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Unfolding of orbifold LG B-models: a case study
Weiqiang He, Si Li, and Yifan Li

Abstract: In this note we explore the variation of Hodge struc-
tures associated to the orbifold Landau-Ginzburg B-model whose
superpotential has two variables. We extend the Getzler-Gauss-
Manin connection to Hochschild chains twisted by group action. As
an application, we provide explicit computations for the Getzler-
Gauss-Manin connection on the universal (noncommutative) un-
folding of Z2-orbifolding of A-type singularities. The result verifies
an example of deformed version of Mckay correspondence.

1. Introduction

Associated to a triple (A,W,G), where A is an associative algebra over C

with a compatible G-action and W is a G-invariant central element of A, we
consider a curved algebra AW [G] := A � C[G] with W as a curvature. In
this note, we investigate the deformation theory and Hodge structures for a
certain type of such curved algebras.

In [11], we have shown that the compact type Hochschild cohomology
HH•

c(AW [G], AW [G]) is isomorphic to the G-invariant subspace HH•
c(AW ,

AW [G])G as Gerstenhaber algebras. As a consequence, the deformation of
AW [G] is controlled by the differential graded Lie algebra (dgLa) of the
Hochschild cochains (C•

c (AW , AW [G])G, δb, { , }). In this paper, we study the
polynomial algebra in two variables A = C[x, y]. This includes orbifold ADE
singularities as our main interest in this paper. Obstruction theoretical com-
putation shows that the relevant dgLa is un-obstructed, leading to a smooth
formal moduli space M which is locally parameterized by the Hochschild
cohomology HH•(AW [G], AW [G]).

Our study of this moduli space M is motivated by Saito’s work [21] on
isolated singularities, which is related to so-called Landau-Ginzburg (LG)
B-models in modern terminology. In [21], it was shown that the deforma-
tion space of an isolated singularity carries a version of variation of polarized
Hodge structures with semi-infinite filtrations. It leads to an integrable struc-
ture on the tangent bundle of the moduli, which is nowadays called Frobenius
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manifold. This Frobenius manifold structure plays a central role in topolog-
ical field theories, especially in Gromov-Witten type theories. For example,
the data of Frobenius manifold on the deformation of isolated polynomial sin-
gularities is mirror to the data of counting solutions of Witten’s equation on
Riemann surfaces, a theory known as Fan-Jarvis-Ruan-Witten (FJRW) the-
ory [7] for Landau-Ginzburg A-models. However, Saito’s construction only
involves ‘un-orbifold’ cases (A,W,G = 〈1〉), while the full mirror symmetry
between Landau-Ginzburg models asks for all orbifold groups. This requires
the construction and computation of Frobenius manifold structure on the
aforementioned moduli space M.

Barannikov [1, 2] and Barannikov-Kontsevich [4] introduced the impor-
tant notion of (polarized) variation of semi-infinite Hodge structures (VSHS),
generalizing Saito’s framework to many other geometric contexts and non-
commutative world [1, 14]. Following this route, we shall consider the period
cyclic homology of a deformed algebra of AW [G], with a Hodge filtration
induced by the cyclic parameter u and the flat Gauss-Manin connection con-
structed by Getzler [10]. They give rise to a flat bundle over the moduli space
M, carrying important data of Hodge filtration. In this note, we establish a
version of the Getzler-Gauss-Manin connection via operations of G-twisted
cochains C•

c (A,A[G])G acting on the G-twisted chains Cc
•(A,A[G])G. This

encodes the same information as the Getzler-Gauss-Manin connection on the
deformation space of the algebra A[G], but is easier to compute in practice.
As an application, we perform a case study for orbifold A-type singularity
(A2n−1,Z2). We find (see Theorem 4.1),

Theorem. Consider an orbifold LG B-model (A,W,G) with A = C[x, y], W
invertible and a finite subgroup G ⊂ SL(2,C) acting diagonally on C

2. The
moduli space M of miniversal deformations of AW [G] is smooth, equipped
with a variation of semi-infinite Hodge structures (VSHS) given by a flat
vector bundle of period cyclic homologies. In this fashion, there is an iso-
morphism between the moduli spaces associated to (C[x, y], x2n + y2,Z2) and
(C[z, w], zn + zw2, 〈1〉), which is compatible with the VSHS’s on them.

It can be seen as an example of Mckay correspondence for LG models
[20], but involves the deformation data. Here, (C[x, y], x2n + y2,Z2) is asso-
ciated to the A2n−1-singularity W = x2n + y2 on an orbifold X = C2/Z2 and
(C[z, w], zn + zw2, 〈1〉) is associated to the Dn+1-singularity W̃ = zn + zw2

on C
2 i
↪→ Y , where π : Y → X is the minimal resolution (so it is crepant) and

W̃ = i∗ ◦ π∗(W ).
There are three directions of generalizations of such a correspondence.

One is for more general triples (A = O(X),W,G) as long as the crepant
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resolution of X/G exists and the lifting superpotential W has good Hodge
theoretical properties (see [17] for a recent discussion on this model and refer-
ences therein). The second is to establish the correspondence between VSHS’s
via crepant resolutions and related mirror symmetry. This involves a combi-
nation of LG/CY correspondence and mirror symmetry. Thirdly, there is a
categorical approach to the orbifold LG models, which is called the equiv-
ariant matrix factorization (see, for example, [6, 19, 23]). It would be very
interesting to compare the categorical deformation theory with our calcula-
tions. We hope to investigate these problems in future works.

2. Preliminary

In this note, C is taken as the base field for convenience. For a Z or Z2-graded
vector space A, we denote by sA its suspension, where (sA)k := (A[−1])k =
Ak−1. We use the Koszul sign convention and regard s as a degree 1 element.
Given two graded vector spaces A and M , the spaces of Hochschild (co)chains
and compact type Hochschild (co)chains are defined as

C•(A,M) :=
∏
p�0

Hom((sA)⊗p , sM)[1],

C•
c (A,M) :=

⊕
p�0

Hom((sA)⊗p , sM)[1],

C•(A,M) :=
⊕
p�0

sM ⊗ (sA)⊗p [1], Cc
•(A,M) :=

∏
p�0

sM ⊗ (sA)⊗p [1].

We will write [a1| · · · |ap] for an element in (sA)⊗p, m[a1| · · · |ap] an ele-
ment in M ⊗ (sA)⊗p and φ[a1| · · · |ap] the value of φ ∈ Cp(A,M) acting on
[a1| · · · |ap].
Remark. For each φ ∈ Cp(A,M), we can associate φ ◦ s⊗p ∈ Hom(A⊗p,M)
as

φ ◦ s⊗p(a1 ⊗ · · · ⊗ ap) := (−1)

p−1∑
k=1

(p−k)|ak|
φ[a1| · · · |ap].

This fixes our sign conventions for Hochschild (co)chains.

There are two different gradings for these (co)chains, the tensor grading
and the internal grading, which are determined by the grading of A and M .
We denote by |·| the internal grading. For example, for a homogeneous (with
respect to both gradings) cochain φ ∈ Cp(A,M),

(2.1) |φ| = |φ[a1| · · · |ap]| − |a1| − · · · − |ap| − p.



446 Weiqiang He et al.

In [25], Gerstenhaber introduced the brace structure by higher operations,
the braces on (compact type) Hochschild cochains. For homogeneous φ ∈
Cp(A,B) and φk ∈ Cpk(B,C), we can define for m = p + p1 + · · · + pn − n,

φ{φ1, · · · , φn}[a1| · · · |am]

:=(−1)

n∑
k=1

εik (|φk|+1)
φ[a1| · · · |aik |φk[aik+1| · · · |aik+pk ]| · · · |am],(2.2)

where

εi =
i∑

j=1
|aj | − i.

Notice that there is a one-shifted Lie algebraic structure on (compact type)
Hochschild cochains C•(A,A) (or C•

c (A,A)). It is defined [8] as the commu-
tator of Gerstenhaber product (the brace operation with only one input),

(2.3) {φ1, φ2} := φ1{φ2} − (−1)(|φ1|+1)(|φ2|+1)φ2{φ1}.

In this note, we will work with 2-dimensional orbifold Landau-Ginzburg
models (AW , G). Here AW is denoted for a curved algebra (A,W ), where
A = C[x, y] and W is an invertible polynomial. G with the identity e is a finite
group acting diagonally on C

2, which can be extended to an equivariant action
on A. W is asked to be G-invariant. (See [15, 7, 11] for details.) We will regard
AW as a Z/2Z-graded A∞-algebra concentrated in degree zero with b0 = −W ,
b2[a1|a2] = (−1)|a1|a1a2 = a1a2 and bi = 0,∀i 
= 0, 2. Similarly, the G-twisted
curved algebra AW [G] is also regarded as a curved algebra on A⊗CC[G] with
b0 = −W e and b2[a1g1|a2g2] = a1

g1a2g1g2 (Thus, AW [G] = A[G]W e).
For an A∞-algebra A, we can define boundary operators on the (com-

pact type) Hochschild (co)chains as follows. For a0[a1| · · · |ap] ∈ Cp(A,A) (or
Cc

p(A,A)),

∂b(a0[a1| · · · |ap]) :=
p+1∑
l=1

p∑
k=p+1−l

(−1)εk(εp−εk)bl[ak+1| · · · |a0| · · · ][ak+l−p| · · · |ak]

+
p∑

l=0

p−l∑
k=0

(−1)εka0[· · · |bl[ak+1| · · · |ak+l]| · · · |ap],(2.4)

where

(2.5) εk := |a0| + · · · + |ak| + k + 1,
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and for φ ∈ Cp(A,A) (or Cp
c (A,A)),

(2.6) δb(φ) := {b, φ}.

In our cases,

(2.7) ∂b = ∂b0 + ∂b2 ,

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂b2(a0[a1| · · · |ap]) := a0a1[a2| · · · |ap] + (−1)papa0[a1| · · · |ap−1]

+
p−2∑
k=0

(−1)k+1a0[a1| · · · |ak+1ak+2| · · · |ap],

∂b0(a0[a1| · · · |ap]) :=
p−1∑
k=0

(−1)ka0[a1| · · · |ak|W |ak+1| · · · |ap].

and

(2.8) δbφ = δb0φ + δb2φ := (−1)p−1φ{W} + {b2, φ}.

The (compact type) Hochschild homology and cohomology are defined as the
homology and cohomology of the (compact type) chains and cochains with
differentials δb and ∂b respectively.

While A is augmented, we may consider the reduced Hochschild (co)chains
defined on Ā = A/C (see [16] for details).

3. Deformation theory

as we have shown in [11], we can define higher operations on the G-twisted
version of (compact type) Hochschild cochains. Thus, there is a Gerstenhaber
algebra structure on HH•

c(AW , AW [G])G, which is isomorphic to HH•
c(AW [G],

AW [G]).

Theorem 3.1. Consider orbifold LG B-models (A,W,G) with A = C[x, y],
W invertible and a finite subgroup G ⊂ SL(2,C) (the Calabi-Yau condition)
acting diagonally on C

2. Then the shifted dgLa (differential graded Lie alge-
bra)

(C•
c (A,A[G])G, δb, { , })

is homological abelian.
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Proof. Use the cochain version of the explicit homotopy retraction constructed
in appendix A,

(
C•

c (Ā, Ag)G, δb
) (

Jac(Wg)G[−lg], 0
)
,

where Wg := W |Fix(g) and

lg =
{

0, g = e,
2, g 
= e.

By homotopy transfer theorem, we can define a shifted L∞-structure on the
later, such that there exists a quasi-isomorphism between shifted L∞-algebras,

(
C•

c (Ā, A[G])G, δb, { , }
)
�

(
Jac(W,G), 0, 	2 + 	3 + · · ·

)
,

where
Jac(W,G) :=

⊕
g∈G

Jac(Wg)G[−lg].

Notice that the degrees of 	k are all odd, while Jac(W,G) is concentrated in
even degrees. Hence, all of those 	k’s are zero and

(
C•

c (A,A[G])G, δb, { , }
)

is
homological abelian.

We can solve the Maurer-Cartan equation

(3.1) δb(φ) + 1
2{φ, φ} = 0,

by the quasi-isomorphism defined above with homotopy transfer. With respect
to the tensor grading, the homotopies on Hochschild and Koszul cochains are
all of degree −1, and the homotopy on polyvector fields shall not give terms
of degree greater than 2. Therefore, Maurer-Cartan elements are in the form
of φ = φ0 +φ2 ∈ Ceven

c (AW , AW [G])G, where φ0 gives a deformation of b0 and
φ2 gives a deformation of b2. The miniversal deformation space of AW [G] is
denoted by Def(AW , G).

Corollary 3.2. Under the same assumption as Theorem 3.1, a basis of
HH•

c(AW , AW [G])G will give a parametrization of a formal neighbourhood of
the origin in Def(AW , G).

Notice that there is a decomposition,

HH•
c(AW , AW [G])G =

(⊕
g �=e

HH•
c(AW , AW g)

)G
⊕ HH•

c(AW , AW e)G.
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We call the first summand the twisted sector and the second the untwisted
sector.

We can identify the formal neighbourhood of the origin in Def(AW , G)
with Spec(C[[τ , s]]), where variables τ parameterize deformations in the un-
twisted sector and s parameterize deformations in the twisted sectors. Let
A(τ , s) denote the corresponding deformed curved algebra, with b(τ , s) the
deformed A∞–products. Miniversality says that the following Kodaira-Spencer
map is an isomorphism

KS : SpanC

{ ∂

∂τ
,
∂

∂s

}
→ HH•

c(AW , AW [G])G,

v →
[
v(b(τ , s))|τ=s=0

]
.

Also notice that the first order deformation along the untwisted sector
deforms the superpotential, while that along the twisted sector deforms the
product of the semi-direct product polynomial ring C[x, y][G].

Remark. In [18], Nadaud introduced three different forms of “q-Moyal prod-
ucts” as q-deformations of C[x, y]. By choosing different homotopy retractions
between the Hochschild cochains and Koszul cochains, one can recover these
q-Moyal products and his rigidity indicates that our deformation is in fact
somewhat canonical. One should also notice that our deformation is equiv-
alent to that constructed by Halbout, Oudom and Tang in [13]. Especially,
their modified superpotential is the same as our deformed b0 via homotopy
transfer.

E. Getzler [10] introduced higher operations b and B on C•(A,A) with
values in End(C•(Ā, A)) for any A∞-algebra A, as extensions of Hochschild
differential ∂b and Connes operator B. Here Ā = C[x, y]/C. For homogeneous
φ1, · · · , φn ∈ C•(A,A) and a0[a1| · · · |am] ∈ Cm(Ā, A), he defined for n � 1,

b{φ1, · · · , φn}(a0[a1| · · · |am])
:=

∑
J∈J

∑
l�1

(−1)ηJ bl[aj0+1| · · · |φ1[aj1+1| · · · ]|

· · · |φn[ajn+1| · · · ]| · · · |a0| · · · ][· · · |aj0 ],(3.2)

where

J =

⎧⎪⎪⎨
⎪⎪⎩J = (j0, · · ·, jn)

∣∣∣∣∣∣∣∣

⎧⎪⎪⎨
⎪⎪⎩
m− (l− 1)−

n∑
k=1

|φk| +n� j0 � j1, jn + |φn| �m,

jk + |φk| � jk+1,∀1 � k � n− 1.

⎫⎪⎪⎬
⎪⎪⎭,
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and

ηJ = εj0(εm − 1) +
n∑

k=1
(|φk| − 1)(εjk − εj0),(3.3)

and

B{φ1, · · · , φn}(a0[a1| · · · |am])
:=

∑
J∈J

∑
l�1

(−1)ηJ1[aj0+1| · · · |φ1[aj1+1| · · · ]|

· · · |φn[ajn+1| · · · ]| · · · |a0| · · · |aj0 ].(3.4)

For n = 0, b{} := ∂b and B{} := B. Using b and B, he defined the Getzler-
Gauss-Manin system for formal deformations of an A∞-algebra.

We will first extend his constructions to the case of G-twisted chains
Cc

•(Ā, A[G])G, which is much smaller than the space of reduced chains
Cc

•(A[G], A[G]). This will greatly simplify the calculation of the connection
in practice.

Consider chain maps Ψ∗ and Γ∗ between Cc
•(A,A[G])G and Cc

•(A[G], A[G])
defined as follows. For a0g0[a1g1| · · · |apgp] ∈ Cp(A[G], A[G]) and a0g0[a1| · · ·
|ap] ∈ Cp(A,A[G]),

Γ∗ ◦ π(a0g0[a1| · · · |ap]) := 1
|G|

∑
g∈G

ga0gg0g
−1[ga1e| · · · |gape],(3.5)

Ψ∗(a0g0[a1g1| · · · |apgp]) := π
(g1···gpa0g1 · · · gpg0[a1|g1a2| · · · |g1···gp−1ap]

)
.

(3.6)

Here, π : C•(A,A[G]) → C•(A,A[G])G is the natural projection. One can
easily check that Γ∗ is well-defined.

A Getzler-Gauss-Manin connection is a connection defined in terms of the
mixed complex (C•, ∂, B) of a deformed A∞-algebra, for example, on

(
Cc

•(A(τ , s),A(τ , s)), ∂b(τ ,s), B
)

=
(
Cc

•(A[G], A[G])[[τ , s]], ∂b(τ ,s), B
)
.

On twisted chains, we can also define such a mixed complex by defining

∂̃b(τ ,s) := Ψ∗ ◦ ∂b(τ ,s) ◦ Γ∗,(3.7)
B̃ := Ψ∗ ◦B ◦ Γ∗.(3.8)
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More explicitly, if we write b(τ , s) ∈ C•(A,A[G]) as

b(τ , s) =
∑
h∈G

(bh2h−W hh),

with bh2 ∈ C2(A,A)[s] and W h ∈ A[τ , s], we can write

∂̃b(τ ,s) = ∂̃b2(τ ,s) + ∂̃b0(τ ,s),

where

∂̃b2(τ ,s) ◦ π(a0g0[a1| · · · |ap])

=
∑
h∈G

π

(
bh2 [a0|g0a1]hg0[a2| · · · |ap] + (−1)pbh2 [ap|a0]hg0[a1| · · · |ap−1]

+
p−2∑
k=0

(−1)k+1ha0hg0[a1| · · · |bh2 [ak+1|ak+2]|hak+3| · · · |hap]
)
,(3.9)

and

∂̃b0(τ ,s) ◦ π(a0g0[a1| · · · |ap])

=
∑
h∈G

π

( p−2∑
k=0

(−1)kha0hg0[· · · |ak|W h|hak+1| · · · |hap]
)
.(3.10)

Similarly,

B̃ ◦ π(a0g0[a1| · · · |ap]) := π

( p∑
k=0

(−1)kp1g0[ak| · · · |ap|a0|g0a1| · · · |g0ak−1]
)
.

(3.11)

One can directly check that
(
Cc

•(Ā, A[G])G[[τ , s]], ∂̃b(τ ,s), B̃
)

is a mixed complex. Furthermore, Ψ∗ will induce a morphism between mixed
complexes,

Ψ∗ :
(
Cc

•(A[G], A[G])[[τ , s]], ∂b(τ ,s), B
)
→

(
Cc

•(Ā, A[G])G[[τ , s]], ∂̃b(τ ,s), B̃
)
.

Lemma 3.3. ∂̃b(τ ,s) and B̃ defined above can be extended to higher operations
b̃(τ , s) and B̃ on C•

c (A,A[G])G[[τ , s]] with values in End(Cc
•(Ā, A[G])G)[[τ ,

s]], such that these higher operations are also compatible with Ψ∗.
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Proof. Similar as above, for homogeneous φ1, · · · , φn ∈ C•(A,A[G])G, we
define

b̃(τ , s){φ1, · · · , φn} :=Ψ∗ ◦ b(τ , s){Ψ∗(φ1), · · · ,Ψ∗(φn)} ◦ Γ∗,(3.12)
B̃{φ1, · · · , φn} :=Ψ∗ ◦B{Ψ∗(φ1), · · · ,Ψ∗(φn)} ◦ Γ∗.(3.13)

Here, b(τ , s) and B are the higher operations on C•
c (A[G], A[G])[[τ , s]] with

values in End(Cc
•(A[G], A[G])[[τ , s]] extending ∂b(τ ,s) and B and Ψ∗ is the

cochain maps we constructed in [11] such that

(3.14) Ψ∗(φ)[a1g1| · · · |apgp] = φ[a1|g1a2| · · · |g1···gp1ap]g1 · · · gp.

One can also directly check that

b̃(τ , s){φ1, · · · , φn} ◦ Ψ∗ =Ψ∗ ◦ b(τ , s){Ψ∗(φ1), · · · ,Ψ∗(φn)},
B̃{φ1, · · · , φn} ◦ Φ∗ =Ψ∗ ◦B{Ψ∗(φ1), · · · ,Ψ∗(φn)}.

By Getzler’s computation [10], there is a connection flat up to homotopy
defined as

∇ : C[[τ , s]]
[ ∂

∂τ
,
∂

∂s

]
→ EndC

(
Cc

•(A[G], A[G])[[τ , s]]((u))
)
,

∇v := v − 1
u
b(τ , s){v(b(τ , s))} −B{v(b(τ , s))},(3.15)

which induces a flat connection on

HPc
•(A(τ , s)) := H•

(
Cc

•(A[G], A[G])[[τ , s]]((u)), ∂b(τ ,s) + uB
)
.

∇ is flat up to homotopy on chain level, which means that ∇ is flat on
homologies. Thus, there is a flat connection

∇ : C[[τ , s]]
[ ∂

∂τ
,
∂

∂s

]
→ EndC

(
HPc

•(A(τ , s))
)
,

v → [∇v(−)].(3.16)

We can give a similar definition for ∇ on G-twisted chains just by replacing
b and B with b̃ and B̃. This will also induce a flat connection on

H•
(
Cc

•(Ā, A[G])G[[τ , s]]((u)), ∂̃b(τ ,s) + uB̃
)
,

by the same reason. Lemma 3.3 and the fact that Ψ∗ is a quasi-isomorphism
[11] explain why these two constructions define the same flat connection on
the periodic cyclic homology compatible with the Hodge filtration.
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4. An example: (A2n−1,Z2) cases

In this section, we will write down the Getzler-Gauss-Manin system on the
miniversal deformation of A2n−1 type orbifold explicitly. Here W = x2n + y2

(n � 2), the orbifold group is G = Z2, whose generator σ acts on x, y by
σx = −x, σy = −y. The result turns out to coincide with the Gauss-Manin
system on the miniversal deformation of Dn+1 singularity. This establishes
an example of crepant resolution conjecture for LG B-models over miniversal
deformations. In fact, if we lift the superpotential W to the crepant resolu-
tion of C2/Z2, which is the total space of OP 1(−2), it will have an isolated
singularity of Dn+1 type on the exceptional P 1.

Computation of A-type orbifolds: W = x2n + y2, G = Z2

Since Jac(W,G) = Jac(W )Ge⊕Cσ[−2], the formal neighbourhood of the
origin in Def(AW , G) can be parameterized as Spec(C[[τ0, τ1, · · · , τn−1, s]])
and the deformed curved algebra A(τ , s) is C[[τ , s]][x, y]⊗C[G] with b(τ , s)
given by

(4.1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

bl(τ , s) = 0, if l 
= 0, 2,
b2(τ , s) = b2 + s∂σ

x∂
σ
y ,

b0(τ , s) = −Wτ := −x2n − y2 −
n−1∑
k=0

τkx
2k.

Here ∂σ
x and ∂σ

y are the quantum differential operators defined in [11]. As a
Hochschild cochain,

∂σ
x∂

σ
y [xa1yb1 |xa2yb2 ] :=

{
(−1)a2xa1+a2−1yb1+b2−1σ, if a1, b2 odd,
0, else.

Henceforth, we will write

(4.2) b(τ , s) = b2 + sbσ + b0(τ ),

with bσ = ∂σ
x∂

σ
y and b0(τ ) := b0(τ , s). Hence, the deformed Hochschild dif-

ferential is

(4.3) ∂̃b(τ ,s) = ∂̃b2 + s∂̃bσ + ∂̃b0(τ ).
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In these cases, HPc
•(A(τ , s)) equals to

(Jac(W )G[2] ⊕ Jac(Wσ)) [[τ , s]]((u)) =
( n−1⊕

k=0
C[x2k][2] ⊕ C[1σ]

)
[[τ , s]]((u)),

(4.4)

as a Z2-graded C[[τ , s]]((u))-module with a flat connection ∇ we have defined
in the last section.

Using perturbed homotopy retraction [5] constructed by homotopy re-
tractions defined in the appendix, the chain representations for [x2k][2] ∈
Jac(W )G[2] and [1σ] ∈ Jac(Wσ) can be written in the following forms,

⎧⎨
⎩α2k = α

(2)
2k + α

(4)
2k + · · · ,

β = β(0) + β(2) + · · · ,

where α
(p)
k , β(p) ∈ Cp(Ā, A[G])G[τ , s, u] are defined as follows. For ∀0 � k �

n− 1, take α
(2)
2k = x2k[x|y] − x2k[y|x] and β(0) = 1σ; and for l � 2, we define

α
(2l)
2k = −

∑
i�0

(
− s(HC + ΦHKΥ)∂̃bσ

)i(HC + ΦHKΥ)(∂̃b0(τ ) + uB̃)α(2l−2)
2k .

(4.5)

Similarly, ∀l � 1, we define

β(2l) = −
∑
i�0

(
− s(HC + ΦHKΥ)∂̃bσ

)i(HC + ΦHKΥ)(∂̃b0(τ ) + uB̃)β(2l−2).

(4.6)

The lower degree terms of α2k and β which will be used in further calcu-
lation are given by

α
(2)
2k =x2k[x ∧ y],(4.7)

α
(4)
2k =

n∑
j=1

2j−2∑
i=0

τj
(
xi+2k[x|x2j−i−1|x ∧ y] + xi+2k[x ∧ y|x2j−i−1|x]

)

+ x2k[x ∧ y|y|y] + x2k[y|y|x ∧ y] + u
2k−2∑
i=0

(
xi[x ∧ y|x2k−i−1|x]

+ xi[x|x2k−i−1|x ∧ y](4.8)
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β(0) =1σ,(4.9)

β(2) =
n∑

j=1

2j−2∑
i=0

τjx
iσ[x2j−i−1|x] + 1σ[y|y],(4.10)

β(4) = − uHCB̃(β(2))

+
n∑

j,j′=1

2j−2∑
i=0

2j′−2∑
i′=0

τjτj′x
i+i′σ[x2j−i−1|x|x2j′−i′−1|x]

+
n∑

j=1

2j−2∑
i=0

τj
(
xiσ[x2j−i−1|x|y|y] − xiσ[x2j−i−1|y|x ∧ y]

+
n∑

j=1

2j−2∑
i=0

τj
(
xiσ[y|x2j−i−1|x ∧ y] + xiσ[y|y|x2j−i−1|x]

)
+ 1σ[y|y|y|y].(4.11)

Here, for the sake of simplicity, we denote τn = 1 and · · · |x ∧ y| · · · =
· · · |x|y| · · · − · · · |y|x| · · · .

Computation of D-type: W = zn + zw2, G = {1}

For G trivial, D. Shklyarov had shown in [22] that the Gauss-Manin
system via similar non-commutative methods is equivalent to that given by
Saito’s singularity theory [21]. Denote by BŴ = C[z, w]zn+zw2 a curved poly-
nomial algebra with a curvature Ŵ = zn + zw2 and consider its deformation
as

B(τ , s) := BŴ (τ ,s), with Ŵ (τ , s) := zn +
n−1∑
j=0

τjz
j + zw2 − sw.

HPc
•(B(τ , s)) equals to

( n−1⊕
k=0

C[zk][2]⊕C[w][2]
)
[[τ , s]]((u)) while regarded as

a Z2-graded C[[τ , s]]((u))-module with a flat connection ∇. Similar as above,
we can also find chain representations for [zk] and [w] in the following forms,

⎧⎨
⎩α̂2k = α̂

(2)
2k + α̂

(4)
2k + · · · ,

β̂ = β̂(2) + β̂(4) + · · · ,

where α̂
(p)
k , β̂(p) ∈ Cp(B,B)[τ , s, u] satisfies that

α̂
(2)
2k = zk[z|w] − zk[w|z],∀0 � k � n,(4.12)
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β̂(2) = w[z|w] − w[w|z].(4.13)

Consider the bundle map Λ on Spec(C[[τ , s]]), which maps sections of
HPc

•(A(τ , s)) to sections of HPc
•(B(τ , s)) induced by α2k → α̂2k and β → β̂.

Theorem 4.1. Viewed as bundles over Spec(C[[τ , s]]), the periodic cyclic ho-
mology HPc

•(A(τ , s)) of the deformed curved algebra A(τ , s) associated to the
orbifold LG B-model (C[x, y], x2n+y2,Z2) and that of the deformed curved al-
gebra B(τ , s) associated to the LG B-model (C[z, w], zn+zw2) are isomorphic
via the bundle map Λ defined above. Furthermore, this isomorphism is compat-
ible with the Getzler-Gauss-Manin connections on both bundles. To be explicit,
for any v ∈ DerCC[[τ , s]] and any section θ of the bundle HPc

•(A(τ , s)), we
have

(4.14) Λ(∇v(θ)) = ∇v(Λ(θ)).

Proof. We will prove this by direct calculation using tools coming from ho-
motopy perturbations. Notice that we only need to show (4.14) for v = ∂

∂τj

or ∂
∂s and θ = [α2k], 0 � k � n− 1 or [β].

Case 1: v = ∂
∂s and θ = [1σ]. We have

[∇ ∂
∂s

(β̂)] = −1
u

(
−

n∑
j=1

jτj [α̂2j−2]
)
.

By (4.9), (4.10) and (4.11), we have

∇ ∂
∂s

(β) = − 1
u

( n∑
j=1

τj

2j−2∑
i=0

(−1)i+1(xi[x2j−i−1|y] − xi[y|x2j−i−1])
)

+ (order � 4 terms),

While acted on the above by the perturbed projection,
∑
l�0

pΠΥ
(
− (s∂̃bσ + ∂̃b0(τ ,s)−b0 + uB̃)

∑
i�0

(
− (HC + ΦHKΥ)∂̃b0

)i

(HC + ΦHKΥ + ΦΘHΩΠΥ)
)l
,

the section represented by the above is given by

−1
u

n∑
j=1

τj
( 2j−2∑

i=0
(−1)i+1(2j − i− 1)

)
[α2j−2] = −1

u

(
−

n∑
j=1

jτj [α2j−2]
)
.
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Hence

(4.15) Λ(∇ ∂
∂s

([β])) = ∇ ∂
∂s

(Λ([β])).

Case 2: v = ∂
∂s and θ = [α2k] for 0 � k � n− 1.

∇ ∂
∂s

([α̂2k]) =

⎧⎪⎪⎨
⎪⎪⎩
−1
u

[β̂], k = 0,

−1
u

(s
2[α̂2k−2]

)
, 0 < k � n− 1.

And similarly,

∇ ∂
∂s

(α2k) = − 1
u

(
x2kσ + x2kσ[y|y] +

n∑
j=1

2j−2∑
i=0

τj(−1)ix2k+iσ[x|x2j−i−1]

+ u
2k−2∑
i=0

(−1)ixiσ[x|x2k−i−1]
)
+ (order � 4 terms),(4.16)

so after acted by the perturbed projection

∇ ∂
∂s

([α2k]) =

⎧⎪⎪⎨
⎪⎪⎩
−1
u

[β], k = 0,

−1
u

(s
2[α2k−2]

)
, 0 < k � n− 1.

Hence,

(4.17) Λ(∇ ∂
∂s

([α2k])) = ∇ ∂
∂s

(Λ([α2k])).

Case 3: v = ∂
∂τk

for 0 � k � n− 1 and θ = [β]. By

[∇ ∂
∂s
,∇ ∂

∂τk

] = 0,

and Case 2, we have obviously

(4.18) Λ(∇ ∂
∂τk

([β])) = ∇ ∂
∂τk

(Λ([β])).

Case 4: v = ∂
∂τl

and θ = [α2k] for 0 � k, l � n − 1. ∇ ∂
∂τl

(Λ([α2k])) is given
by the homology class of

−1
u

(
− zk+l[z ∧ w]

)
+ (order � 4 terms),
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and ∇ ∂
∂τl

([x2k]) is given by the homology class of

−1
u

(
− x2k+2l[x ∧ y]

)
+ (order � 4 terms),

so we can show the statement (4.14) by induction on k + l. In cases
k+ l � n− 1, (4.14) is obvious and we can assume that (4.14) holds for
k+ l � m−1 with 2n−2 � m � n. Then for k+ l = m, ∇ ∂

∂τl

(Λ([α2k]))
equals to the homology class of

− 1
u

( n−1∑
j=1

j

n
τj
(
zm−n+j [z ∧ w]

)
+ 1

2ns
(
zm−nw[z ∧ w]

)

+ u
2m− 2n + 1

2n
(
zm−n[z ∧ w]

))
.

And similarly, ∇ ∂
∂τl

([α2k]) equals to the homology class of

− 1
u

( n−1∑
j=1

j

n
τj
(
x2m−2n+2j [x ∧ y]

)
+ 1

2nsx
2m−2nσ

+ u
2m− 2n + 1

2n
(
x2m−2n[x ∧ y]

))
,

By the same calculation in the above cases and our assumption, (4.14)
holds in these cases.

Appendix A. Constructions of the homotopies

Since we are working on the G-twisted chains, a direct calculation on the ‘G-
twisted version’ of periodic homology of those deformed algebras is needed.
This can be done by constructing an explicit special homotopy retraction.

Firstly, consider the Koszul chains,

K•(A,A[G]) :=
⊕
p�0

A[G] ⊗ C[e1, e2],

with G-action given by

(A.1) g.
(
ahei1 · · · eip

)
= gaghg−1gei1 · · · geip .
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Here ei are the odd parameters with respect to xi. On Koszul chains, we can
define a differential call a Koszul differential as

(A.2) ∂K(ageI) :=
p∑

k=1
(−1)k−1(gxik − xik)ageI\{ik},

where I = {i1 < · · · < ip} ⊆ {1, 2}. In [24], Shepler and Witherspoon
introduced two chain maps Φ and Υ and in [11], we construct a homotopy
HC such that Φ,Υ are both G-equivariant and we have a special homotopy
retraction

(
C•(Ā, A[G])G, ∂̃b2

) (
K•(A,A[G])G, ∂K

)
.

Υ

Φ
HC

Equivalently, (Φ,Υ,HC) satisfies that
{

Υ ◦ Φ = id, id − Φ ◦ Υ = [∂̃b2 ,HC ];
HC ◦ HC = 0,HC ◦ Φ = 0,Υ ◦ HC = 0.

Secondly, we can also construct a special homotopy retraction

(
K•(A,A[G])G, ∂K

) ( ⊕
g∈G

Ω•(Fix(g))G, 0
)
.

Π

Θ
HK

Here, chain maps Π and Θ between
(
K•(A,A[G]), ∂K

)
and

( ⊕
g∈G

Ω•(Fix(g)), 0
)

are defined as

Π(xγ1
1 xγ2

2 geI) :=
{

(xγ1
1 xγ2

2 ) |Fix(g)dxI , if Ig ∩ I = ∅,
0, else,

where Ig = {i = 1, 2 | λi 
= 1}, and for a differential form xγ1
1 xγ2

2 dxI ∈
Ω•(Fix(g)),

Θ(xγ1
1 xγ2

2 dxI) := xγ1
1 xγ2

2 geI .

We can define the weight of a Koszul chain as

wt(xγ1
1 xγ2

2 geI) =
∑

k,λk �=1
γk +

∑
i∈I,λi �=1

1.(A.3)
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Then for a chain κ with wt(κ) 
= 0, we can define the homotopy HK as

(A.4) HK : κ = xγ1
1 xγ2

2 geI →
∑

i∈I,λi �=1

1
wt(κ)

1
λi − 1

∂

∂xi
(xγ1

1 xγ2
2 ) gei ∧ eI ,

where gxi = λixi. If wt(κ) = 0, we will ask HK(κ) = 0. Notice that we also
have Π,Θ and HK are all G-equivariant and they give a special homotopy
retraction. The former is obvious and the later is by

(1) Π ◦ Θ = id,
(2) id − Θ ◦ Π = [HK , ∂K ], because for κ = ageI with wt(κ) 
= 0, we have

[HK , ∂K ](κ) =
∑

i∈I
⋂

Ig

1
wt(κ)

∂

∂xi
(xia) geI +

∑
i∈Ig\I

1
wt(κ)xi

∂

∂xi
(a) geI

=κ.

and for κ with wt(κ) = 0 ⇐⇒ κ = Θ ◦Π(κ), we have [HK , ∂K ](κ) = 0.
(3) HK ◦ HK = 0, HK ◦ Θ = 0 and Π ◦ HK = 0 for obvious reasons.

As a direct corollary, we have the following homotopy retraction,

(
C•(Ā, A[G])G, ∂̃b2

) ( ⊕
g∈G

Ω•(Fix(g))G, 0
)
.

Π ◦ Υ

Φ ◦ Θ
HC + Φ ◦ HK ◦ Υ

By taking the compact type, we can regard ∂̃b0 as a small perturbation of ∂̃b2
to get a perturbed special homotopy retraction. (See for example [5].)

Lemma A.1. The induced differential on Ω•(Fix(g))G by the perturbation
with respect to ∂̃b0 is given by dWg∧.

Proof. By definition, the induced differential is given by

ΠΥ ◦ ∂̃b0 ◦ ΦΘ +
∑
i�1

(−1)iΠΥ ◦ ∂̃b0
(
(HC + ΦHKΥ)∂̃b0

)i ◦ ΦΘ.

Notice that

ΠΥ ◦ ∂̃b0 ◦ ΦΘ|Ω•(Fix(g))G = dWg∧, and
ΠΥ ◦ ∂̃b0 = (dWg∧) ◦ ΠΥ on Ω•(Fix(g))G,(A.5)
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so the higher order terms in the differential on the g-sector Ω•(Fix(g))G can
be written as ∑

i�1
(−1)iΠΥ ◦ ∂̃b0

(
(HC + ΦHKΥ)∂̃b0

)i ◦ ΦΘ

=
∑
i�1

(−1)i(dWg∧) ◦ ΠΥ
(
(HC + ΦHKΥ)∂̃b0

)i ◦ ΦΘ

=0.

The last equality is because ΥHc = 0 and ΠΥΦHK = ΠHK = 0.

In summary, we have the following homotopy retraction,

(A.6)

(
Cc

•(Ā, A[G])G, ∂̃b
) ( ⊕

g∈G
Jac(Wg)G[2 − |Ig|], 0

)
.

Here the homotopy is given by∑
n�0

(
− (HC + ΦHKΥ)∂̃b0

)n(HC + ΦHKΥ)

+
∑
m�0

(
− (HC + ΦHKΥ)∂̃b0

)mΦΘHΩΠΥ

=
∑
n�0

(
− (HC + ΦHKΥ)∂̃b0

)n(HC + ΦHKΥ + ΦΘHΩΠΥ).(A.7)

where HΩ is some appropriate homotopy on
⊕
g∈G

Ω•(Fix(g))G, such that

( ⊕
g∈G

Ω•(Fix(g))G,
⊕
g∈G

dWg

) ( ⊕
g∈G

Jac(Wg)G[2 − |Ig|], 0
)
,

p

i

HΩ

gives a special homotopy retraction. We can further require that
HΩ|Ω•(Fix(g))G = 0 for g 
= e in 2-dimensional Calabi-Yau cases. Then (A.6)
gives a special homotopy retraction.
Remark. There are many choices for (i, p,HΩ) and none is canonical. For
example, for W = xn + ym with G trivial on C

2, we can select such an HΩ as

HΩ(xaybdx ∧ dy) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
n
xa−n+1ybdy, a � n− 1,

− 1
m
xayb−m+1dx, a < n− 1, b � m− 1,

0, else,

(A.8)
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HΩ(xaybdx) :=

⎧⎨
⎩

1
n
xa−n+1yb, a � n− 1,

0, a < n− 1,
(A.9)

HΩ(xaybdy) :=0,(A.10)

with the easiest inclusion i and projection p.

Finally, we can regard the deformed differential ∂̃b(τ ,s) + uB̃ as a pertur-
bation of ∂̃b. Then if G satisfies the Calabi-Yau condition that G ⊂ SL(2,C),
we have a special homotopy retraction,

(
Cc

•(Ā, A[G])G[[τ , s]]((u)), ∂̃b(τ ,s) + uB̃
)

(⊕
g∈G

Jac(Wg)G[2 − |Ig|][[τ , s]]((u)), 0
)
.(A.11)

The induced differential on the right complex is zero because it is concen-
trated in even degrees.

Remark. We only construct the homotopies in two dimensional cases. How-
ever, they all can be generalized in any dimensions.
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