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On the existence of solution for degenerate parabolic
equations with singular terms

Abdelmoujib Benkirane, Badr El Haji, Mostafa El Moumni

Abstract: We are interested in results concerning the solutions to
the parabolic problems whose simplest model is the following:⎧⎪⎨

⎪⎩
∂u
∂t − Δpu (:= div(|∇u|p−2∇u)) + B |∇u|p

u = f in (0, T ) × Ω,

u(0, x) = u0(x) in Ω,

u(t, x) = 0 on (0, T ) × ∂Ω,

where T > 0, N ≥ 2, B > 0, u0 is a positive function in L∞(Ω)
bounded away from zero and f is a nonnegative function that be-
longs to some Lebesgue space.
Keywords: Nonlinear parabolic equations, singular parabolic
equations, Sobolev space.

1. Introduction

In this paper, we are going to study the following parabolic problem

(1.1)

⎧⎪⎨
⎪⎩

∂u
∂t − div a(t, x,∇u) + H(t, x, u,∇u) = f in (0, T ) × Ω,
u(0, x) = u0(x) in Ω,
u(t, x) = 0 on (0, T ) × ∂Ω.

where Ω is an open and bounded subset of RN , T > 0, N ≥ 2, 2 < p < +∞,
u0 ∈ L∞(Ω) and 0 ≤ f in Lr(0, T ;Lq(Ω)), with p

r + N
q < p, r ≥ p

p−1 , q > 1.
Such equation arises in the theory of non-Newtonian fluids and also the theory
of heat conduction in electrically conducting materials, see [5, 10] for detailed
discussion.

In the elliptic case, Consider the equation

(1.2)
{

−Δpu + B |∇u|p
um = f in Ω,

u(x) = 0 on ∂Ω,
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here m > 0, B > 0 and f is a nonnegative (not identically zero) function
in L1(Ω). The problem is obviously singular as we ask the solution to vanish
at the boundary of Ω. In [1] the existence of a finite energy (i.e., in H1

0 (Ω))
solution to problem (1.2) has been proved if m < 2 and for data f locally
bounded away from zero. The case of a possibly degenerate datum f has been
also considered. If m < 1 the existence of a solution in H1

0 (Ω) was proved in [2]
for general nonnegative (not identically zero) data, while the case m = 1 was
faced in [13] provided B was small enough. Problems as in (1.2) with possibly
changing-sign data have also been considered in [8] in the case m < 1 (see
also [9] for further considerations concerning the strongly singular case).

In the parabolic case, problems as

(1.3)

⎧⎪⎨
⎪⎩

∂u
∂t − Δpu + B |∇u|p

um = f in (0, T ) × Ω,
u(0, x) = u0(x) in Ω,
u(t, x) = 0 on (0, T ) × ∂Ω,

have been considered in the case p = 2 and m < 1 (see [14]). If m = 1 singular
problems as (1.3) have been considered in [19, 20] for smooth strictly positive
data, while degenerate problems (i.e. p > 2) were studied in [21] in the one
dimensional case and in [7], the authors study the existence of solutions for
a general class of singular homogeneous (f = 0).

The aim of this paper is to study existence of solutions for a class of
singular non-homogeneous (f �= 0) parabolic problems as (1.3) in the limit
case m = 1. We will mainly be concerned with the case p > 2.

The paper is structured as follows: in the next section 2 we set the main
assumptions, we state our main result, and we introduce some preliminary
tools. Section 3 is devoted to prove existence of the main result.

2. Basic assumptions and main result

From now on, we will set Q = (0, T ) × Ω. Let us spend a few words on how
positive constant will be denoted hereafter. If no otherwise specified, we will
write C, C ′ and C ′′ to denote any positive constant (possibly different) which
only depends on the data, that is on quantities that are fixed in the assump-
tions (f , N, Ω, T, B, α, p, β, and so on. . . ). But they will never depend on
the indexes of the sequences we will often introduce. For the sake of simplicity
we will often use the simplified notation

∫
Q
f =

∫
Q
f(t, x)dtdx
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when referring to integrals when no ambiguity on the variable of integration
is possible. For a fixed k > 0, we define the truncation functions Tk : R → R

and Gk : R → R as follows

Tk(s) = max(−k,min(s, k)) and Gk(s) = s− Tk(s) = (|s| − k)+sign(s).

Let us state our main assumptions. Ω is a bounded open set in R
N , N ≥ 2,

T > 0. The function

(2.1) 0 ≤ f ∈ Lr(0, T ;Lq(Ω)),

with p
r + N

q < p, r ≥ p′, q > 1, satisfies

mω(f) = ess inf {f(x, t) : x ∈ ω, t ∈ (0, T )} > 0,∀ω ⊂⊂ Ω.

Moreover, we consider an initial datum u0(x) which is a function in L∞(Ω)
such that u0 ≥ c > 0 almost everywhere on Ω, and we suppose that

(2.2) mω(u0) = ess inf {u0(x) : x ∈ ω} > 0,∀ω ⊂⊂ Ω.

Let a : (0, T )×Ω×R
N → R

N be a Carathéodory vector-valued function
such that

a(t, x, ξ)ξ ≥ α|ξ|p,(2.3)

|a(x, s, ξ)| ≤ β|ξ|p−1,(2.4)

(a(t, x, ξ) − a(t, x, η))(ξ − η) > 0,(2.5)

for a.e. (t, x) ∈ (0, T ) × Ω, for every ξ �= η ∈ R
N and α, β are positive

constants and p > 2.
Furthermore, let H(t, x, s, ξ) : (0, T )×Ω×R+×R

N → R
N be a Carathéod-

ory function such that

(2.6) 0 ≤ H(t, x, s, ξ) ≤ B
|ξ|p
s

,

for a.e. (t, x) ∈ (0, T ) × Ω, for every s > 0, ξ ∈ R
N , and B is a positive

constant.
Consider problem (1.1). Here is the meaning of weak solution for such a

problem.
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Definition 2.1. A weak solution to problem (1.1) is a function u ∈ Lp(0, T ;
W 1,p

0 (Ω)) ∩ C(0, T ;L1(Ω)) such that for every ω ⊂⊂ Ω there exists cω such
that u ≥ cω > 0 in (0, T ) × ω; furthermore, we have that

−
∫
Q
〈u, ϕ′〉 −

∫
Ω
u0ϕ(0) +

∫
Q
a(t, x,∇u)∇ϕ +

∫
Q
H(t, x, u,∇u)ϕ =

∫
Q
fϕ,

for every ϕ ∈ C1
c ([0, T )×Ω), that is, for every C1 function which vanishes in

a neighborhood of {T} × Ω and of (0, T ) × ∂Ω.

Note that under assumption (2.6), the function H(t, x, u,∇u) belongs to
L1
loc(Q) thanks to the property of local positivity required on u.

Our main result is the following:

Theorem 2.1. Assume that (2.1)–(2.6) hold. If p > 2 there exists a weak
solution to problem (1.1).

Before the proof we recall some technical tools we will use. The first one
is a well known consequence of the Gagliardo-Nirenberg inequality which is
valid on any cylinder of the type Q = (0, T ) × Ω with bounded Ω (see for
instance [16], Lecture II).

Lemma 2.2. Let v ∈ Lp(0, T ;W 1,p
0 (Ω))∩L∞(0, T ;Lβ(Ω)), with p ≥ 1, β ≥ 1.

Then v ∈ Lσ(Q) with σ = pN+β
N and

(2.7)
∫
Q
|v|σ ≤ C‖v‖

βp
N

L∞(0,T ;Lβ(Ω))

∫
Q
|∇v|p.

Finally, we will need the following local version of a lemma by Stampac-
chia (see [18]).

Lemma 2.3. Let ω(h, r) be a function defined on [0,+∞) × [0, 1], which is
nonincreasing in h and nondecreasing in r; suppose that there exist constants
k0 ≥ 0, M,ρ, σ > 0, and η > 1 such that

ω(h, r) ≤ Mω(k,R)η

(h− k)ρ(R− r)σ ,

for all h > k ≥ k0 and 0 ≤ r < R ≤ 1. Then, for every r in (0, 1), there
exists d > 0, given by

dρ = M2
η(ρ+σ)
η−1 ω(k0, 1)η−1

(1 − r)σ
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such that
ω(d, r) = 0.

Finally, let us state the following result that will be very useful in the
sequel; its proof relies on an easy application of Egorov theorem.

Lemma 2.4. Let Q = Ω×]0, T [, where Ω is an open and bounded subset of
R

N and T > 0. Let ρε be a sequence of L1(Q) functions that converges to
ρ weakly in L1(Q), and let σε be a sequence of functions in L∞(Q) that is
bounded in L∞(Q) and converges to σ almost everywhere on Q. Then

lim
ε→0

∫
Q
ρεσεdxdt =

∫
Q
ρσdxdt

3. Proof of main result

Our strategy in order to prove Theorem 2.1 will rely on an approximation
argument. The next subsection will introduce our approximating problems.

3.1. The approximating problems

We consider the approximating problems
⎧⎪⎨
⎪⎩

∂un

∂t − div a(t, x,∇un) + H(t, x, un,∇un) = f in Q,
un(0, x) = u0(x) + 1

n in Ω,
un(t, x) = 1

n on (0, T ) × ∂Ω.
(3.1)

A weak solution to this problem is a function un such that un ≥ 1
n a.e. in Q.

un− 1
n ∈ Lp([0, T ];W 1,p

0 (Ω))∩C(0, T ;L1(Ω)) and ∂un

∂t ∈ L1(Ω)+Lp′([0, T ];
W−1,p′(Ω)) and such that

(3.2)
∫ T

0
〈∂un
∂t

, v〉 +
∫
Q
a(t, x,∇un)∇v +

∫
Q
H(t, x, un,∇un)v =

∫
Q
fv

for any v ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q). A nonnegative weak solution un to

problem (3.1) does exist. In fact, problem (3.1) is equivalent to

⎧⎪⎨
⎪⎩

∂vn
∂t − div a(t, x,∇vn) + H(t, x, vn + 1

n ,∇vn) = f in Q,
vn(0, x) = u0(x) in Ω,
vn(t, x) = 0 on (0, T ) × ∂Ω.

(3.3)
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where vn = un − 1
n .

To prove that a solution of (3.3) exists, we first extend H(t, x, s, ξ) to be
zero for s ≤ 0, and, for ε > 0, we consider the problem

(3.4)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂vn,ε

∂t − div a(t, x,∇vn,ε) + Tε(vn,ε)
ε H(t, x, vn,ε + 1

n ,∇vn,ε) = f
in Q,

vn,ε(0, x) = u0(x) in Ω,
vn,ε(t, x) = 0 on (0, T ) × ∂Ω.

A nonnegative solution vn,ε to problem (3.4) exists by the results proven in [6].
Then, if we take a sequence of values ε ↓ 0, one can prove that the sequence
{vn,ε}ε converges strongly in Lp(0, T ;W 1,p

0 (Ω)) to some function vn. Then one
can pass to the limit for ε ↓ 0 in the first two terms of (3.4), in the sense
of distributions. As far as the third term is concerned, we observe that, on
the set {vn > 0}, the function Tε(vn,ε)

ε converges a.e. to 1, while on the set
{vn = 0} (where we cannot identify the limit of Tε(vn,ε)

ε , but where ∇vn = 0
a.e. by Stampacchia’s result contained in [18]) the term H(t, x, vn,ε+ 1

n ,∇vn,ε)
converges to H(t, x, vn + 1

n ,∇vn,) a.e., which is zero a.e. on this set, since
H(t, x, 1

n , 0) = 0 a.e. by assumption (2.6). Therefore, vn is a weak solution of
(3.3).

3.2. A priori estimates

A standard argument allows us to show that some basic estimates on the
approximating solutions hold. We collect them in the following:

Lemma 3.1. Let p ≥ 2, and let un be a solution to problem (3.1). Then,

‖un‖Lp(0,T ;W 1,p(Ω)) ≤ C, ‖un‖L∞(Q)) ≤ C and
∫
Q
H(t, x, un,∇un) ≤ C.

(3.5)

Moreover, there exists a function u in Lp(0, T ;W 1,p
0 (Ω)) such that (up to

subsequences) un − 1
n converges to u weakly in Lp(0, T ;W 1,p

0 (Ω)) and a.e. on
Q. Finally,

∇un → ∇u, a.e. on Q.

Proof. The proof of the first two estimates is quite standard and can be
deduced for instance as in [4] (see also [3]) using the fact that the lower order
term is positive. In order to get (3.5) one can use 1

εTε(un− 1
n) as test function
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in (3.1). Integrating by parts, dropping nonnegative terms and letting ε go to
zero one gets, by Fatou’s lemma

∫
Q
H(t, x, un,∇un) ≤

∫
Ω
(u0(x) + 1

n
) +

∫
Q
f,

which implies (3.5). The almost everywhere convergence of the gradients of
un is a consequence of (3.5) and of a result in [[3], Theorem 3.3.].

3.3. Concluding the proof of Theorem 2.1

We wish to pass to the limit in the weak formulation of (3.1).
Claim 1: A key tool in order to pass to the limit will be the following

one.

Lemma 3.2. Let p > 2, and let un be a weak solution of problem (3.1). Then,
for any ω ⊂⊂ Ω, there exists a constant cω such that

un ≥ cω > 0, in (0, T ) × ω, for every n in N.

In order to simplify notations, we henceforth write a(∇un) instead of
a(t, x,∇un) and H(un,∇un) instead of H(t, x, un,∇un).

Proof. We divide the proof into three steps.
Step 1. There is no loss of generality in assuming that the constant B

which appears in (2.6) satisfies B > max(α, p− 1).
We use v = −u−B

n ψ in (3.2), for any nonnegative ψ(t, x) ∈ Lp(0, T ;
W 1,p

0 (Ω)) ∩ L∞(Q) which is zero in a neighborhood of (0, T ) × ∂Ω, in order
to obtain

−
∫ T

0
〈∂un
∂t

, u−B
n ψ〉 + B

∫
Q
a(∇un)∇unu

−B−1
n ψ +

∫
Q
a(∇un)∇ψu−B

n

−
∫
Q
H(un,∇un)u−B

n ψ

= −
∫
Q
fu−B

n ψ ≤ 0,

from which taking into account the assumptions (2.3), (2.6) and B > α, one
obtains

−
∫ T

0
〈∂un
∂t

, u−B
n ψ〉 +

∫
Q
a(∇un)∇ψu−B

n ≤ 0.
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Therefore, if we set un = B+1−p
p−1 ω

− p−1
B+1−p

n and γ = (p−1)(B−1)
B+1−p , we have

(3.6)
∫ T

0
〈∂ωn

∂t
, ωγ−1

n ψ〉 + C

∫
Q
a(−ω

−B
B+1−p
n ∇ωn)∇ψω

B(p−1)
B+1−p
n ≤ 0,

for every nonnegative ψ(t, x) ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q) which is zero in

a neighborhood of (0, T ) × ∂Ω and for some positive constant C depending
only on B and p. Observe that B > p−1 and p > 2 imply that γ > p−1 > 1.
Moreover, observe that

ωn(t, x) = cn
B+1−p
p−1 on (0, T ) × ∂Ω, ωn(0, x) = c(u0 + 1

n
)−

B+1−p
p−1 = ω0n

for some positive constant c. In particular, since u0 is bounded away from
zero, then ω0n is bounded in L∞(Ω) and the values of ωn blow up on the
boundary as n goes to infinity. We look for an a priori local bound on the L∞

norm of ωn.
Step 2. Local L∞ bound for ωn.
Without loss of generality we assume that 0 ∈ Ω; we will prove that the

bound holds true in a ball Bρ centered at zero of radius ρ with 0 < r < ρ <

R ≤ 1, then a standard covering argument will allow us to conclude.
We fix k > ‖ω0n‖L∞(BR) and we define the sets

AK,ρ(t) = {x ∈ Bρ : ωn(t, x) > k},
AK,ρ = {(t, x) ∈ (0, T ) ×Bρ : ωn(t, x) > k}

We consider a cut-off function ϕ(x) ∈ C∞
c (BR) such that

0 ≤ ϕ(x) ≤ 1, ϕ(x) ≡ 1 in Br, |∇ϕ| ≤ C

R− r
,

and use ψ(t, x) = Gk(ωn(t, x))ϕδ(x) as test function in (3.6) where δ = p(γ+1)
γ−p+1 .

Integrating between 0 and t < T , and using the assumptions (2.3) and (2.4),
we obtain

(3.7)

∫ t

0
〈∂ωn

∂t
, ωγ−1

n Gk(ωn)ϕδ〉 +
∫ t

0

∫
Ak,R(τ)

|∇Gk(ωn)|pϕδ≤

C

R− r

∫ t

0

∫
Ak,R(τ)

|∇Gk(ωn)|p−1ϕδ−1Gk(ωn).



On the existence of solution for degenerate parabolic equations 599

We use Young’s inequality in order to absorb the term |∇Gk(ωn)|p−1 in the
right hand side; using the definition of δ, we get

∫ t

0
〈∂ωn

∂t
, ωγ−1

n Gk(ωn)ϕδ〉 +
∫ t

0

∫
Ak,R(τ)

|∇Gk(ωn)|pϕδ

≤ C

(R− r)p
∫
Ak,R

Gk(ωn)pϕ
p2

γ−p+1 .

Notice that, since 0 ≤ ϕ ≤ 1,

|∇(Gk(ωn)ϕδ)|p ≤ C(|∇Gk(ωn)|pϕδp + Gk(ωn)pϕδp−p

(R−r)p )

≤ C(|∇Gk(ωn)|pϕδ + Gk(ωn)pϕδ−p

(R−r)p )

so that, observing that δ − p = p2

γ−p+1 , we finally get

∫ t

0
〈∂ωn

∂t
, ωγ−1

n Gk(ωn)ϕδ〉 +
∫ t

0

∫
Ak,R(τ)

|∇Gk(ωn)ϕδ|p

≤ C

(R− r)p
∫
Ak,R

Gk(ωn)pϕ
p2

γ−p+1 .

Since δ > p− 1, we can use again Young’s inequality to have

∫ t

0
〈∂ωn

∂t
, ωγ−1

n Gk(ωn)ϕδ〉 +
∫ t

0

∫
Ak,R(τ)

|∇Gk(ωn)ϕδ|p

≤ 1
2(γ + 1)T

∫
Ak,R

Gk(ωn)γ+1ϕδ + C

(R− r)
(γ+1)p
γ+1−p

|Ak,R|

≤ 1
2(γ + 1) sup

t

∫
Ak,R(t)

Gk(ωn)γ+1ϕδ dx + C

(R− r)
(γ+1)p
γ+1−p

|Ak,R|.

(3.8)

Now we deal with the time derivative part. Let us define, for s ≥ 0,

Ψk(s) =
∫ s

0
Gk(σ)σγ−1 dσ

Then it is easy to check that

Ψk(s) ≥
1

γ + 1Gk(s)γ+1
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that k > ‖ω0‖L∞(BR), we obtain
∫ t

0
〈∂ωn

∂t
, ωγ−1

n Gk(ωn)ϕδ〉 =
∫
BR

Ψk(ωn(t, x))ϕδ ≥ 1
γ + 1

∫
BR

Gk(ωn)γ+1ϕδ.

Therefore we can use (3.8) in order to deduce

1
γ + 1

∫
BR

Gk(ωn)γ+1ϕδ

≤ 1
2(γ + 1) sup

t

∫
Ak,R

Gk(ωn)γ+1ϕδ dx + C

(R− r)
(γ+1)p
γ+1−p

|Ak,R|.

and we can take the spermium over t ∈ (0, T ) on the left in order to get

sup
t

∫
Ak,R(t)

Gk(ωn)γ+1ϕδ dx ≤ C

(R− r)
(γ+1)p
γ+1−p

|Ak,R|.

Gathering together all these facts, and using again that ϕδ ≥ ϕδ(γ+1), we end
up with the following estimate

sup
t

∫
Ak,R(t)

Gk(ωnϕ
δ)γ+1 dx +

∫
Ak,R

|∇Gk(ωn)ϕδ|p dx ≤ C

(R− r)
(γ+1)p
γ+1−p

|Ak,R|.

We are now in the position to apply the Gagliardo-Nirenberg inequality (2.7)
to the function Gk(ωn)ϕδ, with β = γ + 1; recalling that ϕ ≡ 1 on Br, we
obtain ∫

Ak,R

Gk(ωn)p
N+γ+1

N dx ≤ C

(R− r)
(γ+1)p(N+p)
(γ+1−p)N

|Ak,R|1+ p
N .

Stampacchia’s procedure is now quite standard. For h > k, one obtains∫
Ak,R

Gk(ωn)p
N+γ+1

N dx ≥
∫
Ah,r

Gh(ωn)p
N+γ+1

N dx ≥ (h− k)p
N+γ+1

N |Ah,r|,

that is,

|Ah,r| ≤
C|Ak,R|1+ p

N

(h− k)p
N+γ+1

N (R− r)
(γ+1)p(N+p)
(γ+1−p)N

.

Therefore, if we choose ω(h, r) = |Ah,r|, we can apply Lemma 2.3 in order
to deduce that, for every fixed ρ ∈ (r, R), |Ah,r| = 0 if h is larger than some
constant Cρ. It follows that

(3.9) ωn ≤ Cρ, a.e. on (0, T ) ×Bρ, for every n.
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Step 3. End of the proof. Recalling that B > p− 1 and the definition of
ωn we use (3.9) to have, a.e. on (0, T ) ×Bρ

un = B + 1 − p

p− 1 ω
− p−1

B+1−p
n ≥ B + 1 − p

p− 1 C
− p−1

B+1−p
ρ = cρ > 0.

As we said, by means of a standard covering procedure this estimate can be
proven to hold on any set of the form (0, T ) × ω, with ω ⊂⊂ Ω.

Claim 2: Passing to the limit. In order to pass to the limit as n tends
to infinity, we need the following result.
Proposition 3.3. We have

un −→ u strongly in Lp(0, T ;W 1,p(ω)),

for every open set ω ⊂⊂ Ω.
Proof. The sequence {∂un

∂t } is bounded in Lp′(0, T ;W−1,p′(Ω))+L1(Q). Using
the Aubin-Simon compactness argument (see Corollary 4 in [17]), we deduce
that, up to a subsequence,

un −→ u in Lp(Q),

for some u in Lp(0, T ;W 1,p(Ω)) ∩ L∞(Q). We will prove that, for every open
set ω ⊂⊂ Ω,

(3.10) un −→ u in Lp(0, T ;W 1,p(ω)),

We now introduce a classical regularization uν of the function u with
respect to time (see [11]). For every ν ∈ N, we define uν as the solution of
the Cauchy problem {

1
ν
∂uν

∂t + uν = u
uν(0) = u0,ν

where u0,ν ∈ W 1,p
0 (Ω)) ∩ L∞(Ω), satisfies u0,ν −→ u0 strongly in L1(Ω), ∗−

weakly in L∞(Ω) and limν→+∞
1
ν ‖u0,ν‖W 1,p

0 (Ω) = 0.
Then one has (see [11]):

uν ∈ Lp(0, T ;W 1,p
0 (Ω)), ∂uν

∂t
∈ Lp(0, T ;W 1,p

0 (Ω)) and ‖uν‖L∞(Q) ≤ ‖u‖L∞(Q),

and as ν tends to infinity,

(3.11) uν −→ u strongly in Lp(0, T ;W 1,p
0 (Ω)).
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Let ϕλ(s) = seλs
2 (with λ to be chosen later). We will denote by ε(ν, n)

any quantity such that

lim
ν→+∞

lim sup
n→∞

|ε(ν, n)| = 0.

For 0 ≤ φ ∈ C∞
c (Ω), we have that

(3.12)
∫ T

0
〈∂un
∂t

, ϕλ(un − uν)φ〉 ≥ ε(ν, n).

Now, using (3.12) and ϕλ(un − uν)φ as test function in (3.2), we obtain∫
Q
a(∇un)∇(un − uν)ϕ′

λ(un − uν)φ +
∫
Q
a(∇un)∇φϕλ(un − uν)

+
∫
Q
H(un,∇un)ϕλ(un − uν)φ

≤
∫
Q
fϕλ(un − uν)φ− ε(ν, n).

Moreover, if ω ⊂⊂ Ω is such that supp φ ⊂ ω since un → u weakly in
Lp(0, T ;W 1,p

0 (Ω)) and ϕλ(un − uν)φ converges to ϕλ(u − uν)φ ∗-weakly in
L∞(Q), so that, by Lemma 2.4, we have∫

Q
fϕλ(un − uν)φ−

∫
Q
a(∇un)∇φϕλ(un − uν) = ε(ν, n).

If cω is the constant given by Lemma 3.2, we have, recalling that supp φ ⊂
ω

∣∣∣ ∫
Q
H(un,∇un)ϕλ(un − uν)φ

∣∣∣ ≤ B

∫
ω×(0,T )

|∇un|p
un

|ϕλ(un − uν)|φ

≤ B

cω

∫
Q
|∇un|p|ϕλ(un − uν)|φ.

Thus,

∫
Q
a(∇un)∇(un − uν)ϕ′

λ(un − uν)φ−
B

cω

∫
Q
|∇un|p|ϕλ(un − uν)|φ ≤ ε(ν, n).

(3.13)

Then we can write∫
Q
a(∇un)∇(un − uν)ϕ′

λ(un − uν)φ
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=
∫
Q
(a(∇un) − a(∇uν))∇(un − uν)ϕ′

λ(un − uν)φ

+
∫
Q
a(∇uν)∇(un − uν)ϕ′

λ(un − uν)φ

=
∫
Q
(a(∇un) − a(∇uν))∇(un − uν)ϕ′

λ(un − uν)φ + ε(ν, n).

Similarly,
∫
Q
|∇un|p|ϕλ(un − uν)|φ

≤ α−1
∫
Q
a(∇un)∇un|ϕλ(un − uν)|φ

= α−1
∫
Q
(a(∇un) − a(∇uν))∇(un − uν)|ϕλ(un − uν)|φ

+
∫
Q
a(∇uν)∇(un − uν)|ϕλ(un − uν)|φ +

∫
Q
a(∇un)∇uν |ϕλ(un − uν)|φ

= α−1
∫
Q
(a(∇un) − a(∇uν))∇(un − uν)|ϕλ(un − uν)|φ + ε(ν, n).

Therefore, from (3.13) we obtain
∫
Q
(a(∇un) − a(∇uν))∇(un − uν)[ϕ′

λ(un − uν) −
B

αcω
|ϕλ(un − uν)|]φ

≤ ε(ν, n).

Choosing λ large enough so that ϕ′
λ(s) − B

αcω
|ϕλ(s)| ≥ 1

2 for every s ∈ R, we
deduce that ∫

Q
(a(∇un) − a(∇uν))∇(un − uν)φ ≤ ε(ν, n).

From here it is standard (see for example [15]) to prove that un−uν tends to
zero strongly in Lp(0, T ;W 1,p(ω)). Recalling (3.11), we thus have that (3.10)
holds.

Using Proposition 3.3 we can prove the (local) strong convergence of the
lower order terms.

Lemma 3.4. We have

H(un,∇un) → H(u,∇u) locally strongly in L1(Q).
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Proof. Gathering together the results of Proposition 3.3, Lemma 3.1, and
Lemma 3.2, we can apply Lebesgue’s dominated convergence theorem to prove
that

|∇un|p
un

→ |∇u|p
u

, locally strongly in L1(Q).

It is then straightforward to conclude using (2.6) and Vitali’s theorem.

Thanks to all the results proved so far we can pass to the limit in (3.1), to
have that u is a solution of (1.1) in the sense of Definition 2.1, thus concluding
the proof of Theorem 2.1.

Remark 3.1. The hypothesis p > 2 seems necessary to obtain the bound-
lessness of Lemma 3.2, we can not say if we can do without it or not.

Acknowledgements

The authors are grateful to Professor Francesco Petitta for his comments
and suggestions. His article [7] was the motivation for writing this article.

References

[1] D. Arcoya, J. Carmona, T. Leonori, P. J. Martinez-Aparicio,
L. Orsina and F. Petitta; Existence and nonexistence of solutions
for singular quadratic quasilinear equations, J. Differential Equations,
246(2009), 4006–4042. MR2514734

[2] L. Boccardo; Dirichlet problems with singular and gradient quadratic
lower order terms, ESAIM Control Optim. Calc. Var., 14(2008), 411–
426. MR2434059

[3] L. Boccardo, A. Dall’Aglio, T. Gallouët and L. Orsina; Non-
linear parabolic equations with measure data, J. Funct. Anal., 147(1997),
237–258. MR1453181

[4] L. Boccardo and T. Gallouët; Nonlinear elliptic and parabolic
equations involving measure data, J. Funct.Anal., 87(1989), 149–
169. MR1025884

[5] A. Callegari and A. Nashman; A nonlinear singular boundary-value
problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math.,
38(2)(1980), 275–281. MR0564014

http://www.ams.org/mathscinet-getitem?mr=2514734
http://www.ams.org/mathscinet-getitem?mr=2434059
http://www.ams.org/mathscinet-getitem?mr=1453181
http://www.ams.org/mathscinet-getitem?mr=1025884
http://www.ams.org/mathscinet-getitem?mr=0564014


On the existence of solution for degenerate parabolic equations 605

[6] A. Dall’Aglio and L. Orsina; Nonlinear parabolic equations with nat-
ural growth conditions and L1 data, Nonlinear Analysis, 27(1996), 59–
73. MR1390712

[7] A. Dall’Aglio, L. Orsina and F. Petitta; Existence of solutions
for degenerate parabolic equations with singular terms, Nonlinear Anal.,
131(2016), 273–288. MR3427981

[8] D. Giachetti, F. Petitta and S. Segura de Léon; Elliptic equa-
tions having a singular quadratic gradient term and a changing sign da-
tum, Commun. Pure Appl. Anal., 11(2012), 1875–1895. MR2911115

[9] D. Giachetti, F. Petitta and S. Segura de Léon; A priori
estimates for elliptic problems with a strongly singular gradient term
and a general datum, Diferential Integral Equations, 26(2013), 913–
948. MR3100071

[10] H. B. Keller and D. S. Cohen; Some positive problems suggested
by nonlinear heat generators, J. Math. Mech., 16(12)(1967), 1361–
1376. MR0213694

[11] R. Landes; On the existence of weak solutions for quasilinear parabolic
boundary value problems, Proc. Royal Soc. Edinburgh Sect. A, 89(1981),
217–237. MR0635759

[12] T. Leonori and F. Petitta; Local estimates for parabolic equations
with nonlinear gradient terms, Calc.Var. and PDE’s, 42(2011), 153–
187. MR2819633

[13] P. J. Martínez-Aparicio; Singular Dirichlet problems with quadratic
gradient, Boll. Unione Mat. Ital, 2(2009), 559–574. MR2569290

[14] P. J. Martínez-Aparicio and F. Petitta; Parabolic equations with
nonlinear singularities, Nonlinear Anal., 74(2011), 114–131. MR2734981

[15] S. Moll and F. Petitta; Large solutions for nonlinear parabolic
problems without absorption terms, J. Funct.Anal., 262(2012), 1566–
1602. MR2873851

[16] L. Nirenberg; On elliptic partial differential equations, Ann. Scuola
Norm. Sup. Pisa, 13(1959), 116–162. MR0109940

[17] J. Simon; Compact sets in the space Lp(0;T ;B) Ann. Mat. Pura ed
Appl., 146(1987), 65–96. MR0916688

http://www.ams.org/mathscinet-getitem?mr=1390712
http://www.ams.org/mathscinet-getitem?mr=3427981
http://www.ams.org/mathscinet-getitem?mr=2911115
http://www.ams.org/mathscinet-getitem?mr=3100071
http://www.ams.org/mathscinet-getitem?mr=0213694
http://www.ams.org/mathscinet-getitem?mr=0635759
http://www.ams.org/mathscinet-getitem?mr=2819633
http://www.ams.org/mathscinet-getitem?mr=2569290
http://www.ams.org/mathscinet-getitem?mr=2734981
http://www.ams.org/mathscinet-getitem?mr=2873851
http://www.ams.org/mathscinet-getitem?mr=0109940
http://www.ams.org/mathscinet-getitem?mr=0916688


606 Abdelmoujib Benkirane et al.

[18] G. Stampacchia; Le problème de Dirichlet pour les équations elliptiques
du seconde ordre a coeficientes discontinus, Ann. Inst. Fourier (Greno-
ble), 15(1965), 189–258. MR0192177

[19] L. Xia and Z. Yao; Existence, uniqueness and asymptotic behavior
of solutions for a singular parabolic equation, J. Math. Anal. Appl.,
358(2009), 182–188. MR2527591

[20] L. Xia and Z. Yao; Existence of the maximal weak solution for a class
of singular parabolic equations, J.Math. Anal. Appl., 387(2012), 439–
446. MR2845763

[21] W. Zhou and X. Wei; Results on a singular parabolic equation
in one dimension case, Math. Methods Appl. Sci., 36(2013), 2576–
2587. MR3144123

Abdelmoujib Benkirane
Laboratory LAMA, Department of Mathematics, Faculty of Sciences Fez
University Sidi Mohamed Ben Abdellah
P. O. Box 1796
Atlas Fez
Morocco
E-mail: abd.benkirane@gmail.com

Badr El Haji
Laboratory LAMA, Department of Mathematics, Faculty of Sciences Fez
University Sidi Mohamed Ben Abdellah
P. O. Box 1796
Atlas Fez
Morocco
E-mail: badr.elhaji@gmail.com

Mostafa El Moumni
Department of Mathematics, Faculty of Sciences El Jadida
University Chouaib Doukkali
P. O. Box 20
24000 El Jadida
Morocco
E-mail: mostafaelmoumni@gmail.com

http://www.ams.org/mathscinet-getitem?mr=0192177
http://www.ams.org/mathscinet-getitem?mr=2527591
http://www.ams.org/mathscinet-getitem?mr=2845763
http://www.ams.org/mathscinet-getitem?mr=3144123
mailto:abd.benkirane@gmail.com
mailto:badr.elhaji@gmail.com
mailto:mostafaelmoumni@gmail.com

	Introduction
	Basic assumptions and main result
	Proof of main result
	The approximating problems
	A priori estimates
	Concluding the proof of Theorem 2.1

	Acknowledgements
	References

