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Abstract: These are notes on the theory of supermanifolds and
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a better understanding of superstring perturbation theory in the
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1. Introduction

Supersymmetric field theories have been studied from many points of view
since their discovery roughly forty years ago. Formulating a supersymmetric
field theory in superspace – that is on a supermanifold – is, when possible, of-
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ten very helpful. In practice, however, natural physics questions often require
only the most basic facts about supermanifolds.

One topic stands out as a conspicuous exception. This is superstring per-
turbation theory in the RNS formalism. This perturbation theory is formu-
lated in terms of integration on the moduli space of super Riemann surfaces.
That moduli space is a rather subtle supermanifold and simple questions
about superstring perturbation theory quickly lead to relatively subtle issues
of supergeometry. Superstring perturbation theory really does seem like one
topic that can be better understood with more input from supergeometry.

The present notes aim to present background material on supermanifolds
and integration. The material is not novel, except possibly for a few details,
and the presentation does not aim for either completeness or full rigor. Rather,
the goal has been to collect in a relatively simple way some background mate-
rial for a reconsideration of superstring perturbation theory, which will appear
elsewhere [1]. A companion article will contain background material on super
Riemann surfaces [2].

Of course, there is an extensive literature on this topic and it is impos-
sible to give complete references. Much of the material outlined here can be
found in books such as [3–6] and review articles such as [7–10]. A useful and
extremely concise introduction is [11]. The fundamental structure theorem
for smooth supermanifolds was proved in [12–14] and the theory of integral
forms was initiated in [15]. Other useful references include [16–19]. The su-
perstring literature is likewise too vast to be cited in full. The classic work
[20] introduced some key concepts such as the role of different representations
of the Weyl algebra, the papers [21–24] construct measures on supermoduli
space via superconformal field theory, and the paper [25], which is unfor-
tunately little-known, does this via algebraic geometry. The papers [26–28],
which again are unfortunately little-known, are valuable both as an exposi-
tion of aspects of supergeometry and for insight about its role in superstring
perturbation theory.

In section 2, we describe the basic idea of a supermanifold. In section 3,
we sketch the theory of integration on supermanifolds, and in section 4, we
describe some additional useful facts and constructions. Section 5 is devoted
to a close look at some basic ideas needed in string perturbation theory.

2. Supermanifolds

2.1. Smooth supermanifolds

Roughly speaking, a supermanifold M of dimension p|q (that is, bosonic di-
mension p and fermionic dimension q) can be described locally by p bosonic
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coordinates t1 . . . tp and q fermionic coordinates θ1 . . . θq. Sometimes we ab-
breviate the whole collection of coordinates as t1 . . . | . . . θq or simply as x.

We cover M by open sets Uα each of which can be described by coordi-
nates t1α . . . | . . . θqα. On the intersection Uα ∩ Uβ , the tiα are even functions of
t1β . . . | . . . θ

q
β and the θsα are odd functions of the same variables. We call these

functions gluing functions and denote them as fαβ and ψαβ:

tiα = f i
αβ(t1β . . . | . . . θqβ)

θsα = ψs
αβ(t1β . . . | . . . θqβ).(2.1)

On the intersection Uα ∩ Uβ, we require that the gluing map defined by
f1
αβ . . . | . . . ψ

q
αβ is inverse to the one defined by f1

βα . . . | . . . ψ
q
βα, and we re-

quire an obvious compatibility of the gluing maps on triple intersections
Uα ∩ Uβ ∩ Uγ .

Now we have to be more precise about what sort of supermanifold we
want. The most obvious notion is a real supermanifold of dimension p|q. This
would mean that the tiα and θsα are all real variables, and the gluing functions
f i
αβ and ψs

αβ are all real. To be more pedantic, reality of the gluing functions
means that if we expand these functions in powers of the θ’s, for example

(2.2) f i
αβ(t . . . | . . . θ) = giαβ(t1β . . . t

p
β) +

∑
s

θsβg
i
αβs(t1β . . . t

p
β) + . . . ,

then, for real tiβ , the functions arising in this expansion are all real.1 If this
condition is obeyed, we say that M is a real supermanifold and that for each
α the local coordinate system t1α . . . | . . . θqα gives an isomorphism of Uα with
an open set in R

p|q.
Real supermanifolds are the right framework for superspace descriptions

of supersymmetric field theories in Lorentz signature and for many other
applications in Lorentz signature. But they are often not convenient for Eu-
clidean signature quantum field theory, largely because spinors in Euclidean
signature often do not admit a real structure. A related fact is that they are
not convenient for superstring perturbation theory. The most important su-
permanifolds for superstring perturbation theory are super Riemann surfaces
and the moduli spaces thereof; in each case, the fermionic variables have no
real structure, so these are not real supermanifolds.

For superstring perturbation theory and for many other Euclidean signa-
ture applications, one wants a more general notion that is called a cs manifold

1For the moment we consider a single supermanifold M rather than a family of
supermanifolds parametrized by some other space, so we assume that the gluing
functions depend only on t1 . . . | . . . θq. See section 2.1.1.
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in [11], p. 94 (where it is stated that cs stands for complex supersymmetric).
Informally, in a cs manifold, although the t’s are real at θ = 0, there is no
reality condition (for either t’s or θ’s) for θ �= 0. To be more precise, in terms
of the gluing functions, we require that the bosonic gluing functions f i

αβ are
real at θ1 = · · · = θq = 0, but we impose no reality condition on the θ-
dependent terms in f i

αβ , and no reality condition at all on ψi
αβ. In the case

of a cs manifold, we say that the coordinate functions t1α . . . | . . . θqα give an
isomorphism of the set Uα with an open set in R

p|∗q, where the asterisk is
meant to remind us that there is only a real structure when the odd variables
vanish. In this paper, when not stated otherwise, our “supermanifolds” are cs
manifolds. It is usually clear that the statements can be naturally specialized
to real supermanifolds. On rare occasions, we note differences between the
two cases.

On a cs supermanifold, there is no notion of taking the complex conjugate
of a function. This only makes sense once the odd variables are set to zero.
In particular, we are never allowed to talk about θ, a hypothetical complex
conjugate of an odd variable θ.

An important point is that to a supermanifold M , one can in a natural way
associate a reduced space Mred that is an ordinary real manifold, naturally
embedded in M , and of the same bosonic dimension. One simply sets the odd
variables θ1

α . . . θ
q
α to zero in the gluing law. This is consistent because the

odd gluing functions ψs
αβ are of odd order2 in θ1

β . . . θ
s
β and hence vanish when

the θ’s do, so the gluing law implies that all θiα vanish if and only if all θiβ do.
Moreover, once we set the θ’s to zero, the f i

αβ become real, by the definition of
a cs manifold. The functions f i

αβ(t1β . . . t
p
β|0 . . . 0) are then the gluing functions

of an ordinary p-dimensional manifold that we call Mred. Moreover, there is
a natural embedding

(2.3) i : Mred → M

that takes the point in Mred with coordinates t1α . . . tpα to the point in M with
coordinates t1α . . . |0 . . . 0.

Though we have defined supermanifolds by means of gluing, they can
also be defined by any familiar method for defining ordinary manifolds. For
instance, a real supermanifold M of dimension 2|2 can be defined by a real
equation such as

(2.4) x4 + y4 + z4 + θ1θ2 = 1,
2We still make the assumption of footnote 1, so the only odd variables that can

appear in the gluing functions are θ1 . . . θq.
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with real variables x, y, z, θ1, θ2. To present M in the gluing language, one
would for example cover it by open sets Uα in each of which one can solve for
one of the bosonic coordinates x, y, or z in terms of the other variables (for
example, in one open set, one might solve for z by z = (1−x4−y4−θ1θ2)1/4).
The equation (2.4) defines a real supermanifold because the parameters in
the equation are all real. To get a cs manifold that is not real, one could
add to the equation an additional term that is not real but that vanishes at
θ1 = θ2 = 0. For example, if λ is a complex number that is not real, then a
suitable equation is

(2.5) x4 + y4 + z4 + θ1θ2(1 + λx2) = 1.

2.1.1. Families of supermanifolds Often one wishes to consider not a
single supermanifold M but a family of supermanifolds parametrized by some
other supermanifold N . For example, M might be a super Riemann surface,
which depends on bosonic and fermionic moduli that parametrize N ; in this
example, N could be the moduli space of super Riemann surfaces. The best
way to think about this situation is to consider a supermanifold X that is
fibered over N with the fibers being copies of M .

In this situation, X is a supermanifold in the sense that we have already
described and therefore it has a reduced space Xred. In defining Xred, all odd
variables are set to zero, both the odd parameters in N , which we will call
η1 . . . ηs, and the odd parameters θ1 . . . θq in M .

Though M depends on η1 . . . ηs, it does not have a reduced space that
depends on those parameters. The reason is that since the gluing functions
ψi
αβ can depend on the η’s, we will in general get gluing laws such as θα =

θβ + η and we cannot consistently set the θ’s to zero unless we also set the
η’s to zero.

So for example if M is a single super Riemann surface, it has a reduced
space Mred that is an ordinary Riemann surface. But if M depends on some
odd parameters η1, . . . , ηs, then we cannot define a reduced space without
setting those parameters to zero. That is why there is no elementary map
from the moduli space of super Riemann surfaces to the moduli space of
ordinary Riemann surfaces. This fact led to complications in the superstring
literature of the 1980s.

2.1.2. Open sets and other topological notions The intuition concern-
ing the concept of an “open set” is that if U is an open set in a topological
space Y , and p is a point in U , then any point in Y sufficiently close to p is
also contained in U .
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Now suppose that y is an even coordinate on a supermanifold M and
that, for example, ζ1 and ζ2 are odd quantities (either odd functions on M or
odd moduli). Then since ζ1ζ2 is nilpotent, we should think of it as smaller in
value than any complex number. So we should consider, for instance, y+ ζ1ζ2
to be “sufficiently close” to y in any reasonable sense.

The upshot of this is that it is not helpful to introduce a concept of “open
set in M” that is different from the concept “open set in Mred.” We just
consider the two concepts to be synonyms. So similarly the statement “the
Uα form an open cover of M” means the same as “the Uα form an open cover
of Mred.” For another example, a “neighborhood” in M of a subset Yred ⊂ Mred
is an open set in M whose reduced space is a neighborhood of Yred in Mred.

A common approach in rigorous mathematical treatments is to define
the Uα as open sets in Mred, but to endow each Uα with a larger ring of
functions than the obvious ring of smooth functions on Uα – namely the
functions of the whole set of even and odd coordinates t1 . . . | . . . θq, with the
t’s restricted to Uα. (In a more fancy language, Mred is endowed with “a
sheaf of Grassmann algebras.”) We will not need this language in these notes.
However, the reader might find it helpful to develop the intuition that because
fermions are infinitesimal, covering M by open sets is equivalent to covering
Mred by open sets.

More generally, for similar reasons, one identifies various topological no-
tions on M with the same notions for Mred. For example, an orientation or
spin structure on M is by definition an orientation or spin structure on Mred.
One says that M is compact if and only if Mred is compact. The Euler char-
acteristic of M is defined to be that of Mred, and if Mred is a Riemann surface
of genus g, then we also refer to g as the genus of M .

2.2. Submanifolds of a smooth supermanifold

We will now describe another general fact about a smooth supermanifold M .
If Nred is any submanifold of Mred of codimension r, then one can “thicken”
it slightly in the fermionic dimensions to make a submanifold3 N ⊂ M of
codimension r|0. N is not unique, but it is unique up to “homology,” in
fact up to an infinitesimal wiggling in the odd directions. The importance of
this is that once we know the appropriate analog of a differential form on a
supermanifold, a closed form on M of the appropriate degree (for example, an
integral form of codimension r in the language of section 3.2) can be integrated

3We usually refer to sub-supermanifolds simply as submanifolds, as the term
sub-supermanifold is clumsy.
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over N with a result that does not depend on the choice of thickening. In
addition to being uniquely determined up to homology, N is also uniquely
determined as a supermanifold, up to a (non-unique) diffeomorphism that
acts trivially on Nred.

One should think of existence of N as an intuitively obvious reflection
of the fact that the fermionic directions in a supermanifold are infinitesimal.
Roughly, if Nred ⊂ Mred is defined locally by the vanishing of r real-valued
functions h1, . . . , hr, then upon taking the h’s to depend upon the odd coor-
dinates θs in an arbitrary fashion, one gets functions on M whose vanishing
defines the desired submanifold N . A precise proof follows from what one
may call the fundamental structure theorem of smooth supermanifolds. As
described below, this structure theorem lets one construct a (non-unique)
projection π : M → Mred, and one can define N by N = π−1(Nred). For the
original proofs of the structure theorem, see [12–14]; see for example section
4.2 of [4], section 3 of [9], or Theorem 8.2.1 of [6] for expositions.

To explain the structure theorem, observe first that instead of merely
setting the θ’s to zero in the gluing relations, we could consistently drop all
terms of order θ2 and higher. This puts the gluing relations in the following
form:

tiα = f i
αβ(t1β . . . t

p
β)

θsα =
∑
u

ψs
αβ u(t1β . . . t

p
β)θuβ .(2.6)

Here we should think of the objects ψs
αβ u as matrix elements of a linear

transformation ψαβ acting on the odd variables. The consistency relations
on the gluing data say that these linear transformations are the transition
matrices of a vector bundle V → Mred. This is a bundle with purely odd
fibers, of dimension 0|q.

Thus, from every supermanifold M , one can extract an ordinary manifold
Mred and a purely fermionic vector bundle4 V → Mred. The total space of
this bundle is a supermanifold M ′.

4 The structure group of this bundle is GL(q,C) in general. If it cannot be re-
duced to GL(q,R) – for example, the Chern classes of V may present an obstruction
– then topologically the θ’s cannot be given a real structure globally. In this case,
M must be viewed as a cs manifold rather than a real supermanifold. There is never
any problem locally in giving the θ’s a real structure, by picking a local basis of θ’s
and declaring them to be real. In applications to string theory, there is typically a
global obstruction to giving the θ’s a real structure and no natural way to do so
locally.
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The fundamental structure theorem says that as a smooth supermanifold,
M is always isomorphic to M ′. The proof is made by expanding the gluing
functions in a power series in the θ’s and showing that, order by order, each
term beyond those that we have kept in (2.6) can be eliminated by a suitable
redefinition of the coordinates. (Moreover, the coordinate change in question
shifts the t’s only by terms of order θ2 or higher, and the θ’s only by terms
of order θ3 or higher.) Since there are only finitely many θ’s, this process
terminates after finitely many steps.5

A supermanifold that is presented in the form (2.6) is said to be split. The
structure theorem says that every smooth supermanifold can be split, but not
in a unique fashion. Once a splitting is picked, there is a natural projection
map π : M → Mred that simply forgets the θ’s (and thus maps the point
in M labeled by t1α . . . | . . . θqα to the point in Mred labeled by t1α . . . t

p
α). The

projection π is related to the inclusion i : Mred → M that we defined earlier
by π ◦ i = 1.

The drawback of the structure theorem is that the projection π : M →
Mred whose existence is guaranteed by the theorem is far from unique, and
the theorem comes with no advice about finding a useful or natural choice.
In the context of superstring perturbation theory, for example, the structure
theorem says (modulo some issues discussed in section 5) that if we wish we
can pick a projection π from the moduli space M of super Riemann surfaces
to the moduli space M of ordinary Riemann surfaces, and reduce a measure
on M to a measure on M by integrating first over the fibers of this projection.
However, in the absence of a natural projection, this procedure may not be
illuminating.

2.3. Complex supermanifolds

A complex supermanifold is defined similarly, except that the gluing functions
are holomorphic functions. Ca|b is a supermanifold parametrized by complex
bosonic coordinates z1, . . . , za and fermionic coordinates θ1 . . . θb. (Recall that
in this paper there is never a reality condition on fermionic variables.) A com-
plex supermanifold M of complex dimension a|b can be covered by open

5Concretely, to eliminate the unwanted terms from the gluing functions, one
needs to know vanishing of certain sheaf cohomology classes on Mred that can be
extracted from the expansion of the gluing functions in powers of θ. These classes all
vanish because in general sheaf cohomology of any smooth manifold, such as Mred,
with values in the sheaf of sections of any vector bundle always vanishes except in
degree zero. The analogous sheaf cohomology for complex manifolds is in general
nonzero, which is why a complex supermanifold need not be holomorphically split.
See section 2.3.1.
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sets Uα each of which is parametrized by even and odd complex coordinates
z1
α . . . z

a
α and θ1

α . . . θ
b
α. These coordinates give a holomorphic identification of

Uα with an open set in Ca|b.
On intersections Uα∩Uβ there are gluing relations analogous to (2.1), with

the difference that the gluing functions are now required to be holomorphic
in z1

β . . . | . . . θbβ :

ziα = f i
αβ(z1

β . . . | . . . θbβ)
θsα = ψs

αβ(z1
β . . . | . . . θbβ).(2.7)

To be precise, this holomorphy means that if the functions f i
αβ and ψi

αβ are
expanded as a polynomial in the θ’s, then the coefficient of each term is an
ordinary holomorphic function of z1 . . . za.

A complex supermanifold M of dimension a|b has a reduced space Mred
obtained by setting the θ’s to zero in the gluing relation. The gluing relations
then reduce to

(2.8) ziα = f i
αβ(z1

β . . . z
a
β|0 . . . 0).

These are gluing functions for an ordinary complex manifold Mred of complex
dimension a. There is an evident holomorphic embedding i : Mred → M ,
mapping z1

α . . . z
a
α to z1

α . . . z
a
α|0 . . . 0. As in our discussion of (2.6), by keeping

in the gluing relations the terms that are linear in the θ’s, we can define a
holomorphic vector bundle V → Mred, with fibers of dimension 0|q. The total
space M ′ of this bundle is a complex supermanifold that is an approximation
to M (but in contrast to the smooth case, M ′ and M are not necessarily
isomorphic as complex supermanifolds; see section 2.3.1).

Examples of complex supermanifolds are easily given. For example, let us
define complex projective superspace CP

a|b of dimension a|b. It has homoge-
neous coordinates z1 . . . za+1|θ1 . . . θb, subject to an overall scaling of all z’s
and θ’s by a nonzero complex parameter λ, and with a requirement that the
bosonic coordinates za are not allowed to all simultaneously vanish. (In su-
permanifold theory, to say that a bosonic variable is “non-zero” means that it
is invertible or in other words remains nonzero after setting all odd variables
to zero.) To express CPa|b in the above language, for α = 1, . . . , a+ 1, let Uα

be defined by the condition zα �= 0. The Uα give an open cover of CPa|b. Each
Uα can be parametrized by the ratios zβ/zα, β �= α, as well as θj/zα, with
obvious holomorphic gluing relations.

We can construct many additional examples by imposing an equation
F (z1 . . . | . . . θb) = 0, where F is a homogeneous polynomial in the homo-
geneous coordinates of CPa|b that is either even or odd. If F is sufficiently
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generic, this will give a complex supermanifold of dimension a − 1|b if F is
even, or of dimension a|b− 1 if F is odd.

2.3.1. Holomorphic splittings We now consider for a complex super-
manifold the questions analogous to those that for a smooth supermanifold
are addressed by the fundamental structure theorem described in section 2.1.

If M is a complex supermanifold, then the reduced space Mred is an ordi-
nary complex manifold. We recall that there is always a natural holomorphic
embedding i : Mred → M . M is said to be holomorphically projected if there
is a holomorphic map π : M → Mred with π ◦ i = 1. M is said to be holo-
morphically split if the structure group of the fibration M → Mred given by
π reduces to the group GL(q) of linear transformations of the fibers of π. In
other words, M is holomorphically split if it is holomorphically isomorphic to
M ′, the total space of a purely fermionic vector bundle V → Mred.

In terms of the gluing data (2.7), M is holomorphically projected if the
local coordinates can be chosen so that the bosonic gluing functions f i

αβ are
functions of the z’s only. It is holomorphically split if the local coordinates
can be chosen so that in addition the fermionic gluing functions ψs

αβ are linear
in the θ’s. It is rare to encounter in practice a complex supermanifold that
is holomorphically projected but not holomorphically split, though it is not
difficult to construct an example.

As we will see shortly in an example, a generic complex supermanifold is
not holomorphically projected. The significance of the question is that when
holomorphic projections exist, they tend to be unique or nearly so and may
be natural and useful.

A case in point is the moduli space of super Riemann surfaces, which we
will call M. Explicit computations that have been done to date in superstring
theory – including the very beautiful two-loop computations of [29] – make
use of the fact that the moduli space M admits a holomorphic splitting for low
genus. However, M is not holomorphically split in general [30]. In fact, one
goal in [1] will be to make it clear that the existence of a systematic algorithm
for superstring perturbation theory does not depend on the existence of a
holomorphic splitting.

For a simple example of a complex supermanifold that cannot be holo-
morphically projected (see section 4.2.10 of [4] for another description of this
example), let M be the hypersurface

(2.9) z2
1 + z2

2 + z2
3 + θ1θ2 = 0

in the projective space CP
2|2. The reduced space Mred is a hypersurface in an

ordinary projective space CP2. We write ẑ1 . . . ẑ3 for homogeneous coordinates
of this CP2 and define Mred as the hypersurface ẑ2

1+ẑ2
2+ẑ2

3 = 0. A holomorphic
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projection π : M → Mred would express the ẑi as holomorphic functions of the
zi and θj . Since we want π◦i = 1 where i : Mred → M is the natural inclusion,
ẑi must coincide with zi at θ1 = θ2 = 0. So we must have ẑi = zi + θ1θ2ui for
some ui. The ui cannot exist if they are supposed to be holomorphic; they
would have to be homogeneous of degree −1 under scaling of z1 . . . | . . . θ2.

The structure theorem of smooth supermanifolds tells us that if M were
a smooth supermanifold, then the ui would exist. Here we run into a subtlety
that will be the subject of section 5. It is possible to endow M with a smooth
structure – or more precisely to define a smooth supermanifold Mcs that
admits a complex structure in which it is isomorphic to M – but there is
no truly canonical way to do this. Postponing this somewhat knotty story to
section 5, here we will just define an appropriate Mcs in our example and show
that with this choice, the ui do exist. We define Mcs as a cs supermanifold
by starting with coordinates t1 . . . t6|θ1θ2, and defining zk = tk +

√
−1 tk+3,

z̃k = tk −
√
−1 tk+3, k = 1, . . . , 3. Then we impose equation (2.9) along with

(2.10)
3∑

k=1
z̃kzk = 1,

and we divide by the equivalence

zk → eiαzk, k = 1 . . . 3
θs → eiαθs s = 1, 2
z̃k → e−iαz̃k, k = 1 . . . 3,(2.11)

where α is a real parameter (more precisely an even parameter that is real
modulo the odd variables) and i =

√
−1. If one prefers, one can express all

this in terms of the t’s and θ’s without introducing the z’s and z̃’s. This
procedure defines a smooth supermanifold Mcs of dimension 4|2 that admits
a complex structure in which it is isomorphic to M . The structure theorem
of smooth supermanifolds tells us that Mcs must split, and indeed a splitting
is given by

(2.12) ẑi = zi + θ1θ2
z̃i
2 ,

since this condition along with (2.9) and (2.10) implies that
∑3

k=1 ẑ
2
k = 0.

If M is a complex supermanifold of odd dimension 1, and with no odd
moduli on which the gluing functions depend, then M is inevitably split. The
reason for this is simply that if a single odd coordinate θ is the only odd
variable that appears in the gluing functions of eqn. (2.7), then inevitably
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those gluing functions have the split form (f is independent of θ since there
is no way to make a fermion bilinear, and similarly ψ is homogeneous and
linear in θ). An important example of this in superstring theory is the one-
loop dilaton tadpole. This involves a moduli space of odd dimension 1, so it is
naturally split and some of the subtleties of superstring perturbation theory
do not arise.

3. Integration on supermanifolds

We will give two different explanations of what sort of object can be inte-
grated on a supermanifold. The first explanation is possibly slightly abstract,
but is directly related to the way that a measure on supermoduli space has
been extracted in the literature from superconformal field theory [21–24]. The
second explanation is possibly more concrete and gives a convenient frame-
work for the supermanifold version of Stokes’s theorem [15]. We also will give
several descriptions of how to construct objects than can be integrated over
suitable submanifolds of a supermanifold.

3.1. Sections of the Berezinian

The basic idea of the Berezin integral is presumably familiar. On R
p|∗q, with

bosonic and fermionic coordinates t1 . . . | . . . θq, a general function g can be
expanded as a polynomial in the θ’s:

(3.1) g(t1 . . . | . . . θq) = g0(t1 . . . tp) + · · · + θqθq−1 . . . θ1gq(t1 . . . tp).

We have written explicitly the first and last terms in the expansion. If g is
compactly supported, or at least if gq vanishes fast enough at infinity, then
the integral of g over R

p|∗q is defined as

(3.2)
∫
Rp|q

[
dt1 . . . | . . . dθq

]
g(t1 . . . | . . . θq) =

∫
Rp

dt1 . . . dtp gq(t1 . . . tp).

The θ’s are treated in a purely algebraic fashion, so the question of whether
they admit a real structure is immaterial.

To generalize this Berezin integral to a general supermanifold, we want
to know what sort of object is the “integration form”

[
dt1 . . . | . . . dθq

]
. On an

ordinary oriented manifold, this would be a differential form of top degree,
but on a supermanifold that is the wrong interpretation. For example, the
formula (3.1) implies that if we rescale one of the θ’s by a constant λ, the
symbol

[
dt1 . . . | . . . dθq

]
is multiplied by λ−1, rather than by λ as one would

expect for a differential form.
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To elucidate the meaning of the integration form, we begin with an ap-
proach that is slightly abstract but actually closely related to formulas in the
superstring literature of the 1980s. First we practice with a vector space.6 Let
V be a super vector space of bosonic and fermionic dimensions p|q. A basis
of V therefore consists of p even vectors e1 . . . ep and q odd vectors ρ1 . . . ρq,
with the whole collection being linearly independent. We abbreviate the basis
as (e1 . . . | . . . ρq).

The Berezinian of V , denoted Ber(V ), is a one-dimensional vector space
that one can think of as the space of densities on V . It is defined as follows.
For every basis (e1 . . . | . . . ρq) of V , there is a corresponding vector in Ber(V )
that we denote as

[
e1 . . . | . . . ρq

]
. If (e′1, . . . | . . . , ρ′q) is a second basis, related

to the first by a linear transformation

(3.3)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e′1
e′2
...
−
...
ρ′q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= W

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1
e2
...
−
...
ρq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

then the corresponding two elements of Ber(V ) are related by

(3.4)
[
e′1 . . . | . . . , ρ′q

]
= Ber(W )

[
e1, . . . | . . . , ρq

]
.

Here Ber(W ), known as the Berezinian of W , is the superanalog of the de-
terminant, in the sense that it possesses the same multiplicative property:
if W = W1W2, then Ber(W ) = Ber(W1)Ber(W2). However, its definition is
more subtle than that of the ordinary determinant. Picking a decomposition
of V as V = Veven ⊕ Vodd, where the summands are of dimension p|0 and 0|q,
we can write a linear transformation of V in block form as

(3.5) W =
(
A B
C D

)
,

where here A and D are respectively p × p and q × q even blocks, while B
and C are odd. The Berezinian is defined for matrices W such that D is
invertible, a condition that is automatically obeyed for the change of basis

6The matrix elements of the blocks B and C in eqn. (3.5) below are odd, and
to allow them to be nonzero, we should work not over a field but over a Z2-graded
ring that has odd elements.
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matrix in (3.3). An explicit formula is

(3.6) Ber(W ) = det(A−BD−1C) det−1(D).

If W is upper or lower triangular – so that B or C vanishes – then simply

(3.7) Ber(W ) = detA
det D

.

It is rather tricky to show that the formula (3.6) does not depend on the chosen
decomposition and implies the multiplicative property; for instance, see [8],
pp. 15-18; [5], section 1.6; or [11], pp. 59-60. However, it is straightforward to
show that the multiplicative property together with (3.7) implies (3.6). This
simply follows from the factorization

(3.8)
(
A B
C D

)
=

(
A−BD−1C B

0 D

)(
1 0

D−1C 1

)
.

Similarly, the factorization

(3.9)
(
A B
C D

)
=

(
A 0
C D − CA−1B

)(
1 A−1B

0 1

)

implies another formula Ber(W ) = detA · det−1(D − CA−1B).
Now let M be a compact supermanifold7 of dimension p|q, as described

in section 2.1. Let T ∗M be the cotangent bundle of M . We will introduce
on M a line bundle known as its Berezinian line bundle Ber(M). Ber(M) is
defined by saying that every local coordinate system T = t1 . . . | . . . θq on M
determines a local trivialization of Ber(M) that we denote

[
dt1 . . . | . . . dθq

]
.

Moreover, if T̃ = t̃1 . . . | . . . θ̃q is another coordinate system, then the two
trivializations of Ber(M) are related by

(3.10)
[
dt1 . . . | . . . dθq

]
= Ber

(
∂T

∂T̃

) [
dt̃1 . . . | . . . dθ̃q

]
.

Here ∂T/∂T̃ is the matrix of derivatives of (t1 . . . | . . . θq) with respect to
(t̃1 . . . | . . . θ̃q).

7To avoid having to include in the formulas some minus signs which could be
confusing on first reading, we will assume that the reduced space Mred of M is
oriented. When we identify Uα ⊂ M with an open subset of Rp|∗q, the orientation
of Mred determines an orientation of the reduced space of Rp|∗q. This lets us view
the quantity dt1 . . .dtp in (3.2) and related formulas as a differential form rather
than a density.
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We claim that what can be naturally integrated over M is a section of
Ber(M). To show this, first let σ be a section of Ber(M) whose support is
contained in a small open set U on which we are given local coordinates
t1 . . . | . . . θq, establishing an isomorphism of U with an open set in R

p|∗q. This
being so, we can view σ as a section of the Berezinian of Rp|∗q. This Berezinian
is trivialized by the section [dt1 . . . | . . . dθq] and σ must be the product of this
times some function g:

(3.11) σ = [dt1 . . . | . . . dθq
]
g(t1 . . . | . . . θq).

So we define the integral of σ to equal the integral of the right hand side of
eqn. (3.11):

(3.12)
∫
M

σ =
∫
Rp|∗q

[
dt1 . . . | . . . dθq

]
g(t1 . . . | . . . θq).

The integral on the right is the naive Berezin integral (3.2). For this definition
to make sense, we need to check that the result does not depend on the co-
ordinate system t1 . . . | . . . θq on R

p|∗q that was used in the computation. This
follows from the rule (3.10) for how the symbol

[
dt1 . . . | . . . dθq

]
transforms

under a change of coordinates. The Berezinian in this formula is analogous
to the usual Jacobian in the transformation law of an ordinary integral under
a change of coordinates. For more detail, see for instance [5], pp. 40-1; [6],
Theorem 11.2.3; or [11], p. 80.

So far, we have defined the integral of a section of Ber(M) whose support
is in a sufficiently small region in M . To reduce the general case to this, we
pick a cover of M by small open sets Uα, each of which is isomorphic to an
open set in R

p|∗q, and we use the existence of a partition of unity. Just as on a
bosonic manifold, one can find bosonic functions hα on M such that each hα

is supported in the interior of Uα and
∑

α hα = 1. Then we write σ =
∑

α σα
where σα = σhα. Each σα is supported in Uα, so its integral can be defined
as in (3.12). Then we define

∫
M σ =

∑
α

∫
M σα. That this does not depend on

the choice of the open cover or the partition of unity follows from the same
sort of arguments used in defining the integral of a differential form on an
ordinary manifold. For example, see Theorem 11.3.2 of [6].

3.1.1. Relevance to superstring perturbation theory All this is per-
haps a little abstract and in a sense a tautology: we simply postulated the
right transformation law for the symbol

[
dt1 . . . | . . . dθq

]
so that the integral

does not depend on a choice of coordinates. One reason that the definition is
useful is that it matches the superstring literature, a fact that will be relevant
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in [1]. In applications to superstring perturbation theory, it is helpful to know
the following characterization of Ber(M). To every basis ∂t1 . . . | . . . ∂θq of the
tangent space of M , a section σ of Ber(M) assigns a number, which we will
denote as σ(∂t1 . . . | . . . ∂θq). We define this mapping by saying that it is linear
in σ and for σ = [dt1 . . . | . . . dθq

]
, we have σ(∂t1 . . . | . . . ∂θq) = 1. Under a

change of basis, we require

(3.13) σ(∂
t̃1
. . . | . . . ∂

θ̃q
) = σ(∂t1 . . . | . . . ∂θq) Ber

(
∂T

∂T̃

)
,

which is compatible in a natural way with (3.10). Conversely, a function on
bases of the tangent space that transforms in this way is equivalent to a section
of Ber(M). In perturbative string theory, M will be supermoduli space, the
basis ∂t1 . . . | . . . ∂θq will correspond to a basis of super Beltrami differentials,
and a section σ of Ber(M) will be defined by saying that σ(∂t1 . . . | . . . ∂θq)
is the value of the worldsheet path integral with superghost insertions corre-
sponding to those super Beltrami differentials.

The construction in this section shows that a smooth section of Ber(M)
can always be integrated over a compact supermanifold M . So, in the context
of superstring perturbation theory, given that superconformal field theory
can be used to define a section of Ber(M), the only possible difficulty comes
from the lack of compactness of supermoduli space, arising from the infrared
region.

3.1.2. A note on notation A point to stress is that the section of the
Berezinian that we have written as [dt1 . . . | . . . dθq] is an irreducible object;
we have not built it by multiplying differential forms dt and dθ. We have not
yet even introduced differential forms. The notation is meant to evoke the
idea of a volume form, but the bracket [ ] surrounding the dt’s and dθ’s is a
warning that the symbols inside the bracket have only an abstract meaning.

In section 3.2, we will introduce differential (and integral) forms on a
supermanifold; when we do so, for an odd variable θ, the one-form dθ will be
an even variable. So for example we will have dθdθ′ = dθ′dθ and (dθ)2 �= 0.

By contrast, the symbol [dt1 . . . | . . . dθq] is odd under exchange of any
two θ’s. This assertion is a special case of (3.4) or (3.10). The exchange of
two θ’s is a coordinate transformation with Ber(∂T̃ /∂T ) = −1, as one can
see from (3.7).

3.1.3. Integrating over the fibers of a fibration Consider a space
Rp+p′|∗(q+q′), which we decompose in some fashion as Rp|∗q × Rp′|∗q′ . The
Berezin integral of a smooth, compactly supported function on R

p+p′|∗(q+q′)
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can be performed by first integrating over R
p|∗q to get a function on R

p′|∗q′ ,
which one then integrates over R

p′|∗q′ . In fact, if we integrate first over the
odd variables, then the statement just made reduces to the fact that a similar
ordinary integral on R

p+p′ = R
p × R

p′ can be performed by integrating first
over R

p and then over R
p′ .

Now consider a general fibration of supermanifolds π : X → N , with
fiber M . We claim that by integrating over the fibers of π, one can define a
natural linear map σ → π∗(σ) from a section σ of Ber(X) to a section π∗(σ)
of Ber(N), obeying the fundamental relation

(3.14)
∫
X
σ =

∫
N
π∗(σ).

Just as in the original definition of integration on a supermanifold, by linearity
of the integral it suffices to consider the case that the support of σ is in a
sufficiently small open set in X. In particular, we can assume that the support
of σ projects in N to an open set that is isomorphic to an open set in some
R

p|∗q. We can also assume that the fibration π is a product when restricted to
this open set, and that along the fibers of π, the support of σ is contained in
an open set that is isomorphic to an open set in some Rp′|∗q′ . So the definition
of the operation π∗ and the verification of (3.14) reduce to the special case
mentioned in the last paragraph.

3.2. Differential and integral forms

Now we are going to describe a phenomenon that in a sense is at the root of
the picture-changing phenomenon in superstring perturbation theory.

3.2.1. Clifford algebras Let V ∼= R
0|p be a purely odd vector space of

dimension p. Let ζ1, . . . , ζp be a basis of V and let η1, . . . , ηp be a basis of the
dual space V ∗. There is a natural nondegenerate symmetric bilinear form on
the direct sum V ⊕ V ∗ which we can write

(3.15) (ζi, ζj) = (ηi, ηj) = 0, (ζi, ηj) = (ηj , ζi) = δij .

This quadratic form does not depend on the chosen basis.
Given this nondegenerate quadratic form on V ⊕ V ∗, we can “quantize”

by introducing the corresponding Clifford algebra. This simply means that
we promote the ζi and ηj to operators that are supposed to obey the anti-
commutation relations

(3.16) {ζi, ζj} = 0 = {ηi, ηj}, {ζi, ηj} = δij .
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Anticommutation (rather than commutation) relations are natural since ζi

and ηj are odd variables. An irreducible module8 S for this Clifford algebra
(or any Clifford algebra of even rank) is unique up to isomorphism. We can
construct it by starting with a vector |↓〉 annihilated by the ηi; then the states
ζi1 . . . ζik |↓〉, i1 < · · · < ik, k = 0, . . . , p furnish a basis of S. Alternatively,
we can start with a state |↑〉 that is annihilated by the ζj , and build a basis
by acting on |↑〉 with the ηi. The two constructions are equivalent, since
|↑〉 = ζ1ζ2 . . . ζp|↓〉 can be reached from |↓〉 after finitely many steps, and
vice-versa.

We would like to interpret this construction more geometrically, but in
doing so we may as well consider a more general situation involving a purely
bosonic manifold M of dimension p. Roughly speaking, we want to consider
functions on the tangent bundle TM of M . But there is a very important
twist: we want to consider the fiber directions of the tangent bundle to be
fermionic rather than bosonic. The tangent bundle with this twist is frequently
denoted as ΠTM , where the symbol Π stands for reversal of statistics in the
fiber directions; in the literature, this is often called reversal of parity. If
t1 . . . tp are local coordinates on M , then to give a local coordinate system
on ΠTM , we need to double the coordinates, adding a second set dt1 . . . dtp.
These now are fermionic variables since we have taken the fiber coordinates
of ΠTM to be odd. A general function on ΠTM has an expansion in pow-
ers of the dti, and of course this is a finite expansion since these variables
anticommute. A term of order k

(3.17)
∑
i1...ik

ai1...ik(t1 . . . tp)dti1 . . . dtik

corresponds to what usually is called a k-form on M . So taking all values
of k from 0 to p, the functions on ΠTM correspond to the whole space of
differential forms on M , often denoted Ω∗(M).

At any point m ∈ M , we can easily find a Clifford algebra acting on the
functions on the fiber of ΠTM at m. We take ζi to be multiplication by dti,

(3.18) ψ → dti ∧ ψ

(we usually omit the wedge product symbol) and we take ηj to be the corre-
sponding derivative operator

(3.19) ηj = ∂

∂dtj .

8A module for the Clifford algebra is simply a vector space on which the algebra
acts, analogous to a representation of a group.
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In differential geometry, this operator is usually called the operator of con-
traction with ∂tj ,

(3.20) ω → i∂tjω,

but it is simpler to think of it as the derivative with respect to the variable
dtj .

The ζi and ηj as just defined obey the fiberwise Clifford algebra {ζi, ηj} =
δij , with other anticommutators vanishing. Differential forms on M or equiv-
alently functions on ΠTM give a natural module for this family of Clifford
algebras; any other irreducible module would be equivalent (except that glob-
ally one could consider differential forms on M with values in a line bundle).

The exterior derivative operator corresponds to a simple odd vector field
on ΠTM :

(3.21) d =
∑
i

ζi
∂

∂ti
=

∑
i

dti ∂

∂ti
.

It obeys d2 = 0. Since it has degree 1 under scaling of the fiber coordinates of
ΠTM , it maps forms of degree k – that is functions homogeneous of degree
k in the odd variables dti – to forms of degree k+1. When a differential form
is interpreted as a function ω(t1 . . . tp|dt1 . . . dtp), the wedge product of forms
becomes obvious – it is simply the multiplication of functions. That is why
we usually omit the wedge product symbol. The wedge product and exterior
derivative are related by

(3.22) d(ω · ν) = dω · ν + (−1)|ω|ω · dν,

where |ω| = 0 or 1 for ω even or odd.

3.2.2. Weyl algebras Now let us repeat this exercise for a purely even
vector space W ∼= R

q|0. Again we pick a basis α1, . . . , αq of W and a dual
basis β1, . . . , βq of the dual space W ∗. Because the α’s and β’s are now even, it
is more useful to introduce a skew-symmetric rather than symmetric bilinear
form on W ⊕W ∗:

(3.23) 〈αi, αj〉 = 〈βi, βj〉 = 0, 〈βj , αi〉 = −〈αi, βj〉 = δij .

Upon quantization, the even variables αi and βj obey a Weyl algebra rather
than a Clifford algebra:

(3.24) [αi, αj ] = [βi, βj ] = 0, [βj , αi] = δij .
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In contrast to the finite-dimensional Clifford algebra, the finite-dimensional
Weyl algebra has many irreducible modules. We can postulate a state |↓〉
that is annihilated by the β’s. Then a module V for the Weyl algebra can be
constructed by acting repeatedly with α’s. A basis of this module consists of
states of the form

(3.25) αi1αi2 . . . αik |↓〉, k ≥ 0.

Because the α’s are commuting variables, there is no upper bound on k.
Alternatively, we can postulate the existence of a state |↑〉 annihilated by the
α’s, in which case we form a module V ′ with a basis of states

(3.26) βj1βj2 . . . βjk |↑〉, k ≥ 0.

The two modules are inequivalent, as V contains no state annihilated by the
α’s and V ′ contains no state annihilated by the β’s. Of course one can form
a mixture of the two cases (and we will discuss such mixtures in section 3.6).
But these two cases are of particular importance.

It is convenient to construct both modules by representing the αi as mul-
tiplication operators and the βj as derivatives:

(3.27) βj = ∂

∂αj
.

If we do this, then the two modules differ by the classes of functions allowed.
To obtain V , we consider polynomial functions of the α’s, with the state |↓〉
corresponding to the function f(α1 . . . αq) = 1, which is annihilated by the
β’s. To construct V ′, we need a state |↑〉 that is annihilated by the operation
of multiplication by αi, i = 1 . . . q. As a function of the α’s, |↑〉 corresponds
to a delta function supported at α1 = · · · = αq = 0. Certainly the state
δq(α1 . . . αq) is annihilated by multiplication by any of the α’s. Acting re-
peatedly with the β’s, we see that V ′ is spanned by distributions supported
at the origin; a basis of V ′ consists of states of the form

(3.28) ∂

∂αi1

∂

∂αi2
. . .

∂

∂αik
δq(α1 . . . αq), k ≥ 0.

To interpret this more geometrically, we introduce a purely fermionic su-
permanifold M of dimension 0|q. We may as well take M to be R

0|q, with
coordinates θ1 . . . θq. We introduce an “exterior derivative” d, which we con-
sider to be odd, just as in the bosonic case, so that it obeys, for example,

(3.29) d(θ1θ2) = dθ1 · θ2 − θ1 · dθ2.
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So the objects αi = dθi, which we will call one-forms, are even variables. The
βj then become contraction operators

(3.30) βj = i∂θj = ∂

∂αj
.

Just as in the bosonic case, a differential form on R
0|∗q can be interpreted

as a function ω(dθ1 . . . dθq|θ1 . . . θq) (our convention is to list the even vari-
ables first), the only subtlety being that the class of functions considered
depends on whether we want the module V or V ′. For V , the functions have
polynomial dependence on the dθi, but for V ′, they are delta functions sup-
ported at dθi = 0. Also as in the bosonic case, the wedge product of forms
represented by two functions ω and ν is simply represented by the product
ων of the two functions. Here, however, there is a subtlety: one can multiply
two polynomials, and one can multiply a distribution by a polynomial, but
one cannot multiply two distributions. So the wedge product makes sense as
a map V × V → V, and also as a map V × V ′ → V ′, but there is no way to
multiply two elements of V ′.

On either module V or V ′, we can define an exterior derivative operator

(3.31) d =
∑
i

αi ∂

∂θi
=

∑
i

dθi ∂

∂θi
.

Wherever the wedge product is defined, the wedge product and the exterior
derivative obey the relation (3.22).

3.2.3. Forms on supermanifolds We have treated separately the purely
bosonic and purely fermionic cases, but there is no problem to consider in
the same way a general supermanifold M , say of dimension p|q. Given local
coordinates t1 . . . | . . . θq, we introduce the correponding one-forms dt1 . . . dtp
and dθ1 . . . dθq, which are respectively fermionic and bosonic. Forms will cor-
respond to functions ω(t1 . . . dθq|θ1 . . . dtp) of all the variables, including the
dt’s and dθ’s, or in other words to functions on ΠTM . The only subtlety
is what sort of functions are allowed. We get what one may call differential
forms on M if we require ω to have polynomial dependence on the even one-
forms dθi. And we get integral forms (a concept that originated in [15]) if we
require that in its dependence on dθ1 . . . dθq, ω is a distribution supported
at the origin. We write Ω∗(M) for the differential forms and Ω∗

int(M) for the
integral forms. We take diffeomorphisms to act on the variables dti and dθj
by the usual chain rule. For example, if t̃1 . . . | . . . θ̃q is another coordinate
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system, then

dti =
∑
k

∂ti

∂t̃k
dt̃k +

∑
s

∂ti

∂θ̃s
dθ̃s

dθr =
∑
k

∂θr

∂t̃k
dt̃k +

∑
s

∂θr

∂θ̃s
dθ̃s.(3.32)

Forms with only polynomial dependence on dθ1 . . . dθq are mapped to forms
of the same type by a change of coordinates; the same is true for forms with
support only at dθ1 = · · · = dθq = 0. Hence the space of differential forms and
the space of integral forms are each invariant under gluing. So these spaces are
globally-defined on any supermanifold M , even though our initial definition
used a local coordinate system.

A wedge product of two differential forms or of a differential form and
an integral form is defined by multiplying the corresponding functions. The
exterior derivative is defined in the obvious way as a vector field on ΠTM

(3.33) d =
∑
i

dti ∂

∂ti
+

∑
j

dθj ∂

∂θj

that obeys d2 = 0 and satisifies the usual relation (3.22).
Differential forms are graded by degree in the usual way – a function

f(t1 . . . | . . . θq) on M is a zero-form, and multiplying k times by one-forms
dti or dθj gives a k-form. In the space of differential forms, there are forms of
lowest degree – namely degree 0 – but there are no forms of highest degree. If
we introduce a scaling symmetry of ΠTM that acts trivially on t1 . . . | . . . θp
but scales the fiber coordinates by a common factor λ

(3.34) dt1 . . . | . . . dθq → λdt1 . . . | . . . λdθq,

then a k-form scales as λk.
In the case of integral forms, we will say that for any function f on M ,

the object

(3.35) f(t1 . . . | . . . θq)dt1 . . . dtpδq(dθ1 . . . dθq)

is a top form. Such a form is annihilated by multiplication by dti or dθj . A
form obtained by acting k times with operators ∂/∂(dti) or ∂/∂(dθj) will be
called a form of codimension k. Again there is no upper bound on k, so in
the space of integral forms, there are top forms but no bottom forms. Under
the scaling symmetry of ΠTM , a top form scales as λp−q, and a form of
codimension k scales as λp−q−k.
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Differential forms can be multiplied, and one can do many other things
with them, but they cannot be integrated, roughly because there is no top
form. To be more exact, if ω is a p-form on M , then by essentially the ordinary
definitions of calculus,9 ω can be integrated over a purely bosonic oriented
submanifold N ⊂ M of the right dimension, in fact a submanifold of dimen-
sion p|0. But ω cannot be integrated over any submanifold with positive odd
dimension.

Integral forms can be integrated over M , as we will discuss shortly (and
more generally over submanifolds of purely bosonic codimension, as we will
see in section 3.3.4), but they cannot be multiplied.

The relation between differential forms and integral forms is a prototype
for the notion of different “pictures” in superstring theory. The concept of
different pictures has roots [31, 32] in the early days of what developed into
superstring theory, and was interpreted in [20] in terms of the existence of
inequivalent modules for the Weyl algebra.

3.3. Integration of integral forms

We will give two related explanations of how integral forms of top degree can
be integrated.

3.3.1. Integration on ΠTM One approach starts with a basic difference
between M and ΠTM . On M , there is in general no natural way to pick a
section of the Berezinian, but on ΠTM there is always a natural choice be-
cause of the way the variables come in bose-fermi pairs. For every t, there is a
dt, and for every θ, there is a dθ, in each case with opposite statistics. Think-
ing of the whole collection t1 . . . dθq|θ1 . . . dtp as a local coordinate system on
ΠTM , the corresponding object

(3.36) [dt1 . . . d(dθq)|dθ1 . . . d(dtp)]

is independent of the underlying choice of coordinates t1 . . . | . . . θq on M and
gives a natural section of Ber(ΠTM). For example, if we rescale one of the
even coordinates of M by t → λt, then one of the odd coordinates on ΠTM

9If N is of dimension p|0, we can parametrize it locally by bosonic variables
s1 . . . sp. In terms of these variables, ω becomes an ordinary p-form on an ordinary
p-dimensional manifold and we integrate it in the usual way. It does not matter
that s1 . . . sp can only be defined locally; as usual, we write ω as a sum of p-forms
ωα each of which is supported in a small open set Uα in which suitable coordinates
exist.
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is similarly rescaled by dt → λdt. The symbol [dt1 . . . d(dθq)|dθ1 . . . d(dtp)]
changes by the Berezinian of the change of coordinates, according to (3.10).
The relevant Berezinian is 1 (essentially because detD is in the denominator
in (3.7) while detA is in the numerator), so the symbol [dt1 . . . d(dθq)|dθ1 . . .
d(dtp)] is invariant under this change of coordinates and indeed it is invariant
under any change of coordinates on M .

To streamline our notation, we will abbreviate the whole set of coordi-
nates t1 . . . | . . . θq on M as x, and write just D(x, dx) for [dt1 . . . d(dθq)|dθ1 . . .
d(dtp)]. Similarly, we regard an integral form ω on M as a function ω(x, dx)
on ΠTM . Now we define the integral of ω over M as a Berezin integral on
ΠTM :

(3.37)
∫
M

ω =
∫
ΠTM

D(x, dx) ω(x, dx).

It is crucial here that ω is an integral form rather than a differential form.
Because ω(x) has compact support as a function of even variables dθ1 . . . dθq
(and in fact is a distribution with support at the origin), the integral over
those variables makes sense. A similar approach to integrating a differential
form on M would not make sense, since if ω(x) is a differential form, it has
polynomial dependence on dθ1 . . . dθq and the integral over those variables
does not converge. (This is why differential forms can only be integrated
on purely bosonic submanifolds.) The formula (3.37) for integration of ω
makes sense for an integral form ω of any codimension, but if ω has positive
codimension, then this formula vanishes.

Since we have expressed the integral of an integral form in terms of the
Berezin integral in a space with twice as many variables, the reader may
wonder if we are making any progress. Why not stick with the original Berezin
integral on M? One answer is that in the framework of integral forms, one
can formulate a supermanifold analog of Stokes’s theorem. A related answer is
that the formulation with integral forms turns out to be useful in superstring
perturbation theory.

3.3.2. Some technical remarks Two technical remarks are unfortunately
difficult to avoid here. First, we need to clarify what is meant by integration
over the bosonic variable dθ. If we are on a real supermanifold, then dθ is an
ordinary real variable, and integration over dθ requires no special explanation.
However, we are mainly interested in cs manifolds, so that a fermionic variable
θ has no real structure, and we cannot claim that dθ is a real variable. This
being so, we will have to interpret integration over dθ as a formal operation,
constrained so that one can integrate by parts, just like the original Berezin
integral over θ. The only “functions” of dθ that we need to integrate are
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distributions supported at the origin. So we define the integral over dθ by

(3.38)
∫

[d(dθ)] ∂n

∂(dθ)n δ(dθ) = δn,0.

Second, we want to interpret the symbol [d(dθ)] as a section of the Berezinian,
not a density. So under a change of variables θ → λθ, λ ∈ C, which induces
dθ → λdθ, we want [d(dθ)] → λ[d(dθ)], with no absolute value; this is a
special case of (3.4). So consistency with (3.38) requires

(3.39) δ(λdθ) = 1
λ
δ(dθ),

again with no absolute value. Another consequence becomes clear if there are
two odd variables θ and θ′. We would like

(3.40)
∫

[d(dθ) d(dθ′)] δ(dθ)δ(dθ′) = 1.

On the other hand, the integration measure [d(dθ) d(dθ′)] is odd in dθ and
dθ′. So the dual delta functions are also anticommuting

(3.41) δ(dθ)δ(dθ′) = −δ(dθ′)δ(dθ).

Thus, the calculus of distributional functions of dθ and integrals over them is
really a formal algebraic machinery, like the Berezin integral.

Though this will not be important in the present notes, one might wonder
how to interpret the above formulas if M is a real supermanifold, so that we
hope to interpret the dθ’s as real variables. The unfamiliar signs in eqns. (3.39)
and (3.41) mean that the symbol δ(dθ) differs slightly from its usual meaning.
Instead of defining a delta function as a linear function on smooth functions,
as is common, we define it as a linear function on smooth differential forms
(mathematically, an object of this kind is called a current). To explain the
idea, let R be a copy of the real line but with no chosen orientation, and
let Ω1(R) be the space of smooth one-forms on R. An element of Ω1(R) is
an expression f(x) dx where f(x) is a smooth function. Such an expression
cannot be integrated until we pick an orientation on R. We interpret δ(x) as a
linear function on Ω1(R) that maps f(x) dx to f(0). With this interpretation
of δ(x), we have δ(−x) = −δ(x), since d(−x) = −d(x). Roughly speaking,
δ(x) in this sense differs from the usual δ(x) by a choice of orientation of the
normal bundle to the submanifold x = 0.

Similarly, with this interpretation, the minus sign in eqn. (3.41) is natural.
Let R be a copy of the real line parametrized by x, and let Z be any manifold.
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We define δ(x) as a map from smooth k-forms on R×Z to smooth k−1-forms
on Z as follows: δ(x) annihilates a form that does not contain dx, and it maps
ψ = dx∧ω (for any form ω), to the restriction of ω to {0}×Z, where {0} is the
point x = 0 in R. This operation would be integration of δ(x)ψ over the first
factor of R×Z, with a standard interpretation of δ(x), except that integration
would require an orientation of that first factor, which we have not assumed.
If y is another real coordinate, we define δ(y) in the same way. Now let us
consider smooth forms on a product Rx × Ry, where Rx and Ry are factors
of R parametrized respectively by x and by y. We understand the product
δ(x)δ(y) to represent successive action of the operator δ(y), mapping smooth
k-forms on Rx×Ry to smooth k−1-forms on Rx×{y = 0}, and δ(x), mapping
smooth k − 1-forms on Rx to smooth k − 2-forms at the point x = y = 0.
δ(y)δ(x) is understood similarly. With this meaning of the symbols, we have
δ(x)δ(y) = −δ(y)δ(x); indeed, δ(y)δ(x) maps the form dx ∧ dy to +1 and
δ(x)δ(y) maps it to −1.

3.3.3. Equivalence with the Berezin integral on M We have defined
integration of an integral form ω on M by means of a Berezin integral over
ΠTM of D(x, dx)ω(x, dx), where ω(x, dx) is the function on ΠTM cor-
responding to the integral form ω, and D(x, dx) is the natural integration
measure of ΠTM .

On the other hand, we also have a fibration π : ΠTM → M . And as
explained in section 3.1.3, a Berezin integral on the total space of a fibration
can be performed by first integrating over the fibers of a fibration. So if ω is
an integral form, we can define a section σ of Ber(M) by acting with π∗ on
the section D(x, dx)ω(x, dx) of Ber(ΠTM):

(3.42) σ = π∗ (D(x, dx)ω(x, dx)) .

This operation is defined for all integral forms ω, but if ω has positive codi-
mension then σ = 0. (For ω to have positive codimension, it is a linear
combination of terms that are either missing an odd variable dti for some i
and vanish upon integration over dti, or are proportional to some ∂nδ(dθs),
n > 0, and vanish upon integration over dθs. Such terms are annihilated by
π∗.)

Now comparing the basic property (3.14) of integration over the fibers of
a fibration with the definition (3.37) of integration of an integral form, we see
that

(3.43)
∫
M

σ =
∫
ΠTM

D(x, dx)ω(x, dx) =
∫
M

ω.
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Here
∫
M σ is a Berezin integral and

∫
M ω is the integral of an integral form.

This is the equivalence between the two notions of integration on a super-
manifold.

The attentive reader may notice a sleight of hand in this explanation.
In discussing the integral over the fibers of a fibration in section 3.1.3, we
assumed that we were dealing with an ordinary integral. But for cs manifolds,
the integral over the fibers of ΠTM → M is a formal algebraic operation, as
explained at the end of section 3.3.1. However, this algebraic operation does
have the necessary properties – notably it transforms like an ordinary integral
under a change of variables – for the above derivation. (In fact, locally, the
θ’s can be given a real structure, and the algebraic operation is equivalent to
an ordinary integral. See footnote 4 in section 2.2. As usual, the discussion of
the equivalence between the two types of integral can be reduced to the local
case by taking ω to be a sum of forms each of which is supported in a small
open set.)

3.3.4. Integration over submanifolds of codimension r|0 So far we
have understood that a compactly supported integral form on M of codi-
mension zero can be naturally integrated over M . What can we do with an
integral form of codimension r?

The answer to this question is that if N ⊂ M is a supermanifold of
codimension r|0 whose normal bundle is oriented, then an integral form of
codimension r can be naturally integrated over N . All that one really needs
to know here is that associated to such an N there is a Poincaré dual r-form
δN , a sort of delta function r-form supported on N . If N is locally defined
by vanishing of even functions f1 . . . fr, which are real-valued when the odd
variables θs all vanish, then one can define

(3.44) δN = δ(f1) . . . δ(fr)df1 ∧ · · · ∧ dfr,

where one orders the factors so as to agree with the orientation of the normal
bundle to N . Just as on a bosonic manifold, this formula for δN does not
depend on the choice of the functions fi, so it makes sense globally.

Now recall that there is a naturally defined wedge product of a differential
form with an integral form. If μ is an integral form of codimension r, then
δN ∧ μ is an integral form of top dimension. So we can define

(3.45)
∫
N
μ =

∫
M

δN ∧ μ.

Suppose that we displace N slightly to a nearby submanifold N ′ (or in
general, suppose we replace N by a homologous submanifold N ′). In such a
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situation, just as for bosonic manifolds, one has

(3.46) δN − δN ′ = dτ

where τ is a compactly supported r − 1-form. So

(3.47)
∫
N
μ−

∫
N ′

μ =
∫
M

dτ ∧ μ.

Now suppose that dμ = 0. Then dτ ∧ μ = d(τ ∧ μ) so

(3.48)
∫
N
μ−

∫
N ′

μ =
∫
M

d(τ ∧ μ).

The supermanifold version of Stokes’s theorem, to which we turn presently
(eqn. (3.53)), ensures that the right hand side of (3.48) vanishes. So if dμ = 0
and N is homologous to N ′, we have

(3.49)
∫
N
μ =

∫
N ′

μ,

just as for differential forms on an ordinary manifold.

3.4. The supermanifold version of Stokes’s theorem

If ν is an integral form of codimension 1 on a supermanifold, then dν is an
integral form of codimension 0 and one can try to integrate it. The most basic
statement of the supermanifold version of Stokes’s theorem is simply that if
ν is a compactly supported integral form on R

p|∗q of codimension 1, then

(3.50)
∫
Rp|∗q

dν = 0.

If fact, if we write d = d0 + d1 with

(3.51) d0 =
p∑

i=1
dti ∂

∂ti
, d1 =

q∑
s=1

dθs ∂

∂θs
,

then

(3.52)
∫
Rp|∗q

d0ν =
∫
Rp|∗q

d1ν = 0.

The integral of d1ν over the odd variables vanishes because d1ν is a sum
of terms none of which are proportional to the product θ1 . . . θq of all odd
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variables. And the integral of d0ν over the even variables vanishes by the
ordinary bosonic version of Stokes’s formula.

We can immediately extend this to a general supermanifold M . If ν is a
compactly supported integral form on M of codimension 1, then

(3.53)
∫
M

dν = 0.

To show this, we proceed just as in the definition of the Berezin integral.
We write ν as the sum of codimension 1 integral forms να, each of which
is supported in an open set Uα ⊂ M that is isomorphic to an open set in
R

p|∗q. So Stokes’s formula for an arbitrary M follows from the special case
M = R

p|∗q.
Just as in the bosonic case, a more general version of Stokes’s theorem

applies to a supermanifold with boundary. First we have to define a super-
manifold with boundary. This is a little tricky and there are several ways to
proceed. The simplest way to find the right definition is to first consider the
case that everything is happening inside a supermanifold Y without bound-
ary. In Y , one considers a submanifold N of codimension 1 defined by an
equation f = 0. As usual, f is required to be real when (but in general only
when) the odd variables vanish. For the moment, we assume that the func-
tion f is globally-defined, in which case,10 roughly speaking, we can define a
compact supermanifold M , with boundary N , by the condition f ≤ 0. Let
Θ(x) be the function of a real variable that is 1 for x ≥ 0 and 0 for x < 0.
Then for any integral form σ on Y of codimension 0 such that Θ(−f)σ has
compact support (we do not assume that the support of σ is contained in M),
we define

(3.54)
∫
M

σ =
∫
Y

Θ(−f)σ.

Since f is only real modulo nilpotents, the interpretation of this formula
involves considerations such as Θ(a+bθ1θ2) = Θ(a)+bθ1θ2δ(a), where a is real
but b need not be. Because even nilpotent expressions like bθ1θ2 are neither
positive nor negative (or even real, in general), it is actually the integration

10The topological fact that we are using is that a codimension 1 submanifold
Nred ⊂ Yred can be defined by a globally-defined real-valued function fred if and
only if Nred is the boundary of some Mred ⊂ Yred. In one direction, if fred exists, we
define Mred by the condition fred < 0. In the other direction, one uses the fact that
the cohomology class Poincaré dual to Nred vanishes if Mred exists. This implies
that the object that can always be written locally as δNred = δ(f)df is in fact
dΘ(−f) for a globally-defined f .
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formula that gives a precise meaning to the statement that M is defined by
the condition f ≤ 0.

Why is this an interesting situation to consider? Superstring perturbation
theory provides a good example. In that context, let Y be the moduli space
of super Riemann surfaces. Y is not compact – it has noncompact ends cor-
responding to the infrared region – and one often needs to integrate over Y
an integral form whose behavior at infinity is delicate. One may want to in-
troduce an infrared regulator by restricting the integral over Y to an integral
over a large compact subset M ⊂ Y . The version of Stokes’s theorem that we
are in the process of describing governs the boundary terms that will arise in
integration by parts in this sort of situation.

With this understood, let us take the form σ in (3.54) to be exact, say
σ = dν. Then

(3.55)
∫
M

dν =
∫
Y

Θ(−f)dν =
∫
Y

d(Θ(−f) ν) −
∫
Y
(d(Θ(−f))) ν.

On the right hand side of (3.55), we can drop the exact term d(Θ(−f)ν),
by using Stokes’s theorem (3.53) for a supermanifold without boundary. On
the other hand, d(Θ(−f)) = −δ(f)df = −δN , where δN was defined in eqn.
(3.44). So, from (3.45), we have

(3.56)
∫
M

dν =
∫
N
ν,

where N = ∂M is defined by f = 0. This is Stokes’s theorem in this situation.
This construction did not really depend on the specific choice of the func-

tion f . That is because the function Θ(−f), which is all we really used, is
invariant under

(3.57) f → eφf,

where φ is real when the odd variables vanish. By contrast, Θ(−f) is not
invariant under something like f → f + αβ where α and β are odd variables
(coordinates or moduli), since Θ(−f − αβ) = Θ(−f) − αβδ(−f). So the
definition of M and N really relied on an equivalence class of functions f
modulo the relation (3.57). We do not need f to be globally-defined (though
it actually is always possible to find a globally-defined f); only Θ(−f) has
to be globally-defined. It suffices to cover the region near the boundary of
M with open sets Va in each of which one is given a function fa such that
fa = exp(φab)fb in Va ∩ Vb, for some function φab. Then Θ(−fa) = Θ(−fb)
in Va ∩ Vb. This gives a function that we can call Θ(−f) that is defined near
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the boundary of M (that is, near the vanishing locus of any of the fa) and
since it is 1 in the interior of M wherever it is defined (that is in ∪aVa), we
can extend its definition so that it equals 1 throughout the interior of M .

3.5. Supermanifold with boundary

Having come this far, we can give the appropriate definition of a supermani-
fold M with boundary without requiring M to be embedded in a supermani-
fold Y without boundary. The only subtle point is that part of the definition
of M involves a function f , or more precisely an equivalence class (3.57) of
such functions, whose vanishing defines the boundary of M .

We suppose that the reduced space Mred of M is an ordinary manifold
with boundary of dimension p. We cover M with small open sets Uα that do
not intersect its boundary, and small open sets Va that do intersect its bound-
ary. Each Uα is endowed as usual with local coordinates t1α . . . tpα|θ1

α . . . θ
q
α pro-

viding an isomorphism with an open subset in R
p|∗q. Each Va is likewise en-

dowed with local coordinates t1a . . . tpa|θ1
a . . . θ

q
a, now providing an isomorphism

with an open subset of the half-space tp ≤ 0 in R
p|∗q. Thus, the boundary

of M is always at tpa = 0. As usual, we have gluing functions in intersections
Uα ∩ Uβ, Uα ∩ Vb, and Va ∩ Vb. The only detail that is in any way special to
the case of a supermanifold with boundary is that in Va∩Vb, we put a special
condition on one of the gluing functions: we require that the gluing function
defining tpa when expressed in terms of t1b . . . | . . . θ

q
b takes the form

(3.58) tpa = exp(φab(t1b . . . | . . . θqb))t
p
b .

In other words, tpa and tpb are equivalent in the sense of (3.57). (In fact, it is
always possible to pick coordinates such that φab = 0 and tpa = tpb , though
there is no particularly natural way to do this.)

The above construction defines what we mean by a p|q-dimensional cs
supermanifold with boundary. The relation (3.58) ensures that we can consis-
tently set tpa = tpb = 0 and these conditions define an ordinary cs supermanifold
N without boundary of dimension p− 1|q.

Integration on a supermanifold with boundary is defined in a way that
should be almost obvious. If σ is a compactly supported section of Ber(M)
whose support is in just one of the Uα or Va, its integral is defined by a naive
Berezin integral (3.2); the integral of a general section of Ber(M) is defined
with the help of a partition of unity. The only subtlety is that if σ has compact
support in one of the boundary open sets Va, then

∫
Va

σ is invariant under
those coordinate transformations that act on tpa by tpa → eφtpa, but not under
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something like tpa → tpa + θ1
aθ

2
a. This is the reason that the condition (3.58) is

part of the definition of a supermanifold with boundary.11

Stokes’s theorem for a supermanifold with boundary says that if ν is an
integral form on M of codimension 1 than

(3.59)
∫
M

dν =
∫
N
ν.

If the gluing functions of M are real analytic, so that they can continued to
positive (but perhaps small) values of tpa, then this theorem is not more general
than (3.56). However, it holds whether or not there is such a continuation.
As usual, one first proves it by reduction to the ordinary form of Stokes’s
theorem for the case that ν is compactly supported in just one of the Uα or
Va; the general case follows by using a partition of unity.

This construction is useful in superstring perturbation theory in the pres-
ence of D-branes and/or orientifold planes, since the moduli space of open
and/or unoriented super Riemann surfaces is a supermanifold with boundary
in the sense just described.

3.6. Integration on more general submanifolds

We have so far considered two types of representation of the Weyl algebra
that was introduced in section 3.2. Differential forms correspond to functions
on ΠTM with polynomial dependence on the even variables dθi. They can
be integrated over submanifolds of M of dimension p|0, that is submanifolds
with zero fermionic dimension. Integral forms correspond to distributional
functions on ΠTM with support at dθi = 0. They can be integrated over
submanifolds with maximal fermionic dimension.

If we want to be able to integrate over submanifolds of M whose odd
dimension is positive, but not maximal, we must introduce more general rep-
resentations of the Weyl algebra. We need functions on ΠTM that have
polynomial behavior with respect to some of the dθi and compact support
with respect to others. Let us practice with a toy example of R0|∗2, with odd
coordinates θ1, θ2. We can represent the Weyl algebra starting with a state
|↑↓〉 that is annihilated by dθ1 and by ∂/∂dθ2. In the language of superstring

11Here is a simple example on a half-space t ≤ 0 in R
1|∗2. The Berezin integral

I =
∫

[dt|dθ1dθ2]w(t) vanishes if w is a function of t only. But if we are permitted
to transform from t to t∗ = t + θ1θ2, we get I∗ =

∫
[dt∗|dθ1dθ2]w(t∗ − θ1θ2) =∫

[dt∗|dθ1dθ2]
(
w(t∗) − θ1θ2w′(t∗)

)
, and now there is a boundary term at t∗ = 0. If

w is compactly supported, there is no boundary term at t∗ = −∞.
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perturbation theory, this choice of “picture” is midway between differential
forms and integral forms.

For an example of integrating a form of this type, let us take

(3.60) ω = θ2δ(dθ1)

and try to integrate over the 0|1-dimensional subspace N ⊂ R
0|∗2 defined by

the equation

(3.61) aθ1 + bθ2 = 0, a, b ∈ C.

Along N , we can eliminate θ2 by θ2 = −(a/b)θ1, dθ2 = −(a/b)dθ1. So we can
parametrize N by θ1, and the integral we have to do is

(3.62)
∫
R0|∗1

D(θ1, dθ1) (−a/b)θ1δ(dθ1) = −a

b
.

This is homogeneous in the parameters a, b, as it must be, since N is un-
changed in scaling those parameters. A noteworthy fact, however, is that the
integral has a pole at b = 0. It arises because if b = 0, the definition of N gives
θ1 = 0, so dθ1 is zero when restricted to N . But we cannot restrict δ(dθ1) to
dθ1 = 0. So σ can be integrated over a generic codimension 0|1 submanifold
of R0|∗2, but not over every one.

More generally, given any supermanifold M , we consider any class of
(distributional) functions on ΠTM with three basic properties:

(1) For any local coordinate system t1 . . . | . . . θq on M , the class of func-
tions is closed under the Clifford-Weyl algebra, that is under the action of dx
and ∂/∂dx, where x is any of t1 . . . | . . . θq.

(2) The class of functions on ΠTM is also closed under multiplication by
any function f(t1 . . . | . . . θp) on M , and under addition.

(3) Finally, we require that the given class of forms is invariant under
the scaling symmetry (3.34) of ΠTM that scales all fiber coordinates by a
common factor λ, and we say that a form that transforms as λr under this
operation has scaling weight r.

We call such objects pseudoforms (this terminology differs slightly from
the literature) or sometimes simply forms. The conditions imply among other
things that the exterior derivative

(3.63) d =
∑

I=1...|...q
dxI ∂

∂xI



Notes on supermanifolds and integration 37

acts on functions of the given class, increasing the scaling weight by 1, and that
it is possible to multiply a function of the given class by an ordinary differen-
tial form (understood as a function on ΠTM with polynomial dependence on
the dθ’s), increasing its scaling weight by the degree of the differential form.

The requirement of scale-invariance of the given class of functions implies
that the support of the functions in the space parametrized by dθ1 . . . dθq
is a conical submanifold. For superstring perturbation theory, it seems suf-
ficient to consider the case that the cone is just a linear subspace – so that
we consider wavefunctions with polynomial dependence on some of the dθ’s
and delta function dependence on the others. If the wavefunctions are local-
ized in s variables, we say that the class of functions in question correspond
to pseudoforms of picture number −s. The terminology is suggested by the
usual terminology in superstring perturbation theory. The picture number is
constant for a whole class of pseudoforms corresponding to a representation
of the Clifford-Weyl algebra. Clearly, there are many classes of pseudoforms
with the same picture number, since there are many linear subspaces (or
nonlinear cones) with the same dimension. Some operations that change the
picture number will be described in section 4.

If a form has scaling weight r and is localized with respect to n dθ’s (so its
picture number is −n), we call it a form of superdegree m|n, with m = r+n.
A simple example of a form of superdegree m|n is

(3.64) ω = f(t1 . . . | . . . θq)dt1 . . . dtm δ(dθ1) . . . δ(dθn).

We have used the first m dt’s and the first n dθ’s in writing this formula. The
form ω contains n delta functions of dθ’s, and has scaling weight m−n, so it is
indeed of superdegree m|n. The exterior derivative increases the scaling weight
by 1 without changing the picture number, so it maps forms of superdegree
m|n to forms of superdegree m + 1|n.

Given a form of superdegree m|n, we can try to integrate it on a submani-
fold N ⊂ M of dimension m|n. We say “try” because though there is a rather
natural operation, it is not defined for all N ; for some choices of N , one will
run into problems, as in the simple example that we gave above with R

0|∗2.
This should not be too discouraging, since something similar happens in ordi-
nary calculus: if one is given a k-form on an ordinary noncompact manifold,
one can try to integrate it over k-dimensional submanifolds, but sometimes
the integral will turn out to diverge.

The procedure for integration uses the fact that if N is embedded in M ,
then ΠTN is embedded in ΠTM . So we can try to restrict a function ω(x, dx)
on ΠTM to a function on ΠTN , which we will call by the same name. The
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only thing that may go wrong is that to make the restriction, we may need
to evaluate a delta function δ(dθ) (where θ is some linear combination of the
odd coordinates) at dθ = 0; this is what happened at b = 0 in the practice
example. If ω(x, dx) is localized with respect to n dθ’s, and N has fermionic
dimension n, then this will not occur at a generic point on a generic N .
If N is such that ω(x, dx) can be restricted to ΠTN without running into
trouble anywhere, then the restriction is everywhere localized with respect to
all dθ’s, and is an integral form on N . If ω(x, dx) is m|n-form, then its scaling
dimension is m − n, which ensures that if ω(x, dx) can indeed be restricted
to give an integral form on N , then the resulting integral form is a top form.
Given all this, the form ω(x, dx) can be integrated over N in the usual way.

Suppose instead that U ⊂ M has dimension m+1|n, with ω still an m|n-
form, and suppose that ω(x, dx) can be restricted to U . Then its support as
a function of dθ is entirely at the origin, so the restriction of ω(x, dx) to U is
again an integral form. But the scaling dimension of ω(x, dx) is too small by 1
to make a top form on U ; rather, ω(x, dx) is an integral form of codimension
1. So we cannot integrate ω over U , but we can integrate dω.

Now let U have boundary12 N . Then, applying the supermanifold version
of Stokes’s theorem to the integral form ω on U , we have

(3.65)
∫
U

dω =
∫
N
ω.

It follows from this that if dω = 0, then
∫
N ω is invariant under small dis-

placements of N ⊂ M and more generally under a certain class of allowed
homologies.

3.6.1. Another example We conclude by describing another entertaining
example. In R

1|1, with coordinates t|θ, we consider the form

(3.66) ω = θ dt δ′(dθ),

This form has scaling degree −1 and picture number −1. So it is a 0|1-form,
and we can hope to integrate it over a submanifold N of R1|1 of dimension
0|1. We define a suitable N by the equation t = αθ, with α an odd parameter.

12Strictly speaking, to match the definition we gave in section 3.4 of integration
on a supermanifold with boundary, we should proceed here in more steps. We should
first introduce a dimension m + 1|n submanifold Y ⊂ M without boundary. Then
we let N be a codimension one submanifold of Y defined by an equation f = 0,
and we define U by f < 0.
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Upon restriction to N , we have dt = −αdθ, so ω = −θαdθδ′(dθ) = θαδ(dθ).
We used the fact that for an even variable y, yδ′(y) = −δ(y). So

(3.67)
∫
N
ω =

∫
D(θ, dθ)θαδ(dθ) = α.

4. More operations on forms

4.1. Wedge products and contractions

Here we will describe some interesting operations on pseudoforms, largely
following [27, 28]. Some of this material may be useful background for super-
string perturbation theory. (On some points whose relevance is not immedi-
ately clear, we provide only references to the literature.)

One basic operation is the wedge product with a one-form. If α is a
one-form on M , we define an operator eα that acts on pseudoforms by mul-
tiplication by the corresponding function α(x, dx) on ΠTM :

(4.1) [eαω](x, dx) = α(x, dx)ω(x, dx).

This operation increases the degree by 1 and does not change the picture
number. The statistics of eα are the same as those of α. So eα is odd if
α = dt with t an even variable, but eα is even if α = dθ where θ is odd.

For a very simple operation that can change the picture number, we define
an operator δ(eα) as multiplication by δ(α(x, dx)):

(4.2) [δ(eα)ω](x, dx) = δ(α(x, dx))ω(x, dx).

These operators obey

(4.3) eαδ(eα) = δ(eα)eα = 0.

If α is an odd one-form such as dt, then eα is an odd variable. Since an odd
variable is its own delta function, we have simply

(4.4) δ(eα) = eα.

In particular, in this case δ(eα) is fermionic, does not change the class of a
form, and maps an m|n-form to an m+1|n-form. But if α is even, for instance
α = dθ, then multiplication by δ(α) = δ(dθ) is the most simple example of
an operator that changes the class of a form. It maps an m|n-form to an
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m|n + 1-form. The operator δ(eα) is odd regardless of whether α is even or
odd, though for even α this is subtle; see eqn. (3.41). For even α, the operator
δ(eα) is not defined on all classes of pseudoform, since an object with support
at dθ = 0 cannot be multiplied by δ(dθ).

If M is a supermanifold of dimension p|q, and γ1 . . . γq|ζ1 . . . ζp is a basis
of even and odd one-forms, then the operation

(4.5) f → δ(eγ1) . . . δ(eγq)δ(eζ1) . . . δ(eζp)f

supplies all the missing factors of dt and δ(dθ) and maps a function f to an
integral form of top degree.

The dual operation to multiplication by a one-form is contraction with a
vector field on M . For a vector field

(4.6) V =
∑

I=1...|...q
V I ∂

∂xI
,

we define the contraction operator

(4.7) iV =
∑

I=1...|...q
V I ∂

∂dxI

This operator has the opposite statistics to V . It maps a form of superdegree
m|n to one of superdegree m − 1|n. It is again useful to introduce delta
function operators that will obey

(4.8) iV δ(iV ) = δ(iV )iV = 0.

Here at first we treat separately the cases of an even vector field v or an odd
vector field ν. If v is an even vector field, so that iv is odd, then again the
definition of δ(iv) is obvious:

(4.9) δ(iv) = iv.

It is less obvious how to define δ(iν) for an odd vector field ν. However,
the appropriate definition has been given in [27]. If ν is an odd vector field on
M , it can be viewed as a section of ΠTM . And hence, for u an even scalar,
uν is a section of ΠTM and it makes sense to act on ΠTM by shifting the
fiber coordinates dx by dx → dx + uν. This makes possible the definition

(4.10) [δ(iν)ω](x, dx) =
∫

[du] ω(x, dx + uν),
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(for ω in a suitable class of pseudoforms) which can be seen to satisfy (4.8).
This operation maps a form of superdegree m|n to a form of superdegree
m|n − 1. The operator δ(iν) is odd, since the integration form [du] is odd.
Thus, for example, if ν and ν ′ are two odd vector fields, we have

(4.11) [δ(iν)δ(iν′)ω](x, dx) =
∫

[du du′] ω(x, dx + uν + u′ν ′),

and this is odd in ν and ν ′ since [du du′] = −[du′ du]. Thus δ(iV ) is odd
regardless of whether V is even or odd.

A little thought shows that actually we can define the delta function
operation in the same way also for an even vector field v. If v is an even
vector field and η is an odd constant, then ηv is an odd vector field and thus
again a section of ΠTM . So we can define

(4.12) [δ(iv)ω](x, dx) =
∫

[dη]ω(x, dx + ηv),

and this is equivalent to the previous definition.
Now suppose that we are given a collection of even and odd vector fields

v1 . . . vm|ν1 . . . νn. Acting with the whole product of delta functions

(4.13) δ(iv1) . . . δ(ivm)δ(iν1) . . . δ(iνn)

we get an operator that integrates over the m|n-dimensional subspace of the
fibers of ΠTM that is generated by v1 . . . | . . . νn. Explicitly, to act with the
product of delta function operators, we introduce n even and m odd integra-
tion variables u1 . . . un and η1 . . . ηm and perform the Berezin integral

(4.14)
∫

[du1 . . . | . . . dηm] ω
(
x, dx +

∑
uiνi +

∑
ηjvj

)
,

assuming that ω is a form of an appropriate type so that this integral makes
sense. Let us denote the integral as σ(v1 . . . | . . . νn). Actually, σ is a function
of x and possibly the fiber variables in ΠTM that we have not integrated
over; it depends on the values at x of the vector fields v1 . . . | . . . νn. To simplify
the notation, we denote σ simply as σ(v1 . . . | . . . νn).

The vector fields v1 . . . | . . . νn span a subbundle Vm|n of the tangent bundle
TM . Reversing the statistics gives a subbundle ΠVm|n of ΠTM . The integral
in (4.14) is an integral over ΠVm|n, but it is not quite true that the integral
σ(v1 . . . | . . . νm) depends on the chosen vector fields only via the subspace



42 Edward Witten

they generate. If we replace v1 . . . | . . . νn by another collection of vector fields
v′1 . . . | . . . ν ′n that span the same subspace, with

(4.15)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v′1
v′2
...
−
...
ν ′n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= W

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1
v2
...
−
...
νn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

for some linear automorphism W of ΠVm|n, then we can compensate for
this in (4.14) by redefining the integration variables u1 . . . | . . . ηn by a dual
linear automorphism, but this will change the integration measure by a factor
Ber(W ). So we get

(4.16) σ(v′1 . . . | . . . η′n) = Ber(W )σ(v1 . . . | . . . ηn).

A special case of this is that m|n equals the dimension p|q of M . In this
case, v1 . . . | . . . ηn is a basis of the tangent space to M . A function depending
on such a basis and obeying (4.16) is a section of Ber(M), as explained in
section 3.1.1. The integral in (4.15) is simply an integral over the fibers of
ΠTM → M , and what we have arrived at is an operation already described
in section 3.3.3: the map from functions on ΠTM to sections of Ber(M), by
integrating over the fibers of ΠTM .

If on the other hand m|n does not coincide with p|q, then we have de-
scribed something more general. For some choices of ω(x, dx), a function
σ(v1 . . . | . . . νn) obtained by integrating over an m|n-dimensional subbundle
of ΠTM may still depend on the other fiber coordinates. However, if ω is a
pseudoform of degree m|n in the sense described in section 3.6, then (for a
given choice of vector fields v1 . . . | . . . ηn) σ will be a function on M , and not a
more general function on ΠTM . In this case, σ(v1 . . . | . . . νn) is a differential
form on M of degree m|n, in the language of [17, 18], as reviewed in [9]. Such
an object is by definition a function of a point x ∈ M that depends on m even
and n odd vectors in the tangent space to x in M , with the restriction (4.16),
and also obeys a certain fundamental relation that is described on p. 57 of
[9]. This relation is automatically satisfied when σ is defined by an integral
(4.14). The fundamental relation might be important for some sort of string
or brane actions on supermanifolds.
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4.2. Picture-changing

For a vector field V , the operator δ(iV ) defined in section 4 is not invariant
under multiplying V by a constant, V → λV . Rather this operation rescales
δ(iV ) by λ or λ−1, depending on the statistics of V .

However, for the case of an odd vector field ν, there is a natural “picture-
changing” operation, defined in [27], which is invariant under ν → λν and
only depends on the 0|1-dimensional group of automorphisms of M generated
by ν. Let us call this group F ; it is isomorphic to R

0|1 (or R0|∗1). The F action
on M corresponds to a map m : F×M → M . Given a pseudoform ω(x, dx) on
M , we can pull it back to a form m∗(ω) on F ×M . Then we have a projection
π : F ×M → M that forgets the first factor. Integrating over the fibers of π,
we get again a pseudoform on M . So this gives an operation Γν = π∗m

∗ on
pseudoforms that (because we carry out one odd integration in integrating
over the fibers of π) maps an m|n form to an m|n− 1 form.

To make this explicit, we parametrize R0|1 by an odd variable τ , and write
the action of the group on M as

(4.17) xI → exp(τνJ∂/∂xJ)xI = xI + τνI .

As usual, this expansion stops quickly since τ 2 = 0. The pseudoform m∗(ω)
on F ×M is simply

(4.18) ω(x + τν, d(x + τν)) = ω

(
x + τν, dx + dτ ν − τ

∂ν

∂xA
dxA

)
.

And integration over the fibers means integrating over τ and dτ with the
natural measure D(τ, dτ). So the picture-changing operator Γν is defined by

(4.19) [Γνω](x, dx) =
∫

D(τ, dτ)ω(x + τν, d(x + τν)).

As explained in [27, 28], this is an abstract version of the picture-changing
operator of superstring perturbation theory. It is shown there that

(4.20) Γν = 1
2 (δ(iν)Lν + Lνδ(iν)) ,

where Lν is the Lie derivative,

(4.21) Lν = diν + iνd.

The exterior derivative d commutes with m∗ and π∗, so it commutes with Γν .
Additional interesting facts can be found in [27].
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5. Complex and smooth supermanifolds

5.1. First orientation

In this concluding section, we will compare complex supermanifolds to smooth
ones. The relevance for superstring perturbation theory will become clear.

For a first orientation to the problem, suppose that X is an ordinary com-
plex manifold, of dimension a, with local holomorphic coordinates z1 . . . za.
X can always be viewed as a smooth manifold of dimension 2a, local real
coordinates being ti = Re zi = (zi+zi)/2 and ta+i = Im zi = (zi−zi)/2

√
−1,

with i = 1 . . . a.
We can do the same thing on a supermanifold X – and this is often done

in the literature – if we are allowed to take the complex conjugates (and
therefore the real and imaginary parts) of both even and odd variables. This
would turn a complex manifold of dimension a|b into a real supermanifold of
dimension 2a|2b. But for superstring perturbation theory, that is not what
one wants to do, since we are never allowed to take the complex conjugate of
an odd variable.13 Instead a typical thing that we want to do is to relate X
to a cs supermanifold of dimension 2a|b, with no doubling of the fermionic
dimension.

For example, let X be the worldsheet of a heterotic string. From a holo-
morphic point of view, X is a complex supermanifold of dimension 1|1 with
local coordinates z|θ. (Holomorphically, a heterotic string worldsheet is not a
generic complex supermanifold of dimension 1|1; it has the additional struc-
ture of a super Riemann surface. The details, which are reviewed in [2], need
not concern us here.) But in heterotic string theory, there are antiholomorphic
as well as holomorphic worldsheet fields, and the antiholomorphic dimension
is 1|0. So we want to be able to view X as a smooth supermanifold of dimen-
sion 2|1. In what sense can we do this?

The question is trickier than one might at first think. We will consider
primarily two points of view, which generalize the following considerations in
conformal field theory on an ordinary Riemann surface. One typically consid-
ers correlation functions which are neither holomorphic nor antiholomorphic.
The expectation value of a product of operators Φ1 . . .Φs is often written

(5.1) 〈Φ1(z1; z1) . . .Φs(zs; zs)〉.
13And consequently, unless we are presented with a splitting, so that we know

which even variables are “purely bosonic,” we cannot take the complex conjugate
of an even variable either.
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There are two contrasting points of view about this formula:
(1) z is really the complex conjugate of z. Denoting an operator as Φ(z; z)

is merely a way of saying that Φ is an (operator-valued) function on Σ that
is neither holomorphic nor antiholomorphic.

(2) A Riemann surface Σ is a real-analytic two-manifold and as such it
can be analytically continued and viewed as a real slice in a two-dimensional
complex manifold. (How to do this concretely is explained in section 5.4.)
When this is done, z and z become independent complex variables; to em-
phasize this, we write z̃ instead of z. The correlation functions are likewise
real analytic (away from singularities when distinct points collide) so they
can be analytically continued to holomorphic functions

(5.2) 〈Φ1(z̃1; z1) . . .Φs(z̃s; zs)〉

of independent complex variables zi and z̃i. To be more precise, these functions
are holomorphic when z̃i is sufficiently close to zi. Setting z̃i = zi, we get the
usual correlation functions on Σ. The notation (5.1) is a shorthand for all
this.

In this section, we will attempt to generalize both points of view to su-
permanifolds. The first point of view is perhaps more obvious, but the second
point of view seems to be more robust.

5.2. Complex supermanifold as a smooth supermanifold

Let X be a complex manifold of dimension a|b. We would like to view X
as a smooth cs supermanifold of dimension 2a|b. We will first explain what
appears to be the best that one can do, and then explain why the construction
is not completely natural.

First of all, if Y is an ordinary complex manifold of complex dimension
a, then the complex conjugate of Y , which we denote Y , is defined to be the
same manifold with opposite complex structure. So holomorphic functions
on Y are antiholomorphic functions on Y , and vice-versa. Concretely, if one
covers Y by open sets Uα with local holomorphic coordinates ziα, i = 1 . . . a
and gluing maps

(5.3) ziα = f i
αβ(z1

β . . . z
a
β),

then Y is covered by the same open sets Uα with local holomorphic coordi-
nates z̃iα = ziα and gluing maps

(5.4) z̃iα = f
i
αβ(z̃1

β . . . z̃
a
β).
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We recall that the definition of the function f is such that f(w) = f(w), so
that the above relations are consistent with z̃iα = ziα.

Now let X be a complex supermanifold of dimension a|b. We cover X
by open sets Uα and as usual describe X by local holomorphic coordinates
z1
α . . . | . . . θbα with holomorphic gluing laws:

ziα = f i
αβ(z1

β . . . | . . . θbβ)
θsα = ψs

αβ(z1
β . . . | . . . θbβ).(5.5)

X also has a reduced space Xred, which is an ordinary complex manifold of
dimension a. Its gluing relations are obtained from those in (5.5) by setting all
odd variables – both the θ’s and the possible odd moduli of X – to zero. (Why
the odd variables must be set to zero to define the reduced space was explained
in section 2.1.1.) Gluing laws for Xred, the complex conjugate of Xred, are
obtained by setting the odd variables to zero and complex-conjugating:

(5.6) z̃iα = f
i
αβ(z̃1

β . . . |0 . . . 0).

This ensures that

(5.7) f̃ i
αβ(z1

β . . . z
a
β) = f i

αβ(z1
β . . . z

a
β|0 . . . 0).

Now we introduce 2a real coordinates t1 . . . t2a:

ziα = tiα +
√
−1 ti+a

α

z̃iα = tiα −
√
−1 ti+a

α .(5.8)

By virtue of (5.7), the gluing relations (5.5) and (5.6) are compatible with
reality of t1 . . . t2a when all odd variables (including odd moduli) vanish.
So when regarded as gluing relations for the whole collection of variables
t1 . . . t2a|θ1 . . . θb, these formulas define a smooth manifold Xcs of dimension
2a|b. In particular, the odd coordinates of Xcs are the same as those of X.

Starting with a complex supermanifold X, we have defined a smooth
supermanifold Xcs on which it makes sense to discuss both holomorphic func-
tions (functions of z1

α . . . | . . . θbα) and antiholomorphic functions (functions of
z̃1
α . . . z̃

a
α). This corresponds to point of view (1) of section 5.1.

5.2.1. Critique Though this construction is valid as far as it goes, there
is a flaw: the passage from X to Xcs is not as natural as one would like. It
depends in a subtle way on the specific gluing construction.

In fact, if we had a completely natural way to transform a complex su-
permanifold X to a smooth supermanifold Xcs, it would follow that for any
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isomorphism ϕ : X ∼= Y between complex supermanifolds, we would get a
corresponding isomorphism ϕcs : Xcs → Ycs. The isomorphisms ϕcs would
obey the same algebraic relations as the ϕ. So in particular, setting Y = X,
the supergroup G of automorphisms of X would act on Xcs.

To see that this is a problem, suppose that X = CP
1|1, with homogeneous

coordinates u, v|θ. This example simply corresponds to a genus 0 worldsheet
of the heterotic string. The automorphism supergroup is14 G = PGL(2|1), act-
ing by linear transformations of the homogeneous coordinates. To promote X
to a smooth supermanifold, we would want to introduce antiholomorphic ho-
mogeneous coordinates ũ, ṽ, which roughly speaking are complex conjugates
of u, v, but of course we introduce no corresponding odd variable θ̃. There is
no way for PGL(2|1) to act on the pair ũ, ṽ, so the passage from X to Xcs
cannot be completely natural.

Let us see what happens if we study this example with the gluing con-
struction. We can cover X with an open set U1 in which u �= 0 and a second
set U2 in which v �= 0. In U1, we take coordinates z1 = v/u, ζ1 = θ/u, and in
U2, we set z1 = u/v, ζ2 = θ/v. Following the above recipe, the gluing laws of
Xcs are

z2 = 1
z1

ζ2 = ζ1
z1

z̃2 = 1
z̃1
.(5.9)

In the starting point, without changing anything else, we could have re-
placed z1 by z′1 = z1 + αζ, where α is an odd parameter. This is an equally
valid starting point, and the above recipe gives a smooth supermanifold X ′

cs
with

z2 = 1
z′1

+ αζ1
(z′1)2

ζ2 = ζ1
z′1

z̃2 = 1
z̃1
.(5.10)

14If CP
1|1 is viewed as a super Riemann surface, its automorphism group is

reduced from PGL(2|1) to OSp(1|2). This does not really affect the discussion in
the text.
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Note that the gluing law for z̃1 and z̃2 is unchanged, since to define it, we are
supposed to first set the odd variables to zero.

In fact, X ′
cs is isomorphic to Xcs by an isomorphism that maps holo-

morphic functions to holomorphic functions and antiholomorphic functions
to antiholomorphic functions. The problem is that there are multiple equally
natural isomorphisms that do this. We could transform the gluing formulas
(5.10) back into (5.9) by replacing z′1 by z′′1 = z′1 − αζ1 (which happens to be
the same as z1) or by replacing z2 with z′2 = z2 − αζ2z2.

So Xcs is unique up to isomorphism, but not up to a unique isomorphism.
There is no good way to pick a particular isomorphism.

The author suspects that it is better to develop a different approach,
following point of view (2) from section 5.1. In fact, in the process, we will
get a new understanding of the smooth supermanifold Xcs that was defined
above.

As a preliminary, we will describe smooth submanifolds of a complex
supermanifold. Then we return to our theme in section 5.4.

5.3. Submanifolds of a complex supermanifold

So far we have found it difficult to give a completely natural notion of a not
necessarily holomorphic function on a complex supermanifold X.

A function on X would be a map from X to C, or perhaps to some ring
generated over C by odd elements.

Maps in the opposite direction behave much better. Thus, instead of a
map from X to C, let us consider a map from some smooth supermanifold
M to X.

There is no problem at all in defining what we mean by a smooth map
φ : M → X. Locally, such a map expresses the local coordinates z1

α . . . | . . . θbα
of X as smooth functions of local coordinates t1τ . . . | . . . ηsτ of M . (To compare
the descriptions in different local coordinate systems, one just asks that the
image in X of a given point in M should not depend on the coordinates
used, on either M or X.) Moreover, there is no problem in deciding whether
such a map is an embedding. We require that the map of reduced spaces
φred : Mred → Xred is an embedding, and that the differential of the map φ
in the odd directions is sufficiently generic.15 If φ : M → X is an embedding,

15If Xcs is a smooth supermanifold associated to X as in section 5.2 (the following
definition does not depend on the precise construction of Xcs) with local coordinates
u1
α . . . | . . . θbα, then one requires that at least one of the maximum rank minors

of the matrix of derivatives ∂(u1
α . . . | . . . θbα)/∂(t1τ . . . | . . . ηsτ ) should have nonzero

Berezinian. This echoes the condition for a smooth map of ordinary manifolds to
be a local embedding.



Notes on supermanifolds and integration 49

we call M a smooth submanifold (or subsupermanifold) of X.
There are many natural examples of such smooth submanifolds. In fact,

we can adapt something explained in section 2.2. Let Nred be any submanifold
of the reduced space Xred of X. We can view X as a smooth supermanifold
by following the construction of section 5.2 (for the present purpose, it does
not matter that this construction is slightly unnatural). Then as explained in
section 2.2, to the submanifold Nred ⊂ Xred, we can associate a submanifold
N ⊂ X not quite uniquely, but in a way that is unique up to homology (up
to infinitesimal wiggling of the fermionic directions).

This gives an abundant source of smooth submanifolds of a complex su-
permanifold, and the construction can be further generalized by thickening
Nred in only some of the fermionic directions. As an application, we will gen-
eralize to a complex supermanifold the notion of the periods of a holomorphic
differential form of top dimension on an ordinary complex manifold.

5.3.1. Periods on a complex supermanifold If Y is an ordinary com-
plex manifold of complex dimension a, then a top-dimensional holomorphic
form σ on Y is in particular a closed differential form of degree a. If N is an
oriented middle-dimensional cycle in Y , and thus of real dimension a, we can
define the period

∫
N σ, which only depends on the homology class of N .

To generalize this to a complex supermanifold X, we need to define the
holomorphic analog of the Berezinian line bundle, which we introduced in the
smooth case in section 3.1. The cotangent bundle of X in the holomorphic
sense16 is a holomorphic bundle T ∗X of rank a|b. We define a holomorphic
version of the Berezinian of X, which we will call Ber(X), by imitating the def-
inition used for smooth supermanifolds. To any local system T = z1 . . . | . . . θb
of holomorphic coordinates on M , we associate a local holomorphic section of
Ber(X) that we denote [dz1 . . . | . . . dθb]. If T̃ = z̃1 . . . | . . . θ̃b is a second local
holomorphic coordinate system, then we relate the two sections of Ber(X) by
the formula (3.10).

Now we want to ask in what sense a holomorphic section σ of Ber(X) can
be integrated. For this, one approach is to view X as a smooth supermanifold
Xcs of dimension 2a|b. From that point of view, σ corresponds to an integral
form on Xcs of codimension a, which moreover is closed, dσ = 0. The map
from a section of Ber(X) to an integral form takes [dz1 . . . | . . . dθb] to the
integral form dz1 . . . dza δ(dθ1) . . . δ(dθb). This is of codimension a in the real
sense as dz̃1 . . . dz̃a are missing.

16It seems that, just as X does not have a completely natural structure of smooth
supermanifold, it does not have a completely natural tangent or cotangent bundle
except in the holomorphic sense.
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If Nred ⊂ Xred is of middle dimension, then the corresponding cycle N ⊂
X is of real codimension a|0. So (given an appropriate orientation condition),
there is a natural integral

∫
N σ. This only depends on the homology class of

Nred.
So σ ∈ H0(X,Ber(X)) defines a linear function on the middle-dimensional

homology of Xred. By ordinary topology, this means that σ determines a class
[σ] in the middle-dimensional complex-valued cohomology Ha(Xred,C). For
example, if X is a super Riemann surface, then a holomorphic section of
Ber(X) has periods associated to ordinary A-cycles and B-cycles in the ordi-
nary Riemann surface Xred, and defines a class in H1(Xred,C). This enables
one to define the super period matrix of a super Riemann surface, though it
is tricky to show that the super period matrix is symmetric.

5.4. Alternative point of view

Having completed the preliminaries of section 5.3, we will now generalize
viewpoint (2) of section 5.1 to supermanifolds.

First let us spell out more precisely what viewpoint (2) means, again
taking Riemann surfaces as an example. For Σ a Riemann surface, let ΣR be
a copy of Σ and let ΣL be a copy of Σ with opposite complex structure. Then
ΣL × ΣR is a complex manifold of complex dimension 2, and Σ is naturally
embedded in ΣL×ΣR as the diagonal. If we view Σ is a real analytic manifold
of dimension 2, then we can regard ΣL × ΣR as a complexification of Σ.

In the last paragraph, we do not literally need to take Σ to be the diag-
onal in ΣL × ΣR. Σ can be any real-analytic submanifold of ΣL × ΣR that
is sufficiently close to the diagonal. ΣL × ΣR can be understood as a com-
plexification of any such Σ. One can study conformal field theory on any
such Σ and its content is essentially independent of Σ since the correlation
functions can anyway be analytically continued to holomorphic functions on
an open set in ΣL × ΣR. Restricted to any such Σ, the correlation functions
〈Φ1(z̃1; z1) . . .Φs(z̃s; zs)〉 have only the usual CFT singularities when pairs of
points coincide.

By a “holomorphic function on Σ,” we mean the restriction to Σ of a holo-
morphic function on ΣR, and similarly an “antiholomorphic function on Σ” is
the restriction to Σ of an antiholomorphic function on ΣR. Unless Σ is actually
the diagonal in ΣL ×ΣR, it is not true that a antiholomorphic function on Σ
is the complex conjugate of a holomorphic function. This is analogous to the
situation encountered in section 5.2 when we associated a smooth superman-
ifold Xcs to a complex supermanifold X: the antiholomorphic coordinate z̃ is
not quite the complex conjugate of z; it has this interpretation only modulo
the odd variables.
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We can now reinterpret the object Xcs defined in section 5.2. Let XR

be a copy of X and let XL be Xred, that is, XL is the reduced space Xred
with complex structure reversed. The formula (5.8) enabled us to define a
smooth supermanifold Xcs with local coordinates t1α . . . t2aα |θ1

α . . . θ
b
α. However,

bearing in mind that the odd coordinates θiα of XR are the same as the
odd coordinates of Xcs, we can read the first line of eqn. (5.8) as defining a
continuous map from Xcs to XR. And the second line of eqn. (5.8) similarly
defines a continuous map from Xcs to XL. Altogether what we have is a
smooth supermanifold Xcs with an embedding Xcs ↪→ XL ×XR.

The reduced space of Xcs, moreover, is the diagonal in the reduced space
of XL × XR. And we can interpret XL × XR as the complexification of
Xcs. (This complexification is defined by interpreting all local coordinates
t1α . . . t

2a
α |θ1

α . . . θ
b
α of Xcs as independent complex variables. From eqn. (5.8),

this just means that ziα and z̃iα are independent complex variables, as is ap-
propriate for defining XL ×XR.)

In short, the relation between Xcs and XL × XR is very similar to the
relation between Σ and ΣL × ΣR. The main difference is that in the bosonic
case, there is a completely natural choice of Σ (namely the diagonal in ΣL ×
ΣR), but for X a complex supermanifold, it does not seem that there is
a completely canonical choice of Xcs. We can simply take Xcs to be any
subsupermanifold of XL × XR of codimension 2a|0 whose reduced space is
sufficiently close to the diagonal in (XL ×XR)red.

If we wish, we can take the reduced space of Xcs to be precisely the
diagonal in (XL × XR)red, as we did in section 5.2 in the original definition
of Xcs. But even then, it does not seem that there is a completely canonical
choice for Xcs itself.

5.5. Application to string theory: the worldsheet

The most prominent supermanifolds in superstring perturbation theory are
the string worldsheet and the supermoduli space over which one must in-
tegrate to compute scattering amplitudes. Let us consider both from the
viewpoint just proposed.

First we consider the string worldsheet, starting with the heterotic string.
We let ΣR be a super Riemann surface; this is a complex supermanifold of
dimension 1|1 that obeys some additional conditions that are described, for
example, in [2]. These additional conditions need not concern us here. We let
ΣL be an ordinary Riemann surface that is sufficiently close to the complex
conjugate of the reduced space of ΣL. So ΣL×ΣR is a complex supermanifold
of dimension 2|1. To get a candidate for the worldsheet of a heterotic string,
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we let Σ be a smooth submanifold of ΣL×ΣR of dimension 2|1 whose reduced
space is sufficiently close to the diagonal in (ΣL × ΣR)red. For example, we
may start by picking Σred ⊂ (ΣL × ΣR)red to be any cycle sufficiently close
to the diagonal and then “thicken” it slightly in the fermionic directions (as
explained in section 2.2) to get Σ.

If we wish, we can assume that ΣL is precisely the complex conjugate of
ΣR,red and take Σred to be the diagonal in (ΣL × ΣR)red. If we do so, then
Σ can be ΣR,cs, the cs version of ΣR as defined (with some choice of gluing
law) in section 5.2. But there is no reason to limit ourselves to precisely this
case. At any rate, even if one wishes to restrict to the case that Σ is ΣR,cs,
the present approach makes it more clear how natural ΣR,cs is or is not.

The main thing we need to know to make sure that this approach to
heterotic string theory makes sense is that given any Σ ⊂ ΣL ×ΣR as above,
the worldsheet action of the heterotic string can be defined as an integral over
Σ, and moreover this integral does not depend on the choice of Σ. The relevant
facts are explained in [2]. The Lagrangian density of the heterotic string
will be a holomorphic section of the holomorphic Berezinian Ber(ΣL × ΣR)
(defined in a suitable neighborhood of the diagonal in the reduced space) and
as explained in section 5.3.1, this can be integrated over the real cycle Σ,
with a result that only depends on the homology class of Σ. We do not have
any way to pick a canonical Σ, but any choice of Σ will lead to the same
integrated worldsheet action.

For Type II superstring theory, the basic idea is the same. The holomor-
phic and antiholomorphic dimensions of the string worldsheet will now both
be 1|1, but all the considerations that we have described are still relevant
since antiholomorphic odd coordinates are not supposed to be in any sense
complex conjugates of holomorphic odd coordinates. For Type II superstring
theory, we let both ΣL and ΣR be super Riemann surfaces, such that the re-
duced space of ΣL is sufficiently close to the complex conjugate of the reduced
space of ΣR. (No relationship is assumed between the spin structures of ΣL

and ΣR.) ΣL×ΣR is a complex supermanifold of dimension 2|2. Now we let Σ
be any smooth subsupermanifold of ΣL×ΣR of dimension 2|2 whose reduced
space is sufficiently close to the diagonal. Just as for the heterotic string, we
may start by picking Σred ⊂ (ΣL×ΣR)red to be any cycle sufficiently close to
the diagonal and then “thicken” it slightly in the fermionic directions to get
Σ. Again, the worldsheet action can be defined by integrating over Σ a holo-
morphic section of Ber(ΣL×ΣR) (defined sufficiently close to the diagonal in
the reduced space) and the integrated action does not depend on the precise
choice of Σ.
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Whenever we say that two objects are “sufficiently close,” one may inter-
pret this to mean that the objects in question are equal if the odd variables
are set to zero. (For reduced spaces, this means simply that they are equal.)
That will always be sufficiently close for any purpose. But in any concrete
case, the two objects need not be quite so close as that, and it is sometimes
better to allow oneself a little more elbow room.

5.6. Application to string theory: supermoduli space

The other supermanifold that plays a prominent role in superstring pertur-
bation theory is the moduli space over which one integrates in computing
scattering amplitudes.

In each of the above constructions, let ML be the moduli space parame-
trizing the possible choices of ΣL, and let MR be the moduli space parametriz-
ing ΣR. Concretely, for either the heterotic string or Type II, MR is the mod-
uli space M of super Riemann surfaces and its reduced space is what we will
call Mspin, which parametrizes an ordinary Riemann surface with a choice of
spin structure. As for ML, for the heterotic string, it is what we will call M,
the moduli space of ordinary Riemann surfaces; for Type II, it is again the
moduli space M of super Riemann surfaces. The reduced space of ML×MR

is therefore M×Mspin for the heterotic string, or Mspin ×Mspin for Type
II.

If we simply let ΣL and ΣR vary independently, the moduli space parame-
trizing ΣL × ΣR is the product ML ×MR. However, in string theory, we do
not let ΣL and ΣR vary independently. Roughly speaking, the bosonic moduli
of ΣL are supposed to be complex conjugates of the bosonic moduli of ΣR,
though we want no relation between the odd moduli of ΣL and those of ΣR. To
implement this, we proceed as follows. In the reduced space (ML ×MR)red,
we define a submanifold Γred by requiring that the complex structures of the
ordinary Riemann surfaces parametrized by ML,red and MR,red are complex
conjugates (one assumes no relationship between the spin structures). Then in
the usual way, we thicken Γred slightly to a subsupermanifold Γ ⊂ ML×MR

of the same codimension.17

Γ has the necessary properties to be the integration cycle of superstring
perturbation theory. The worldsheet path integral determines a holomorphic
section (defined in a neighborhood of Γred) of the holomorphic Berezinian
Ber(ML ×MR). For the usual reasons, subject to a caveat that we explain

17This definition has been given in [11], p. 95. As usual, we could replace Γred
by any cycle sufficiently close to the one stated.
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momentarily, the integral of this section over Γ does not depend on the choice
of Γ .

The reason that a caveat is needed is that ML, MR, and Γ are all not
compact. The integrals that one encounters in superstring perturbation theory
have a delicate behavior at infinity. Dealing with these integrals requires,
among other things, some care in specifying how Γ should behave near infinity.
The region at infinity that causes the subtleties is the infrared region, and
the subtleties go into showing that superstring perturbation theory has the
expected infrared behavior.

We can summarize all this as follows. There are completely natural moduli
spaces ML and MR for antiholomorphic and holomorphic variables. It seems
doubtful that there is a natural moduli space that combines the two types
of variable, but up to homology there is a natural integration cycle Γ ⊂
ML × MR, which is what one actually needs for superstring perturbation
theory.
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