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A perturbative approach to the construction of initial
data on compact manifolds

Juan A. Valiente Kroon and Jarrod L. Williams

Abstract: We discuss the implementation, on compact manifolds,
of the perturbative method of Friedrich-Butscher for the construc-
tion of solutions to the vacuum Einstein constraint equations. This
method is of a perturbative nature and exploits the properties of
the extended constraint equations — a larger system of equations
whose solutions imply a solution to the Einstein constraints. The
method is applied to the construction of nonlinear perturbations of
constant mean curvature initial data of constant negative sectional
curvature. We prove the existence of a neighbourhood of solutions
to the constraint equations around such initial data, with partic-
ular components of the extrinsic curvature and electric/magnetic
parts of the spacetime Weyl curvature prescribed as free data. The
space of such free data is parametrised explicitly.
Keywords: Einstein constraint equations, elliptic systems, com-
pact manifolds.

1. Introduction

The problem of constructing initial data for the Cauchy problem in Gen-
eral Relativity, with origins in the work of Lichnerowicz, has proven to be a
rich and interesting problem both from the mathematical and the physical
points of view. Recall that an initial data set for the Cauchy problem in Gen-
eral Relativity consists of a triple (S,h,K), with S a 3-dimensional smooth
orientable manifold (the initial hypersurface), h a Riemannian metric on S,
and K (the extrinsic curvature) a symmetric 2-tensor over S, satisfying the
Einstein constraint equations

r[h] + K2 −KijK
ij = 2λ,(1a)

DiKij −DjK = 0.(1b)
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Here, r[h] denotes the Ricci scalar curvature of h and K ≡ hijKij , the mean
extrinsic curvature. Given a solution to the Einstein constraints, the foun-
dational result of Choquet-Bruhat (see [11]) guarantees the existence of a
Cauchy development, (M, g), of (S,h,K) — i.e. a solution (M, g) to the
Einstein field equations with h and K equal to the first and second fundamen-
tal forms induced by S ↪→ M. The Hamiltonian and momentum constraints
(1a)–(1b) comprise a highly-coupled system of partial differential equations,
and their analysis therefore presents a significant challenge. The challenge is,
however, twofold: in addition to the mathematical difficulty of analysing such
a system of equations, there is on the other hand the difficulty of ensuring
that the solutions, however obtained, are physically meaningful. The latter
problem is increasingly pertinent as we move into the age of gravitational
wave astronomy.

To date, the most popular solution methods have been the so-called con-
formal method of Lichnerowicz and Choquet-Bruhat (see e.g. [11]), and the
related conformal thin sandwich method. Additionally, there are various tech-
niques based on “gluing” constructions, for example. For an overview of these
methods, we refer the reader to [3, 11, 17, 26]. These techniques share in com-
mon the fact that they rely on reformulating the constraint equations (which
are underdetermined elliptic) as a system of elliptic PDEs — requiring, in
particular, the appropriate choice of freely prescribed and determined fields
— to which the tools of the theory elliptic PDEs may then be applied. One
of the features of the conformal method, in particular, is that the free data
are York-scaled, so that one needs to solve the full system of (conformally for-
mulated) constraint equations, solving in particular for the conformal factor,
before one can obtain the corresponding physically meaningful counterparts
of the free data via conformal rescaling. Recent work aiming at making the
conformal method more physically relevant can be found in e.g. [23, 24].

The purpose of the present article is to explore an alternative perturba-
tive approach (to be called the Friedrich-Butscher method), first considered
in [8, 9] and implemented there to prove the existence of non-linear perturba-
tive solutions of the constraint equations around flat initial data. The method
was adapted in [13] to prove, in particular, the existence of constant scalar
curvature manifolds as perturbations of hyperbolic space, and to hence con-
struct hyperboloidal (umbilical) initial data sets that can be thought of as
perturbations of the standard hyperboloid of Minkoswki space. Here we will
be interested in applications to closed (i.e. compact, without boundary) ini-
tial hypersurfaces S — i.e. the construction of initial data for “cosmological
spacetimes”. In this approach, the central object of study is the system of so-
called extended constraint equations. While the extended constraint equations
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are entirely equivalent to the Einstein constraint equations — see Section 2
— their additional structure naturally lends itself to a choice of freely pre-
scribed data and determined fields that differs from that of the conformal
method. In particular, in this method certain components of the Weyl curva-
ture (restricted to the initial hypersurface S) of the development (M, g) have
the natural interpretation of being freely prescribed data. Note that since the
method is not based on a conformal reformulation of the constraints, the free
data are physical in the sense of determining, a priori, physically relevant
properties of the initial data set. This method, therefore, offers a new per-
spective on the classical problem of identifying the gravitational degrees of
freedom of solutions to the Einstein field equations — the free data can be
thought as parametrising the space of solutions of the constraints in a neigh-
bourhood of the given background initial data set. Although local, in the sense
that the free data is given with reference to a fixed background solution, this
is perhaps a natural approach within the framework of the Cauchy problem,
in particular in problems relating to Cauchy stability.

The extended constraint equations can also be seen as a particular case
of the conformal constraint equations of Friedrich (see [16]), corresponding to
a trivial conformal factor. The conformal constraint equations offer a promis-
ing alternative for the construction (on non-compact manifolds) of initial data
with controlled asymptotics. A detailed understanding of the extended con-
straints is a necessary first step towards the study of the conformal constraint
equations.

In restricting to the case of closed initial hypersurfaces, S, we hope to
bring to the foreground the more geometric aspects of the method, emphasis-
ing the key structural features of the extended constraints that enable such
an approach. In the first half of the article — Sections 2 and 3 — we discuss
in fairly general terms the main aspects of the method, identifying structural
features of the extended constraint equations, in addition to the potential
restrictions imposed on the background initial data. In particular, we iden-
tify certain obstructions to the implementation of the method, at least in
its present form — see Section 3.4. As proof of concept, the method is then
implemented for a class of background initial data which we refer to as con-
formally rigid hyperbolic initial data. Here, the property of conformal rigidity
is, roughly speaking, the requirement that there exist no perturbations of the
metric that preserve conformal flatness to first order (except, of course, the
pure-gauge perturbations) — in the case considered here, this is equivalent
to the requirement that the metric admit no tracefree Codazzi tensors, see
Section 3.4 for more details. Such a background solution may be thought of as
constant extrinsic mean curvature (CMC ) initial data for a spatially compact
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analogue of the k = −1 Friedmann–Lemaître–Robertson–Walker spacetime.
We will see in Section 4.4 that this class of background initial data, being
conformally flat, has the additional feature that it allows for an explicit con-
struction and parametrisation of the free data.

So far, it is unclear whether the obstructions to the method associated
to the existence of globally defined conformal Killing vectors and Codazzi
tensors are an unavoidable deficiency of the method, or whether they can be
overcome with some appropriate modifications. An analogy can be drawn here
with the conformal method, in which the existence of a non-trivial conformal
Killing vector for the seed metric is an obstruction to its implementation —
see, for example, [3]. Similar obstructions also arise in the gluing methods. In
the case of the conformal method, there have been recent attempts to remove
the assumption of the non-existence of conformal Killing fields — see, for
example [19]. It is plausible that the obstructions in the Friedrich–Butscher
method, too, are not essential.

The main result of this article can be summarised as follows:

Theorem. Let (S, h̊, K̊) be a conformally rigid hyperbolic initial data set on
a compact manifold S. Then for each pair of sufficiently small tensor fields
Tij , T̄ij over S, transverse-tracefree with respect to h̊, and each sufficiently
small scalar field φ over S, there exists a solution of the Einstein constraint
equations (S,h,K) with trh̊(K−K̊) = φ and for which the electric and mag-
netic parts of the Weyl curvature (restricted to S) of the resulting spacetime
development take the form

Sij = L̊(X)ij + Tij − 1
3 trh(L̊(X) + T ) hij ,

S̄ij = L̊(X̄)ij + T̄ij − 1
3 trh(L̊(X̄) + T̄ ) hij ,

for some covectors X, X̄ over S, where L̊ denotes the conformal Killing
operator with respect to h̊.

A precise statement of the above theorem is given in Section 4, Theorem 1.

Outline of the article The structure of this article is as follows: in Section
2 we introduce the extended constraint equations and discuss their relation-
ship to the Einstein constraint equations. In Section 3, we describe in general
terms the Friedrich-Butscher method; in Section 3.2 we outline the general
procedure for the reformulation of the extended constraint equations as an el-
liptic system; the potential obstructions to the implementation of the method
are discussed in Section 3.4, motivating our subsequent restriction to confor-
mally rigid hyperbolic background initial data. In Section 4 the method is
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carried out in this case, the main result being given in Theorem 1 of Section
4.1, and proved by means of Propositions 1 and 4 in Sections 4.2 and 4.3.

Notation and conventions In the following we will use (S,h) to denote
a Riemannian manifold. The metric h is assumed to be positive definite. The
Levi-Civita connection will be denoted by D, and the Latin indices i, j, k, . . .
will denote abstract tensorial 3-dimensional indices. Where convenient we
make use of index-free notation in which tensorial objects are written in bold-
face.

Our conventions for the Riemann curvature are fixed by

(DiDj −DjDi)vk = rklijv
l.

The Ricci curvature and scalar are rij ≡ rlilj , r ≡ hijrij .

2. The extended Einstein constraint equations

The extended Einstein constraint equations (or extended constraints for short)
on a spacelike hypersurface S of a 4-dimensional Lorentzian manifold (M, g)
are given by the conditions

(2) Jijk = 0, Λ̄i = 0, Λi = 0, Vij = 0,

in terms of the zero-quantities

Jijk ≡ DiKjk − DjKik − εlijS̄kl,(3a)
Λi ≡ DjSi

j − εiklK
jkS̄j

l,(3b)
Λ̄l ≡ DiS̄il − εljkKi

krij ,(3c)
Vij ≡ rij − 2

3λhij − Sij −Ki
kKjk + Kk

kKij .(3d)

They are to be read as equations for a Riemannian metric hij , a symmetric
2-tensor Kij to be interpreted as the extrinsic curvature, and two symmetric
h-tracefree tensors Sij , S̄ij .

The system (3a)-(3d) can be seen as a particular case of Friedrich’s confor-
mal constraint equations — namely, when the conformal rescaling is trivial,
see [27]. The equations associated to the zero-quantities (3a) and (3d) are
nothing other than the Codazzi–Mainardi and Gauss–Codazzi equations —
recall that in three dimensions the essential components of the Riemann cur-
vature tensor are contained in the Ricci tensor. The equations associated to
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the zero-quantities defined in (3b)-(3c) are the projections onto S of the sec-
ond Bianchi identity of the ambient spacetime (assuming that the Einstein
vacuum field equations hold):

∇[aCbc]de = 0,

where Cabcd denotes the Weyl tensor. Accordingly, the fields Sij and S̄ij can
be interpreted, respectively, as the electric and magnetic parts of Cabcd with
respect to the normal of S — the latter 3-manifold being thought of as a
spacelike hypersurface of a spacetime (M, g).

Remark 1. The equations associated to the zero-quantities defined in (3b)-
(3c) may also be interpreted as integrability conditions for the equations
associated to (3a) and (3d). More specifically, the zero-quantities satisfy the
relations

Λ̄l + 1
2εijkD

kJ ij
l = 0,(4a)

Λj + DiVj
i − 1

2DjVi
i −KikJj

ik + KjkJ
ik

i + KJj
i
i = Dirij − 1

2Djr = 0,(4b)

where in the latter we are making use of the contracted Bianchi identity and
K denotes the trace of Kij with respect to hij . In particular, if Jijk = 0 and
Vij = 0, then Λi = Λ̄i = 0 automatically.

Taking the appropriate traces of (3a) and (3d), one obtains the Einstein
constraint equations

Jij
i ≡ DiKij −DjK = 0,(5a)

Vi
i ≡ r − 2λ−KijK

ij + K2 = 0.(5b)

It follows then that any solution to the equations associated to the zero-
quantities (3a)-(3d) gives rise also to a solution of the Einstein constraints.
The reverse is also true, since, having obtained a solution (S,h,K) of the
Einstein constraints, one simply defines

Sij = rij − 2
3λhij −Ki

kKjk + KKij ,(6a)
S̄kl = −εlijD

jKk
i.(6b)

By construction then we have Jijk = 0, Vij = 0, whence the integrability
conditions imply Λi = Λ̄i = 0. Hence, solutions of the extended constraints
and of the Einstein constraint equations are in direct correspondence.
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Remark 2. Note that, assuming Vij = 0, if one substitutes (3d) into (3c)
one obtains

(7) Λ̄l ≡ DiS̄il − SijεljkKi
k,

which better exhibits the electromagnetic duality between the electric and
magnetic parts of the Weyl tensor: namely, that under the transformation

Sij −→ S̄ij , S̄ij −→ −Sij ,

the corresponding zero quantities transform as

Λi −→ Λ̄i, Λ̄i −→ −Λi.

We choose, however, to work with the system (3a)–(3d), since the resulting
integrability conditions (18a)–(18b) enjoy a particular semi-decoupling of the
zero-quantities Jijk and Vij that is convenient for the subsequent analysis,
and that is lost if one uses the alternative definition of the zero-quantity Λ̄i,
given by (7).

3. The Friedrich–Butscher method

In this section, we outline the general procedure introduced in [8, 9] to con-
struct solutions to the Einstein constraint equations, in addition to describing
some of the potential obstructions to its implementation. As mentioned in the
introduction, the procedure is of a perturbative nature — that is, one proves
the existence of nonlinear perturbations of some background initial data set,
denoted (S, h̊, K̊), through the use of the implicit function theorem. In order
to apply the implicit function theorem, one first derives from the extended
constraint equations a so-called auxiliary system of equations which, given
the appropriate choice of free and determined data, has a linearisation which
is manifestly elliptic. By construction, any solution of the extended constraint
equations is also a solution of the auxiliary equations. Having found, via the
inverse function theorem, an open neighbourhood of solutions to the auxiliary
system around the given background initial data set one must then show that
such candidate initial data set is indeed a solution to the extended constraints
— we refer to the latter as the problem of sufficiency of the auxiliary system.

In short, the Friedrich–Butscher method may be divided into two stages:

(i) Construction of candidate solutions: derive a auxiliary system
of equations, with elliptic linearisation, and apply the implicit function
theorem to guarantee existence of solutions.
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(ii) Sufficiency: prove that the solutions to the auxiliary system con-
structed in Step (i) are also solutions to the extended constraint equa-
tions.

In Section 3.4 we discuss the potential obstructions to the implementation
of the above procedure. The desire to avoid such obstructions motivates our
restriction to conformally rigid hyperbolic manifolds in Section 4.

3.1. Preliminaries

In the following, it will be convenient to a adopt a slightly more index-free no-
tation that emphasises the structure of the equations. Given the Riemannian
3-manifold (S,h), we introduce the following spaces of tensors:

• Λ1(S), the space of covectors over S;
• S 2(S), the space of symmetric 2-tensors over S;
• S 2

0 (S;h), the space of symmetric 2-tensors over S that are tracefree
with respect to the metric h;

• STT (S;h), the space of transverse-tracefree tensors over S with respect
to the metric h;

• J (S), the space of Jacobi tensors — i.e. tensors Jijk satisfying

Jijk = −Jjik, Jijk + Jjki + Jkij = 0.

Remark 3. It will be useful to note that

J (S) � Λ1(S) ⊕ S 2
0 (S;h).

More precisely, any Jijk ∈ J (S) may be uniquely decomposed as

(8) Jijk = 1
2

(
εij

lFlk + Aihjk − Ajhik

)
,

where
Aj ≡ Jjk

k, Fkm ≡ εij(mJ
ij
k),

the latter being tracefree. In the previous expressions and in the following εijk
denotes the volume form of the metric h. We will refer to (8) as the Jacobi
decomposition, with respect to h of Jijk.

We also introduce the following operators:
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• Πh : S 2(S) −→ S 2
0 (S;h), the projection of symmetric 2-tensors into

the space of symmetric tracefree 2-tensors, given by

Πh(η)ij ≡ ηij − 1
3trh(η)hij ;

• � : S 2
0 (S;h) −→ J (S), given by

(�η)ijk ≡ εlijηkl;

where εijk denotes the volume form;
• δh : S 2(S) −→ Λ1(S), the divergence operator,

δh(η)j ≡ Diηij ;

• Lh : Λ1(S) −→ S 2
0 (S;h) the conformal Killing operator,

Lh(X)ij ≡ DiXj + DjXi − 2
3D

kXkhij ;

• Dh : S 2(S) −→ J (S) the Codazzi operator,

Dh(η)ijk ≡ Diηjk −Djηik,

• D∗
h : J (S) −→ S 2(S), the formal L2-adjoint of Dh restricted to

S 2
0 (S;h), and given by

D∗
h(μ)ij ≡ Dkμikj + Dkμjki − 2

3D
kμlk

lhij ;

• ΔL : S 2(S) −→ S 2(S), the Lichnerowicz Laplacian, acting as

ΔLηij ≡ −Δhηij + 2r(i
kηj)k − 2rikjlηkl,

where Δh ≡ hijDiDj is the rough Laplacian.

Notation. Often, for the sake of simplicity, the subscript h in the symbol of
the above operators will be omitted. When the above operators are defined
with respect to the background metric h̊ they will be distinguished by the
symbol .̊

Remark 4. Following the standard usage, covectors in the Kernel of the
conformal Killing operator Lh will be called conformal Killing vectors, while
symmetric tensors in the Kernel of the Codazzi operator Dh will be called
Codazzi tensors. If, in addition, the tensor is tracefree with respect to the
metric h then we talk of a tracefree Codazzi tensor.
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Remark 5. Since Dh : S 2(S) −→ J (S), the image of Dh may be decom-
posed as in Remark 3. In particular, given ηij ∈ S 2

0 (S;h), Dh(η)ijk may be
decomposed as follows

(9) Dh(η)ijk = 1
2(εij lrot2(η)lk − δh(η)ihjk + δh(η)jhik),

where rot2(η)ij ≡ εkl(iD
kηlj). It therefore follows that Dh(η)ijk = 0 for ηij ∈

S 2
0 (S;h) if and only if δ(η)i = 0 and rot2(η)ij = 0.

We recall that the divergence operator is undetermined elliptic and (equiv-
alently) the conformal Killing operator L is overdetermined elliptic. Moreover,
as shown in [9], the operator Dh is overdetermined elliptic when restricted to
S 2

0 (S;h). More precisely, one has the following:

Lemma 1. Given a covector ξ let

σξ[Dh] : S 2(S) −→ J (S)

denote the symbol map of Dh. For ξ �= 0, the kernel of σξ[Dh] is one dimen-
sional — it consists of elements of the form cξiξj. It follows that the operator
Dh|S 2

0 (S;h) is overdetermined elliptic.

The proof is straightforward; the details can be found in [9].

Remark 6. In terms of the above definitions, the extended constraints en-
coded in the zero-quantities (3a)–(3d) may be rewritten as

Dh(K)ijk − (�S̄)ijk = 0,(10a)
δh(S)i + εjkiKj

lS̄kl = 0,(10b)
δh(S̄)i − εi

jkKk
lrlj = 0,(10c)

rij − 2
3λhij − Sij + KKij −Ki

kKjk = 0.(10d)

3.2. The auxiliary system

The Friedrich–Butscher method for the construction of solutions to the Ein-
stein constraint equations relies on first using the extended constraint equa-
tions to obtain a auxiliary system of equations whose linearisation is elliptic.
The existence of solutions is then established through an application of the
implicit function theorem. In general, the linearised system is a highly coupled
second order system of partial differential equations. In the case of background
data with metric of constant sectional curvature (i.e. Einstein manifolds), the
linearised equations decouple sufficiently so as to enable a straightforward
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analysis of its kernel and cokernel — this system will be given in Section 4.2.
Here, we discuss the procedure in full generality, but for simplicity we restrict
attention to the principal parts of the equations, since they suffice for the
description of ellipticity.

3.2.1. The ansatz First note that, given a background initial data set
(S, h̊, K̊), there exists (see (6a) and (6b)) a corresponding background so-
lution to the extended constraints, denoted (S, K̊, ˚̄S, S̊, h̊), and which may
moreover be decomposed as follows

K̊ij = κij + 1
3K̊h̊ij ,(11a)

S̊ij = L̊(v)ij + ψij ,(11b)
˚̄Sij = L̊(v̄)ij + ψ̄ij ,(11c)

with κij ∈ S 2
0 (S; h̊), vi, v̄i ∈ Λ1(S) and ψij , ψ̄ij ∈ STT (S; h̊). Decomposi-

tions (11b) and (11c) are precisely the York splits (see [28, 10]) of the electric
and magnetic parts; such a split is always possible, and is moreover unique
up to the addition of conformal Killing fields to vi, v̄i.

Remark 7. In Section 4, we will restrict to background initial data which is
Einstein and umbilical, for which κij = 0, vi = v̄i = 0 and ψij = ψ̄ij = 0.

We will seek solutions of the extended constraints of the form

Kij = κij + χij + 1
3(K̊ + φ) h̊ij ,(12a)

Sij = Πh(L̊(v + X) + ψ + T )ij ,(12b)
S̄ij = Πh(L̊(v̄ + X̄) + ψ̄ + T̄ )ij ,(12c)

where χij is tracefree with respect to the background metric h̊, K̊+φ being the
trace part, and where Tij , T̄ij are taken to be transverse-tracefree with respect
to the background metric. Recall that Πh is the projection onto S 2

0 (S;h), so
that Sij and S̄ij are h-tracefree, as required. We will use S(X,T ), S̄(X̄, T̄ ) as
shorthands for (12b) and (12c). The above ansatz is motivated by the fact that
the operator δh is undetermined elliptic, while Dh|S 2

0 (S;h) is overdetermined
elliptic. Note that the background solution corresponds to taking

(χ, X̄,X,h) = (0,0,0, h̊) and (φ, T̄ ,T ) = (0,0,0)

in (12a)–(12c).
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Remark 8. Here we adopt a slightly different approach to that of [8, 9],
which uses the ansatz

Sij = Lh(X)ij + ΠhTij ,

with Tij a transverse-tracefree tensor with respect to h̊. The reason for using
(12b)–(12c) is that we will be able to use the orthogonality property of the
York split (with respect to h̊) — see [10] — to argue, in a straightforward
way, that the solutions are uniquely determined by the freely-prescribed data
(φ,T , T̄ ).

3.2.2. The linearisation of the Ricci operator Let us now consider
equation (3d). As is well known, the linearised Ricci operator is not elliptic.
The failure of the linearised Ricci operator to be elliptic is a consequence of
diffeomorphism-invariance, as encoded by the contracted Bianchi identity —
see, for instance, [12]. One method of breaking the gauge-invariance is via the
use of a variation of the so-called DeTurck trick. Here we follow this approach.

Let D̊ denote the Levi-Civita connection associated to h̊. The linearisa-
tion of the Ricci operator, r̆(γ)ij , about h̊ij acting on a symmetric tensor field
γij (the metric perturbation) is given by the following Fréchet derivative

r̆(γ)ij ≡
d

dτ
r[̊h + τγ]ij

∣∣∣∣
τ=0

(13)

= −1
2Δ̊γij + 1

2D̊kD̊iγj
k + 1

2D̊kD̊jγi
k − 1

2D̊iD̊jγ

= −1
2Δ̊γij + 1

2D̊iD̊kγj
k + 1

2D̊jD̊kγi
k − 1

2D̊iD̊jγ + r̊(i
kγj)k − r̊ikjlγ

kl

= 1
2ΔLγij + D̊(iC(γ)j)kk,(14)

where, here, τ is a real parameter describing a a one-parameter-family of
metrics, h(τ) = h̊ + τγ, and C(·)ijk is defined by

(15) C(γ)ijk ≡ 1
2(D̊jγk

i + D̊kγj
i − D̊iγjk).

Here, and it what follows, index raising and lowering within a linearised co-
variant will be carried out with respect to the background metric, h̊. The
first term of (14), ΔLγij , is manifestly elliptic, but the ellipticity is spoiled
by the second-order term D̊(iCj)

k
k. Now, given an arbitrary local coordinate

system, (xα), define the following

Q(τ)α ≡ 1
2h(τ)βγ(Γ(h(τ))αβγ − Γ̊α

βγ),
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where h(τ)βγ is the inverse of h(τ)αβ, and Γ(h(τ))αβγ , Γ̊α
βγ denote respectively

the Christoffel symbols of the metrics h(τ) and h̊ in the local coordinates,
(xα).

Remark 9. Note that, though Qα is defined with respect to a fixed local
coordinate system, the expression is in fact covariant, being given by the trace
of the difference of two connections (i.e the trace of the transition tensor,
Sk

ij). Hence, Q represents a (globally-defined) vector field, which we will
denote in the abstract index formalism by Qi. The remaining calculations of
the article will be carried out in the abstract index notation.

Consider now the Lie derivative of the metric along Q(τ), LQ(τ)h(τ)ij ,
the linearisation of which is given by

d

dτ
(LQ(τ)h(τ))ij

∣∣∣∣
τ=0

= D̊(iCj)
k
k,

which is precisely the term in (14) obstructing the ellipticity in the linearised
Ricci operator. Accordingly, we define the reduced Ricci operator, RicQ(·), as

RicQ(h)ij ≡ rij − (LQh)ij .

The linearisation of the reduced Ricci operator can then be seen to be pro-
portional to the Lichnerowicz Laplacian of the background metric — that
is,

DRicQ(̊h) · γij = 1
2Δ̊Lγij ,

which is manifestly elliptic — note that, modulo curvature terms, ΔL is simply
the rough Laplacian and, therefore, clearly elliptic — see e.g. also [14] for an
alternative discussion of the above.

Remark 10. The reduced Ricci operator coincides with the Ricci operator
when Qi = 0. The linearisation DRicQ(·) is formally identical to that obtained
through the use of (generalised) harmonic coordinates.

3.2.3. The auxiliary extended constraint map Following the discus-
sion of the previous subsections, it is convenient to define the auxiliary ex-
tended constraint map

Ψ(χ, X̄,X,h;φ, T̄ ,T ) ≡

⎛
⎜⎜⎜⎝

D̊∗(J)ij
Λ̄i

Λi

Vij − LQhij

⎞
⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎝

D̊∗
(
Dh(K) − �S̄

)
ij

δh(S̄)i − εjkiχj
lSkl

δh(S)i + εjkiχj
lS̄kl

RicQ(h)ij − 2
3λhij − Sij + KKij −Ki

kKjk

⎞
⎟⎟⎟⎟⎟⎟⎠

with the understanding that the fields Kij , Sij , S̄ij should be substituted by
the ansatz (12a)–(12c). In terms of the latter, the auxiliary system is then
given by

(16) Ψ(χ, X̄,X,h;φ, T̄ ,T ) = 0,

which is to be read as a (second-order) system of partial differential equations
for the fields χ, X̄,X,h while the fields φ, T̄ ,T are regarded as input — i.e.
they are the freely specifiable data.

Remark 11. Note that the auxiliary system is defined always with reference
to some fixed background solution (K̊, ˚̄S, S̊, h̊) of the extended constraints,
both through the ansatz (12a)-(12c) and through the definition of the reduced
Ricci operator. It is straightforward to see that, for any given background
solution, we have

Ψ(0,0,0,0; 0,0,0) = 0

— that is to say, that the background solution (corresponding to trivial free
and determined fields) itself solves the corresponding auxiliary equations.

In the following, we denote by DΨ[K̊, ˚̄X, X̊, h̊] · (σ, ξ̄, ξ,γ) the lineari-
sation of Ψ at (K̊, ˚̄X, X̊, h̊) in the direction of the determined fields — that
is to say, the following

DΨ[K̊, ˚̄X, X̊, h̊] · (γ,σ, ξ, ξ̄)

= d

dτ
Ψ(̊h + τγ, χ̊ + τσ, X̊ + τξ, ˚̄X + τ ξ̄; φ, T̄ ,T )

∣∣∣∣
τ=0

,

where X̊i,
˚̄X are the covector fields appearing in the York decomposition of

the background electric and magnetic Weyl curvatures, S̊, ˚̄S, and χ̊ is the
tracefree part of K̊ with respect to h̊.

Notation. We will often denote DΨ[K̊, ˚̄X, X̊, h̊] by DΨ for notational con-
venience.
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Note that, as they are held fixed, the free data (φ, T̄ ,T ) are not an input
for DΨ. We will not give the expression for DΨ for a general background here.
It will suffice for the purposes of this section to consider only the principal
parts as a second-order system of partial differential equations — namely,

⎛
⎜⎜⎜⎝

D̊∗ ◦ D̊ D̊∗(̊�L̊) 0 0
0 δ̊ ◦ L̊ 0 0
0 0 δ̊ ◦ L̊ 0
0 0 0 −1

2Δ̊

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

σij
ξ̄i
ξi
γij

⎞
⎟⎟⎟⎠ .

Since the principal part is upper-triangular, to verify ellipticity of the full
system we need consider only the diagonal entries, which are elliptic by con-
struction — one proceeds from the bottom-right, verifying invertibility of the
symbol of each row, and successively substituting into the row above where
necessary. It follows then that DΨ is a Fredholm operator. The dimension of
the Kernel of the operator and that of its adjoint can be conveniently analysed
using the Atiyah-Singer Index theorem — see Remark 23.

3.3. The sufficiency argument

Let us now assume that Step (i) (see beginning of Section 3) has been carried
out: that is to say, that we have established the existence of a small neigh-
bourhood of solutions to the auxiliary system (16). In particular we have

D̊∗(J)ij = 0,(17a)
Vij = (LQh)ij ,(17b)
Λi = Λ̄i = 0.(17c)

In order to conclude that such solutions of the auxiliary system indeed
solve the extended constraint equations, there remains the task of showing:

(a) that (LQh)ij = 0 in order that Ric(h) = RicQ(h), implying (3d);
(b) that Jijk = 0 so that (3a) is satisfied.

Remark 12. Item (3.3) can be thought of as the analogue of gauge propa-
gation in the hyperbolic reduction of the Einstein field equations.

The tasks (a)-(b) will be established with the help of the integrability
conditions (4a)-(4b), which in view of (17c), reduce to

εijkDiJjkl = 0,(18a)
Di(LQh)ij − 1

2Dj(LQh)ii = KikJj
ik −KjkJ

ik
i −KJj

i
i.(18b)
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The strategy will be to use (17a) and (18a) to first show that Jijk = 0, and
then to substitute into (18b), which will be used to show Qi = 0.

3.3.1. Elliptic equations for Qi and Jijk First, it will prove convenient
to first define the operator

Kh : J (S) −→ S 2
0 (S; h̊) ⊕ Λ1(S)

acting as

Kh(J) =
(

D̊∗(J)ij
εijkDiJjkl

)
.

As remarked previously, a solution (K, S̄,S,h) furnished in Step (i) gives
rise to a zero quantity Jijk satisfying equations (17a) and (18a), and which
therefore lies in the kernel of the operator Kh — that is to say, Kh(J) = 0.
In order to establish that Jijk = 0 (see point (b), above), it suffices to show
that Kh has a trivial kernel. To do so, we aim to first establish injectivity
of the operator Kh̊, and then to show that injectivity is preserved provided
the metric h is sufficiently close to h̊, in the appropriate norm. This “stabil-
ity” property of the kernel of Kh relies crucially on the observation that the
operator is, in fact, first-order elliptic — see Lemma 2 and Proposition 3 in
Section 4.3.

On the other hand, note that

Di(LQh)ij − 1
2Dj(LQh)ii = Di

(
DiQj + DjQi −DkQkhij

)
= ΔhQj + DiDjQi −DjD

kQk

= ΔhQj +
(
DjD

iQi + rijQ
i
)
−DjD

kQk

= ΔhQj + rijQ
i.

Therefore, if Jijk = 0, then (18b) implies the elliptic equation

ΔhQj + rijQ
i = 0,

for the zero quantity Qi. Integrating by parts over the closed manifold S, it
follows that

(19)
∫
S

(
‖DQ‖2

h − rijQ
iQj

)
dμh = 0.

Note that the above identity only follows once it has been established that
Jijk = 0. Fortunately, the equation Kh(J) = 0 is decoupled from Qi as a
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consequence of the semi-decoupling of (18b)–(18a), as described in Remark
2. This decoupling allows for a two step approach in which we first show
Jijk = 0 and then use (19) to show Qi = 0. The full argument is given in
Proposition 4 of Section 4.3.1.

3.4. Obstructions to the existence of solutions

In order to use the implicit function theorem (see Section 4.2) to establish
existence of solutions to the auxiliary system

Ψ = 0,

one would like to show that the linearisation DΨ is an isomorphism between
suitable Banach spaces. Accordingly, by an obstruction to the existence of
solutions, we mean a non-trivial element of either ker(DΨ) or coker(DΨ) —
recalling that DΨ is an elliptic (and hence Fredholm) operator, the existence
of a non-trivial cokernel is precisely the obstruction to surjectivity of DΨ
while the existence of a non-trivial kernel is the obstruction to injectivity.

As it will be seen, among the potential obstructions to the existence of
solutions one has non-trivial conformal Killing vectors and tracefree Codazzi
tensors of the background manifold. Precluding the existence of such obstruc-
tions is the fundamental motivation behind our choice of background data.

Remark 13. It is not clear whether the obstructions that will be identified
in the sequel are essential, or may be circumvented. In [8, 9], for instance, the
method follows through despite the existence of non-trivial conformal Killing
vectors. There, in Step (i) the auxiliary system is solved only up to an error
term, constrained to lie in a finite-dimensional space. In Step (ii), it is then
simultaneously shown that the error term must necessarily vanish and that
the extended constraints are indeed satisfied, as a consequence of the non-
linear integrability conditions (18a)-(18b). Whether such a procedure may be
implemented in general is unclear. One might expect the method to be more
rigid in the compact case — the non-existence of conformal Killing vectors,
for instance, may be a prerequisite. An analogy may be drawn here with the
problem of linearisation stability of the constraint equations, in which the
obstructions to integrability are precisely the so-called KID sets, describing
the projection onto S of a spacetime Killing vector. In the case of non-compact
S, a solution of the constraint equations may still be linearisation stable even
when it admits a KID set, at least when the perturbations of the initial data
are restricted to those of sufficiently fast decay at infinity (see for example
[2]), while the compact case is more rigid.
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3.4.1. Conformal Killing vectors It is clear from the construction of the
auxiliary system that the existence of a non-trivial conformal Killing vector in
the background Riemannian manifold (S, h̊), ηi say, destroys the injectivity
of DΨ, because of the use of the ansatz (12b)-(12c). Indeed, ker(DΨ) contains
linear combinations of

(σij , ξ̄i, ξi, γij) = (0, ηi, 0, 0) and (σij , ξ̄i, ξi, γij) = (0, 0, ηi, 0).

Moreover, in the case of a constant mean curvature background, the second
component of DΨ takes the form

δ̊(L̊(ξ̄)) = 0

and therefore in this case coker(DΨ) also contains elements of the form

(σij , ξ̄i, ξi, γij)∗ = (0, ηi, 0, 0),

so that DΨ also fails to be surjective — here we are using the suffix ∗ as
a shorthand to denote an arbitrary element of the codomain of DΨ. Simi-
lar difficulties arise in both the conformal method and the gluing methods,
whenever there exist non-trivial conformal Killing vectors — see, for instance,
[3].

Remark 14. From the previous discussion, it follows that the implementa-
tion of the Friedrich–Butscher method will be simplified if one restricts to
background initial data sets which do not admit a conformal Killing vector.
This condition holds, in particular, for manifolds of negative-definite Ricci
curvature — the conformal Killing equation implies after contraction with
Diηj and integration by parts that

∫
S

(
‖D̊η‖2

h̊
+ 1

3 |̊δ(η)|2 − r̊ijη
iηj

)
dμh̊ = 0.

Thus, if the Ricci tensor is negative-definite then ηi = 0 as a consequence
of the positive-definiteness of the integrand. This is valid in particular for
Einstein metrics of negative scalar curvature, despite them being locally
maximally-symmetric — that is to say that, while there exists the maxi-
mal number of local Killing vector fields in a neighbourhood of each point,
none may be extended globally to the whole manifold. A sufficient condition
for the stronger requirement of non-existence of local conformal Killing vector
fields is given in [6].
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3.4.2. Non-trivial tracefree Codazzi tensors Inspection of the auxil-
iary equation for the extrinsic curvature, equation (10a), readily shows that
the existence of non-trivial tracefree Codazzi tensors in the background initial
data set — i.e. elements of ker(D̊)∩S 2

0 (S;h)— also give rise to obstructions
similar in nature to those arising from the existence of conformal Killing
vectors. In this case, given a tracefree Codazzi tensor, ηij say, ker(DΨ) and
coker(DΨ) both contain elements of the form

(ηij , 0, 0, 0)

which destroy both the injectivity and the surjectivity of DΨ.
For examples of initial data sets which do admit tracefree Codazzi tensors,

one needs only consider umbilical, conformally-flat initial data sets. Consider
(S, h̊, K̊ = 1

3K̊h̊), K̊ a constant, which constitutes an umbilical initial data
set provided

r̊ = 2λ− 2
3K̊

2.

If we restrict to those metrics h̊ which are, in addition, conformally flat then
it follows from the Weyl-Schouten Theorem (see Theorem 5.1 in [27]) that

0 = Hij ≡ ε̊kl(iD̊
kr̊j)

l ≡ ε̊kl(iD̊
kd̊j)

l,

where d̊ij denotes the tracefree part of the Ricci curvature. Moreover, it follows
from the contracted second Bianchi identity that δh̊(d̊)i = 0, again using
the fact that r̊ is constant. Combining the above observations it follows (see
Remark 5) that d̊ij is a tracefree Codazzi tensor — i.e. D̊(d̊)ijk = 0. This
Codazzi tensor is non-trivial (i.e. non-zero) if h̊ is not an Einstein metric.

Remark 15. The above observation is pertinent also to the case of non-
compact S. In particular, it suggests that the time-symmetric initial data set
for the Schwarzschild spacetime, with metric

h̊ =
(

1 + m

2r

)4
δ,

is potentially unsuitable (as background initial data) for the application of
the Friedrich–Butscher method as h̊ is not an Einstein metric.

3.4.3. Conformally rigid hyperbolic manifolds From the previous two
sections, we know that the existence of either a non-trivial conformal Killing
vector or a non-trivial tracefree Codazzi tensor is undesirable for the appli-
cation of the Friedrich–Butscher method on compact manifolds. Moreover, it
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was noted in Section 3.4.1 that a Riemannian manifold of negative-definite
Ricci curvature cannot admit a globally-defined conformal Killing field, ren-
dering such a manifold a natural first candidate for the background manifold
(S, h̊).

Due to the highly-coupled nature of the auxiliary system of equations,
Ψ = 0, the tractability of the required analysis is, of course, dependent on
the specific properties of the background manifold, (S, h̊). In particular, if
we consider a manifold (S, h̊) that is Einstein (or, equivalently, a space form
since we are in dimension 3):

r̊ij = 1
3 r̊̊hij ,

with r̊ (necessarily) constant, then DΨ simplifies significantly. The require-
ment that r̊ij be negative-definite is then simply that r̊ be negative.

Accordingly, let us restrict to an Einstein background manifold with
negative Ricci scalar — we will refer to such a manifold as hyperbolic. Re-
call that, by the Killing–Hopf Theorem (S, h̊) is isometric to a quotient of
the hyperbolic 3-space H

3. We refer the reader to [7] for results concern-
ing the admissible topologies of S. Moreover, we would also like to exclude
the possibility of a non-trivial tracefree Codazzi tensor — i.e. ensure that
ker(D̊) ∩ S 2

0 (S; h̊) = {0}. Now, in the case of hyperbolic manifolds — see
[21] and also also [4] — the space of tracefree Codazzi tensors coincides with
the space of essential conformally flat deformations — i.e. one has

ker{D̊ : S 2
0 (S; h̊) → J (S)} = ker H̊ ∩ ker δ̊ � ker H̊/L̊(Λ1(S)),

where H̊ denotes the linearised Cotton map — see Section 4.4 for more details.
Consequently, we will refer to a hyperbolic manifold which admits no no-
trivial tracefree Codazzi tensors as being conformally rigid. The requirement
of conformal rigidity places additional restrictions on the topology of S, but
there remains a non-empty family of such manifolds — see [20].

4. Nonlinear perturbations of compact hyperbolic initial
data

In the remainder of this article we restrict our attention to conformally rigid
hyperbolic background initial data, since such manifolds admit neither con-
formal Killing fields nor tracefree Codazzi tensors.

The results here can be thought of spatially-closed analogues of those in
[13], in which a version of the Friedrich–Butscher method was applied to non-
compact hyperbolic background manifolds. We note however that here we
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solve the full extended constraint equations, rather than the reduced system
corresponding to initial data sets of umbilic extrinsic curvature, as considered
in [13] — i.e. we allow for non-trivial perturbations of the extrinsic curvature.

4.1. Statement of the main result

In the following, let (S, h̊) be a closed hyperbolic Einstein manifold with
sectional curvature normalised to k = −1 (or, equivalently, with r̊ = −6).
Then, for any given constant K̊, the tensor fields

(20) h̊ij , K̊ij = 1
3K̊h̊ij ,

over S constitute a solution to the Einstein constraint equations with constant
mean extrinsic curvature K̊ and with cosmological constant given by

λ = 1
3(K̊2 − 9),

as it can be readily seen from the Hamiltonian constraint (5b). Initial data
of this type will be called hyperbolic initial data. The Cauchy stability of the
development of initial data sets of this type, with λ = 0, was studied in [1].

Remark 16. Note that here we are choosing to normalise the intrinsic cur-
vature, which in turn fixes the value of the cosmological constant, once the
extrinsic curvature has been given. One could alternatively rescale the intrin-
sic and extrinsic curvatures appropriately so as to normalise the cosmological
constant. The former option is chosen since, in the subsequent analysis, it is
the intrinsic geometry of (S, h̊) that will be of primary importance.

Remark 17. The (unique) solution to the extended Einstein constraint equa-
tions associated to (20) is obtained by setting S̊ij = ˚̄Sij = 0 — see (6a)–(6b).
Note that the sign of λ is dependent on the choice of K̊: λ < 0 for |K̊| < 3,
λ = 0 for K̊ = ±3 and λ > 0 for |K̊| > 3.

In the following it will prove convenient to define the constants

(21) α ≡ −4 + 2
9K̊

2, β ≡ −4 + 8
9K̊

2.

Define also for s ≥ 4 the Banach spaces X s,Ys,Zs, as follows

X s ≡ Hs−1(C (S)) ×Hs−1(STT (S; h̊)) ×Hs−1(STT (S; h̊)),
Ys ≡ Hs(S 2

0 (S; h̊)) ×Hs(Λ1(S)) ×Hs(Λ1(S)) ×Hs(S 2(S)),
Zs ≡ Hs−2(S 2

0 (S; h̊)) ×Hs−2(Λ1(S)) ×Hs−2(Λ1(S)) ×Hs−2(S 2(S)),
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where Hs(·) denotes the Sobolev norm W 2,s(·) with the pointwise norms
of tensor fields defined with respect to the background metric h̊ — unless
explicitly indicated otherwise, all Hs-norms from now on will be defined with
respect to h̊.
Remark 18. That the image of Ψ : X s×Ys is indeed contained in Zs may be
easily checked using the Schauder ring property: namely that (u,v) 
→ u⊗v
is continuous as a mapping from Hs1 ×Hs2 to Hs3 provided s1+s2 > s3+n/2
and s1, s2 > s3 — see [11], for instance.

We are now in a position to state our main theorem:
Theorem 1. Let (S, h̊, K̊) be a smooth conformally rigid hyperbolic initial
data set with constant mean extrinsic curvature K̊ satisfying

(22) β /∈ Spec
(
− Δ̊ : C∞(S) → C∞(S)

)
.

Then, there exists an open neighbourhood U ⊂ X of (0,0,0), an open neigh-
bourhood W ⊂ Y of (̊h,0,0, K̊) and a smooth map ν : U → W such that,
defining

u ≡ (φ,T , T̄ ), ν(u) ≡
(
χ(u), X̄(u),X(u),h(u)

)
,

the following assertions hold:

(i) for each (φ,T , T̄ ) ∈ U ,

w(u) ≡
(
χ(u) + 1

3(φ + K̊ )̊h, S̄(X̄(u), T̄ ), S(X(u),T ), h(u)
)

is a solution to the extended constraint equations (2) with cosmological
constant λ = (K̊2 − 9)/3;

(ii) the map u 
→ w(u) is injective for K̊ �= 0. Moreover, it is injective
for K̊ = 0 if we restrict the free datum φ to the sub-Banach space of
functions which integrate to zero over S — that is to say that each such
solution w corresponds to a unique choice of free data u = (φ,T , T̄ ).

Remark 19. Notice that when |K̊| ≤
√

9/2 — and, in particular in the time-
symmetric case, K̊ = 0— condition (22) is satisfied trivially since β < 0 but
−Δ̊ is positive-semi-definite. Note that in this case the cosmological constant
is negative (λ < 0). Moreover, since the spectrum of −Δ̊ is discrete, condition
(22) excludes only countably many values of K̊.

The theorem will be proven in two stages in the forthcoming sections, by
means of Propositions 1 and 4. In Section 4.4 we describe a parametrisation
of the free data through the use of the linearised Cotton map, based on the
results of [4, 18], and summarised in Proposition 6.
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4.2. Existence of solutions of the auxiliary system

The purpose of this section is to show the existence of perturbative solutions
to the auxiliary system in the case of conformally rigid hyperbolic initial data
sets.

4.2.1. Technical tools The main tool used in establishing existence is
the Implicit Function Theorem — see e.g. [15] — which we state here for
completeness.

Theorem (Implicit Function Theorem). Let X , Y , Z be Banach spaces,
and

Ψ : X × Y → Z

a mapping with continuous Fréchet derivative. Suppose that (x0, y0) ∈ X ×Y
satisfies Ψ(x0, y0) = 0 and that the map y 
→ DΨ(x0, y0)(0, y) is a Banach
space isomorphism from Y onto Z. Then, there exist open neighbourhoods U
of x0 and V of y0 and a Fréchet-differentiable mapping ν : U → V such that
Ψ(x, ν(x)) = 0 for all x ∈ U , and Ψ(x, y) = 0 for (x, y) ∈ U × V if and only
if y = ν(x). Moreover, if the map x 
→ DΨ(x0, y0)(x, 0) is injective, then ν is
also injective.

In order to establish that the various mappings of interest are isomor-
phisms, we will make use of the following Splitting Lemma — see e.g. [22].

Lemma (Splitting Lemma). Let E and F be vector bundles over S, with
fixed Riemannian metric h. Let

D : C∞(E) −→ C∞(F )

be a differential operator of order k, and D∗ the corresponding formal L2-
adjoint. Suppose that D is overdetermined elliptic (equivalently, D∗ is under-
determined elliptic), then for s ∈ [k,∞)

Hs(S) = Im D∗ ⊕ ker D ,

where both factors are closed and are L2-orthogonal and Im D∗ =
D∗(Hs+k(S)). Moreover, if D is injective, then D∗ is surjective, and the
composition D∗ ◦ D is an isomorphism.
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4.2.2. The application of the Implicit Function Theorem Since the
background solution admits no conformal Killing vectors and no non-trivial
tracefree Codazzi tensors, the operators L̊ and D̊ are both injective. Therefore,
by the Splitting Lemma, the following are isomorphisms for s ≥ 4:

δ̊ ◦ L̊ : Hs(Λ1(S)) → Hs−2(Λ1(S)),
D̊∗ ◦ D̊ : Hs(S 2

0 (S; h̊)) → Hs−2(S 2
0 (S; h̊)).

Since the background initial data, being hyperbolic, consists of an Einstein
metric and umbilical extrinsic curvature, the linearisation of the auxiliary
extended constraint map in the direction of the determined fields, DΨ, takes
the form

DΨ·(σ, ξ̄, ξ,γ;φ, T̄ ,T ) =

⎛
⎜⎜⎜⎜⎝

D̊∗(D̊(σ) − 1
3K̊D̊(γ) − �̊L̊(ξ̄)

)
ij

δ̊ ◦ L̊(ξ̄)i
δ̊ ◦ L̊(ξ)i
1
2Δ̊Lγij − 1

2αγ̄ij −
1
6βγh̊ij + 1

3K̊σij − L̊(ξ)ij

⎞
⎟⎟⎟⎟⎠.

Remark 20. Let (Aij , B̄i, Bi, Cij) ∈ Zs be arbitrary. Then in order to
establish whether DΨ is an isomorphism, we are concerned with solving the
system of equations

D̊∗(D̊(σ) − 1
3K̊D̊(γ) − �̊L̊(ξ̄))ij = Aij ,(23a)

δ̊ ◦ L̊(ξ̄)i = B̄i,(23b)
δ̊ ◦ L̊(ξ)i = Bi,(23c)
Δ̊Lγij − αγ̄ij − 1

3βγh̊ij + 2
3K̊σij − 2L̊(ξ)ij = Cij ,(23d)

where here γ and γ̄ij denote the trace and tracefree parts of γij with respect
to h̊, and the constants α, β are as defined in (21). Note the semi-decoupled
form of the system: one can first solve (23b)-(23c), and then proceed to solve
(23a) and (23d), in turn.

In order to address injectivity if the map ν, we also need to consider the
linearisation of Ψ in the direction of the free data. For a general data set
(S, h̊, K̊) the linearisation is given by

d
dτ Ψ(χ, X̄,X,h; K̊ + τφ, τ T̄ , τT )

∣∣∣∣
τ=0

(24)
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=

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
6 L̊(dφ)jk − 1

2 ε̊kilD̊
lT̄j

i − 1
2 ε̊jilD̊

lT̄k
i

ε̊ljkK̊
ijTi

k + D̊iT̄il

−ε̊iklK̊
jkT̄j

l + D̊jTij

−Tij + 1
3(K̊ij + K̊h̊ij)φ

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Remark 21. It is clear that if the above map is to be injective then we should
at least require Tij , T̄ij to be tracefree with respect to h̊ — it is easy to verify
that pure trace Tij and T̄ij would be in the kernel. This further justifies the
use of the ansatz (12b)-(12c).

The existence of solutions to the auxiliary system is established in the
following proposition.

Proposition 1 (existence of solutions to the auxiliary system). Let
(S, h̊, K̊) be a smooth conformally rigid hyperbolic initial data set with (con-
stant) mean extrinsic curvature K̊ satisfying condition (22). Then DΨ :
Ys → Zs is a Banach space isomorphism for s ≥ 4, and so (by the im-
plicit function theorem) there exist open neighbourhoods (K̊,0,0) ∈ V ⊂ Ys

and (K̊,0,0, h̊) ∈ U ⊂ X s and a Fréchet differentiable map ν : U → V map-
ping free data to solutions of the auxiliary system Ψ = 0. Moreover the map
ν is injective.

Proof.

Injectivity of DΨ. Taking Aij = Cij = 0, Bi = B̄i = 0 in equations (23a)-
(23d), we aim to show triviality of solutions (σ, ξ̄, ξ,γ). Note that by elliptic
regularity (see Appendix I of [7], for instance), it suffices to show restrict
to smooth (σ, ξ̄, ξ,γ). Equations (23b)-(23c) imply, firstly, that ξi = ξ̄i =
0 since the background metric admits no global conformal Killing vectors.
Substituting into (23a) and (23d)

D̊∗ ◦ D̊(σ − 1
3K̊γ)ij = 0,(25a)

Δ̊Lγij − αγ̄ij − 1
3βγh̊ij + 2

3K̊σij = 0.(25b)

Tracing (25b) we obtain
−(Δ̊ + β)γ = 0.

By assumption β /∈ Spec(−Δ̊) and therefore γ = 0. Substituting into (25a)

(26) D̊∗ ◦ D̊(σ − 1
3K̊γ̄)ij = 0.
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Now, since D̊∗ ◦ D̊ : S 2
0 (S; h̊) → S 2

0 (S; h̊) is an isomorphism, σij = 1
3K̊γ̄ij .

Substituting into (25b) along with γ = 0 yields

(27) Δ̊Lγ̄ij + 4γ̄ij ≡ −Δ̊γ̄ij − 2γ̄ij = 0.

We will now show that (Δ̊L + 4) : S 2
0 (S; h̊) → S 2

0 (S; h̊) is injective (and
hence, by self-adjointness, an isomorphism). First, taking the divergence of
(27), commuting derivatives and using the fact that the background metric
is Einstein (with r̊ = −6), we find that

0 = −D̊i(Δ̊γ̄ij + 2γ̄ij)
= −Δ̊δ̊(γ̄)j − D̊k (̊rklγ̄lj − r̊j

l
k
iγ̄il) − r̊j

likD̊kγ̄il − 2̊δ(γ̄)j
= −Δ̊δ̊(γ̄)j − r̊klD̊kγ̄lj − 2̊rj likD̊kγ̄il − 2̊δ(γ̄)j
= (−Δ̊ + 2)̊δ(γ̄)j ,

and hence we see that δ̊(γ̄) = 0 by positivity of (−Δ̊ + 2) : Λ1(S) → Λ1(S).
Now,

D̊∗ ◦ D̊(γ̄)ij = Δ̊γ̄ij − 1
2D̊kD̊iγ̄j

k − 1
2D̊kD̊j γ̄i

k + 1
3D̊

kD̊lγ̄kl̊hij

= Δ̊γ̄ij − 1
2D̊iD̊kγ̄j

k − 1
2D̊jD̊kγ̄i

k + 1
3D̊

kD̊lγ̄kl̊hij + 3γ̄ij
= −(Δ̊L + 4)γ̄ij + γ̄ij

= γ̄ij ,

where in the third line we are using δ̊(γ̄) = 0 and in the fourth we are using
(27). However, clearly D̊∗ ◦ D̊ is negative-definite, and so we find that γ̄ij = 0
— that is to say, (Δ̊L+4) is injective. Collecting everything together, we have
found that

σij = γij = 0, ξi = ξ̄i = 0,

— i.e. the map DΨ is injective.

Surjectivity of DΨ. The argument for surjectivity is similar. First, since δ̊◦
L̊ is an isomorphism, equations (23b)-(23c) admit (unique) solutions ξ̄i, ξi, for
any given B̄i, Bi. Substituting into equations (23a) and (23d) and rearranging
one obtains

D̊∗ ◦ D̊(ς − 1
9K̊γh̊)ij = Aij + D̊∗(̊�L̊(ξ̄)),(28a)

Δ̊Lγij + 4γ̄ij − 1
3βγh̊ij + 2

3K̊ςij = Cij + 2L̊(ξ)ij ,(28b)
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where, for simplicity, we have defined

ςij ≡ σij − 1
3K̊γ̄ij .

Note that ςij is tracefree with respect to h̊. Taking the trace of (28b) one
obtains

−(Δ̊ + β)γ = Ck
k,

which admits a unique solution, since β /∈ Spec(−Δ̊) implies that −(Δ̊ + β)
is invertible. Substituting into (28a) yields

D̊∗ ◦ D̊(ς)ij = Aij + D̊∗(̊�L̊(ξ̄))ij + 1
9D̊

∗ ◦ D̊(γh̊ij)

where γ is as determined in the previous step, for which there exists a unique
solution ςij , since D̊∗ ◦ D̊ : S 2

0 (S; h̊) → S 2
0 (S; h̊) is an isomorphism. Finally,

substituting the γ and ςij so obtained into (28b), one obtains

Δ̊Lγ̄ij + 4γ̄ij = Cij + 2L̊(ξ)ij + 1
3βγh̊ij − 2

3K̊ςij ,

which admits a unique solution since (Δ̊L + 4) is an isomorphism.
The previous two steps conclude the proof that DΨ is an isomorphism,

and so by the Implicit Function Theorem there exists a map ν from the freely-
prescribed data to the space of solutions of the auxiliary system Ψ = 0. It
only remains to establish the injectivity of the map ν.

Injectivity of ν. To establish the injectivity of ν, we need to consider the
linearisation of Ψ in the direction of the free data — namely

d
dτ Ψ(χ, X̄,X,h; K̊ + τφ, τ T̄ , τT )

∣∣∣∣
τ=0

= 0.

Since the background initial data, being hyperbolic, has umbilical extrinsic
curvature, the expression (24) simplifies to

L̊(dφ)jk + 3̊εkilD̊lT̄j
i + 3̊εjilD̊lT̄k

i = 0,(29a)
D̊iT̄il = 0,(29b)
D̊jTij = 0,(29c)
Tij − 4

9K̊φ̊hij = 0.(29d)
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First consider the case K̊ �= 0: taking the trace of the algebraic equation (29d)
one finds that φ = 0, and so Tij = 0. Combining (29a)–(29b) — see Remark
6 — and using φ = 0, one obtains

(D̊T̄ )ijk ≡ D̊iT̄jk − D̊jT̄ik = 0.

Now, we have assumed the non-existence of non-trivial tracefree Codazzi ten-
sors, so T̄ij = 0. Hence, in the non–time symmetric case K̊ �= 0, the map ν is
injective.

Consider on the other hand the time-symmetric case K̊ = 0. Clearly, the
kernel of the system contains triples of the form

(30) (Tij , T̄ij , φ) = (0, 0, const.).

We show that these are indeed the only solutions. First, note that condition
(29d) (setting K̊ = 0) again implies Tij = 0. Now, taking the divergence of
(29a), one has that

0 = δ̊L̊(dφ)k + 3̊εkilD̊jD̊lT̄j
i + 3̊εjilD̊jD̊lT̄k

i

= δ̊L̊(dφ)k + 3
2 ε̊

jlmT̄k
ir̊ijlm − 3

2 ε̊i
lmT̄ ij r̊kjlm + 3̊εkjlD̊iD̊

lT̄ ij

= δ̊L̊(dφ)k + 6̊εkjlT̄ ij r̊i
l + 3̊εkjlD̊lD̊iT̄

ij

= δ̊L̊(dφ)k,

after commuting covariant derivatives and where in the last step we are using
the fact that the background metric is Einstein, along with the fact that T̄ij

is divergence-free. Integrating by parts, one then finds that L̊(dφ) = 0 —
that is to say, dφ is a conformal Killing vector. Since h̊ admits no non-trivial
conformal Killing vectors, dφ = 0 and so φ is constant. Proceeding as in the
K̊ �= 0 case, we again see that T̄ij = 0, as a consequence of there being no
non-trivial tracefree Codazzi tensors. By restricting the choice of φ to the
sub-Banach space of functions integrating to zero, we clearly exclude from
the kernel triples of the form (30), ensuring that ν is injective.

In order to show that u 
→ w(u) is injective, all that remains to be shown
is that the map u ≡ (φ,T , T̄ ) 
→ S(X(u),T ) is injective (and likewise for
X̄). The injectivity of the map u 
→ L̊(X(u)) + T follows from injectivity
of ν and uniqueness of the York split — using, once again, the non-existence
of conformal Killing vectors for h̊, see [10]. Finally, we need to show that
Πh is injective (for h sufficiently close to h̊ in Bh). To see this, note that if
Tij ∈ ker( Πh) ∩ S 2

0 (S; h̊), then

Tij = 1
3Thij
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with T = trh(T ), and

0 = T · trh̊h = T · (3 + trh̊(h− h̊)).

Now, by Sobolev Embedding (see [22]) the C0-norm of (h − h̊) is bounded
above by the H2-norm and hence, for h sufficiently close to h̊ in Bh, it
follows that T = 0 and hence Tij = 0 — that is to say, Πh is injective for
such an h.

Remark 22. Recall the notion of total mean extrinsic curvature∫
S

trh̊(K) dμ̊,

given here with respect to the background metric h̊. The additional require-
ment that φ integrates to zero in the time-symmetric case K̊ = 0 therefore
ensures that the corresponding solutions furnished by Theorem 1 have zero
total mean extrinsic curvature with respect to h̊. While the proof guarantees
a solution for any choice of (smooth, sufficiently small) φ, the injectivity of
the map ν is only guaranteed if we further restrict to those φ that integrate
to zero.

Remark 23. In the proof of Proposition 1, we could have instead used the
vanishing of the index to establish surjectivity. Recall that the Atiyah–Singer
index theorem (see [25], for example) relates the analytical and topological
index of an elliptic operator over a compact manifold. For an odd-dimensional
base manifold S the topological index vanishes — see the discussion in [25]
— and so the index theorem guarantees that an injective elliptic operator
defined over an odd-dimensional manifold must in fact be an isomorphism of
the appropriate Banach spaces.

4.3. Sufficiency of the auxiliary system

In this section we establish sufficiency of auxiliary constraint system — that
is, we show that the solutions of the auxiliary system established in the pre-
vious section are indeed solutions of the extended constraint equations.

Injectivity of Kh. Recall the operator Kh given by

Kh(J) =
(

D̊∗(J)ij
εijkDiJjkl

)
.
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As described in Section 3.3, the sufficiency argument will involve establishing
injectivity of the operator Kh. We first consider the operator evaluated at the
background metric, h̊:

Proposition 2. Let (S, h̊) be a smooth conformally rigid hyperbolic manifold,
then the operator K̊ ≡ Kh̊ is injective — i.e. the system of equations K̊(J) = 0
admits only the trivial solution Jijk = 0.

Proof. Suppose Jijk = 0 is a Jacobi tensor satisfying K̊(J) = 0. Performing
the Jacobi decomposition of Jijk with respect to h̊ we obtain

2r̊ot2(F )ij + L̊(A)ij = 0,(31a)
δ̊(F )i + ˚curl(A)i = 0,(31b)

with ˚curl(A)i ≡ ε̊ijkD̊
jAk, to be read as equations for Fij ∈ S 2

0 (S; h̊) and
Ai ∈ Λ1(S). It then follows that

0 = δ̊(L̊(A) + 2r̊ot2(F ))i
= δ̊ ◦ L̊(A)i + 2̊δ ◦ r̊ot2(F )i
= δ̊ ◦ L̊(A)i + ˚curl ◦ δ̊(F )i − 2̊εimlr̊j

lF jm

= δ̊ ◦ L̊(A)i − ˚curl2(A)i − 2̊εimlr̊j
lF jm,

where the first line follows from (31a), the third uses the identity

δ̊ ◦ r̊ot2(F )i = 1
2

˚curl ◦ δ̊(F )i − ε̊imlr̊j
lF jm,

and the fourth follows from substitution using (31b). Since h̊ is Einstein, we
find

δ̊ ◦ L̊(A)i − ˚curl2(A)i = 0.

Contracting with Ai and integrating by parts:

(32) 0 =
∫
S

(
1
2‖L̊(A)‖2 + ‖ ˚curl(A)‖2

)
dμh̊,

where we are using the fact that δ̊∗ = −1
2 L̊ and ˚curl∗ = ˚curl. Hence, we find

that Ai = 0, since h̊ admits no conformal Killing vector fields. Substituting
into (31a)–(31b), we see that r̊ot2(F )ij = δ̊(F )i = 0 and hence Fij = 0 since
h̊ admits no tracefree Codazzi tensors. It follows then that Jijk = 0.
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In order to show that Kh is injective for h sufficiently close to h̊, we will
first show that the operator Kh is elliptic and then appeal to a particular
stability property of the kernel of elliptic operators. Let us first establish
ellipticity:

Lemma 2. The operator Kh is first-order elliptic for any Riemannian met-
ric h.

Proof. Recall from Remark 3 that J (S) and S 2
0 (S; h̊)⊕Λ1(S) are isomorphic

as vector spaces. Therefore, in order to establish ellipticity it suffices to show
that Kh is overdetermined elliptic. Note that the second component of Kh = 0
is equivalent to

D[iJjk]l = 0.

Note also that a change of connection Di → D̊i only introduces lower-order
(i.e. algebraic) terms involving Jijk, so in order to show ellipticity it suffices
to consider the operator K̊, or equivalently an operator with principal part

(
D̊∗(J)ij
D̊[iJjk]l.

)
.

Accordingly, suppose Jijk ∈ J (S) is in the kernel of the symbol map, σξ[K̊],
for a given fixed ξi, so that

ξkJikj + ξkJjki − 2
3ξ

kJlk
l̊hij = 0,(33a)

ξiJjkl + ξjJkil + ξkJijl = 0.(33b)

Note that the latter is indeed equivalent to εijkξiJjkl = 0, taking into
account the fact that Jijk = −Jjik. Contracting indices i, l in equation (33b),
we obtain

(34) ξlJjkl = −ξjJkl
l + ξkJjl

l.

On the other hand, contracting (33a) with ξj , we obtain

0 = ξkξjJikj + ξkξjJjki − 2
3ξ

kξiJlk
l

= ξkξjJikj − 2
3ξ

kξiJlk
l

= 1
3ξiξ

kJkl
l + |ξ|2Jill(35)

where the second line follows from the fact that Jijk = −Jjik and the third
line follows from substituting (34). Contracting (35) with ξi, we find that
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ξiJil
l = 0, which when substituted back into (35) yields Jil

l = 0 for |ξ| �= 0.
Substituting the latter into (33a) we see that

(36) ξkJikj + ξkJjki = 0.

Moreover, substitution of Jill = 0 into (34) yields

(37) ξkJijk = 0.

Now, contracting the cyclic identity Jijk + Jjki + Jkij = 0 with ξk one finds
that

0 = ξkJijk + ξkJjki + ξkJkij

= ξkJjki − ξkJikj ,(38)

where to pass from the first to the second line we have used (37) and that
Jkij = −Jikj . Combining equations (36) and (38) one thus concludes that

(39) ξkJikj = 0.

Finally, contracting (33b) with ξi, and using the relations (37) and (39) we
obtain

0 = |ξ|2Jjkl + ξjξ
iJkil + ξkξ

iJijl = |ξ|2Jjkl
Hence, for |ξ| �= 0, we see that the symbol map is injective — that is to say,
Kh is overdetermined elliptic and hence determined elliptic, since its domain
and codomain are of equal dimension as vector spaces.

In order to establish injectivity of Kh we will make use of an elliptic
estimate. Rather than working directly with the first-order operator Kh we
choose instead to work with the elliptic operator K∗

h ◦ Kh to which the more
standard results of second-order elliptic operators may be applied — note that
the kernel of the latter operator agrees with the kernel of Kh, so it suffices
to show injectivity of the second-order operator. Our starting point is the
following elliptic estimate for K̊∗ ◦ K̊: there exists C > 0 such that, for all
η ∈ H2(J (S))

(40) ‖η‖H2 ≤ C
(
‖K̊∗ ◦ K̊(η)‖L2 + ‖η‖H1

)

— see Appendix II of [11], for instance. In fact, we will require a uniform
version of the above elliptic estimate which allows for small perturbations of
the metric:
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Lemma 3. There exists ε > 0 such that, for all h satisfying ‖h− h̊‖Hs < ε,
s ≥ 4, we have the estimate

(41) ‖η‖H2 ≤ 2C (‖K∗
h ◦ Kh(η)‖L2 + ‖η‖H1)

for all η ∈ H2(J (S)), with C as in (40), depending only on h̊.

Proof. We first note that there exists some constant C̃ such that for any given
η ∈ J (S), we have

(42) ‖(K∗
h ◦ Kh − K̊∗ ◦ K̊)η‖L2 ≤ C̃‖h− h̊‖H2‖η‖H2

— this follows from the fact that, schematically,

(K∗
h ◦ Kh − K̊∗ ◦ K̊)η ∼ (h− h̊)∂∂η + S · ∂η + (∂S + S · S)η

with S the transition tensor covariant derivatives associated to the metrics h̊
and h, from which it is clear then that (K∗

h ◦Kh−K̊∗ ◦ K̊)η may be bounded
above by ‖h− h̊‖H2‖η‖H2 .

Now, using inequality (42) we find that for all h satisfying ‖h−h̊‖H2 < ε,
and for all η ∈ J (S),

‖η‖H2 ≤ C
(
‖K̊∗ ◦ K̊(η)‖L2 + ‖η‖H1

)
≤ C

(
‖K∗

h ◦ Kh(η)‖L2 + ‖(K̊∗ ◦ K̊ − K∗
h ◦ Kh)η‖L2 + ‖η‖H1

)
≤ C

(
‖K∗

h ◦ Kh(η)‖L2 + εC̃‖η‖H2 + ‖η‖H1

)
,

with C depending only on h̊. Thus, taking ε = 1/(2CC̃) and rearranging we
have that

(43) ‖η‖H2 ≤ 2C (‖K∗
h ◦ Kh(η)‖L2 + ‖η‖H1)

for all η ∈ H2(J (S)) and for all ‖h− h̊‖H2 < ε as required.

Remark 24. The content of inequality (42) may be summarised by the state-
ment that the map

M : H2(S 2(S)) −→ B(H2(J (S)), L2(J (S))
h 
−→ K∗

h ◦ Kh

is Lipschitz continuous at h = h̊ — here, B(·, ·) denotes the Banach space
of bounded linear maps between the indicated Banach spaces, endowed with
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the operator norm— with C̃ the Lipschitz constant, which depends on the
precise structure of K∗ ◦ K and may be computed explicitly.

4.3.1. The main argument Assume now that the procedure described in
Section 4.2 has been carried out — that is to say, we have established the
existence of a neighbourhood of solutions to the auxiliary system. For each
such solution, the corresponding zero quantities Qi, Jijk necessarily satisfy

Kh(J) = 0,(44a)
Di(LQh)ij − 1

2Dj(LQh)ii = KikJj
ik −KjkJ

ik
i −KJj

i
i.(44b)

The first equation collects together (17a) and (18a), while the latter is the
remaining integrability condition — see Section 3.3. We regard the above as
equations for a pair of tensor fields Q ∈ Λ1(S), J ∈ J (S), which we aim to
prove are necessarily vanishing — at this point we forget about the definitions
of the zero quantities Qi, Jijk in terms of the unknown tensor fields.

We first use the results of the previous section to show that injectivity
of the operator Kh is stable under Hs-perturbations, s ≥ 4, of the metric.
Note that, in the following, all Sobolev norms are taken with respect to the
background metric, h̊.

Proposition 3. There exists ε > 0 such that for any metric h satisfying
‖h− h̊‖Hs < ε, the corresponding operator Kh is injective in H2.

Proof. Suppose not. Then there exists a failure sequence {(h(n), η(n))}, n ∈ N

— i.e. a sequence of Riemannian metrics h(n) converging to h̊ in H2 and
corresponding non-zero Jacobi tensors η(n) ∈ J (S) for which

K(n)(η(n)) = 0

for each n ∈ N — here, K(n) ≡ Kh(n) . Since K(n) is linear, we may take each
η(n) to be of unit H2-norm. Hence, by the Rellich-Kondrakov Theorem, since
the sequence {η(n)} is bounded in H2, there is a subsequence that is Cauchy
in H1 — let us assume without loss of generality that {η(n)} is Cauchy—
converging to some limit η• ∈ J (S). We now aim to show using the inequality
(43) that the sequence is in fact Cauchy in H2. Let us restrict to a the tail of
the subsequence (relabelling, if necessary) for which ‖h(n) − h̊‖ < ε with ε as
given in Proposition 3. Applying the inequality (43) to η(m,n) ≡ η̄(n) − η̄(m),
with h = h(n), we have
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‖η(m,n)‖H2

≤ 2C
(
‖K∗

(n) ◦ K(n)(η(m,n))‖L2 + ‖η(m,n)‖H1

)
= 2C

(
‖K∗

(n) ◦ K(n)(η(m))‖L2 + ‖η(m,n)‖H1

)
= 2C

(
‖(K∗

(n) ◦ K(n) −K∗
(m) ◦ K(m))η(m)‖L2 + ‖η(m,n)‖H1

)
.(45)

The second line follows from by substituting for η(m,n) in the first term and
using the fact that, by assumption, K(n)(η̄(n)) = 0; the third line follows
similarly. Now,

‖(K∗
(n) ◦ K(n) −K∗

(m) ◦ K(m))η(m)‖L2 ≤ ‖(K∗
(n) ◦ K(n) − K̊∗ ◦ K̊)η(m)‖L2

+ ‖(K∗
(m) ◦ K(m) − K̊∗ ◦ K̊)η(m)‖L2 ,

which goes to zero in the limit m,n −→ ∞, again using the Lipschitz property
of M and the fact that η(m) is bounded in H2. Collecting together the above
observations, we see from (45) that as m,n −→ ∞, η(m,n) −→ 0 in H2 — i.e.
the sequence η̄(n) is Cauchy in H2, and therefore the limit η• ∈ J (S) is in
H2. Clearly η• is non-zero — in fact, one has that ‖η•‖H2 = 1.

Using the Lipschitz property of M once more, along with the fact that
η(n) converges to η• in H2, one finds that

‖K̊∗ ◦ K̊(η•)‖L2 = lim
n→∞

‖K∗
(n) ◦ K(n)(η(n))‖L2 = 0.

Hence, K̊∗◦K̊(η•) = 0, and it follows via integration by parts that K̊(η•) = 0.
However, η• ∈ J (S) \ {0} and so we obtain a contradiction, since K̊ is
injective, as shown in Proposition 2.

We are now in a position to prove the main result of this section:

Proposition 4 (Sufficiency). There exists an open neighbourhood V of
h̊ ∈ Bh, such that for each h ∈ V, (Jijk, Qi) = (0,0) is the unique H2

solution of (44a)–(44b).

Proof. We begin by showing that Jijk = 0. This follows immediately from the
previous proposition provided we choose V to be a suitably small neighbour-
hood.

Having established that Jijk = 0, (44b) implies that Qi satisfies the inte-
gral identity (19). Hence, it follows that

0 =
∫
S

(
‖DQ‖2

h − rijQ
iQj

)
dμh ≥

∫
S
−rijQ

iQj dμh −→
∫
S

2‖Q‖2
h̊
dμh̊,
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where convergence follows from the fact that, since h → h̊ in H4, we have
r[h]ij → r̊ij = −2̊hij in C0 — convergence of the latter in H2 is immediate,
and an application of the Sobolev Embedding Theorem establishes conver-
gence in C0. Hence, provided we take V to be a suitably-small neighbourhood,
it follows that for any h ∈ V we necessarily have Q = 0.

Hence, it follows that for solutions (Kij , Sij , S̄ij , hij) of the auxiliary sys-
tem sufficiently close to the background data, the corresponding zero quanti-
ties Qi, Jijk must necessarily vanish, implying (Kij , Sij , S̄ij , hij) indeed solves
the extended constraint equations. This concludes the proof of sufficiency.
Collecting together Propositions 1 and 4, one obtains Theorem 1.

Remark 25. Alternatively, we could also have shown Qi = 0 by using iden-
tity (19) to first establish injectivity of the operator Qi 
→ Δ̊Qi + r̊ijQ

j , and
again appealing to the stability property of kernels of elliptic operators.

4.4. Parametrising the space of freely-prescribed data

We have seen that, according to Theorem 1, there exist solutions of the
extended constraints corresponding to freely-prescribed data (φ,T , T̄ ) suf-
ficiently close to (0,0,0), where T , T̄ ∈ STT (S; h̊). In this last subsection we
aim to give an explicit parametrisation of the space of freely-prescribed data,
using the ideas of [4] for the construction of transverse-tracefree tensors on
conformally flat manifolds, which have previously been applied to the con-
struction of generalised Bowen-York data — see [5]. We first review the basic
ideas.

4.4.1. The Gasqui–Goldschmidt complex Let H(h)ij denote the
Cotton–York tensor associated to a metric h — namely

Hij ≡ εkl(iD
krj)

l.

The Cotton tensor Hij is symmetric and tracefree. Moreover, by the third
Bianchi identity it is also divergence-free. Recall also that, in dimension 3, the
vanishing of the Cotton-York tensor is equivalent to local conformal-flatness
— see e.g. [27]. Now consider the linearisation, H̊(η)ij , about a background
metric h̊, given by the Fréchet derivative

H̊(η)ij ≡
d

dτ
H(̊h + τη)ij

∣∣∣∣
τ=0

= ε̊kli(D̊kr̆(η)lj − C(η)mkj r̊lm) + η(i
kH̊j)k − 1

2ηH̊ij
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with indices raised using h̊. Here, η ≡ trh̊(η), the operator C(·)ijk is as
defined in (15) and r̆(η)ij is the linearised Ricci operator acting on the metric
perturbation ηij , and given by equation (14).

According to the above observations, if h̊ is conformally flat, then H̊(η) ∈
S 2

0 (S; h̊). Moreover, in the case of conformally-flat data, H̊(η)ij is also di-
vergence-free since the linearisation of the third Bianchi identity gives

0 = d

dτ
δh(H(h))i

∣∣∣∣
τ=0

= δ̊(H̊(η))i − ηkjD̊kH̊ij − 1
2H̊

jkD̊iηjk − H̊i
kD̊jηjk + 1

2H̊i
kD̊kη

= δ̊(H̊(η))i

where to pass from the second to the third line it has been used that H̊ij = 0
for a conformally flat background. Hence, H̊(η)ij ∈ STT (S; h̊). The above
features are expressed succinctly in the Gasqui-Goldschmidt elliptic complex
— see [18, 4]:

0 → Γ(Λ1(S)) L̊−→ Γ(S 2
0 (S; h̊)) H̊−→ Γ(S 2

0 (S; h̊)) δ̊−→ Γ(Λ1(S)) → 0,

which holds for any conformally flat manifold (S, h̊). Here, we are using Γ(·) to
denote smooth sections of the indicated tensor bundle. Another consequence
of the elliptic complex is that the linear sixth-order operator P ≡ H̊2+(L̊◦δ̊)3
is elliptic — see [4]. It is straightforward to see that ker P = ker H̊ ∩ ker δ̊,
and hence that P is injective for a conformally rigid manifold (S, h̊).

For compact S, the above elliptic complex admits the following expression
of Poincaré duality:

ker δ̊/H̊(Γ(S 2
0 (S; h̊))) � ker H̊/L̊(Γ(Λ1(S))).

Hence, given our assumption of conformal rigidity, it follows that the map

H̊ : Γ(S 2
0 (S; h̊)) → Γ(STT (S; h̊))

is, in fact, surjective — any smooth TT tensor may be constructed as the
image under H of some smooth tracefree 2-tensor. This result is generalised
in the following Proposition:
Proposition 5. Let (S, h̊) be a smooth conformally-rigid (not necessarily
hyperbolic) manifold, then the map

H̊ : Hs+2(S 2
0 (S; h̊)) → Hs−1(STT (S; h̊)),

is surjective for s ≥ 4.
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Proof. Given Tij ∈ Hs−1(STT (S; h̊)), then since

Γ(STT (S; h̊)) ∩Hs−1(STT (S; h̊))

is dense in Hs−1(STT (S; h̊)) we can approximate Tij by a Cauchy sequence
T

(n)
ij ∈ Γ(STT (S; h̊)). Since h̊ is conformally rigid there exists, for each n ∈ N,

an element η
(n)
ij ∈ Γ(S 2

0 (S; h̊)) for which H̊(η(n))ij = T
(n)
ij . Without loss of

generality, we may assume that η
(n)
ij ∈ Γ(STT (S; h̊)) for each n ∈ N — one

takes the TT part of the York split of a given η
(n)
ij , if necessary, and uses the

fact that Im L̊ ⊂ ker H̊. Now since the elliptic operator P ≡ H̊2 + (L̊ ◦ δ̊)3 is
injective, it follows from standard results of elliptic PDE theory (see Appendix
H of [7], for instance) that there exists some constant C > 0 for which the
elliptic estimate

‖η‖Hs+2 ≤ C‖P (η)‖Hs−4

holds for all ηij ∈ Hs+2(S 2
0 (S; h̊)). In particular, it follows that

‖η(m) − η(n)‖Hs+2 ≤ C‖P (η(m) − η(n))‖Hs−4

≤ C‖H̊ ◦ H̊(η(m) − η(n))‖Hs−4

≤ C‖H̊(T (m) − T (n))‖Hs−4

≤ C‖T (m) − T (n)‖Hs−1 ,

where the second line follows from the fact that, by assumption, η
(n)
ij are

divergence-free, and the fourth follows by continuity of H̊ as a map from
Hs−1 to Hs−4. It follows that the sequence {η(n)}, n ∈ N, is Cauchy in
the Hs+2-norm and therefore converges to some ηij ∈ Hs+2(STT (S; h̊)). By
continuity we then have that H̊(η)ij = Tij , as required.

4.4.2. The parametrisation The above ideas can now be applied to ob-
tain the parametrisation of the free data Tij , T̄ij :

Proposition 6. Let (S, h̊, K̊) satisfy the conditions of Theorem 1, and let U
be the neighbourhood of the freely specifiable data as given there. There exists
an open subset

Ũ ⊂ Bη ≡ Hs−1(S 2
0 (S; h̊))

)
,

such that:
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(i) for each η, η̄ ∈ Ũ there exists a solution to the extended constraint
equations with free data

(46) Tij = H̊(η)ij , T̄ij = H̊(η̄)ij ;

(ii) all admissible free data (i.e. T , T̄ ∈ U) may be obtained in the form
(46), for some η, η̄ ∈ Ũ .

For a given Tij T̄ij, the choice of ηij , η̄ij in (46) is unique up to the addition
of elements in Im(L̊).

Proof. Take Ũ ≡ H̊−1(U ∩ Im(H̊)). The map

H̊ : Bη → BT

is continuous, so Ũ is open in BT . Applying Theorem 1 with free data (46)
establishes (i). By assumption of conformal rigidity and using Proposition 5
it follows that

H̊ : Hs+2(S 2
0 (S; h̊)) → Hs−1(STT (S; h̊))

is surjective, so H̊(Ũ) = U , establishing (ii). Uniqueness (up to addition of
elements in Im(L̊)) follows immediately from the assumption of conformal
rigidity.

5. Conclusions and outlook

The Friedrich-Butscher method originally applied in [8, 9] to the asymptot-
ically flat case, was implemented here to the case of hyperbolic background
initial data. This method provides a promising alternative to the standard
conformal method for the construction of initial data; in particular, it allows
for the possibility of generating solutions to the constraint equations that
are tailored in the sense of having certain components of the Weyl curvature
(restricted to S) prescribed from the outset.

Work is currently under progress to extend the present results to a broader
class of background initial data, in addition to extending the analysis to the
full conformal constraint equations. It would be interesting to see whether
the method can be implemented numerically through an iterative convergence
scheme.



824 Juan A. Valiente Kroon and Jarrod L. Williams

Acknowledgements

The authors thank the hospitality of the International Erwin Schrödinger
Institute for Mathematics and Physics where a big part of this work was
carried out as part of the research programme Geometry and Relativity during
July-September 2017.

References

[1] L. Andersson & V. Moncrief, Future complete vacuum spacetimes,
in The Einstein equations and the large scale behaviour of gravitational
fields, edited by P. T. Chruściel & H. Friedrich, page 299, Birkhäuser,
2004. MR2098919

[2] R. Bartnik, Phase space for the Einstein equations, Comm. Anal.
Geom. 13, 845 (2005). MR2216143

[3] R. Bartnik & J. Isenberg, The constraint equations, in The Einstein
Equations and the Large Scale Behaviour of Gravitational Fields, edited
by P. T. Chruściel & H. Friedrich, p. 1, Birkhauser, 2004. MR2098912

[4] R. Beig, TT-tensors and conformally flat structures on 3-manifolds,
Banach Center Publications 41, 109 (1997). MR1466511

[5] R. Beig, Generalized Bowen-York initial data, in Mathematical and
Quantum Aspects of Relativity and Cosmology, edited by S. Cotsakis
& R. Beig, volume 537 of Lecture Notes in Physics, p. 55, Springer,
2000. MR1843033

[6] R. Beig, P. T. Chruściel, & R. Schoen, KIDs are non-generic,
Ann. Henri Poincare 6, 155 (2005). MR2121280

[7] A. L. Besse, Einstein Manifolds, Springer Verlag, 2008. MR2371700

[8] A. Butscher, Exploring the conformal constraint equations, in The
Conformal Structure of Spacetime: Geometry, Analysis, Numerics,
edited by J. Frauendiener & H. Friedrich, Lect. Notes. Phys., p. 195,
2002. MR2007930

[9] A. Butscher, Perturbative solutions of the extended constraint
equations in General Relativity, Comm. Math. Phys. 272, 1
(2007). MR2291799

[10] M. Cantor, Elliptic operators and the decomposition of tensor fields,
Bull. Am. Math. Soc. 5, 235 (1981). MR0628659

http://www.ams.org/mathscinet-getitem?mr=2098919
http://www.ams.org/mathscinet-getitem?mr=2216143
http://www.ams.org/mathscinet-getitem?mr=2098912
http://www.ams.org/mathscinet-getitem?mr=1466511
http://www.ams.org/mathscinet-getitem?mr=1843033
http://www.ams.org/mathscinet-getitem?mr=2121280
http://www.ams.org/mathscinet-getitem?mr=2371700
http://www.ams.org/mathscinet-getitem?mr=2007930
http://www.ams.org/mathscinet-getitem?mr=2291799
http://www.ams.org/mathscinet-getitem?mr=0628659


Perturbative construction of initial data on compact manifolds 825

[11] Y. Choquet-Bruhat, General Relativity and the Einstein Equations,
Oxford University Press, 2008. MR2473363

[12] B. Chow & D. Knopf, The Ricci Flow: An Introduction, Vol. 110,
American Mathematical Society, 2004. MR2061425

[13] E. Delay, Perturbative solutions to the extended constant scalar cur-
vature equations on asymptotically hyperbolic manifolds, Proceedings of
the American Mathematical Society 7, 137 (2009). MR2495262

[14] D. M. DeTurck, The equation of prescribed Ricci curvature, Bull. Am.
Math. Soc. 3, 701 (1980). MR0571372

[15] C. Edwards, Advanced Calculus of Several Variables, Courier Corpo-
ration, 2012. MR3155173

[16] H. Friedrich, Cauchy problems for the conformal vacuum field
equations in General Relativity, Comm. Math. Phys. 91, 445
(1983). MR0727195

[17] G. J. Galloway, P. Miao, & R. Schoen, Initial data and the Ein-
stein constraint equations, in General Relativity and Gravitation: A Cen-
tennial Perspective, edited by A. Ashtekar, B. K. Berger, J. Isenberg, &
M. A. H. MacCallum, Cambridge University Press, 2015. MR3644040

[18] J. Gasqui & H. Goldschmidt, Déformations infinitésimales des
structures conformes plates, volume 52 of Progress in Mathematics,
Birkhäuser, 1984. MR0776970

[19] M. Holst, D. Maxwell, & R. Mazzeo, Conformal Fields and the
Structure of the Space of Solutions of the Einstein Constraint Equations,
1711.01042.

[20] M. Kapovich, Deformations of representations of discrete subgroups of
SO(3, 1), Math. Ann. 299, 341 (1994). MR1275772

[21] J. Lafontaine, Modules de structures conformes plates et cohomolo-
gie de groupes discrets, CR Acad. Sci. Paris Ser. I Math 297, 655
(1983). MR0738698

[22] H. B. Lawson & M. L. Michelson, Spin Geometry, Princeton Uni-
versity Press, 1989. MR1031992

[23] D. Maxwell, A model problem for conformal parameterizations
of the Einstein constraint equations, Comm. Math. Phys. 302, 697
(2011). MR2774166

http://www.ams.org/mathscinet-getitem?mr=2473363
http://www.ams.org/mathscinet-getitem?mr=2061425
http://www.ams.org/mathscinet-getitem?mr=2495262
http://www.ams.org/mathscinet-getitem?mr=0571372
http://www.ams.org/mathscinet-getitem?mr=3155173
http://www.ams.org/mathscinet-getitem?mr=0727195
http://www.ams.org/mathscinet-getitem?mr=3644040
http://www.ams.org/mathscinet-getitem?mr=0776970
http://arxiv.org/abs/1711.01042
http://www.ams.org/mathscinet-getitem?mr=1275772
http://www.ams.org/mathscinet-getitem?mr=0738698
http://www.ams.org/mathscinet-getitem?mr=1031992
http://www.ams.org/mathscinet-getitem?mr=2774166


826 Juan A. Valiente Kroon and Jarrod L. Williams

[24] D. Maxwell, The conformal method and the conformal thin-
sandwich method are the same, Class. Quantum Grav. 31, 145006
(2014). MR3233274

[25] M. Nakahara, Geometry, Topology and Physics, CRC Press,
2003. MR2001829

[26] A. D. Rendall, Partial Differential Equations in General Relativity,
Oxford University Press, 2008. MR2406669

[27] J. A. Valiente Kroon, Conformal Methods in General Relativity,
Cambridge University Press, 2016. MR3585918

[28] J. W. York Jr., Conformally covariant orthogonal decomposition of
symmetric tensor on Riemannian manifolds and the initial value problem
of General Relativity, J. Math. Phys. 14, 456 (1973). MR0329562

Juan A. Valiente Kroon
School of Mathematical Sciences
Queen Mary, University of London
Mile End Road
London E1 4NS
United Kingdom
E-mail: j.a.valiente-kroon@qmul.ac.uk

Jarrod L. Williams
School of Mathematical Sciences
Queen Mary, University of London
Mile End Road
London E1 4NS
United Kingdom
E-mail: j.l.williams@qmul.ac.uk

http://www.ams.org/mathscinet-getitem?mr=3233274
http://www.ams.org/mathscinet-getitem?mr=2001829
http://www.ams.org/mathscinet-getitem?mr=2406669
http://www.ams.org/mathscinet-getitem?mr=3585918
http://www.ams.org/mathscinet-getitem?mr=0329562
mailto:j.a.valiente-kroon@qmul.ac.uk
mailto:j.l.williams@qmul.ac.uk

	Introduction
	The extended Einstein constraint equations
	The Friedrich–Butscher method
	Preliminaries
	The auxiliary system
	The ansatz
	The linearisation of the Ricci operator
	The auxiliary extended constraint map

	The sufficiency argument
	Elliptic equations for Qi and Jijk

	Obstructions to the existence of solutions
	Conformal Killing vectors
	Non-trivial tracefree Codazzi tensors
	Conformally rigid hyperbolic manifolds


	Nonlinear perturbations of compact hyperbolic initial data
	Statement of the main result
	Existence of solutions of the auxiliary system
	Technical tools
	The application of the Implicit Function Theorem

	Sufficiency of the auxiliary system
	The main argument

	Parametrising the space of freely-prescribed data
	The Gasqui–Goldschmidt complex
	The parametrisation


	Conclusions and outlook
	Acknowledgements
	References

