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Abstract: Let G be a connected reductive Lie group with Lie
algebra g, and let G be the analytic subgroup corresponding to
[g, g]. Assume G has finite center. Let K be a maximal compact
subgroup of G and let g = k + s be the corresponding Cartan
decomposition. Then K acts on s by the adjoint representation
(k.X = AdK(k)X). The Cartan motion group H (associated to G)
is the semidirect product H = K � s. In this paper, we prove that
the unitary dual Ĥ of H is homeomorphic to the space h‡/H of all
admissible coadjoint orbits of H.
Keywords: Lie groups, semidirect product, unitary representa-
tions, coadjoint orbits, symplectic induction.

1. Introduction

Let G be a locally compact group. We denote by Ĝ the unitary dual of G.
It well-known that Ĝ equipped with the Fell topology (see [8]). The first
representation-theoretic question concerning the group G is the parametreza-
tion of the set Ĝ. In the setting of Lie group with Lie algebra g, the inves-
tigation of the relationship between Ĝ and the space g∗/G of G-coadjoint
orbits turns out to be a deep mathematical problem. Its well-known that for
a simply connected nilpotent Lie group or, more generally, for an exponential
solvable Lie group, the unitary dual Ĝ is homeomorphic to the orbit space
g∗/G (see [18]).

Let now G be a connected reductive Lie group with Lie algebra g and
let G be the analytic subgroup corresponding to [g, g]. Assume G has finite
center. Let K be a maximal compact subgroup of G and let g = k + s be
the corresponding Cartan decomposition. Then K acts on s by the adjoint
representation (k.X = AdK(k)X). The Cartan motion group H (associated
to G) is the semidirect product H = K � s.
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Let Hψ be the stabilizer in H of a linear form ψ ∈ h∗ (h := Lie(H)).
Then ψ is called admissible if there exists a unitary character χ of the iden-
tity component of Hψ such that dχ = iψ|hψ

. By h‡, we mean the set of all
admissible linear forms on h. For ψ ∈ h‡, one can construct an irreducible
unitary representation πψ by holomorphic induction. According to Lipsman
(see [19]), every unitary irreducible representation of H arises in this manner.
Thus we obtain a map from the set h‡ onto the unitary dual Ĥ. By observing
that πψ is equivalent to πψ′ if and only if ψ and ψ

′ lie in the same H-orbit,
we get finally a bijection between the space h‡/H of admissible coadjoint
orbits and the unitary dual Ĥ. The natural question arises of whether this
bijection is a homeomorphism. In the present paper, we give an affirmative
answer to this question in the case of the Cartan motion groups. This result
is a generalization of analogous results in the case of the Euclidean motion
group (see, [7]) and in the case of a class of Cartan motion groups associated
to a compact Riemannian symmetric pair (G,K) (where the pair (G,K)) has
rank one (see, [3]). Note that in our proof we use a different method than the
one used in ([3, 7, 20, 21]).

Our paper is organized as follows. Section 2 introduces the Cartan motion
groups and reviews some results about the parameterization of the nonunitary
dual of the Cartan motion group H and of the Fell topology on it. Mackey’s
theory of unitary induction is ideally suited to Cartan motion groups, making
the computation of the unitary dual easy. In the last section, the convergence
in the quotient space h‡/H is studied and the main result of this work is
derived (Theorem 3.5)

2. Preliminaries and some results

Let G be a locally compact, separable topological group and let K be a
compact subgroup of G. Let K̂ � τ : K −→ L(Eτ ) be an irreducible rep-
resentation of K. If π : G −→ L(Eπ) is a representation on the complete,
locally convex, topological vector space Eπ, let

[π|K : τ ] = dimHomK(Eτ , Eπ)

the multiplicity of τ in π|K .
As it turn out, all of the representations considered in this paper are

admissible, that is [π|K : τ ] ≤ Mdτ (where dτ is the degree of τ) for some
constant M > 0. Note that this holds for Cartan motion groups (for details,
see [10]).
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Definition 2.1. Let π1 : G −→ L(E1) and π2 : G −→ L(E2) be admissible
representations. A Naimark intertwining operator Q : E1 −→ E2 is a linear
operator with dense domain and closed graph such that if m is a compactly
supported measure on G, then the domain and range of Q are stable under
π1(m) and π2(m) respectively, and Qπ1(m) = π2(m)Q. If in addition Q is one-
to-one and has dense range, we say that π1 and π2 are Naimark equivalent
and write [π1] = [π2].

Let [G] denote the set of Naimark equivalence classes of topologically
completely irreducible (abbreviated TCI) representations.

Next, we recall the definition of the Fell topology on [G]. For [π] ∈ [G],
let A(π) be the space of functions of the form

α(x) = tr(Tπ(x))

where T ∈ L(E) is left and right K-finite. Then a net [πi] converges to [π]
in [G] if and only if for all α ∈ A(π) there exist αi ∈ A(πi) such that αi(f)
converges to α(f) for all f ∈ Cc(G). The fact that π is TCI, then it is the same
to say there exist α ∈ A(π), α �= 0, and αi ∈ A(πi) such that αi converges
to α uniformly on compacta. Recall that Ĝ ⊆ [G] (see [10]) and that the Fell
topology on Ĝ agrees with the hull-kernel topology.

We return to our context, and let G be a connected reductive Lie group,
let g be its Lie algebra and let G be the analytic subgroup corresponding to
[g, g]. Assume G has finite center. Let K be a maximal compact subgroup
of G and let g = k + s be the corresponding Cartan decomposition. Then
K acts on s by the adjoint representation (k.X = AdK(k)X). The Cartan
motion group H (associated to G) is the semidirect product H = K � s. The
multiplication in this group is given by

(k1, X1)(k2, X2) = (k1k2, AdK(k−1
2 )X1 + X2).

Fix a Cartan-Killing form B which is positive definite on s and negative
definite on k. Use B to identify elements of h := Lie(H) with elements of its
dual vector space h∗. The adjoint representations of H and its Lie algebra h

are given respectively by the following equalities

(k,X).(U, Y ) = (AdK(k)U,AdK(k)Y − [AdK(k)U,X]),
(U,X).(V, Y ) = ([U, V ], [U, Y ] − [V,X])

for all k ∈ K, all U, V ∈ k and all X, Y ∈ s. Under the identification of h and
h∗, we can write the coadjoint representation of H as follows

(k,X).(f,Λ) = (Ad∗K(k)f+Ad∗K(k)Λ�X,Ad∗K(k)Λ), (k,X) ∈ H, (f,Λ) ∈ s∗
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where Λ �X ∈ k∗ (is a linear form on k) defined by

Λ �X(A) = Λ(ad(A)(X)) = −(ad∗(A)Λ)(X),∀A ∈ k,Λ ∈ s∗, X ∈ s

(where ad and ad∗ denote respectively the adjoint and the coadjoint repre-
sentation of k). Note that the map � : s∗ × s −→ k∗ defined by

(Λ �X)(A) = Λ(ad(A)X), X ∈ s, A ∈ k

satisfies a fundamental equivariance property:

Ad∗K(k)(Λ �X) = Ad∗K(k)Λ) � AdK(k)X, k ∈ K.

Therefore, the coadjoint orbit of H passing through (f,Λ) ∈ h∗ is given by

OH
(f,Λ) =

{(
Ad∗K(k)f + Ad∗K(k)Λ �X,Ad∗K(k)Λ

)
, k ∈ K,X ∈ s

}
.

For Λ ∈ s∗, we define KΛ := {k ∈ K; Ad∗K(k)Λ = Λ} the isotropy
subgroup of Λ in K and the Lie algebra of KΛ is given by the vector space
kΛ = {A ∈ k; ad∗(A)Λ = 0}. Let ıΛ : kΛ ↪→ k be the injection map, then
ı∗Λ : k∗ −→ k∗Λ is the projection map and we have

k◦Λ = Ker(ı∗Λ)(2.1)

where k◦Λ is the annihilator of kΛ. If we define the linear map hΛ : k −→ s∗ by

hΛ(A) := −ad∗(A)Λ, ∀A ∈ k,

then we have kΛ = Ker(hΛ). The dual h∗
Λ : s −→ k∗ of hΛ is given by

the relation h∗
Λ(X)(A) = hΛ(A)(X) = −(ad∗(A)Λ)(X), and so h∗

Λ(X) =
Λ �X, ∀Λ ∈ s∗, ∀X ∈ s (see [2]).

The following is a useful Lemma from [2], giving a characterization of the
annihilator k◦Λ in terms of the linear map hΛ.

Lemma 2.2. We have:
k◦Λ = Im(h∗

Λ).
Let as be a Cartan subspace of s. We denote by z the orthogonal comple-

ment of as in s (s = a ⊕ z). Let Λ : as −→ C be a real linear function. Also
we denote by Λ the extension of Λ to s so that z ⊆ Ker(Λ), and let e ∈ K̂Λ.
We denote by π := π(e,Λ) the representation of H induced from

KΛ � s −→ L(Ee)
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(k,X) �−→ eiΛ(X)e(k).

Let

Ws := N/M

be the Weyl group of the pair (g, as), where N is the normalizer of as in
K and M is the centralizer. In the end of this section, we describe the Fell
topology on [H]. For β1, β2 ∈ a∗s (the dual vector space of as), define

|β1 +
√
−1β2|2 = B(β1, β1) + B(β2, β2).

Let Fc be the set of all pairs (e,Λ) where e ∈ K̂Λ. We take (e,Λ) ∈ Fc, if
ε > 0 is sufficiently small then |Λ − Λ′ | < ε implies KΛ′ ⊆ KΛ. So the subset

U :=
{
(e′ ,Λ′) ∈ Fc : |Λ − Λ′ | < ε and [e|KΛ′ : e′ ] > 0

}

defines a basis for the neighborhoods of (e,Λ) in the topology we give Fc (see
[10]). Note that Ws acts on Fc by

w.(e,Λ) = (w.e, w.Λ).

Let Fc/Ws be the quotient space by this action of Ws, equipped with the
quotient topology. Then, we have:

Theorem 2.3 ([10]). The following map

Fc/Ws : −→ [H]
(e,Λ) �−→ [π(e,Λ)]

is a homeomorphism of Fc/Ws with the above topology onto the Banach dual
[H] of H with the Fell topology.

Now, let

F :=
{
(e,Λ) ∈ Fc : Λ =

√
−1β where β is real valued

}
.

According to [10], then we have the useful Lemma.

Lemma 2.4. The unitary dual Ĥ of H is homeomorphic to F/Ws.
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3. Cartan motion groups and their coadjoint orbits

We shall freely use the notations of the previous sections. Let Λ as in Lem-
ma 2.4. In the sequel of this paper we assume that the subgroups KΛ are
connected for each Λ ∈ s∗. Let eν be an irreducible representation of KΛ with
highest weight ν. Then the stabilizer Hψ of ψ = (ν,Λ) in H is given by

Hψ =
{
(k,X) ∈ H; (Ad∗K(k)ν + Ad∗K(k)Λ �X,Ad∗K(k)Λ) = (ν,Λ)

}

=
{
(k,X) ∈ H; k ∈ KΛ, Ad

∗
K(k)ν + Λ �X = ν

}

=
{
(k,X) ∈ H; k ∈ KΛ, Ad

∗
K(k)ν = ν and Λ �X = 0

}

=
{
(k,X) ∈ H; k ∈ Kψ, X ∈ sψ = (ad∗kΛ)◦

}
,

since ı∗Λ(Λ � X) = 0 (see Lemma 2.2). Thus, we have Hψ = Kψ � sψ, then
ψ is aligned (see [19]). A linear form ψ = (ν,Λ) ∈ h∗ is called admissible if
ν is a dominant integral weight of KΛ. We denote by h‡ ⊂ h∗ the set of all
admissible linear forms on h. The quotient space h‡/H is called the space of
admissible coadjoint orbits of H. By definition h‡/H is the union of the sets
of all orbits OH

(ν,Λ).
Let TK and TΛ be maximal tori respectively in K and KΛ such that

TΛ ⊂ TK . Their corresponding Lie algebras are denoted by tk and tΛ. We
denote by WK and WΛ the Weyl groups of K and KΛ associated respectively
to the tori TK and TΛ. Notice that every element λ ∈ PK takes pure imaginary
values on tk, where PK is the integral weight lattice of TK . Hence such an
element λ ∈ PK can be considered as an element of (itk)∗. Let C+

K be a
positive Weyl chamber in (itk)∗, and we define the set P+

K of dominant integral
weights of TK by P+

K := PK∩C+
K . For λ ∈ P+

K , denote by OK
λ the K-coadjoint

orbit passing through the vector −iλ. It was proved by Kostant in [17], that
the projection of OK

λ on t∗k is a convex polytope with vertices −i(w.λ) for
w ∈ WK , and that is the convex hull of −i(WK .λ). For the same manner, we
fix a positive Weyl chamber C+

Λ in t∗Λ and we define the set P+
Λ of dominant

integral weights of TΛ.
Also we denote by ı∗Λ the C- linear extension of both the natural projection

of k∗ onto k∗Λ and the natural projection of t∗k onto t∗Λ. Consider two irreducible
representations τλ ∈ K̂ and eν ∈ K̂Λ with respective highest weights λ ∈ P+

K

and ν ∈ P+
Λ . We denote by OK

λ and OKΛ
ν the coadjoint orbits of K and KΛ

passing through −iλ and −iν, respectively.
Now, we have the following.
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Lemma 3.1. If the induced representation IndKKΛ
(eν) contains τλ, then the

orbit OKΛ
ν occurs in ı∗Λ(OK

λ ).
For the proof of this Lemma one can see [11, 12]. According to [1], we

have
Lemma 3.2. If ν = i∗Λ(s.λ) with s ∈ WK , then eν occurs in the restriction
representation ResKKΛ

(τλ).
To study the convergence in the quotient space g‡/G, we need to the

following result (see [18, P. 135] for the proof).
Lemma 3.3. Let G be a unimodular Lie group with Lie algebra g and let g∗
be the vector dual space of g. We denote g∗/G the space of coadjoint orbits
and by pG : g∗ −→ g∗/G the canonical projection. We equip this space with
the quotient topology, i.e., a subset V in g∗/G is open if and only if p−1

G
(V )

is open in g∗. Therefore, a sequence (OG
n )n of elements in g∗/G converges to

the orbit OG in g∗/G if and only if for any l ∈ OG, there exist ln ∈ OG
n ,

n ∈ N, such that l = lim
n−→+∞

ln.

With the above notations, we can prove the following Theorem.
Theorem 3.4. We assume that the stabilizer subgroup KΛ (Λ ∈ s∗) is con-
nected. Then The map

F/Ws −→ h‡/H

(eν ,Λ) �−→ OH
(ν,Λ)

defines a homeomorphism of F/Ws with the above topology onto the space of
admissible coadjoint orbits with the quotient topology.
Proof. Lemma 2.4 says that the map in the statement of the Theorem is one-
to-one and onto. Let (eνi ,Λi)i∈I be a net converging to (e,Λ) in F/Ws. Then
for each ε > 0 sufficiently small, there exists i0 ∈ I such that for all i ≥ i0 we
have

|Λi − Λ| < ε

and

[eν |KΛi
: eνi ] > 0.(3.1)

The inequality in (3.1), is equivalent to eν ∈ ResKΛ
KΛi

(eνi) for all i ≥ i0. Using
Lemma 3.1, we obtain

OKΛi

νi ⊆ ı∗Λi
(OKΛ

ν ) ∀i ≥ i0.
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By Lemma 2.2, there exist two nets (Hi)i in s and (hi)i in KΛ, such that

νi + Λi �Hi = Ad∗K(hi)ν ∀i ≥ i0.(3.2)

Let k ∈ K and X ∈ s. We define two nets (ki := kh−1
i )i and (Xi :=

AdK(kh−1
i )Hi + X)i. We easily see that

Ad∗K(ki)Λi −→ Ad∗K(k)Λ.(3.3)

By the equality (3.2), we obtain for each i ≥ i0

Ad∗K(ki)νi + Ad∗K(ki)Λi �Xi = Ad∗K(k)ν + Ad∗K(kh−1
i )Λi �X.

Then we have

Ad∗K(ki)νi + Ad∗K(ki)Λi �Xi −→ Ad∗K(k)ν + Ad∗K(k)Λ �X.(3.4)

Lemma 3.3 together with (3.3) and (3.4), allows us to conclude that the net
(OH

(νi,Λi))i converges to OH
(ν,Λ) in h‡/H.

Conversely, we assume that the net (OH
(νi,Λi))i∈I converges to OH

(ν,Λ) in
h‡/H. We recall that each coadjoint orbit OH

(ν,Λ) is always obtained by sym-
plectic induction from the coadjoint orbit M = OHΛ

(ν,Λ) of HΛ := KΛ�s passing
through (ν,Λ) ∈ k∗Λ ⊕ s∗ (kΛ � s := Lie(HΛ)), i.e.,

OH
(ν,Λ) = Mind := J−1

M̃
(0)/HΛ,(3.5)

where J
M̃

: M̃ = M × T ∗H −→ k∗Λ � s∗ is the momentum map of M̃ and the
zero level set J−1

M̃
(0) is given by

J−1
M̃

(0) =
{(

(Ad∗K(k)ν,Λ), g, (Ad∗K(k)ν+Λ�X,Λ)
)
, k ∈ KΛ, g ∈ H,X ∈ s

}
.

Let ϕM be the action of HΛ on M , hence HΛ acts on M̃ = M × T ∗H by ϕ
M̃

as follows

ϕ
M̃

(h)(m, g, f) =
(
ϕM (h)(m), gh−1, Ad∗H(h)f

)
,(3.6)

for all h ∈ HΛ, (m, g, f) ∈ M ×T ∗H. By identifying h∗ with the left-invariant
1-form on H. Then we can write T ∗H ∼= H × h∗ (for more details one can see
[2]).



Cartan motion groups and dual topology 625

Now, Lemma 3.3 together with (3.5) and (3.6) say that there exist ki, hi ∈
KΛi , Xi, Yi ∈ s and gi ∈ H such that the net (ai)i defined by

ai = ϕ
M̃

(ki, Xi)
(
(Ad∗K(hi)νi,Λi), gi, (Ad∗K(hi)νi + Λi � Yi,Λi)

)
=

(
Ad∗K(kihi)νi + ı∗Λi

(Λi �Xi),Λi

)
, gi(ki, Xi)−1,

(Ad∗K(kihi)νi + Ad∗K(ki)(Λi � Yi) + Λi �Xi,Λi)
)

converges to
(
(ν,Λ), 1H , (ν,Λ)

)
. It follows that

Λi −→ Λ(3.7)

and

Ad∗K(kihi)νi + ı∗Λi
(Λi �Xi) −→ ν.(3.8)

Let ε > 0 sufficiently small, then there exists i0 ∈ I such that for all i ≥ i0
we have

|Λi − Λ| < ε.(3.9)

Then (3.9) implies KΛi ⊆ KΛ. By compactness of the subgroup KΛi and
without loss of generality, we may assume that the net (kihi)i converges to
an element k ∈ KΛ. Now by observing that ı∗Λi

(Λi � Xi) = 0, hence there
exists i1 ∈ I such that for all i ≥ i1 we have

νi = Ad∗K(k−1)ν.(3.10)

Furthermore, we know that there exists s ∈ WKΛ such that Ad∗K(k−1)ν = s.ν.
We obtain the equality νi = s.ν ∀i ≥ i1. Using Lemma 3.2, we conclude that

eνi ∈ ResKΛ
KΛi

(eν) ∀i ≥ i1.(3.11)

i.e.,

[eν |KΛi
: eνi ] > 0 ∀i ≥ i1.(3.12)

We put i2 := Max(i0, i1), then by combining (3.11) and (3.12) we obtain

|Λi − Λ| < ε and [eν |KΛi
: eνi ] > 0 ∀i ≥ i2.

It follows that the net (eνi ,Λi)i converges to (eν ,Λ) in F/Ws.
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Combining the results of Lemma 2.4 and Theorem 3.4, we can state the
main result of this paper.

Theorem 3.5. With the hypothesis of connected small groups KΛ,Λ ∈ s∗,
we show that the topological spaces Ĥ and h‡/H are homeomorphic.

Remark 3.6. (1) The special case of Theorem 3.5 where H := SO(n) �
R

n(n ≥ 2) has been proved in [7]. One can see that for each non-zero
linear form Λ on R

n, KΛ := SO(n)Λ = SO(n − 1) which is connected
subgroup of SO(n). The authors method of proof makes essential use
of the classical branching rule from SO(n) to SO(n− 1).

(2) We note that the Cartan motion groups are a special case of the semidi-
rect product G := K � V where K is a connected compact Lie group
acting by automorphisms on a finite dimensional vector space V . The
proof of our result (Theorem 3.5) is based to the structure and some
properties of the Cartan motion groups (see for example, Lemma 2.4).
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