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Sheaf counting on local K3 surfaces
Davesh Maulik and Richard P. Thomas

Abstract: There are two natural ways to count stable pairs or
Joyce-Song pairs on X = K3 × C; one via weighted Euler charac-
teristic and the other by virtual localisation of the reduced virtual
class. Since X is noncompact these need not be the same. We show
their generating series are related by an exponential.

As applications we prove two conjectures of Toda, and a con-
jecture of Tanaka-Thomas defining Vafa-Witten invariants in the
semistable case.
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1. Introduction

Let S be a smooth complex projective K3 surface, and X = S × C. Let Zred
P

be the generating series of reduced residue stable pair invariants of X, and let
zχP be the generating series of weighted Euler characteristics of stable pairs
moduli spaces. Precise definitions are given in the next section.
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Theorem 1.1.

Zred
P (X, q, v) = − log

(
1 + zχP (X, q, v)

)
.

The idea of the proof is to start with Y = S × E, where E is an elliptic
curve. To get nonzero invariants we divide the moduli space by the translation
action of E and use Oberdieck’s symmetric reduced obstruction theory [Ob].
Since the moduli space is compact, the invariants defined by virtual cycle or
weighted Euler characteristic coincide:

Zred
P (Y/E, q, v) = zχP (Y/E, q, v).

On the left hand side we then use Li-Wu’s degeneration formula for virtual
cycles [LW] as E degenerates to a rational nodal curve. This has a C∗ action;
applying virtual localisation ultimately gives the left hand side of Theorem
1.1. On the right hand side we work with weighted Euler characteristics, us-
ing a simple gluing argument to compare the moduli spaces of stable pairs
supported set-theoretically on one K3 fibre of either X or Y . An elemen-
tary calculation of Euler characteristics of configuration spaces of points on
a punctured elliptic curve then gives the right hand side of Theorem 1.1.

Since Zred
P (X) is now proved to be given by the KKV formula [PT3], this

implies a weighted Euler characteristic version of the KKV conjecture for X.
We also prove an unweighted, bare Euler characteristic version, thus proving
a conjecture of Toda [To1]. From this we also deduce a multiple cover formula
conjectured in [To2] for invariants counting 1-dimensional semistable sheaves
on X.

Replacing stable pairs by Joyce-Song pairs of arbitrary semistable sheaves
on X, a similar argument relates their virtual and weighted Euler characteris-
tic invariants. Combined with Joyce-Song’s universal identity for the weighted
Euler characteristic invariants, this proves an identity (roughly the logarithm
of Joyce-Song’s identity) conjectured in [TT2]. This is important for the con-
jectural definition [TT2] of Vafa-Witten invariants of surfaces S in the pres-
ence of strict semistables.

Theorem 1.2. For S a K3 surface [TT2, Conjecture 7.2] holds, so the Vafa-
Witten invariants VWα(S) are well defined. Moreover, they equal the invari-
ants vwα(S) defined by weighted Euler characteristic in [TT2, Section 4].

The analogous result was proved for surfaces with degKS < 0 in [TT2].
The Conjecture was also proved there for all surfaces when there are no
strictly semistable sheaves in class α, but when KS > 0 the invariants VWα(S)
and vwα(S) no longer coincide.



Sheaf counting on local K3 surfaces 421

2. Notation

Throughout we will use the following notation.

• S is an algebraic K3 surface over C.
• H1,1(S,Z) := H2(S,Z)∩H1,1(S,C) inside H2(S,C). We freely identify
H2(S) ∼= H2(S) over Z, Q or C, by Poincaré duality.

• β ∈ H1,1(S,Z) is a curve class.
• X = KS = S × C is a Calabi-Yau 3-fold with C∗ action of weight 1 on

the C factor.
• Y = S × E for some smooth elliptic curve E with origin e ∈ E.
• T is a 3-fold, K3-fibred over the marked disk (Δ, 0) with central fibre
S. Considered as a map from Δ to the moduli stack of K3 surfaces, it
intersects the Noether-Lefschetz divisor of β only in 0, and transversely.
Moreover it is also transverse to Noether-Lefschetz divisors correspond-
ing to all classes β′ ∈ H1,1(S,Z) of smaller degree. We think of T as
an algebraic approximation to a twistor space for S. For full details see
[PT3, Section 6.2].

• We use π for the three K3 fibrations X → C, Y → E, T → Δ.
• We use ι : S ↪→ X, Y, T for the three inclusions of the central fibre S

(over 0 ∈ C, e ∈ E, 0 ∈ Δ respectively) in the above fibrations.

We study stable pairs (F, s) on X = S × C; that is,

(1) F is a coherent sheaf on X of pure dimension one, and
(2) s ∈ H0(F ) has finite cokernel.

For n ∈ Z, there is a quasi-projective moduli space

Pn(X, ι∗β) = Pn(S × C, ι∗β)

of stable pairs with holomorphic Euler characteristic χ(F ) = n and curve class
[F ] = ι∗β. Since it admits a symmetric obstruction theory there are two ways
of extracting invariants from this moduli space, and since it is noncompact
they need not be equal.

We define the generating series of (integer) Kai-weighted Euler character-
istic invariants by

(2.1) zχP (X, q, v) :=
∑
β,n

e
(
Pn(X, ι∗β), χB)qnvβ .
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Here χB is Behrend’s integer-valued constructible function of the scheme
Pn(X, ι∗β) [Be]. We will compare this to the generating series

(2.2) Zred
P (X, q, v) :=

∑
α

P red
n,β (X)qnvβ

of (rational) reduced residue stable pair invariants of S. These are defined by
applying the virtual localisation formula [GP] to the reduced perfect obstruc-
tion theory of X = S × C acted on by C∗,

(2.3) P red
n,β (X) := Rest=0

∫
[Pn(X, ι∗β)C∗ ]red

1
e(Nvir) ∈ Q.

Here t ∈ H2(BC∗) is the equivariant parameter.
Note that by condition (1) above, only charges (β, n) with β �= 0 con-

tribute to the sums (2.1) and (2.2). It will be convenient to abbreviate the
charge (pushed down to S) to

α := (β, n) ∈ H1,1(S,Z) ⊕ Z

and write

(2.4) Pα := e
(
Pn(X, ι∗β), χB) and Qα := qnvβ

so that (2.1), for instance, becomes

(2.5) zχP (X,Q) =
∑
α

PαQ
α.

To prove Theorem 1.1 relating the two generating series zχP and Zred
P we first

relate both to the invariants of Y = S × E.

3. Behrend

Let Pn(Y, ι∗β) denote the moduli space of stable pairs on Y in the curve class
ι∗β. Since it carries an action of E with finite stabilisers, we can consider
the weighted Euler characteristic of the quotient Pn(Y, ι∗β)/E, where the
weighting is by χB divided by the order of the stabiliser group at any point.
We form the generating series

(3.1) zχP
(
Y/E,Q

)
:=

∑
α

e
(
Pn(Y, ι∗β)/E, χB)Qα.
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The relationship between the weighted Euler characteristic invariants of X
(2.1) and Y (3.1) is the following.
Proposition 3.2.

zχP
(
Y/E, q, v

)
= − log

(
1 + zχP (X, q, v)

)
.

Proof. Firstly we use the C∗ action on X = S × C, which induces one on
the moduli spaces Pn(X, ι∗β) preserving the Behrend function χB. Its fixed
points lie in the locus

P 0
α ⊂ Pn(X, ι∗β)

of stable pairs with set-theoretic support on S×{0} ⊂ S×C. The C∗ action
is free on the complement of this locus, so its weighted Euler characteristic is
zero. Therefore (2.4) localises to

(3.3) Pα = e
(
P 0
α, χ

B|P 0
α

)
.

(The invariant Pα can be further localised to the C∗-fixed points of P 0
α, but

we do not use that here.)
To relate X and Y we fix, once and for all, a trivialisation of the tangent

bundle of E. The exponential map then gives a canonical analytic isomor-
phism between a neighbourhood of any point p ∈ E and a neighbourhood of
0 ∈ C. Using this to transplant stable pairs from S×{0} ⊂ X to S×{p} ⊂ Y
we see

P 0
α × E

as the moduli space of stable pairs on Y = S × E (with holomorphic Euler
characteristic n and curve class ι∗β) supported set theoretically on a single
fibre S × {p}.

This suggests stratifying the moduli space Pn(Y, ι∗β) by the (minimal)
number k of fibres S on which the pairs are set-theoretically supported. Each
carries a charge; we call the distinct charges α1, . . . , α�. Let ki denote the
number of fibres S carrying charge αi = (βi, ni), so

�∑
i=1

ki = k and
�∑

i=1
kiαi = α.

We claim the stratum of the moduli space Pn(Y, ι∗β) with this data is the
quotient of

(3.4) P 0
α1 × · · · × P 0

α1︸ ︷︷ ︸
k1

× · · · × P 0
α�

× · · · × P 0
α�︸ ︷︷ ︸

k�

×(Ek\Δk)
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by the free action of the product Σk1 × · · · × Σk� of symmetric groups. Here
Δk is the big diagonal.

To see the claim, observe the product (3.4) is the moduli space of pairs
with a fixed choice of ordering of the ki points of E above which the charges
αi are supported. Since these ordered points are distinct they are equivalent
to a point of Ek\Δk. The symmetric groups act by permuting these points,
changing their ordering.

Since the Behrend function is determined analytically, it cannot tell the
difference between C and E. Therefore its pull back from Pn(Y, ι∗β) to (3.4)
is just the product of the Behrend functions

χB
Pni (X, ι∗βi)

∣∣
P 0
αi

on each P 0
αi

factor. Dividing by the symmetric groups preserves the Behrend
function χB, while dividing by E just changes its sign. Thus the weighted Eu-
ler characteristic of the quotient of (3.4) by the action of both the symmetric
groups and E is, by (3.3),

−P k1
α1

k1!
P k2
α2

k2!
· · · P

k�
α�

k�!
e

(
Ek\Δk

E

)
= (−1)k 1

k

(
k

k1, k2, . . . , k�

)
P k1
α1 · · ·P

k�
α�

.

Here we have used

e

(
Ek\Δk

E

)
= (−1)k−1(k − 1)! ,

proved inductively using the fibration (Ek\Δk)/E → (Ek−1\Δk−1)/E, whose
fibre E\{p1, . . . , pk−1} has Euler characteristic −(k − 1).

Summing over all strata and all α computes the generating series (3.1) as

∞∑
k=1

∑
�,ki, αi distict :∑�

i=1 ki=k

(−1)k

k

(
k

k1, k2, . . . , k�

)
(Pα1Q

α1)k1 · · · (Pα�
Qα�)k�

=
∞∑
k=1

1
k

(
−

∑
α

PαQ
α

)k

= − log
(

1 +
∑
α

PαQ
α

)
,

which by (2.5) is what we wanted to prove.
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Remark. It is possible to give a quicker, more highbrow proof of this re-
sult using the technology introduced by Oberdieck-Shen [OS]. Using their E-
equivariant power structure, the stratification of Pn(Y, ι∗β) used above (3.4)
is equivalent to the identity

1 +
∑
n,β

[
Pn(Y, ι∗β)

]
qnvβ =

(
1 +

∑
α

[P 0
α]Qα

)[E]

in the E-equivariant Grothendieck group of varieties KE
0 (Var)[[q, v]]. Applying

(a Behrend-weighted version of) their E-equivariant integration map I to the
ring of dual numbers Q[ε]/(ε2), we get

1 + ε
∑
n,β

e
(
Pn(Y, ι∗β)/E, χB)qnvβ =

(
1 +

∑
α

PαQ
α
)I(E)

=
(
1 +

∑
α

PαQ
α
)−ε

= 1 − ε log
(
1 +

∑
α

PαQ
α
)
.

Taking coefficients of ε then recovers Proposition 3.2.

4. Oberdieck

Oberdieck [Ob, Section 3] proves that Pn(Y, ι∗β)/E carries a natural symmet-
ric perfect obstruction theory, so that its Kai-weighted invariants (3.1) of the
last section coincide with invariants defined by integrating 1 over his virtual
cycle. Furthermore, in [Ob, Theorem 1] he proves that the latter invariants
can be defined differently — by taking the reduced virtual cycle on Pn(Y, ι∗β)
and integrating an insertion instead of dividing by E.

That is, letting β∨ ∈ H2(S,Q) denote any class with
∫
S β ∪ β∨ = 1, we

have

(4.1) e
(
Pn(Y, ι∗β)/E, χB) =

∫
[Pn(Y,ι∗β)]red

τ0(ι∗β∨).

To the right hand side of (4.1) we can now apply the degeneration formula [Li,
LW], since that uses virtual cycles rather than weighted Euler characteristics.
Degenerating E to be a 1-nodal rational elliptic curve will express (4.1) in
terms of the reduced residue stable pair invariants of S × C = X (2.3).
Combined with the calculation of the left hand side of 4.1 in Proposition 3.2
we will obtain the following.
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Theorem 4.2. The reduced residue stable pair invariants of X (2.2) are
related to its weighted Euler characteristic stable pair invariants (2.1) by

Zred
P (X, q, v) = − log

(
1 + zχP (X, q, v)

)
.

Proof. Taking E to be a 1-nodal rational elliptic curve, the degeneration
formula [Li, LW] expresses the right hand side of (4.1) as

(4.3)
∫[

Pn

(
(S×P1)/(S0∪S∞), ι∗β

)]red τ0(ι∗β∨).

That is, we work with stable pairs on S × P1 relative to the divisors S0 :=
S×{0} and S∞ := S×{∞}. The fibre product (matching the stable pairs over
S0 with those over S∞ so they can be glued together) imposes no condition
since in the class ι∗β any relative stable pair is canonically trivial on the
relative divisors.

We now calculate (4.3) as in [PT3, Sections 7.3–7.4]. We start by consid-
ering the relative geometry S × P1/S∞ and degenerating it to

(S × P1)/S∞ ∪
S∞∼S0

(S × P1)/(S0 ∪ S∞).

The degeneration formula gives∫[
Pn

(
(S×P1)/S∞, ι∗β

)]red τ0(ι∗β∨) =

∑∫[
Pn1

(
(S×P1)/S∞, ι∗β1

)
×Pn2

(
(S×P1)/(S0∪S∞), ι∗β2

)]red 1 × τ0(ι∗β∨),

where the sum is over all (β1, n1), (β2, n2) whose sum is (β, n). If both of
(β1, n1), (β2, n2) are nonzero then the obstruction theory admits two surjec-
tive cosections corresponding to the two components of support of the stable
pair. Since the reduced obstruction theory removes only one, it still admits
one surjective cosection, so the reduced cycle is zero.

When (β1, n1) = (β, n) and (β2, n2) = 0 the integral is zero because of
the insertion. So we are left only with (β2, n2) = (β, n), (β1, n1) = 0, which
contributes (4.3). Therefore, by (4.1),

e
(
Pn(Y, ι∗β)/E, χB) =

∫[
Pn

(
(S×P1)/S∞, ι∗β

)]red τ0(ι∗β∨).
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Then we apply virtual localisation to the usual C∗ action on P1 with weight
+1 on the tangent space at 0. We lift ι∗β∨ to H4

C∗(S×P1) by letting ι be the
inclusion of the C∗-invariant divisor S × {0} ↪→ S × P1.

By the same double cosection argument the contributions vanish unless all
the charge (β, n) is at one of S0 or (bubbles over) S∞. And again the insertion
τ0(ι∗β∨) kills the contribution of pairs supported entirely in (bubbles over)
S∞. Therefore we localise everything to S0 where the result becomes∫

[Pn(X, ι∗β)C∗ ]red

1
e(Nvir) τ0(ι∗β

∨).

Over S0 the insertion τ0(ι∗β∨) is just c1(t)
∫
S β ∪ β∨ = t, the equivariant

parameter, so we end up with∫
[Pn(X, ι∗β)C∗ ]red

t

e(Nvir) = Rest=0

∫
[Pn(X, ι∗β)C∗ ]red

1
e(Nvir) = P red

n,β (X).

Combining with Proposition 3.2 gives the result.

5. Euler

Theorem 4.2 relates Zred
P (X, q, v) and zχP (X, q, v). The former has now been

computed by the KKV formula [PT3]. For the latter, we have Toda’s con-
jectural weighted Euler characteristic version of the KKV conjecture [To1].
In fact Toda works with “naive” unweighted stable pair invariants defined by
bare Euler characteristic. So to deduce his conjecture we need to relate the
naive and weighted invariants using a version of dimensional reduction.

By localisation, it is sufficient to show the Behrend function is always ±1
at C∗-fixed points of the moduli space of stable pairs on X = KS = S × C.
In this section we show how to do this, though we only sketch the derived
stacks technicalities involved. By now Toda has given a much more careful
and professional treatment in [To3, Section 6], in fact proving more general
results.

We start with MS , the moduli stack of pure coherent sheaves E on S
with support of dimension 1 in some fixed curve class β ∈ H2(S), and fixed
holomorphic Euler characteristic n � 0. This has a natural derived Artin
stack structure [TV]. There is a closely related derived stack PS of pairs
(E, s), where s ∈ H0(E). The fibre over E ∈ MS of the forgetful map

(5.1) PS −→ MS
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has underlying scheme H0(E) and virtual relative tangent bundle RΓ(E).
There is a corresponding exact triangle of virtual tangent bundles

RΓ(E) −→ RHom(I•S , E) −→ RHom(E,E)[1]

at (E, s), where I•S is the complex OS
s−−→ E (with OS in degree 0).

Let P0
S ⊂ PS denote the open substack of pairs (E, s) for which

Ext1(E,E) s−−→ H1(E) onto. Combined with the vanishing of H2(E) (since
E has dimension 1) this makes the Ext∗( · , E) exact sequence of the exact
triangle I•S → OS → E collapse to give

(5.2) Ext1(I•S , E) ∼= Ext2(E,E) ∼= Hom(E,E ⊗KS)∗,

the last isomorphism being Serre duality.
Now let X := KS

p−−→ S be the total space of the canonical bundle of
S, and let PX = Pn(X, ι∗β) denote the moduli scheme of stable pairs (E , s)
of class (ι∗β, n). Pushing down defines a map p∗ : PX → PS taking (E , s) to
(E := p∗E , p∗s).
Lemma 5.3. The map p∗ factors through P0

S ⊂ PS.

Proof. (Cf. [PT2, Proof of Proposition C.2].) We need to show that
Ext1(E,E) p∗s−−−→ H1(E) is onto, where E = p∗E .

Let C ⊂ X be the support of E and consider the maps

H1(OC) idE−−−→ H1
X(Hom(E , E)) ↪−→ Ext1X(E , E) −→

Ext1S(E,E) p∗s−−−→ H1(E) ∼= H1(E).

The third arrow is given by adjunction and the evaluation map p∗E =
p∗p∗E → E . The composition is multiplication by s, and is therefore onto
since dim coker s = 0 implies H1(coker s) = 0. Thus the final arrow p∗s must
also be onto.

The projection p∗ : PX → P0
S in fact exhibits PX as an open substack

(with trivial stabilisers) of the (−1)-shifted cotangent bundle

(5.4) PX ⊂ T ∗[−1]P0
S .

As a scheme T ∗[−1]P0
S is the total space of the dual obstruction sheaf of P0

S ,
with closed points given by triples (E, s, φ),

E ∈ Coh(S), s ∈ H0(E), φ ∈ Hom(E,E ⊗KS) ∼= Ext1(I•S , E)∗
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by (5.2). This triple is equivalent to a pair (Eφ, s) on X by the spectral
construction. That is, Eφ on KS = X is the eigensheaf1 of the Higgs field φ,
and s ∈ H0(E) = H0(p∗Eφ) = H0(Eφ).

The derived scheme structure on PX pulled back from (5.4) is quasi-
smooth, inducing the usual (not reduced!) symmetric perfect obstruction the-
ory on PX . Moreover the description (5.4) expresses PX as a derived critical
locus with weight 1 potential — i.e. its quasi-smooth derived structure (and
in particular its obstruction theory) arises from seeing it locally as

Crit(f) ⊂ U,

where U is a smooth ambient variety with a C∗ action and f ∈ O(U) is C∗-
equivariant with weight 1. The local model about a point (Eφ, s) is given by
the following standard construction.

Suppose that E = p∗Eφ ∈ P0
S has stabiliser group G. Then locally about

E, the derived stack P0
S is isomorphic to the quotient by G of the zero locus

of a G-invariant section σ of a G-equivariant vector bundle F over a smooth
ambient G-space A:

F

��
Z(σ) ⊂ A,

σ

��

P0
S

loc= Z(σ)/G.

Near (Eφ, s) ∈ PX ⊂ T ∗[−1]P0
S, therefore, T ∗[−1]P0

S inherits the following
local description. We work in the bigger ambient space Ã := F ∗, the total
space of the dual of the vector bundle F → A over the old ambient space. On
this we have the G-invariant function

σ̃ : Ã = F ∗ −→ C

given by thinking of σ ∈ Γ(F ) as a linear functional on the fibres of F ∗. By
G-invariance its derivative lies in

(5.5) dσ̃ ∈ Γ
(
ker

(
Ω

Ã
−→ g∗

))
and cuts out Crit (σ̃) ⊂ Ã. Dividing by G gives the local model of T ∗[−1]P0

S ,
with its derived structure coming from thinking of (5.5) as lying in the dg
vector bundle Ω

Ã
→ g∗.

1The action of φ makes the OS-module E into a Sym•K−1
S = p∗OX -module.
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Since the stable pair (Eφ, s) has no automorphisms, the G-action is free
there. In a neighbourhood then, Ω

Ã
→ g∗ is onto with kernel Ω

Ã/G
. Therefore

over the open subscheme PX ⊂ T ∗[−1]P0
S we find the local description

(5.6) Ω
Ã/G

��
Z
(
dσ̃

)
⊂ Ã,

dσ̃

��

PX ⊂ T ∗[−1]P0
S

loc= Z
(
dσ̃

)
/G.

This description makes PX into a d-critical scheme (PX , [σ̃]) in the sense of
[Jo]. Here [σ̃] is a section of Joyce’s sheaf2 S0

PX
on PX intrinsically defined by

the scheme structure on PX . In the above local chart [σ̃] is defined by simply
restricting σ̃ to the doubling of PX inside Ã/G.

The d-critical scheme (PX , [σ̃]) is naturally “oriented”: the determinant
of the virtual cotangent bundle3 of its quasi-smooth derived structure

(5.7) detLder
T ∗[−1]P0

S

∣∣
PX

=
(
detLder

P0
S

∣∣
PX

)2

has a natural square root given by the (pullback of) the determinant of the
virtual cotangent bundle of the derived structure on P0

S .
Since the potential function σ̃ in the local model is C∗-equivariant with

weight 1 under the obvious scaling C∗ action on T ∗[−1]P0
S (equivalently the

C∗-action induced on PX by the usual one on X = KS), the section [σ̃] ∈
Γ
(
S0
PX

)
defining the d-critical scheme structure (PX , [σ̃]) also has C∗-weight

1. The C∗-action preserves the orientation (5.7) and is circle compact (for any
p ∈ PX , there is a limit in PX of λ · p as λ ∈ C∗ tends to 0).

Therefore we may apply the following result from [Ma]. (It is an instance
of dimensional reduction, and can be proved along the lines of the proof of
[DM, Theorem 5.9].) We let Mμ̂

PX
denote the ring of μ̂-equivariant motives

on PX [BBBJ, Section 5], where μ̂ is the projective limit of the finite groups
of roots of unity in C∗. For any C∗ fixed point p ∈ PX let

ιp : Up ↪−→ PX

2For any local embedding of PX in a smooth ambient space U with ideal I, it is
the kernel of d :

√
I

I2 −→ ΩU

I·ΩU
.

3In the language of Behrend-Fantechi, Lder is the perfect obstruction theory E•,
which in turn is T

Ã/G

dσ̃−−−→ Ω
Ã/G

in the local patch constructed above.
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be the inclusion of the ascending cell

Up :=
{
q ∈ PX : lim

C∗�λ→0
λ · q = p

}
,

and let πp : Up → {p} be the projection.

Theorem 5.8 ([Ma]). Let MF ∈ Mμ̂
PX

be the global motivic vanishing cycle
of [BBBJ, Corollary 5.17], defined by the oriented d-critical scheme structure
(Pn(X, ι∗β), [σ̃]). Then

(5.9) πp∗ι
∗
pMF = Ln+/2,

where n+ is the rank of the positive weight part of the virtual tangent bundle
(Lder

PX
)∨

∣∣
p

at p.
Corollary 5.10. The fixed points p of Pn(X, ι∗β) have trivial Behrend func-
tion: χB

∣∣
p

= (−1)n.

Proof. To take Euler characteristics in (5.9) we send L1/2 to −1, yielding

(5.11) πp∗ι
∗
p χ

B = (−1)n+ .

Since Up\{p} has a C∗ action without fixed points, it contributes 0 to πp∗ι∗p χ
B.

Therefore (5.11) is just χB|p.
So it is left to show that n+ ≡n (mod 2). In equivariant K-theory, the class

of the virtual tangent bundle restricted to the point (F, s) with χ(F ) = n is

RHom(I•, I•)0[1] = RHom(OX , F ) + RHom(F,OX) −RHom(F, F ),

where I• is the complex OX
s−−→ F . Decomposing F = ⊕d

i=0 ι∗Fi t
−i into

weight spaces, where Fi is supported on S, we get

d⊕
i=0

RΓ(Fi)t−i −
d⊕

i=0
RΓ(Fi)∗ti+1 −

d⊕
i,j=0

RHom(ι∗Fi, ι∗Fj)ti−j .

Using adjunction and ι∗ι∗Fi = Fi ⊕ Fi⊗K−1
S [1] in K-theory, another appli-

cation of Serre duality gives

d⊕
i=0

RΓ(Fi)t−i −
d⊕

i=0
RΓ(Fi)∗ti+1 −

d⊕
i,j=0

RHomS(Fi, Fj)ti−j

+
d⊕

i,j=0
RHomS(Fi, Fj ⊗KS)ti−j+1.
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Since KS = OS , taking ranks of the positive weight pieces gives

n+ = −
d∑

i=0
χ(Fi) −

∑
i>j

χS(Fi, Fj) +
∑
i≥j

χS(Fj , Fi)

= −χ(F ) +
d∑

i=0
χS(Fi, Fi) ≡ n (mod 2)

because the intersection form of a K3 surface is even.
Corollary 5.12. The generating series of “naive” Euler characteristic in-
variants

zna
P (X, q, v) :=

∑
e
(
Pn(X, ι∗β)

)
qnvβ

is more-or-less the same as zχP :

zna
P (X, q, v) = zχP (X,−q, v).

6. Toda

In this section we will combine our results so far with the KKV formula [KKV,
MP] proven in [PT3]. Let N red

g,β (X) denote the reduced connected residue
Gromov-Witten invariants of X defined by virtual C∗-localisation. Rewriting
their generating series

Fred
GW(X, u, v) :=

∑
g≥0, β �=0

N red
g,β (X)u2g−2vβ .

in “BPS form”,

(6.1) F red
GW(X, u, v) =

∑
g≥0, β �=0

ng,β u
2g−2 ∑

d>0

1
d

(sin(du/2)
u/2

)2g−2
vdβ,

defines the Gopakumar-Vafa invariants ng,β ∈ Q. Then by [PT3] the ng,β are
in fact integers ng,h ∈ Z which depend only on β through its self intersection∫

S
β2 = 2h− 2.

The ng,h are nonzero only for 0 ≤ g ≤ h and are determined by the KKV
formula

∑
g≥0

∑
h≥0

(−1)gng,h(y
1
2 − y−

1
2 )2gqh =

∏
n≥1

1
(1 − qn)20(1 − yqn)2(1 − y−1qn)2

(6.2)
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Theorem 6.3. The various enumerative invariants of X are related by

Fred
GW(X, u, v) = Zred

P (X, q, v) = − log
(
1 + zχP (X, q, v)

)
= − log

(
1 + zna

P (X,−q, v)
)

(6.4)

under the substitution q = −eiu. Furthermore, all are given by the KKV
formula (6.2).

Proof. In [PT3, Corollary 4] it is proven that

(6.5) Zred
P (X, q, v) = log

(
1 + Zred

P (T, q, v)
)
,

where T is (an algebraic approximation to) the twistor space of the K3 surface
S, and we sum over fibre classes α = (β, n) only. We will combine this with
the local Gromov-Witten/stable pairs correspondence conjecture proved in
[PT3, Theorem 2],

(6.6) 1 + Zred
P (T, q, v) = exp

(
FGW(T, u, v)

)
, q = −eiu,

where
FGW(T, u, v) :=

∑
g≥0, β �=0

Ng,β(T )u2g−2vβ

is the generating series of connected Gromov-Witten invariants of T .
We use the trivial identity4

FGW(T, u, v) = Fred
GW(X, u, v),

proved by computing the fixed and moving parts of the C∗-equivariant ob-
struction theory over Mg,β(X)C∗ ∼= Mg,β(S) ∼= Mg,β(T ). Combined with
(6.6) and (6.5), this gives Fred

GW(X, u, v) = Zred
P (X, q, v). Theorem 4.2 then

equates this with − log(1 + zχP (X)), and Corollary 5.12 implies the final
claimed identity.

The equality of the first and last terms of (6.4) confirms a conjecture of
Yukinobu Toda [To1], and proves that stable pair invariants of X defined
by weighted or unweighted Euler characteristic satisfy a form of the KKV

4The reason such a simple identity holds in Gromov-Witten theory is that C∗-
fixed stable maps to X = S×C all live in the scheme-theoretic central fibre S×{0}.
In particular Mg,β(T ) = Mg,β(S × C)C∗ . This is not the case for stable pairs.
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conjecture of [KKV, MP]. He actually asked whether we might have a chain
of identities (up to signs and leading 1s) like

exp
(
Fred

GW(X)
) ?= Zred

P (X) ?= zχP (X) ?= zna
P (X)

instead of (6.4). This is rather natural, since the first equality looks like the
Gromov-Witten/stable pairs conjecture. But the reduced class means this
holds only without the exponential, which rather fortunately gets cancelled
out again by Theorem 1.1 at the second equality.

For completeness we list all of the generating series which are proved to
be equal and thus described by the KKV formula (6.2):

Fred
GW(X) = Zred

P (X) = − log
(
1 + zχP (X)

)
= − log

(
1 + zna′

P (X)
)

= FGW(T ) = log
(
1 + Zred

P (T )
)

= log
(
1 + zχP (T )

)
= Zred

P (Y/E) = zχP (Y/E).

Here zna′
P (X) denotes zna

P (X) with q replaced by −q.

BPS rationality. We have shown the weighted Euler characteristic stable
pair invariants of X satisfy

(6.7) log
(
1 + zχP (X, q, v)

)
= −Fred

GW(X, u, v).

By the KKV formula (6.2), this can be written in BPS form (6.1) with (for
fixed β) the ng,β nonzero only for finitely many g. As in [PT1, Section 3.4],
substituting q = −eiu, this means that zχP can be written in the BPS form

−
∑

g≥0, β �=0

∑
d≥1

ng,β
(−1)g−1

r

(
(−q)d − 2 + (−q)−d)g−1

vdβ.

Here the ng,β ∈ Z, g ≥ 0 (the Gopakumar-Vafa invariants of T ) are the
integers determined by the KKV formula (6.2).

Thus the generating series zχP (X, q, v) satisfies the “BPS rationality” con-
dition of [PT1, Section 3.4]. Toda [To2, Theorem 6.4] shows that this BPS
rationality for zχP is equivalent to a multiple cover formula for the Joyce-Song
generalised DT invariants JX(r, β, n) [JS]. These count Gieseker semistable
torsion sheaves on X = S × C in class ι∗(r, β, n) by weighted Euler charac-
teristic and Joyce’s Hall algebra logarithm (and turn out to be independent
of the polarization used to define Gieseker semistability). We can therefore
conclude that the multiple cover formula holds.
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Corollary 6.8. The multiple cover formula

(6.9) JX(0, β, n) =
∑

k|(β,n)

1
k2JX(0, β/k, 1)

conjectured in [JS, Conjecture 6.20], [To2] holds for X.

Furthermore in [To2, Section 6], Toda uses (6.9) to calculate the Joyce-
Song invariants JX(v) for any Mukai vector v ∈ H∗(S,Z). By combining
deformations of (S, v) with Fourier-Mukai equivalences of Db(S) he can as-
sume v is a curve class (0, β, n) to which he can apply wall crossings (to show
the invariants JX(v) are independent of stability condition) and then (6.9)
to handle any divisibility of v. Since (6.9) is now proved, the result is the
following.

Corollary 6.10 (Toda [To2]). Let v ∈
(⊕2

p=0 H
p,p(S)

)
∩ H∗(S,Z) be an

algebraic class. For any polarization,

JX(v) =
∑
k|v

1
k2 e

(
Hilb

1
2 (v/k,v/k)+1 S

)
,

where ( · , · ) denotes the Mukai pairing.

7. Vafa-Witten

One can repeat the arguments of Sections 3 and 4 for Joyce-Song pairs instead
of stable pairs. This has consequences for the Vafa-Witten invariants of [TT2],
as we sketch now.

We begin on an arbitrary polarized surface (S,OS(1)) and set X to be
the total space of the canonical bundle KS with its projection p : X → S.
(Later S will revert to being a K3 surface.) For simplicity we assume as in
[TT2, Equation 2.4] that the polarization on S is generic so that semistable
sheaves are only destabilised by sheaves whose charges are proportional.

We consider compactly supported Gieseker semistable torsion sheaves E
on X such that the charge of p∗E is

α = (r, c1, c2) ∈ Z⊕H1,1(S,Z) ⊕ Z.

The sheaves E can be described equivalently in terms of Higgs pairs (E, φ) on
S with E := p∗E and φ ∈ Hom(E,E⊗KS); see [TT1, Section 2] for instance.
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We then take Joyce-Song stable pairs OX → E(n) for n � 0, where
OX(n) := p∗OS(n). They form a fine moduli space Pα(X); see [TT2, Section
3.1] for a review. We let

P⊥
α (X) ⊂ Pα(X)

denote the moduli space of pairs whose underlying torsion sheaf E has centre
of mass zero on each KS fibre (equivalently trφ = 0 in the Higgs description)
and det p∗E ∼= OS .

Both moduli spaces carry C∗-actions induced from the standard scaling
action on the fibres of KS . The two fixed loci are the same.

There is a reduced obstruction theory on Pα(X) which contains a sum-
mand H≥1(KS) governing the deformation-obstruction theory of the centre
of mass of the sheaves (or trace of the Higgs field). This may be removed to
define a symmetric obstruction theory on P⊥

α (X) [TT2]. Therefore, on restric-
tion to their common fixed locus, the former obstruction theory is the direct
sum of the latter with H≥1(KS) ⊗ t. Hence the two virtual normal bundles
also differ by H≥1(KS) ⊗ t. Localising to their common C∗ fixed locus then,
we get the relation

(7.1) P⊥
α (n) :=

∫[
(P⊥

α (X)C∗
]vir

1
e(Nvir) =

∫[
(Pα(X)C∗

]red
th

0(KS)−h1(KS)

e(Nvir)

for the reduced residue invariants P⊥
α (n) of [TT2, Section 7].

One can also consider invariants defined by weighted Euler characteristic.
When H1(OS) = 0 [TT2, Section 4],

Pα(n) := e
(
P⊥
α (X), χB) = (−1)h0(KS)e

(
Pα(X), χB)

=: (−1)h0(KS)P̃α(n).(7.2)

Again the sign is due to the extra deformations of trφ.
In [TT2] both sets of these pair invariants are studied in connection

with Vafa-Witten invariants of polarized surfaces (S,OS(1)). These count
semistable sheaves E on X = KS with centre of mass zero on each KS fibre
of X → S and det p∗E ∼= OS .

The situation is most straightforward for the invariant vwα(S) defined in
[TT2, Section 4] by Behrend localisation and Joyce’s Hall algebra machinery.
It is shown in [TT2, Equation 4.2] that the weighted Euler characteristics Pα

of (7.2) are related to the vwα by the following formula when H0,1(S) = 0.5

5When H0,1(S) �= 0 there is a simpler formula [TT2, Proposition 4.3], but it is
not relevant for K3 surfaces.
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(Alternatively, we can take it to define the vwα.)

(7.3) Pα(n) =
∑

�≥1, (αi=δiα)�i=1:∑�

i=1 δi=1

(−1)�

!

�∏
i=1

(−1)χ(αi(n))χ(αi(n))vwαi(S).

There is a rival invariant VWα(S) [TT1] defined by virtual localisation
instead of Behrend localisation when semistable sheaves of class α are all
stable. The definition can be extended to the semistable case by its conjectural
relationship to the virtual localisation pair invariants P⊥

α of (7.1).
Conjecture 7.4 ([TT2, Conjecture 7.2]). If H0,1(S) = 0 = H0,2(S) there
exist VWαi(S) ∈ Q such that

P⊥
α (n) =

∑
�≥1, (αi=δiα)�i=1:∑�

i=1 δi=1

(−1)�

!

�∏
i=1

(−1)χ(αi(n))χ(αi(n))VWαi(S)

for n � 0. When either of H0,1(S) or H0,2(S) is nonzero we take only the
first term in the sum:

(7.5) P⊥
r,L,c2(n) = (−1)χ(α(n))−1χ(α(n))VWr,L,c2(S).

Furthermore we expect VWα = vwα whenever degKS ≤ 0.
These VWα define the Vafa-Witten invariants of S when the conjecture

holds. For instance by [TT2, Proposition 6.8] it holds when all semistable
sheaves of charge α are stable, and in this case the VWα above reduce to the
more direct definition of [TT1].

The conjecture also holds when degKS < 0 [TT2, Theorem 6.14], and
we prove it holds for S a K3 surface in Theorem 7.10 below. In both of
these cases VWα = vwα, but on general type surfaces the two invariants
differ. There the virtual localisation invariant VWα seems to give the answers
predicted by physics, while the weighted Euler characteristic invariant vwα

gives the “wrong” theory.
From now on we fix S to be a K3 surface. Since H0,2(S) = C we use the

simplified formula (7.5) for the residue invariants P⊥
α , while continuing to use

the full formula (7.3) for weighted Euler characteristic invariants Pα. We will
see that (7.3) is basically the exponential of (7.5).

Like stable pairs, Joyce-Song pairs have no automorphisms (not even C∗,
unlike moduli of sheaves). Just as in Section 3 they can therefore be patched
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canonically from X = S × C into Y = S × E when their charge α is pushed
forward from a K3 fibre S. The only difference is that to get stable Joyce-Song
pairs we patch only pairs whose underlying sheaves have the same reduced
Hilbert polynomial. By the genericity of OS(1) this means we only patch pairs
whose charges α are proportional. Thus we get the following analogue of
Proposition 3.2

(7.6)
∑

e
(
Pα(Y )/E, χB)qα = − log

(
1 +

∑
e
(
Pα(X), χB)qα),

where both sums are over all α �= 0 which are multiples of a fixed primitive
class α0.

Section 4 also goes through as before. As in [Ob] the reduced obstruction
theory on Pα(Y ) gives a reduced cycle over which we can integrate an insertion
to recover the left hand side of (7.6). The degeneration formula [LW] again
applies as we let E acquire a nodal singularity. The same C∗-localization
argument from the proof of Theorem 4.2 thus gives

(7.7)
∑

e
(
Pα(Y, ι∗α)/E, χB)qα =

∑
P⊥
α (n)qα.

Again both sums are over all α �= 0 which are multiples of a fixed primitive
class α0, and we have used (7.1) to equate P⊥

α (n) with the reduced residue
invariants of X. Combining (7.6) with (7.7) gives the following.

Proposition 7.8. The reduced localised invariants (7.1) are related to the
weighted Euler characteristic invariants (7.2) by

∑
P⊥
α (n)qα = − log

(
1 +

∑
P̃α(n)qα

)
,

where both sums are over all α �= 0 which are multiples of a fixed primitive
class α0.

Using the sign in (7.2), and setting N = Z>0 without zero, this gives

1 −
∑

α∈N·α0

Pα(n)qα = exp

⎛⎝−
∑

α∈N·α0

P⊥
α (n)qα

⎞⎠
= 1 +

∑
�≥1

1
!

∑
α1,··· ,α�∈N·α0

�∏
i=1

(
−P⊥

αi
(n)qαi

)
,
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by expanding the exponential. We conclude that

(7.9) − Pα(n) =
∑

�≥1, (αi=δiα)�i=1:∑�

i=1 δi=1

(−1)�

!

�∏
i=1

P⊥
αi

(n).

Theorem 7.10. Conjecture 7.4 holds when S is a K3 surface, with

VWα(S) = vwα(S).

Proof. Comparing (7.9) to (7.3) shows that

P⊥
α (n) = −(−1)χ(α(n))χ(α(n))vwα(S).

Therefore (7.5) is satisfied with VWα(S) = vwα(S).
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