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A short note on the Bartnik mass∗

Justin Corvino

Abstract: In this note we use a localized deformation construc-
tion for the Einstein constraint equations to obtain a variational
condition that must be satisfied by a suitable Bartnik quasi-local
mass minimizer in the general non-time-symmetric setting.

1. Introduction

The quasi-local mass problem in general relativity is the search for a suitable
definition for the mass-energy of a region, a quantity which measures both
the energy content of the physical fields as well the contribution of the grav-
itational field. The stress-energy tensor Tμν , which appears in the Einstein
equation Ric(ḡ)μν − R(ḡ)

2 ḡμν = 8πTμν (in units where c = 1 and G = 1), gives
an infinitesimal measure of the contribution from non-gravitational fields. For
isolated systems modeled by asymptotically flat space-times, the ADM mass
measures the total mass-energy of the system. There has been intense inter-
est in quasi-local mass quantities, including the classic Hawking mass [11]
and the Bartnik mass [5], as well as mass quantities defined by Brown-York
[9], Jauregui [17], Liu-Yau [18], and Wang-Yau [29]. The Wang-Yau notion
of quasi-local mass and momenta has in particular been shown to enjoy a
number of interesting properties [10], and as such is a strong candidate for a
satisfactory notion of quasi-local quantities.

Bartnik defines the quasi-local mass of a region as the infimum of the
ADM mass over an appropriate class of extensions of the given data on the
region. A significant amount of care must be taken in formulating the class of
extensions. For one thing, to avoid hiding the region behind the event horizon
of a black hole with small mass, Bartnik rules out event horizons in spacetime
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extensions, and apparent horizons in spacelike extensions. From an initial
data perspective, then, one would rule out certain marginally outer trapped
surfaces, which in the time-symmetric case amounts to ruling out certain
minimal surfaces. There are various formulations of this notion starting from
the original work of Bartnik, cf. the discussion in the recent work of [3] for
example. Furthermore, Bartnik [5, 6] conjectures that a minimizing mass
extension of a region should be stationary and vacuum outside of the region,
but may fail to be smooth across the boundary. A minimizer is conjectured
to be Lipschitz across the boundary, with the dominant energy condition
holding distributionally. As Bartnik [5, 6] notes, the dependence of the quasi-
local mass on the region should come via the geometry at the boundary.
The boundary conditions should ensure that a Positive Mass Theorem with
corners (cf. e.g. [22, 27, 26]) holds. We will not go into this further in this
short note, but we remark that if only the surface data is given (the metric
on the boundary surface and some components of the second fundamental
form), one might consider not only asymptotically flat extensions, but also
fill-ins, cf. [8, 17, 28]. Furthermore, if the boundary were minimal, then there
may be no minimizing mass extension [19], consistent with static black hole
uniqueness theorems, cf. [24].

The purpose of this note is to discuss a result (Theorem 2.2) related to
the conjectural stationarity of a minimizing extension in the general case (cf.
Section 3.0.1). In the time-symmetric case, a minimizing mass extension is
conjectured to be static vacuum, and the question of the staticity of a min-
imizer was addressed in [12], and sharpened and clarified in [13, 15, 23], cf.
[3]. Bartnik has proposed establishing the stationarity of minimal mass exten-
sions by adapting the analysis in [7] to the setting with appropriate boundary
conditions; progress in this direction has been made by McCormick [20, 21].
As in [13], we will not go into the details of the boundary conditions here, as
we argue that discerning the interior condition satisfied by a minimizer can
be decoupled from the issue of the boundary behavior. Thus we will study
initial data on a manifold M with boundary, such as might represent the
boundary and exterior of an extension. Of course if one wants to study the
existence of a minimizer, one will have to marry the interior and boundary
conditions together, and that is a different problem from what we consider
here. Progress in this direction has been made, mostly in the time-symmetric
case, cf. e.g. [2, 3, 4], though we also point out the recent progress by An [1],
establishing the ellipticity of the stationary equations with Bartnik boundary
conditions, in an appropriate gauge.
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2. Statement of the Main Theorem and preliminaries

We recall the constraints operator and the dominant energy condition for an
initial data set (M, g,K), comprised of an n-manifold M (n ≥ 3) (possibly
with boundary), together with a Riemannian metric g and symmetric (0, 2)-
tensor K. Such data would be induced as the first and second fundamental
forms of a spacelike hypersurface in a spacetime. The dominant energy con-
dition in the spacetime translates into the following inequality on the initial
data:

1
2 [R(g) − |K|2g + (trgK)2] ≥ |divg(K) − d(trgK)|g ,

where R(g) is the scalar curvature, (divg(K))i = gj�Kij;� = gj�∇�Kij and
trgK = gijKij . Actually it is convenient to re-write the initial data using
the momentum tensor πij = Kij − (trgK)gij , for which we readily see that
gij(divgπ)j = [divg(K) − d(trgK)]i. We define the constraints map as

Φ(g, π) =
(
R(g) − |π|2g + 1

n−1(trgπ)2, divgπ
)

=: (2μ, J),

so that the dominant energy condition 1
2 [R(g)−|π|2g + 1

n−1(trgπ)2] ≥ |divgπ|g
is simply μ ≥ |J |g.

We let DΦ(g,π)(h, ω) = d
dε

∣∣∣
ε=0

Φ(g + εh, π + εω) define the linearized con-
straints operator DΦ(g,π), with formal L2-adjoint DΦ∗

(g,π) satisfying the equa-
tion ∫

M

(h, ω) ·g DΦ∗
(g,π)(f,X) dvg =

∫
M

(f,X) ·g DΦ(g,π)(h, ω) dvg

for all (h, ω) of compact support in the interior of M (i.e. away from the
boundary). We recall that at a vacuum initial data set, a nontrivial kernel
element of DΦ∗

(g,π) corresponds to a spacetime Killing vector for a Cauchy
development of the data, and in the case of a timelike Killing vector for
a stationary vacuum metric, the kernel element gives the associated lapse
function and shift vector, cf. [25].

The main result in this note is stated in terms of a modified constraint
operator from [14], designed to maintain the dominant energy condition under
deformations:

Φ̃(g,π)(γ, τ) = Φ(γ, τ) + (0, 1
2γ ·g divgπ),

where (γ ·g divgπ)i = gijγjk(divgπ)k. Observe that

Φ̃(g,π)(g, π) = Φ(g, π) + (0, 1
2divgπ).
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The linearized operator DΦ̃(g,π) and its formal adjoint DΦ̃∗
(g,π) are defined

just as above. The kernel of DΦ̃∗
(g,π) on an open set U ⊂ M \ ∂M is defined

to be the set of all (f,X) ∈ H2
loc(U)×H1

loc(U) so that DΦ̃∗
(g,π)(f,X) vanishes

weakly on U . If (g, π) is smooth on M , then by elliptic regularity, such a
kernel element (f,X) is smooth on U , and in fact (f,X) extends smoothly
over U , with DΦ̃∗

(g,π)(f,X) vanishing pointwise on U [14, Prop. 2.1]. Thus
when the kernel of DΦ̃∗

(g,π) is trivial on U = M \ ∂M , we say the kernel of
DΦ̃∗

(g,π) is trivial on M .
The main technical tool we will employ is a localized deformation for

initial data sets which promotes the dominant energy condition, joint work
with L.-H. Huang [14]. We state a sufficient version for our purposes. In the
following, Ω is a compact, connected, smooth manifold-with-boundary with
manifold interior Ω. While for simplicity we work with data (g, π) which is
smooth on Ω, one can accommodate less regularity, as in [14].

Theorem 2.1. Let 0 < α < 1. Suppose the kernel of DΦ̃∗
(g,π) is trivial on

Ω. Let Ω0 be open, with compact closure Ω0 ⊂ Ω. There is an ε̊ > 0 and
C > 0, so that for all ψ which is smooth on Ω with support in Ω0 and with
‖ψ‖C0,α < ε̊, there is (h, ω) which is smooth on Ω with compact support in Ω
and with ‖(h, ω)‖C2,α ≤ C‖ψ‖C0,α and so that with (ĝ, π̂) := (g + h, π + ω)
and (2μ̂, Ĵ) := Φ(g + h, π + ω), we have μ̂− |Ĵ |ĝ ≥ μ− |J |g + ψ.

We will consider asymptotically flat initial data sets on a manifold-with-
boundary M , which admits a compact set C ⊂ M so that M \C ⊂ M \∂M is
the union of a finite number of ends, each diffeomorphic to the exterior of the
unit ball in R

n. As for the initial data (g, π), one generally specifies a level
of local regularity (some number of continuous derivatives, possibly in local
Hölder spaces) along with decay conditions that can be imposed pointwise,
or in weighted Sobolev spaces. As regards the regularity, as noted above we
will assume g and π are smooth, though this is not necessary. As regards
the asymptotics, the proof will modify the data in the asymptotic region by a
simple scaling, which will preserve the asymptotic structure. So for the sake of
simplicity, we will operate with the standard decay conditions in appropriate
asymptotic coordinates x in each asymptotic end, namely that for some rate
q > n−2

2 , and for multi-indices |α| ≤ 2 and |β| ≤ 1,

∂α
x (gij(x) − δij) = O(|x|−q−|α|)

and
∂β
xπ

ij(x) = O(|x|−q−1−|β|),
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or equivalently, ∂β
xKij(x) = O(|x|−q−1−|β|). Furthermore for each end to have

well-defined ADM energy E and linear momentum P , we assume that R(g)
and divgπ are integrable. Recall that when E ≥ |P |, the ADM mass is defined
as

mADM (g, π) =
√
E2 − |P |2.

We now state the Main Theorem. We note that converging locally smooth-
ly is taken to mean converging in C� on compact subsets, for any � ∈ Z+.

Theorem 2.2. Let n ≥ 3, and let Mn be a connected manifold-with-boundary,
with ∂M compact. Suppose (M, g, π) is an asymptotically flat initial data set
which satisfies the dominant energy condition μ ≥ |J |g. Assuming that the
kernel of DΦ̃∗

(g,π) is trivial on M , there is an open set Ω̊ ⊃ ∂M and a sequence
θi ↘ 0+, along with a sequence (gi, πi) of asymptotically flat initial data sets
on M , so that with Φ(gi, πi) =: (2μi, Ji), we have the following:

• (gi, πi) = (g, π) on Ω̊, gi = (1 − θi)
4

n−2 g and πi = (1 − θi)−
6

n−2π in
a fixed neighborhood of infinity in any end, with lim

i→∞
(gi, πi) = (g, π)

locally smoothly on M .
• The dominant energy condition holds: μi ≥ |Ji|gi , and in fact we have
μi − |Ji|gi ≥ μ− |J |g.

• For each end which has timelike future-pointing ADM energy momen-
tum E > |P |,

0 < mADM (gi, πi) = (1 − θi)2
√
E2 − |P |2 < mADM (g, π).

3. Proof of the Main Theorem

The proof of Theorem 2.2 follows that of an analogous result in the time-
symmetric case from [13, Prop. 2.3].

Proof. As shown in [14, Prop. 2.1], the condition that DΦ̃∗
(g,π)(f,X) = 0

induces an ODE system along geodesics, and so a kernel element is deter-
mined by its 1-jet at any point. As a consequence, there is an a priori bound
(depending only on n) on the dimension of the kernel of DΦ̃∗

(g,π) on any
connected open set, and furthermore, the restriction map between two open
connected subsets U1 ⊂ U2 ⊂ M must be injective on the kernel of DΦ̃∗

(g,π).
Thus by using an exhaustion of M by pre-compact connected open subsets,
we can infer that since DΦ̃∗

(g,π) has trivial kernel on M , there is an open set
Ω ⊂ Ω ⊂ M \∂M on which DΦ̃∗

(g,π) has trivial kernel, with Ω a compact, con-
nected smooth manifold-with-boundary with manifold interior Ω; we can also
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easily arrange Ω to contain a region of the form {p ∈ M : r0 ≤ |x(p)| ≤ 2r0}
in each asymptotic end, for some r0 > 0. Let r0 < r1 < r2 < 2r0.

We employ Theorem 2.1 with a suitably chosen ψ ≥ 0, to deform (g, π) to
a new initial data set (ĝ, π̂), which from μ̂− |Ĵ |ĝ ≥ μ− |J |g + ψ still satisfies
the dominant energy condition, with (g, π) = (ĝ, π̂) outside Ω, and for some
small constant ψ̊ > 0, μ̂ − |Ĵ |ĝ ≥ ψ̊ + μ − |J |g holds in each set of the form
{p : r1 ≤ |x(p)| ≤ r2}.

Let ϕ : R → R be a smooth nonincreasing function with ϕ(t) = 1 when
t ≤ r1, while ϕ(t) = 0 for t ≥ r2. For 0 ≤ θ < 1, we define ϕθ = (1− θ) + θϕ,
so that ϕθ(t) = 1 for t ≤ r1 and ϕθ(t) = 1 − θ for t ≥ r2. We let uθ(p) > 0
be defined for p in an asymptotic end by uθ(p) = ϕθ(|x(p)|) for p ∈ M \ C, so
that uθ(p) = 1 − θ for |x(p)| ≥ r2, while uθ(p) = 1 for |x(p)| ≤ r1. Hence uθ
extends smoothly to all of M by uθ(p) = 1 for p ∈ C, and the derivatives of
uθ are O(θ).

Let gθ = u
4

n−2
θ ĝ and πθ = u

− 6
n−2

θ π̂ (as a (2, 0)-tensor), and we let cn =
n−2

4(n−1) , so that

R(u
4

n−2
θ ĝ) = −c−1

n u
− n+2

n−2
θ (Δĝuθ − cnR(ĝ)uθ) = u

− 4
n−2

θ (−c−1
n u−1

θ Δĝuθ + R(ĝ)).

Since trgθπθ = u
− 2

n−2
θ trĝπ̂ and |πθ|2gθ = u

− 4
n−2

θ |π̂|2ĝ, we have

2μθ := 2μ(gθ) = u
− 4

n−2
θ (2μ̂− c−1

n u−1
θ Δĝuθ) =: 2u−

4
n−2

θ μ̂ + 2δθ.

We also compute Jθ := divgθπθ = u
− 6

n−2
θ divĝπ̂ + duθ ∗ π̂ = u

− 6
n−2

θ Ĵ + duθ ∗ π̂,
where duθ ∗ π̂ indicates a linear combination of products of components of duθ
and π̂, with bounded coefficients. We write |Jθ|gθ = u

− 4
n−2

θ |Ĵ |ĝ +δ′θ. Note that
there is a C > 0 so that for all 0 < θ ≤ 1

2 , |δθ|+ |δ′θ| ≤ Cθ, and |δθ|+ |δ′θ| = 0
except for r1 ≤ |x(p)| ≤ r2.

We claim the dominant energy condition still holds for (gθ, πθ). Indeed,
as 0 < uθ ≤ 1 and ψ ≥ 0, where uθ is constant, we have μθ − |Jθ|gθ =
u
− 4

n−2
θ (μ̂−|Ĵ |ĝ) ≥ (μ−|J |g +ψ) ≥ 0. On the other hand, for r1 ≤ |x(p)| ≤ r2,

μθ − |Jθ|gθ = u
− 4

n−2
θ (μ̂− |Ĵ |ĝ) + δθ − δ′θ

≥ u
− 4

n−2
θ (ψ̊ + μ− |J |g) + δθ − δ′θ

≥ μ− |J |g + ψ̊ − Cθ.
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Thus for small enough θ > 0, the dominant energy condition holds every-
where, in fact μθ − |Jθ|gθ ≥ μ− |J |g.

We now indicate the simple computation using the ADM flux integrals
to find the energy-momentum (Eθ, Pθ) of any end of (M, gθ, πθ); since an
innocuous typo crept into the analogous formula in [13], we show some details
here. Asymptotically flat coordinates x (at rate q > n−2

2 ) for g in an end need
to be re-scaled to appropriate asymptotically flat coordinates y = αx for gθ,
with α = (1− θ)

2
n−2 . Then we have dyi = αdxi, and ∂

∂yi = α−1 ∂
∂xi . Thus at y

we have

gθ( ∂
∂yi ,

∂
∂yj ) = g( ∂

∂xi ,
∂

∂xj ) = δij + O(|x|−q) = δij + O(|y|−q)

as desired. We also note that ∂
∂yk

(gθ( ∂
∂yi ,

∂
∂yj )) = α−1 ∂

∂xk (g( ∂
∂xi ,

∂
∂xj )), and

similarly for second derivatives, while

πθ(dyi, dyj) = α2u
− 6

n−2
θ π(dxi, dxj) = α−1π(dxi, dxj),

with an analogous formula for the derivatives of πθ. In particular, we see that
the y coordinates are asymptotically flat with rate q for (gθ, πθ). We use index
notation for gθ in the y-coordinates, and for g in the x-coordinates, and we
let dσ̊ be the area measure on the round unit sphere S

n−1, with total area
|Sn−1|. The relevant flux integral over |y| = r for E(gθ) is given by (up to the
normalizing factor 1

2(n−1)|Sn−1| , and note the outward Euclidean unit normal
to the sphere at ω ∈ S

n−1 can be identified with ω)
∫

ω∈Sn−1

n∑
i,j=1

[(gθ)ij,i − (gθ)ii,j ]
∣∣∣
y=rω

ωjrn−1dσ̊

= αn−1
∫

ω∈Sn−1

n∑
i,j=1

α−1[gij,i − gii,j ]
∣∣∣
x=α−1rω

ωj(α−1r)n−1dσ̊.

Taking the limit as r → ∞, we see E(gθ) = αn−2E(g) = (1− θ)2E(g) (fixing
the typo from [13]). Similarly the flux integral for the linear momentum P �

θ

for (gθ, πθ) is, up to the factor 1
(n−1)|Sn−1| ,

∫
ω∈Sn−1

n∑
i,j=1

[(πθ)�j(gθ)jk]
∣∣∣
y=rω

ωkrn−1dσ̊

= αn−1
∫

ω∈Sn−1

n∑
i,j=1

α−1[π�jgjk]
∣∣∣
x=α−1rω

ωk(α−1r)n−1dσ̊
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from which we can then conclude P �
θ = (1 − θ)2P �. We then have the ADM

mass

mADM (gθ, πθ) :=
√
E2

θ − |Pθ|2 = (1 − θ)2
√
E2 − |P |2 < mADM (g, π).

To produce the desired family of solutions, for each 0 < ε ≤ 1, we consider
the above procedure with εψ in place of ψ, and as we can choose any θ

sufficiently small, we choose a corresponding θ(ε) ∈ (0, ε) small enough as
above. So there is a sequence εi ↘ 0, with corresponding θi := θ(εi) ↘ 0,
and we then take (gi, πi) to be (gθi , πθi).

Remark 3.1. Suppose we replace ϕ above by a smooth nondecreasing function
for which ϕ(t) = 0 for t ≤ r1 and ϕ(t) = 1 for t ≥ r2, and for θ ≥ 0 we let
ϕθ = 1+θϕ, and we define uθ(p) = ϕθ(|x(p)|) for p ∈ M \C, and uθ(p) = 1 for
p ∈ C. We see 1 ≤ uθ ≤ 1 + θ and uθ(p) = 1 + θ for |x(p)| ≥ r2. Carrying out
the rest of the proof, we see that for 0 < γ < 1, and θ > 0 small enough, we
have μθ − |Jθ|gθ ≥ γ(μ− |J |g) ≥ 0. We let (gθi , πθi) for suitable θi ↘ 0 define
an analogous sequence (gi, πi) as above, so that for each end with E > |P |,

mADM (gi, πi) = (1 + θi)2
√
E2 − |P |2 > mADM (g, π).

Remark 3.2. An immediate corollary of the above proof is the following:
suppose (M, g, π) is as in Theorem 2.2, and suppose (gk, πk) is a sequence
of asymptotically flat initial data sets on M satisfying the dominant energy
condition and with well-defined ADM mass mADM (gk, πk), so that (gk, πk)
converges to (g, π) locally smoothly (of course as per [14], a finite number
of derivatives will suffice for the argument), and so that mADM (gk, πk) →
mADM (g, π). If Ω is as in the proof of Theorem 2.2, then by the convergence
and [14, Thm. 5.3], we may arrange that for all k (sufficiently large, so without
loss of generality), the kernel of DΦ̃∗

(gk,πk) is also trivial on Ω (and hence on
M). As the analysis in [14] shows, ε̊ > 0 in Theorem 2.1 (and hence ψ in the
proof of Theorem 2.2) can be chosen uniformly for data near (g, π). Since the
estimates of δθ and δ′θ are uniform in θ ∈ (0, 1

2 ] and for data near (g, π), we
can find a suitable θ̊ > 0 so that for all k (sufficiently large, so without loss of
generality), the construction in the proof of Theorem 2.2 applied to (gk, πk)
yields the data ((gk)θ̊, (πk)θ̊) which satisfies the dominant energy condition.
If mADM (g, π) > 0, then for all k sufficiently large,

mADM ((gk)θ̊, (πk)θ̊)) = (1 − θ̊)2mADM (gk, πk) < mADM (g, π).
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This remark is made with the following in mind. Suppose (gk, πk) and
(g, π) are as above, where (gk, πk) is a mass-infinimizing sequence of exten-
sions in some appropriate class of competitors, defined in particular with cer-
tain asymptotics and boundary conditions imposed, and with some no-horizon
condition. The limit (g, π) might in principle leave the class of competitors
for the minimization problem. What the preceding paragraph shows is that
if (g, π) has positive mass and is a suitable limit of an infimizing sequence of
competitor extensions, then if (g, π) has trivial kernel on M for DΦ̃∗

(g,π), we
can produce extensions ((gk)θ̊, (πk)θ̊) with smaller ADM mass. We would ar-
rive at a contradiction to the trivial kernel assumption if we could show that
for large k and small θ̊ > 0, ((gk)θ̊, (πk)θ̊) inherits whatever no-horizon condi-
tion is satisfied by the competitor data (gk, πk), (since the data ((gk)θ̊, (πk)θ̊)
agrees with (gk, πk) near ∂M , and shares the same asymptotic decay proper-
ties).

3.0.1. Concluding remarks Theorem 2.2 and the above remark raise sev-
eral questions for the Bartnik quasi-local mass. An immediate question is the
following: if we impose that the original initial data set (g, π) be void of
horizons of a certain class (e.g. a certain class of marginally outer trapped
surfaces, say), then for small enough θ > 0 in the proof of Theorem 2.2, is
the data (gθ, πθ) also free of such horizons? If this holds for (g, π), we will call
this initial data set suitable. See e.g. [13] and cf. [3] for the time-symmetric
case; the variational nature of the minimal surface equation allows for some
satisfactory statements to hold. We expect a similar formulation to hold in
the general case.

Suppose we have a minimal mass extension, which is itself a suitable
member of the class of competitors for the minimization problem, or at least a
limit (as in Remark 3.2) of suitable competitors. Assuming we are in a setting
where the Positive Mass Theorem holds, then the argument above shows that
either the ADM energy-momentum vector is null or DΦ̃∗

(g,π) has nontrivial
kernel in the extension. Bartnik conjectures that the extension is stationary
and vacuum. Assuming we can apply the equality case of the Positive Mass
Theorem to our extension, see [16], if the ADM energy-momentum of (g, π)
is null, then the data is a slice in Minkowski spacetime. If the ADM energy-
momentum is timelike, then we obtain a kernel element for DΦ̃∗

(g,π), and have
to figure out what that means. Can we infer that the data corresponds to
a stationary spacetime? Can we say something about μ − |J |g? Must it be
vacuum? For comparison, in the time-symmetric case, the metric extension
must have nontrivial kernel for the formal adjoint DR∗

g of the linearized scalar
curvature operator, which in turn implies constant scalar curvature. Thus the
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extension must be static vacuum: the scalar curvature must vanish, since
it must go to zero at infinity. Furthermore along these lines, one might ask
whether more refined deformations (akin to the scalar curvature deformations
from [13]) can be achieved in case DΦ̃∗

(g,π) has trivial kernel: can one decrease
the ADM mass and preserve μ, |J |g, or μ− |J |g?
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