈ R and u1, u2 ∈ [v0, w0] with u1 ≤ u2, one can obtain
that v0(t) ≤ u1(t) ≤ u2(t) ≤ w0(t), v0(t − τ) ≤ u1(t − τ) ≤ u2(t − τ) ≤
w0(t− τ). By the conditions (H3) and (H4), it follows that

F (t, u2(t), u2(t− τ)) − F (t, u1(t), u1(t− τ))
≥ − C2(u2(t) − u1(t)) − C3(u2(t− τ) − u1(t− τ))

≥ − C2(u2(t) − u1(t)) −
C3

C1
(u2(t) − u1(t))

= − (C2 + C3

C1
)(u2(t) − u1(t))

:= − C(u2(t) − u1(t)).

Hence, we can obtain the following results form Theorem 3.1 and Theorem 3.2,
respectively.

Theorem 3.4. Let E be an ordered Banach space, whose positive cone K
is normal cone, let A : D(A) ⊂ E → E be a closed linear operator and −A
generate a positive compact semigroup T (t)(t ≥ 0), let f : R×E×E → E be a
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continuous mapping which is ω-periodic in t. Assume Eq. (1.1) has lower and
upper ω-periodic solutions v0, w0 ∈ C1

ω(R, E)∩Cω(R, E1) with v0 ≤ w0. If the
conditions (H3) and (H4) hold, then the periodic problem (1.1) has minimal
and maximal ω-periodic mild solution u, u between v0 and w0, which can be
obtained by monotone iterative sequences starting from v0 and w0.

Theorem 3.5. Let E be an ordered Banach space, whose positive cone K

is normal cone, let A : D(A) ⊂ E → E be a closed linear operator and
−A generate a positive equicontinuous C0-semigroup T (t)(t ≥ 0), let f :
R × E × E → E be a continuous mapping which is ω-periodic in t. Assume
the periodic problem (1.1) has lower and upper ω-periodic solutions v0, w0 ∈
C1

ω(R, E) ∩ Cω(R, E1) with v0 ≤ w0. If the conditions (H2–H4) hold, then
the periodic problem (1.1) has minimal and maximal ω-periodic mild solution
u, u between v0 and w0, which can be obtained by monotone iterative sequences
starting from v0 and w0.

Remark 2. Obviously, the condition (H3) is easy to satisfy, and the condi-
tion (H4) weakens the condition (H1). Hence, Theorem 3.3 and Theorem 3.4
partially improve Theorem 3.1 and Theorem 3.2.

Next, we discuss the uniqueness of the ω-periodic mild solution for the
periodic problem (1.1) under T (t)(t ≥ 0) is an equicontinuous C0-semigroup.

Theorem 3.6. Let E be an ordered Banach space, whose positive cone K is
normal cone with normal constant N , let A : D(A) ⊂ E → E be a closed lin-
ear operator and −A generate a positive equicontinuous C0-semigroup
T (t)(t ≥ 0), let f : R × E × E → E be a continuous mapping which is
ω-periodic in t. Assume Eq. (1.1) has lower and upper ω-periodic solutions
v0, w0 ∈ C1

ω(R, E) ∩ Cω(R, E1) with v0 ≤ w0. If the conditions (H3), (H4)
and

(H5) there exist constants L1, L2 > 0, such that for every t ∈ R and
x1, x2, y1, y2 ∈ X, satisfying v0(t − τ) ≤ y1 ≤ y2 ≤ w0(t − τ), v0(t) ≤ x1 ≤
x2 ≤ w0(t),

F (t, x2, y2) − F (t, x1, y1) ≤ L1(x2 − x1) + L2(y2 − y1),

(H6) N
(
C2 + C3

C1
+ L1 + C1L2

)
CSMSω < 1,

hold, then the periodic problem (1.1) has a unique ω-periodic mild solution
u∗ ∈ [v0, w0], where CS = ‖(I − S(ω))−1‖, MS = sup{‖S(t)‖ | t ≥ 0}.
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Proof. From Theorem 3.1 and Theorem 3.5, one can obtain that the iterative
sequences vi and wi defined by (3.11) satisfy (3.12). For any t ∈ R, by the
conditions (H3), (H5), (3.7), (3.12), it is easy to see

θ ≤ wi(t) − vi(t) = Qwi−1(t) −Qvi−1(t)

= (I − S(ω))−1
∫ t

t−ω
S(t− s)(F (s, wi−1(s), wi−1(s− τ)) + Cwi−1(s))ds

− (I − S(ω))−1
∫ t

t−ω
S(t− s)(F (s, vi−1(s), vi−1(s− τ)) + Cvi−1(s))ds

≤ (I − S(ω))−1
∫ t

t−ω
S(t− s)((L1 + C)(wi−1(s) − vi−1(s))

+ L2(wi−1(s− τ) − vi−1(s− τ)))ds

≤ (L1 + C + L2C1)(I − S(ω))−1
∫ t

t−ω
S(t− s)(wi−1(s) − vi−1(s))ds,

where C = C2 + C3
C1

. By the normality of the cone K, it follows that

‖wi(t) − vi(t)‖ ≤ N(L1 + C + L2C1)CSMSω‖wi−1 − vi−1‖C , t ∈ R,

namely

(3.25) ‖wi − vi‖C ≤ N(L1 + C + L2C1)CSMSω‖wi−1 − vi−1‖C ,

by the condition (H6), we can obtain that

‖wi − vi‖C ≤
(
N(L1 + C + L2C1)CSMSω

)i
‖w0 − v0‖C → 0, i → ∞.

Thus, there is a unique ω-periodic mild solution u∗ ∈ Cω(R, X), such that
lim
i→∞

wi = lim
i→∞

vi = u∗. Hence, taking limit in (3.11) as i → ∞, we get u∗ =
Qu∗, which implies that u∗ is unique ω-periodic mild solution u∗ ∈ [v0, w0] of
the periodic problem (1.1).

4. Application

In this section, we present two examples, which do not aim at generality but
indicate how our abstract results can be applied to concrete problems.

Example 4.1. Periodic solutions of delay parabolic equations in R
n(n ≥ 1).
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Let Ω ∈ R
n be a bounded domain with a sufficiently smooth boundary

∂Ω. Let

(4.1) A(x,D)u = −
N∑

i,j=1
aij(x)DiDju +

N∑
j=1

aj(x)Dju + a0(x)u,

be a uniformly elliptic differential operator in Ω, whose coefficients aij(x),
aj(x) (i, j = 1, · · · , n) and a0(x) are Höder-continuous on Ω, and a0(x) ≥ 0.
We let B = B(x,D) be a boundary operator on ∂Ω of the form:

(4.2) Bu := b0(x)u + δ
∂u

∂β
,

where either δ = 0 and b0(x) ≡ 1 (Dirichlet boundary operator), or δ = 1
and b0(x) ≥ 0 (regular oblique derivative boundary operator; at this point,
we further assume that a0(x) �≡ 0 or b0(x) �≡ 0), β is an outward pointing,
nowhere tangent vector field on ∂Ω. Let λ1 be the first eigenvalue of elliptic
operator A(x,D) under the boundary condition Bu = 0. It is well known ([1,
Theorem 1.16]), that λ1 > 0.

Under the above assumptions, we discuss the existence and uniqueness
of ω-periodic solutions of the semilinear parabolic equation boundary value
problem{

∂
∂tu(x, t) + A(x,D)u(x, t) = f(x, t, u(x, t), u(x, t− τ)), x ∈ Ω, t ∈ R,

Bu = 0, x ∈ ∂Ω,

(4.3)

where f : Ω × R × R
2 → R a local Hölder-continuous function which is

ω-periodic in t, τ > 0 denotes the time delay.
Theorem 4.1. Let f : Ω×R×R

2 → R be a local Hölder-continuous function
which is ω-periodic in t. If the following conditions

(H7) f(x, t, 0, 0) ≥ 0 for any (x, t) ∈ Ω × R, and there is a function
0 ≤ w = w(x, t) ∈ C2,1(Ω × R) which is ω-periodic in t, such that{

∂
∂tw(x, t) + A(x,D)w(x, t) ≥ f(x, t, w(x, t), w(x, t− τ)), (x, t) ∈ Ω × R,

Bw = 0, x ∈ ∂Ω,

(H8) there exists a constant c > 0, such that for any x ∈ Ω , t ∈ R and
0 ≤ y1 ≤ y2 ≤ w(x, t), 0 ≤ z1 ≤ z2 ≤ w(x, t− τ),

f(x, t, y2, z2) − f(x, t, y1, z1) ≥ −C(y2 − y1),
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hold, then the semilinear delayed parabolic equation boundary value problem
(4.3) has minimal and maximal ω-periodic solution u, u ∈ C2,1(Ω×R) between
0 and w, which can be obtained by monotone iterative sequences starting from
0 and w.
Proof. Let E = Lp(Ω)(p > 1), K = {u ∈ E| u(x) ≥ 0 a.e. x ∈ Ω}, then E
is an ordered Banach space, whose positive cone K is a normal regeneration
cone. Define an operator A : D(A) ⊂ E → E by:

(4.4) D(A) = {u ∈ W 2,p(Ω)| B(x,D)u = 0, x ∈ ∂Ω}, Au = A(x,D)u.

If a0(x) ≥ 0, then −A generates an exponentially stable analytic semigroup
Tp(t)(t ≥ 0) in E (see [2]). By the maximum principle of elliptic operators,
we know that (λI + A) has a positive bounded inverse operator (λI + A)−1

for λ > 0, hence Tp(t)(t ≥ 0) is a positive semigroup (see [21]). From the
operator A(x,D) has compact resolvent in Lp(Ω), we obtain Tp(t)(t ≥ 0) is
also a compact semigroup (see [33]).

Denote u(t) = u(·, t), and F (t, u(t), u(t − τ)) = f(·, t, u(·, t), u(·, t − τ)),
then parabolic boundary value problem (4.3) can be reformulated as the ab-
stract evolution (1.1) in E. By the condition (H7), it follows that v0 ≡ 0 and
w0 = w(x, t) are time ω-periodic lower solution and time ω-periodic upper
solution of the problem (4.3), and v0 ≤ w0. By the condition (H8), it follows
that the condition (H1) holds. Hence, form Theorem 3.1, one can see the
delayed parabolic boundary value problem (4.3) has minimal and maximal
ω-periodic mild solution u, u, which can be obtained by monotone iterative
sequences starting from 0 and w, respectively.

By the analyticity of the semigroup Tp(t)(t ≥ 0) and the regularization
method used in [2], we can see that u, u ∈ C2,1(Ω × R) are time ω-periodic
solutions of the problem(4.3). This completes the proof of the theorem.

Furthermore, if the following condition
(H9) there is a constant C1 > 0, such that

u2(x, t) − u1(x, t) ≥ C1(u2(x, t− τ) − u1(x, t− τ)),

for (x, t) ∈ Ω × R, u1, u2 ∈ [0, w(x, t)], u2 ≥ u1, then the condition (H8) can
be replaced by

(H10) there exist nonnegative constants C2, C3 such that

f(x, t, y2, z2) − f(x, t, y1, z1) ≥ −C2(y2 − y1) − C3(z2 − z1).

for (x, t) ∈ Ω × R and x1, x2, y1, y2 ∈ X with 0 ≤ x1 ≤ x2 ≤ w0(x, t),
0 ≤ y1 ≤ y2 ≤ w0(x, t− τ).
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Thus, according to Theorem 3.4, we have the following result

Theorem 4.2. Let f : Ω×R×R
2 → R be a local Hölder-continuous function

which is ω-periodic in t. If the conditions (H7),(H9) and (H10) hold, then
the semilinear delayed parabolic equation boundary value problem (4.3) has
minimal and maximal ω-periodic solution u, u ∈ C2,1(Ω × R) between 0 and
w, which can be obtained by monotone iterative sequences starting from 0 and
w.

Example 4.2. Doubly periodic problems of first order partial differential
equation with delay.

Let f : R4 → R is a continuous function, which is 2π-periodic in t and x.
We are concerned with the existence of solutions for the semilinear first order
partial differential equation with delay in R

2:

(4.5) ∂

∂t
u(x, t) + ∂

∂x
u(x, t) = f(x, t, u(x, t), u(x, t− τ)), (x, t) ∈ R

2,

with doubly periodic boundary conditions

(4.6) u(x + 2π, t) = u(x, t + 2π) = u(x, t), (x, t) ∈ R
2,

where τ > 0 denotes the time delay.

Theorem 4.3. Let f(x, t, u, v) ∈ C1(R4), and f is 2π-periodic in t and x.
Assume f(x, t, 0, 0) ≥ 0, there is a function w(x, t) ∈ C1(R2) and w is 2π-
periodic in t and x satisfying w(x, t) ≥ 0, such that

∂

∂t
w(x, t) + ∂

∂x
w(x, t) ≥ f(x, t, w(x, t), w(x, t− τ)), (x, t) ∈ R

2.

If the following conditions
(H11) for any x, t ∈ R and u1, u2 ∈ C(R2), 0 ≤ u1(x, t) ≤ u2(x, t) ≤

w(x, t),

f(x, t, u2(x, t), u2(x, t− τ)) − f(x, t, u1(x, t), u1(x, t− τ))
≥ −(u2(x, t) − u1(x, t)),

(H12) there is a constant c ∈ [0, e2π−1
8πe2π ), such that for any x, t ∈ R and

monotone sequence {un(x, t)} ∈ [0, w(x, t)],

α({f(x, t, un(x, t), un(x, t− τ)) + un(x, t)})
≥ c(α({un(x, t)}) + α({un(x, t− τ)})),
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hold, then the doubly periodic problems of first order partial differential equa-
tion (4.5)–(4.6) has minimal and maximal classical solutions u, u ∈ C1(R2)
between 0 and w.

Proof. Let C2π(R) denote the Banach space {u ∈ C(R)|u(x+2π) = u(x), x ∈
R} endowed the maximum norm ‖u‖C = maxx∈[0,2π] ‖u(x)‖. Denote E =
C2π(R), let

(4.7) D(A) = C1
2π(R), A = ∂u

∂x
.

From [24, Lemma 2.1], if λ �= 0, we know that (λI + A) has a bounded
inverse operator (λI + A)−1 in E and

(4.8) (λI + A)−1h(x) =
∫ x

x−2π
r(s− y)h(y)dy, h ∈ E,

where

r(x) = e−λx

1 − e−2πλ , x ∈ [0, 2π].

By (4.8), it follows that (λI+A)−1 is positive operator for λ > 0, and its norm
‖(λI + A)−1‖ ≤ 1

λ . Form Hille-Yosida Theorem and exponential formula of
semigroup (see [33]), we can obtain that −A generates a contractive and posi-
tive C0-semigroup T (t)(t ≥ 0), whose growth exponent ν0 ≤ 0. Thus, −(A+I)
generates a contractive and positive C0-semigroup S(t) = e−tT (t)(t ≥ 0) in
E, and the growth exponent ν1 = −1 + ν0 ≤ −1, which implies that S(t)(t ≥
0) is an exponentially stable, positive C0-semigroup and ‖S(2π)‖ ≤ e−2π,
‖(I − S(2π))−1‖ ≤ e2π

e2π−1 .
Set u(t)(x) = u(x, t), u(t− τ)(x) = u(x, t− τ), and

(4.9) F (t, u(t), u(t− τ))(x) = f(t, u(x, t), u(x, t− τ)),

then the doubly periodic problems (4.5)–(4.6) can be reformulated as follow-
ing

(4.10) u′(t) + Au(t) = F (t, u(t), u(t− τ)), t ∈ R,

where F : R× E × E → E is C1-mapping which is 2π-periodic in t.
It is easy to see that v0(t) ≡ 0 and w0(·, t) = w(x, t) are 2π-periodic lower

solution and 2π-periodic upper solution of Eq. (4.10). From the condition
(H11), (H12) and Theorem 3.2, one can obtain that Eq. (4.10) has minimal
and maximal 2π-periodic mild solution u, u between 0 and w0, which can
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be obtained by monotone iterative sequences starting from 0 and w0. Since
F is a C1-mapping, from regularity of solutions for the semilinear evolution
equations (see [33]), we know that

(4.11) u, u ∈ C1
2π(R, X) ∩ C2π(R, D(A)),

namely u, u are minimal and maximal 2π-periodic classical solutions, respec-
tively. Therefore, by the definition of A, it follows that u, u are 2π-doubly
periodic classical solutions of the doubly periodic problems (4.5)–(4.6).
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