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Volume of perturbations of pseudoeffective classes
Nicholas McCleerey

∗

Abstract: In this short note, we consider the question of deter-
mining the asymptotics of the volume function near the boundary
of the pseudoeffective cone on compact Kähler manifolds. We solve
the question in a number of cases – in particular, we show that the
volume function behaves polynomially under small perturbations
near pseudoeffective classes with numerical dimension zero.

1. Introduction

Let (Xn, ω) be a compact Kähler manifold, and α a closed real (1, 1) form
on X, whose cohomology class [α] is pseudoeffective, i.e. it contains some
closed positive (1, 1) current. The set of all such classes form a closed cone
E(X) ⊂ H1,1(X,R) called the pseudoeffective cone, and it is known that the
volume function,

vol(α) := sup
0�T∈[α]

∫
X
T n

ac

as defined for cohomology classes in [1], has the property that vol(α) > 0 if
and only if α is in the interior of E(X), in which case we say that [α] is a big
class [1]. Furthermore, the volume function is continuous on all of E(X).

When X is projective and [α] = c1(L) for some holomorphic line bundle
L, then Boucksom [1] showed that

vol(c1(L)) = lim
m→∞

h0(X,Lm)
mn/n! =: vol(L),

namely the volume agrees with the algebraic definition (see Lazarsfeld’s mono-
graph [9] for more on the volume of line bundles).

In this paper, we would like to investigate the asymptotics of the volume
function near the boundary of the pseudoeffective cone. More precisely, if
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[α] ∈ ∂E(X) (which we shall assume from now on), we would like to study
the behavior of

vol(α + tω)

as t > 0 tends to zero. As mentioned above, the fact that [α] ∈ ∂E(X) implies
that vol(α + tω) → 0 as t ↘ 0, and we would like to understand the rate at
which this approaches zero. For example, if [α] is nef (i.e. a limit of Kähler
classes), then Boucksom [1] showed that for all t � 0 we have

(1.1) vol(α + tω) =
∫
X

(α + tω)n = tn−k

(
n

k

)∫
X
αk ∧ ωn−k + O(tn−k+1),

where 0 � k < n is the largest nonnegative integer such that
∫
X αk∧ωn−k �= 0

(or equivalently, such that [αk] �= 0 in Hk,k(X,R)). This integer, denoted by
nd(α), is called the numerical dimension of the nef class [α], and (1.1) shows
that vol(α + tω) ∼ tn−nd(α) when [α] is nef.

When [α] is merely pseudoeffective, there are a number of natural notions
of numerical dimension of [α], starting from the algebraic work of Nakayama
[12] and of Boucksom-Demailly-Păun-Peternell [3] on Kähler manifolds, and
several inequalities relating them were proved by Lehmann [10] and Eckl [7].
We will consider one such notion, introduced in [3], which is the direct analog
of what happens in the nef case, namely

nd(α) := max{k ∈ N | 〈αk〉 �= 0 in Hk,k(X,R)},

where 〈αk〉 is the positive intersection product of Boucksom [3] (see also [4]
in the transcendental case). When [α] is nef we have 〈αk〉 = [αk], so this is
consistent with the definition in the nef case. Also, we have that

∫
X〈αn〉 =

vol(α), so if [α] ∈ ∂E(X) then we have 0 � nd(α) < n.
Insipired by what happens in the nef case, we first study the following

question:

Question 1.1. Let (Xn, ω) be a compact Kähler manifold and [α] a pseudo-
effective (1, 1) class with vol(α) = 0. Do we have that

vol(α + tω) = O(tn−nd(α)),

as t > 0 approaches zero?

As mentioned above, the answer is affirmative if [α] is nef. Not surpris-
ingly, the answer is also affirmative when n = 2, see Proposition 2.4 below.
Our main result is the following:
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Theorem 1.2. Question 1.1 has an affirmative answer if either:

(a) nd(α) = n − 1, and the volume function vol(·) is differentiable in the
big cone, or

(b) nd(α) = 0.

In the first item (a), let us remark that differentiability of the volume func-
tion is known to hold on projective manifolds by [13, 3, 5], and is conjectured
to be true on arbitrary compact Kähler manifolds [3].

However, starting from n = 3, counterexamples to Question 1.1 were
very recently constructed by Lesieutre in [11]. Specifically, he constructs a
Calabi-Yau 3-fold X with a class [α] as above such that nd(α) = 1 and

vol(α + tω) = O(t
3
2 ).

This naturally raises the question whether there is a potentially new notion
of numerical dimension coming from the asymptotics of the volume function,
and we discuss this briefly in Section 4.

This paper is organized as follows. In the next section, we start with some
simple initial observations, then prove item (a) in Theorem 1.2, and also the
fact that Question 1.1 has an affirmative answer on surfaces. In Section 3
we then deal with item (b), when the numerical dimension is zero, and show
that the volume function is actually polynomial along small perturbations
near such classes. Finally, in Section 4 we briefly discuss a possible direction
of further inquiry concerning the recent paper [11].

2. Preliminary observations

Throughout this paper, (Xn, ω) will be a compact Kähler manifold, and α a
closed real (1, 1) form on X whose cohomology class [α] ∈ H1,1(X,R) is pseu-
doeffective, but not big, so that vol(α) = 0. Monotonicity and homogeneity of
the volume then imply immediately that one always has the following lower
bound:

vol(α + tω) � vol(ω)tn =
(∫

X
ωn

)
tn.

Moreover, if we assume that the volume function vol(·) is differentiable in
the big cone (which is satisfied on all projective manifolds by [13, 3, 5]
and conjectured to be always true [3]), one always has the following upper-
bound:
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Proposition 2.1. Let (Xn, ω) be a compact Kähler manifold and [α] a pseu-
doeffective (1, 1) class with vol(α) = 0. Assume that vol(·) is differentiable on
the big cone. Then there exists C > 0 such that

vol(α + tω) � Ct,

for all t � 0 sufficiently small.

Proof. Thanks to Boucksom-Favre-Jonsson [5], the assumption of differentia-
bility of vol(·) implies that

d

dt

∣∣∣∣
t=t0

vol(α + tω) = n〈(α + t0ω)n−1〉 · ω.

Using this together with the fundamental theorem of calculus and the mono-
tonicity of the positive intersection product, we have:

vol(α + tω) − vol(α) = n

∫ t

0
〈(α + sω)n−1〉 · ω ds � n

(
〈(α + ω)n−1〉 · ω

)
t.

Hence, since vol(α) = 0, we get:

vol(α + tω) � Ct,

for all 0 < t � 1.

Recall that the numerical dimension of a pseudoeffective (1, 1) class is
defined by [3] to be:

Definition 2.2. The numerical dimension of a pseudoeffective (1, 1) class [α]
is defined to be

nd(α) := max{p ∈ N | 〈αp〉 �= 0 in Hp,p(X,R)},

where 〈αp〉 is the positive intersection product of Boucksom [3, 4]. In partic-
ular, if [α] is not big then we have 0 � nd(α) � n− 1.

It has then been established in [10] that the lower bound for the vol-
ume is actually directly related to nd(α). We reproduce the following short
proposition verbatim from [10, Theorem 6.2] (noting that it applies to gen-
eral compact Kähler manifolds and (1, 1) classes), for the reader’s conve-
nience:
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Proposition 2.3. We have that

nd(α) = max{p ∈ N | ∃c > 0 such that vol(α + tω) � ctn−p, for all t > 0}.

Proof. For any p � 0 we have

tn−p〈(α + tω)p〉 · ωn−p = 〈(α + tω)p · (tω)n−p〉 � 〈(α + tω)n〉 = vol(α + tω),

and so we conclude that vol(α+ tω) � ctn−nd(α) for some c > 0 and all t > 0.
This shows that

nd(α) � max{p ∈ N | ∃c > 0 such that vol(α + tω) � ctn−p, for all t > 0}.

Conversely, if p is the maximum on the RHS, then for every c > 0 there is
some t > 0 such that vol(α+ tω) < ctn−p−1, and so for this value of t we have

ctn−p−1 > vol(α + tω) � tn−p−1〈(α + tω)p+1〉 · ωn−p−1,

i.e.
〈(α + tω)p+1〉 · ωn−p−1 < c.

But the LHS of this is increasing in t, and so this inequality holds for all t > 0
sufficiently small, and letting t tend to zero gives

〈αp+1〉 · ωn−p−1 < c.

Since c > 0 is arbitrary, we conclude that

〈αp+1〉 · ωn−p−1 = 0,

and since 〈αp+1〉 is represented by a strongly positive (p + 1, p + 1) current,
we conclude that 〈αp+1〉 = 0 in cohomology, as required.

By combining Propositions 2.1 and 2.3, we immediately deduce item (a)
of our main theorem 1.2.

Next, we show that Question 1.1 has an affirmative answer for all (not
necessarily projective) surfaces. The following proof was communicated to us
by S. Boucksom:

Proposition 2.4. Question 1.1 has an affirmative answer when n = 2.
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Proof. To see this, let α = P + N and α + tω = Pt + Nt be the Zariski
decompositions of α and α + tω, which always exist on surfaces [14]. Let Ei

be the irreducible components of the non-Kähler locus EnK(α) (see [2]), so
that:

N =
∑
i

ν(α,Ei)Ei,

where ν(α,Ei) is the minimal multiplicity of α along Ei [2, Def. 3.1]. Now it
is clear that Nt � N , so we also have:

Nt =
∑
i

ν(α + tω, Ei) =
∑
i

(ν(α,Ei) − ai(t))Ei

for nonnegative constants ai(t) → 0, by lower semicontinuity of the minimal
multiplicity [2, Prop. 3.5]. Indeed, for all i we have

ν(α,Ei) � lim inf
t

ν(α + tω, Ei) � lim sup
t

ν(α + tω, Ei) � ν(α,Ei),

where the last inequality follows immediately from the definition of ν.
It follows now that, for t small enough, Pt = P + tω +

∑
ai(t)Ei is or-

thogonal to each Ei, and since P itself is orthogonal to each Ei, we may dot
both sides against Ej to get that:

∑
i

ai(t)Ei · Ej = −tω · Ej .

By non-degeneracy of the Gram matrix (Ei ·Ej), it thus follows that ai(t) =
O(t), and hence

vol(α + tω) = (P 2
t ) =

(
P + tω +

∑
ai(t)Ei

)2
= (P + tω)2 + O(t2),

using again that P is orthogonal to each Ei. Finally, note that P 2 = vol(α) =
0 and that (by definition) P = 〈[α]〉, so that:

(P + tω)2 = 2(P · ω)t + (ω2)t2 = ct2−nd(α) + O(t2)

as desired.

3. Numerical dimension zero

In this section, we deal with the case when the class [α] has numerical di-
mension zero. Recall that having nd(α) = 0 is equivalent to having that
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[α] = N(α), where here N(α) is the negative part in the divisorial Zariski
decomposition of [2] (see also [12] for the algebraic case). In particular, N(α)
is the cohomology class of some effective R divisor D.

Proposition 3.1. Let Xn be a compact Kähler manifold, let [α] = [D] be a
(1, 1)-class with nd(α) = 0, and let [β] be any other (1, 1) class. Then there
exists a constant C � 0 such that for all t > 0 sufficiently small we have:

vol([D] + tβ) = Ctn.

In particular, Question 1.1 has an affirmative answer when nd(α) = 0.

Proof. If D+ tβ is not big for all small t > 0, then we may simply set C = 0.
Otherwise, we may assume that D + tβ is big for all sufficiently small t > 0.
Note now that the proposition is equivalent to asking that vol(1

t [D]+β) = C
for all t sufficiently small.

To this end, suppose we show that

(3.1) Supp(D) ⊆ EnK([D] + tβ) = EnK

(1
t
[D] + β

)
,

for all 0 < t � t0 sufficiently small. Then for all 0 < t < t0 we can apply [6,
Theorem 3.7] to the class 1

t0
[D] + β and conclude that

vol
(1
t
[D] + β

)
= vol

( 1
t0

[D] + β +
(1
t
− 1

t0

)
[D]

)
= vol

( 1
t0

[D] + β

)
,

which is indeed constant as t varies.
To prove (3.1), we shall first deal with the case when β = ω is a Kähler

class. It follows from [2, Def. 3.7] that, if D is a divisor with nd(D) = 0, then
we have,

D = N(D) =
∑
i

ν(D,Ei)Ei,

where the Ei are the irreducible components of D. Thus, by [2, Def. 3.3], we
must have:

Supp(D) = Enn(D) = B−(D),

where Enn(D) is the non-nef locus [2], which equals the diminished base locus
B−(D) of [8]. Now, it is well-known (cf. [8]) that we can also characterize the
non-nef locus as:

Enn(D) =
⋃
t>0

EnK([D] + tω).
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It is then easy to see that the subvarieties EnK([D] + tω) are decreasing in t,
and since their union is the proper subvariety Supp(D), they must stabilize
as t goes to zero at some t0; i.e., for all t � t0, we actually have

EnK([D] + tω) = Enn(D) = Supp(D),

which was to be shown.
When now β is arbitrary, we simply choose a large enough Kähler class

ω so that β + ω is also Kähler. Then for any t > 0,

EnK

(1
t
[D] + β + ω

)
⊆ EnK

(1
t
[D] + β

)
,

and so for t � t0 as above, we have Supp(D) ⊆ EnK([D] + tβ), as was to be
shown.

4. Concluding questions

As remarked earlier, despite the positive results in Theorem 1.2, the answer
to Question 1.1 is negative in general, thanks to a very recent counterexample
of Lesieutre [11]. Note that his example has n = 3, nd(α) = 1, which is the
first case which is not covered by Theorem 1.2.

One can however ask then the following question:
Question 4.1 (Lesieutre [11]). Let (Xn, ω) be a compact Kähler manifold
and [α] a pseudoeffective (1, 1) class. Does there exist a positive real number
ndvol(α) such that

ctn−ndvol(α) � vol(α + tω) � Ctn−ndvol(α),

for some c, C > 0 and for all t � 0 sufficiently small?
It is immediate that, if ndvol(α) exists, we would have nd(α) � ndvol(α) �

nd(α) + 1, and so it would be intermediate amongst the various different
notions of numerical dimension. All known examples, including those in [11],
admit such a number.

A possible intermediate step in answering Question 4.1, also suggested by
Lesieutre, would be the following:
Question 4.2 (Lesieutre [11]). Let (Xn, ω) be a compact Kähler manifold
and [α] a pseudoeffective (1, 1) class. Then the limit

lim
t↘0

log(vol(α + tω))
log(t) ,

exists.
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This is generally weaker than Question 4.1, but the limit would compute
ndvol(α), if it did exist. Note that one cannot simply use log-concavity of the
volume, as it is not true in general that any two concave functions can only
intersect a finite number of times on a compact interval.
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