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A note on the behaviour of the Tate conjecture under
finitely generated field extensions

Emiliano Ambrosi

Abstract: We show that the �-adic Tate conjecture for divisors
on smooth proper varieties over finitely generated fields of positive
characteristic follows from the �-adic Tate conjecture for divisors
on smooth projective surfaces over finite fields. Similar results for
cycles of higher codimension are given.

1. Introduction

Let k be a field of characteristic p ≥ 0 with algebraic closure k and write
π1(k) for the absolute Galois group of k. A k-variety is a reduced scheme,
separated and of finite type over k. For a k-variety Z write Zk := Z ×k k and
CH i(Zk) for the group of algebraic cycles of codimension i modulo rational
equivalence. Let � �= p be a prime.

1.1. Conjectures

Recall the following versions of the Grothendieck-Serre-Tate conjectures
([Tat65], [And04, Section 7.3]):

Conjecture 1.1.1. If k is finitely generated and Z is a smooth proper k-
variety, then:

• T (Z, i, �) : The �-adic cycle class map

cZ
k

: CH i(Zk) ⊗Q� →
⋃

[k′:k]<+∞
H2i(Zk,Q�(i))π1(k′)

is surjective;
• S(Z, i, �) : The action of π1(k) on H2i(Zk,Q�(i)) is semisimple;
• WS(Z, i, �) : The inclusion H2i(Zk,Q�(i))π1(k) ⊆ H2i(Zk,Q�(i)) admits

a π1(k)-equivariant splitting.
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For a field K, one says that T (K, i, �) holds if for every finite field ex-
tension K ⊆ L and every smooth proper L-variety Z, T (Z, i, �) holds. One
defines similarly the conditions S(K, i, �) and WS(K, i, �).

Conjecture 1.1.1 is widely open in general. By the works of many peo-
ple, T (Z, 1, �) is known when Z is an abelian variety ([Tat66], [Zar75], [Zar77],
[FW84]), a K3 surface ([NO85], [Tan95], [And96a], [Cha13], [MP15], [KMP15])
or when Z lies in some other special class of k-varieties; see for example [MP15,
Section 5.13] and [Moo17].

1.2. Behaviour under finitely generated field extensions

1.2.1. Main result For abelian varieties and K3 surfaces, Conjecture 1.1.1
is closely related to the finiteness of rational points on their moduli spaces; see
[Tat66, Proposition 2] and [LMS14]. This may suggest that Conjecture 1.1.1
could be easier to prove when k is a finite field. The main result of this note
is that, to prove Conjecture 1.1.1 for varieties over finitely generated fields
of positive characteristic, it is actually enough to prove it for varieties over
finite fields.

Theorem 1.2.1. If p > 0, then T (Fp, i, �) and WS(Fp, i, �) imply T (k, i, �)
for every finitely generated field k of characteristic p.

1.2.2. The case of divisors By [Tat94, Proposition 2.6.], if algebraic and
numerical equivalences on algebraic cycles coincide rationally in degree i, then
T (Z, i, �) implies WS(Z, i, �). Since this holds for divisors, from Theorem 1.2.1
we deduce the following.

Corollary 1.2.2. If p > 0, then T (Fp, 1, �) implies T (k, 1, �) for every finitely
generated field k of characteristic p.

By an unpublished result ([dJ]) of De Jong (whose proof has been simpli-
fied in [Mor15, Theorem 4.3]), over finite fields the �-adic Tate conjecture for
divisors for smooth projective varieties follows from the �-adic Tate conjecture
for divisors for smooth projective surfaces. Hence Corollary 1.2.2 implies the
following:

Corollary 1.2.3. If p > 0, then T (Z, 1, �) for every finite field Fq of char-
acteristic p and every smooth projective Fq-surface Z implies T (k, 1, �) for
every finitely generated field k of characteristic p.
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1.3. Previously known results

We quickly review previously known results on the behaviour of Conjec-
ture 1.1.1 under finitely generated field extension. Let k ⊆ K be a regular
finitely generated field extension and let Z be a smooth proper K-variety.
Choose a geometrically connected, smooth k-variety K with generic point
η : K → K and a smooth proper morphism f : Z → K fitting into a cartesian
diagram:

Z Z

k K.

iη

� f

η

For every t ∈ K, choose a geometric point t over t and write Zt and Zt for
the fibre of f at t and t respectively.

1.3.1. Characteristic zero Assume that k has characteristic zero. Then
the arguments in [And96b, Section 5.1], show that S(k, i, �) and T (k, i, �)
imply T (K, i, �). The idea is use resolution of singularities to embed Z as
a dense open subset into a smooth proper k-variety Zcmp. Then, by smooth
proper base change the action of π1(K) on H2i(ZK ,Q�(i)) factors through the
surjection π1(K) � π1(K). By the global invariant cycles theorem ([Del80];
see [And06, Theoreme 1.1.1]), the natural map H2i(Zcmp

k
,Q�(i)) → H2i(ZK ,

Q�(i))π1(Kk
) is surjective. Since S(Zcmp

k
, i, �) holds, the map

H2i(Zcmp

k
,Q�(i))π1(k) → H2i(ZK ,Q�(i))π1(K)

is still surjective. Hence, by T (Zcmp, i, �), every class in H2i(ZK ,Q�(i))π1(K)

arises from a cycle in H2i(Zcmp

k
,Q�(i)).

Let us point out that, even assuming S(Fp, i, �) instead of WS(Fp, i, �)
in Theorem 1.2.1, the arguments in [And96b, Section 5.1] do not work in
positive characteristic, since resolution of singularities is not known. On the
other hand our arguments for Theorem 1.2.1 do not work in characteristic
zero, since they use in an essential way the procylicity of π1(Fq).

1.3.2. Semisimplicity As observed in [Fu99], Deligne’s geometric semisim-
plicity theorem [Del80, Theoreme 3.4.1] can be used to show that S(k, i, �)
implies S(K, i, �). More precisely, by Deligne’s geometric semisimplicity the-
orem ([Del80, Theoreme 3.4.1]), the restriction of the action of π1(K) on
H2i(ZK ,Q�(i)) to its normal subgroup π1(Kk) ⊆ π1(K) is semisimple. For



518 Emiliano Ambrosi

any closed point t ∈ K, the subgroup of π1(K) generated by π1(Kk) and by
the image of π1(t) → π1(K) is open in π1(K). So, since the action of π1(Kk)
is semisimple, the action of π1(K) on H2i(ZK ,Q�(i)) is semisimple if the ac-
tion of π1(t) on H2i(ZK ,Q�(i)) induced via restriction through the morphism
π1(t) → π1(K) is semisimple. But this action identifies, modulo the isomor-
phism H2i(ZK ,Q�(i)) � H2i(Zt,Q�(i)) given by the choice of an étale path
between η : K → K and t, with the natural action of π1(t) on H2i(Zt,Q�(i)).
Hence S(Zt, i, �) implies S(Z, i, �).

1.3.3. Infinite finitely generated fields Assume now that k is infinite
and finitely generated. Then the results in [And96b] (see [Cad12, Corollary
5.4]) if p = 0 or [Amb18, Theorem 1.3.3] if p > 0, show that T (k, 1, �) implies
T (K, 1, �). Indeed, they show that there exists always a closed fibre Zt such
that the Néron-Severi group NS(Zt) ⊗ Q of Zt identifies (rationally) with
the Néron-Severi group NS(Z) ⊗ Q of Z. Since the choice of an étale path
between t and η induces a commutative diagram of injective maps

NS(Z) ⊗Q� NS(Zt) ⊗Q�

H2(ZK ,Q�)π1(K) H2(Zt,Q�(1))π1(t),

�

this shows that T (Zt, 1, �) implies T (Z, 1, �).

2. Proof of Theorem 1.2.1

Let k be an infinite finitely generated field k of characteristic p > 0 inside
a fixed algebraic closure k. Let Fq (resp. F) the algebraic closure of Fp in k
(resp. k). For every smooth proper k-variety Z, write CH i

�(Zk) for the image
of CH i(Zk)⊗Q� → H2i(Zk,Q�(i)). Let Z be a smooth and proper k-variety.

2.1. Strategy

Compared to the arguments Section in 1.3.1, the extra difficulties one has to
deal with in the proof of Theorem 1.2.1 come from the fact that resolution of
singularities is not known in positive characteristic and that we don’t assume
the semisimplicity of the Galois action in �-adic cohomology.

To overcome the use of resolution of singularities, we use De Jong’s alter-
ations theorem to construct a generically étale alteration Z̃ → Z such that Z̃
embeds as a dense open subset into a smooth proper Fq-variety. As pointed
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out by a referee, the resulting morphism Z̃ → Z → K is not, in general,
generically smooth, so that we cannot apply directly the global invariant cy-
cles theorem. To solve this issue, we use the main ingredients of its proof: the
Hard Lefschetz theorem [Del80, Theorem 4.1.1] and the theory of weights for
Fq-varieties [Del80, Theorem 1].

To overcome the lack of the semisimplicity assumption we combine the
procyclicty of π1(Fq) with the condition WS(Z, i, �), to study the fixed points
of the action of π1(Fq) (Section 2.3.4) via the generalized eigenspace of gen-
eralized eigenvalue 1 of a topological generator.

2.2. Preliminary reductions

To prove T (Z, i, �), one may freely replace k with a finite field extension.
In particular we may assume that all the connected components of Zk are
defined over k and so, working with each component separately, that Z is
geometrically connected over k. The following well known lemma, a slight
variant of [Tat94, Theorem 5.2], will be used twice.

Lemma 2.2.1. Let W be a smooth proper k-variety and g : W → Z a
generically finite dominant morphism. Then the following hold:

• The map g∗ : H2i(Zk,Q�(i)) → H2i(Wk,Q�(i)) is injective.
• For any z ∈ H2i(Zk,Q�(i)), if g∗(z) ∈ CH i

�(Wk) then z ∈ CH i
�(Zk).

In particular T (W, i, �) implies T (Z, i, �).

Proof. Assume first that W is geometrically connected. Then, by Poincaré
duality, there is a morphism g∗ : H2i(Wk,Q�(i)) → H2i(Zk,Q�(i)) which is
compatible with the push forward of cycles g∗ : CH i(Wk)⊗Q� → CH i(Zk)⊗
Q� and such that g∗g∗ is equal to the multiplication by the generic degree of
g : W → Z. All the assertions then follow from the commutative diagram:

CH i(Zk) ⊗Q� CH i(Wk) ⊗Q� CH i(Zk) ⊗Q�

H2i(Zk,Q�(i)) H2i(Wk,Q�(i)) H2i(Zk,Q�(i)).

g∗

cZ
k

g∗

cW
k

cZ
k

g∗ g∗

In general, we reduce to the situation where W is geometrically connected.
To prove Lemma 2.2.1, we can freely replace k with a finite field extension
and hence assume that all the connected components Wi,k of Wk are defined
over k. Since g : W → Z is dominant and generically finite and Z is connected,
there is at least one connected component (say W1) mapping surjectively onto
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Z. Since Z and W1 are smooth proper k-varieties of the same dimension,
the morphism g1 : W1 → W → Z is still dominant and generically finite.
The general case follows then from the geometrically connected case and the
diagram:

CH i(Zk) ⊗Q� CH i(Wk) ⊗Q� CH i(W1,k) ⊗Q�

H2i(Zk,Q�(i)) H2i(Wk,Q�(i)) H2i(W1,k,Q�(i)).

By De Jong’s alteration theorem ([dJ96]) applied to Zk, there exists a
smooth projective k-variety W ′ and a dominant generically finite morphism
g′ : W ′ → Zk. By descent and replacing k with a finite field extension,
there exist a smooth projective k-variety W and a dominant generically finite
morphism g : W → Z which, after base change along Spec(k) → Spec(k),
identifies with g′ : W ′ → Zk. By Lemma 2.2.1, we may replace Z with W and
hence we may assume that Z is a smooth projective k-variety. Since the action
of π1(k) on CH i

�(Zk) factors through a finite quotient, replacing k with a finite
field extension, we may and do assume that CH i

�(Zk) ⊆ H2i(Zk,Q�(i))π1(k).
The core of the proof is the following proposition.
Proposition 2.2.2. Let Z be a geometrically connected smooth projective
k-variety such that CH i

�(Zk) ⊆ H2i(Zk,Q�(i))π1(k). Assume that T (Fp, i, �)
holds. Replacing k with a finite field extension, there exist a projective k-
scheme Z̃ and a dominant generically finite morphism h : Z̃ → Z, such that
for every z ∈ H2i(Zk,Q�(i))π1(k) one has h∗(z) ∈ CH i

�(Z̃k).
Before proving Proposition 2.2.2, let us show that it implies Theorem 1.2.1.

Replacing k with a finite field extension we can take h : Z̃ → Z as in the
statement of Proposition 2.2.2. Write Z̃k,red for the reduced closed subscheme
of Z̃k. Then hred : Z̃k,red → Z̃k → Zk is still dominant and generically finite
and for every z ∈ H2i(Z̃k,Q�(i))π1(k) one has h∗

red(z) ∈ CH i
�(Z̃k,red). So, by

descent and replacing k with a finite field extension, we can assume that Z̃
is geometrically reduced and that all the irreducible components of Z̃k are
defined over k. Then, by De Jong alteration’s theorem applied to Z̃k and
descent, replacing k with a finite field extension, there exists a generically fi-
nite dominant morphism W → Z̃ with W a smooth projective k-variety. The
morphism g : W → Z̃ → Z is still generically finite and dominant and for
every z ∈ H2i(Zk,Q�(i))π1(k) one has g∗(z) ∈ CH i

�(Wk). Then Theorem 1.2.1
follows from Lemma 2.2.1.

The next subsection is devoted to the proof of Proposition 2.2.2.
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2.3. Proof of Proposition 2.2.2

Let Z be a geometrically connected smooth projective k-variety such that
CH i

�(Zk) ⊆ H2i(Zk,Q�(i))π1(k).

2.3.1. Spreading out and alterations Spreading out to Fq, there exist
a geometrically connected, smooth Fq-variety K with generic point η : k → K
and a smooth projective morphism f : Z → K with geometrically connected
fibres fitting into a cartesian diagram:

Z Z

k K.

iη

� f

η

By De Jong alteration’s theorem, there exist an integral smooth Fq-variety Z̃,
an open embedding ĩ : Z̃ → Z̃cmp with dense image into a smooth projective
Fq-variety Z̃cmp and a generically étale, proper, dominant morphism h : Z̃ →
Z. Then Z̃cmp is geometrically connected over some finite field extension
Fq ⊆ Fq′ . Replacing Fq with Fq′ amounts to replacing k with the finite field
extension k′ := kFq′ , so we can assume that Z̃ and Z̃cmp are geometrically
connected over Fq.

Since Z̃ → Z → Fq is quasi-projective, the morphism h : Z̃ → Z is
quasi-projective as well ([SP, Tag 0C4N]). Since f : Z → K is projective, this
implies that Z̃ → K is quasi-projective. Since h : Z̃ → Z and f : Z → K
are proper, the morphism Z̃ → K is proper as well. So Z̃ → K is proper
and quasi-projective hence projective. The generic fibre Z̃ → k of Z̃ → K
is then a projective k-scheme endowed with a generically finite dominant
morphism h : Z̃ → Z. The situation is summarized in the following diagram
of Fq-schemes:

Z̃ Z̃ Z̃cmp

Z Z

k K.

h

ĩη

�

ĩ

h

iη

� f

η

The edge map

Ler : H2i(ZF,Q�(i)) → H0(KF, R
2ifF∗Q�(i))
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in the Leray spectral sequence for fF : ZF → KF fits then into a commutative
diagram:

CH i(Z̃k) ⊗Q� CH i(Zk) ⊗Q�

CH i(Z̃cmp
F

) ⊗Q� CH i(Z̃F) ⊗Q� CH i(ZF) ⊗Q� H2i(Z̃k,Q�(i)) H2i(Zk,Q�(i))

H2i(Z̃cmp
F

,Q�(i)) H2i(Z̃F,Q�(i)) H2i(ZF,Q�(i)) H0(KF, R
2ifF∗Q�(i)).

c
Z̃
k

h∗

cZ
k

ĩ∗

c
Z̃cmp
F

c
Z̃
F

ĩ∗η

h∗

cZ
F

i∗η

h∗

ĩ∗

ĩ∗η i∗η

h∗
Ler

2.3.2. Hard Lefschetz theorem Write ϕ ∈ π1(Fq) for the arithmetic
Frobenius of Fq and, for every π1(Fq)-representation V , write V ϕ

gen for the
generalized eigenspace on which ϕ acts with generalized eigenvalue 1. Since
π1(Fq) is procyclic the π1(Fq)-equivariant inclusion V ϕ

gen ⊆ V as a π1(Fq)-
equivariant splitting. Hence if r : V → W is π1(Fq)-equivariant morphism of
continuous π1(Fq)-representations, one has

(2.3.2.1) Im(r : V ϕ
gen → W ) = Im(r : V → W ) ∩Wϕ

gen.

Let z be in H2i(Zk,Q�(i))π1(k). In this section we lift h∗(z) ∈ H2i(Z̃F,

Q�(i)) to H2i(Z̃F,Q�(i))ϕgen. By smooth proper base change, the action of
π1(k) on H2i(Zk,Q�(i)) factors through the canonical surjection π1(K) →
π1(k), hence H2i(Zk,Q�(i))π1(k) � H2i(Zk,Q�(i))π1(K). Consider the diagram:

H2i(Z̃cmp
F

,Q�(i)) H2i(Z̃F,Q�(i)) H2i(ZF,Q�(i)) H0(KF, R
2ifF∗Q�(i)).ĩ∗ h∗ Ler

Since

z ∈ H2i(Zk,Q�(i))π1(k) � H0(KF, R
2ifF∗Q�(i))π1(Fq) ⊆ H0(KF, R

2ifF∗Q�(i)),

the element z is in H0(KF, R
2ifF∗Q�(i))ϕ. Recall the following consequence of

the Hard Lefschetz Theorem:

Fact 2.3.2.2. The map

Ler : H2i(ZF,Q�(i)) → H0(KF, R
2ifF∗Q�(i))

is surjective
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Proof. Let F ∈ Pic(ZF) be a relative ample line bundle for fF : ZF → KF,
write m for the relative dimension of fF : ZF → KF and, to simplify the
notation, choose an identification Q�(i) � Q�. For every integer r ≥ 1,
cZF

(F) ∈ H2(ZF,Q�) induces, by cup product, a morphism

ur : Rm−rfF∗Q� → Rm+rfF∗Q�.

By proper base change and the Hard Lefschetz Theorem [Del80, Theorem
4.1.1], ur : Rm−rfF∗Q� → Rm+rfF∗Q� is an isomorphism. In the terminology
of [Del68, (2.2)], this shows that Q� satisfies the Lefschetz condition with
respect to cZF

(F). By [Del68, Proposition 2.4], this implies that the Leray
spectral sequence for fF : ZF → KF

Ea,b
2 := Ha(ZF, R

bfF∗Q�) ⇒ Ha+b(KF,Q�)

degenerates at the second page. Hence the edge map H2i(ZF,Q�) → H0(KF,
R2ifF∗Q�) is surjective.

By Fact 2.3.2.2, the map Ler : H2i(ZF,Q�(i)) → H0(KF, R
2ifF∗Q�(i))

is surjective, hence, by (2.3.2.1), z ∈ H0(K, R2if∗Q�(i)) ⊆ H0(KF, R
2ifF∗

Q�(i))ϕgen is the image of some z′ ∈ H2i(ZF,Q�(i))ϕgen and then h∗(z′) ∈
H2i(Z̃F,Q�(i))ϕgen.

2.3.3. Theory of weights We now prove that h∗(z′) is the image of some
z̃ ∈ H2i(Z̃cmp

F
,Q�(i))ϕgen via ĩ∗ : H2i(Z̃cmp

F
,Q�(i)) → H2i(Z̃F,Q�(i)). Write d

for the common dimension of Z̃ and Z̃cmp. The localization exact sequence
for the dense open immersion Z̃ → Z̃cmp with complement D := Z̃cmp − Z̃,
gives an exact sequence

H2d−2i−1
c (DF,Q�(−i))(d) H2d−2i

c (Z̃F,Q�(−i))(d) H2d−2i
c (Z̃cmp

F
,Q�(−i))(d).

Combining this sequence with Poincaré duality for the smooth varieties Z̃
and Z̃cmp, one sees that

(2.3.3.1) Coker
(
ĩ∗ : H2i(Z̃cmp

F
,Q�(i)) → H2i(ZF,Q�(i))

)
(H2d−2i−1

c (DF,Q�(−i))(d))∨.

We combine (2.3.3.1) with the theory of weights.
Fact 2.3.3.2 ([Del80, Théorème 3.3.1 and Corollaire 3.3.9]). Let X be a
separated scheme of finite type over Fq. Then, for every integers m ≥ 0 and
n, Hm

c (XF,Q�(n)) is mixed of weights ≤ m− 2n. If X is smooth and proper
over Fq, then Hm(XF,Q�(n)) is pure of weights m− 2n.
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By (2.3.3.1) and Fact 2.3.3.2, the cokernel of ĩ∗ : H2i(Z̃cmp
F

,Q�(i)) →
H2i(ZF,Q�(i)) is mixed of weights ≥ 1, while H2i(Z̃cmp

F
,Q�(i)) is pure of

weight 0. Hence, the image of ĩ∗ : H2i(Z̃cmp
F

,Q�(i)) → H2i(ZF,Q�(i)) con-
sists exactly of the generalized eigenspace on which ϕ acts with generalized
eigenvalues of weight 0. So h∗(z′) ∈ H2i(Z̃F,Q�(i))ϕgen is in the image of
ĩ∗ : H2i(Z̃cmp

F
,Q�(i)) → H2i(ZF,Q�(i)), hence by (2.3.2.1), h∗(z′) is the im-

age of some z̃ ∈ H2i(Z̃cmp
F

,Q�(i))ϕgen.

2.3.4. Using the Tate conjecture Since WS(Z̃cmp, i, �) holds by as-
sumption, the injection

H2i(Z̃cmp
F

,Q�(i))π1(Fq) ↪→ H2i(Z̃cmp
F

,Q�(i))

has a π1(Fq)-equivariant splitting. So, since π1(Fq) is procyclic generated by
ϕ, one has

H2i(Z̃cmp
F

,Q�(i))ϕgen = H2i(Z̃cmp
F

,Q�(i))ϕ = H2i(Z̃cmp
F

,Q�(i))π1(Fq).

Hence, by T (Z̃cmp, i, �), there exists a w̃ ∈ CH i(Z̃cmp
F

) ⊗ Q� such that
cZ̃cmp

F

(w̃) = z̃. We conclude the proof observing that, thanks to the com-
mutative diagram at the end of 2.3.1, h∗(z) is the image of ĩ∗η ĩ

∗(w̃) via
c
Z̃

k

: CH i(Z̃k) ⊗ Q� → H2i(Z̃k,Q�(i)). This concludes the proof of Propo-
sition 2.2.2.
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