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Null geodesic incompleteness of spacetimes with no
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Abstract: Using an initial data gluing construction, Chruściel,
Isenberg, and Pollack constructed a class of vacuum cosmological
spacetimes that do not admit Cauchy surfaces with constant mean
curvature. We prove that, for sufficiently large values of the gluing
parameter, these examples are both future and past null geodesi-
cally incomplete.

1. Introduction

It is well-known that constant mean curvature (CMC) Cauchy surfaces play
an important role in the mathematical study of solutions to the Einstein
field equations. When solving the Einstein constraint equations via the con-
formal method, the CMC assumption ensures that the resulting equations
semi-decouple, hence leading to a far more robust understanding of exis-
tence and uniqueness than in the general case. The CMC gauge is also quite
useful for studying the Einstein evolution equations, both analytically and
numerically. This vital role of CMC Cauchy surfaces raises an interesting
open question: When do globally hyperbolic spacetimes admit CMC Cauchy
surfaces? It is known that not all globally hyperbolic spacetimes have CMC
Cauchy surfaces: In [3], Bartnik found no-CMC spacetimes with dust, and
in [8], Chruściel, Isenberg, and Pollack (CIP) found a family of vacuum
spacetimes with no CMC Cauchy surfaces using a modified form of IMP
gluing: a connected sum gluing procedure developed initially by Isenberg,
Mazzeo and Pollack (see [6], [9], [13], [14], [15]). We refer to the recent sur-
vey [10] of Dilts and Holst for some results and conjectures related to this
question.
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In a recent paper [11], Galloway and Ling proved a new existence re-
sult for CMC slices: every future timelike geodesically complete cosmological
spacetime (recall that a cosmological spacetime is a globally hyperbolic space-
time with compact Cauchy surfaces) with everywhere nonpositive timelike
sectional curvatures must admit a CMC Cauchy surface. Motivated by the
Bartnik splitting conjecture (see Conjecture 2 of [3]), the conjectures of [10],
and the conditions of their own result, Galloway and Ling conjecture that
a future timelike geodesically complete cosmological spacetime satisfying the
strong energy condition must contain a CMC Cauchy surface. In light of this
conjecture, geodesic completeness or incompleteness of no-CMC spacetimes
becomes relevant. Noting that Bartnik’s examples are by construction time-
like geodesically incomplete to both the future and the past, we turn our
attention toward the CIP examples.

In this note, we prove the following:

Theorem 1. For sufficiently large gluing parameter, the no-CMC spacetimes
constructed in [8] are both future and past null geodesically incomplete.

We do this by using the symmetry of the construction to show that the
central cross-section of the gluing region must be both a marginally outer
trapped surface (MOTS) and a marginally inner trapped surface (MITS) with
particularly rigid geometry. We then use a covering space argument together
with Chruściel and Galloway’s generalization of the Penrose singularity the-
orem (Proposition 1.1 of [7]). In Section 2 we recall the localized IMP gluing
construction, and in Section 3 we deduce null incompleteness.

The first and third authors have generalized in [5] the results presented
here, showing that this incompleteness is not an artifact of the symmetry,
but rather a consequence of the geometry of the underlying IMP gluing con-
struction. Therefore, the maximal globally hyperbolic evolution of any (IMP)
glued initial data sets admitting noncompact covers are causal geodesically
incomplete for sufficiently large values of the gluing parameter.

The foundational work of Robert Bartnik plays a crucial role in the math-
ematics discussed in this paper. Indeed, his work in general relativity has had
a huge influence over the direction of the field, and many of the currently
active branches of research have grown out of the seeds that he planted. On
a personal level, the third author is grateful to have known Robert since his
time as a graduate student at Stanford in the late 1980s, when Robert visited
the department from Australia. It has always been a pleasure to discuss math-
ematics with him and learn from him. The authors are honored to dedicate
this work to him.



Null geodesic incompleteness of spacetimes 841

Figure 1: A sketch of IMP gluing.

2. Preliminaries

Here we recall the CIP construction [8], which heavily uses the IMP gluing
construction [14], to set up notation and review the known properties of these
examples. We begin with a vacuum initial data set (T3, γ,K) which has no
global Killing Initial Data (KIDs) and such that for some p ∈ T

3, there is a
neighborhood of p on which τ := trγ K ≡ 0.

To achieve this initial setup, one uses of the work of Beig, Chruściel and
Schoen [4] on the generic absence of KIDs in initial data sets, as well as the
work of Bartnik [2] on the Plateau problem for prescribed mean curvature
spacelike hypersurfaces in a Lorentzian manifold.

The CIP construction then proceeds by applying a localized form of IMP
gluing (see [6]) to form a connected sum of (T3, γ,K) and (T3, γ,−K) around
the points p. The CIP gluing procedure consists of the following steps, sum-
marized in Figure 1 (for more detailed diagrams, see [14]):

• On each copy, we consider the decomposition γ|B2R(p) = dr2 + r2h(r) in
normal coordinates around p, where r is the geodesic distance from p,
and h is a smooth family of metrics on S

2 with h(0) ≡
◦
g, the standard

round metric on the unit sphere. In these coordinates, consider the
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conformal factor:

ψc(p) =

⎧⎪⎪⎨⎪⎪⎩
1 p ∈ T

3 \B2R(p)
interpolation p ∈ B2R(p) \BR(p)
r1/2 p ∈ BR(p)

,

where by interpolation, we here and henceforth mean interpolation
of the explicitly defined functions using radial cutoff functions with
bounded derivatives. Now blow up by ψ−4

c so that γ approaches the
cylindrical metric as r ↘ 0. That is, for t = − log r, the metric γc =
ψ−4
c γ decomposes as γc|BR(p)\{p} = dt2 + h(e−t). We also multiply the

transverse-traceless (ie traceless and divergence-free) parts μ and −μ of
K and −K, respectively, by ψ2

c .
• The cylinders are cut off at the parameter t = T − log(R) for T large,

and, distinguishing data on the two T
3’s by the subscripts 1 and 2,

we glue by the rule: (t1, θ1) ∼ (t2, θ2) if t2 = T − 2 log(R) − t1 and
θ2 = −θ1, where (ti, θi) ∈ [− log(R), T − log(R)] × [0, 2π). Note also
that the identification θ2 ∼ −θ1 is due to a reversal of orientation
when gluing. On the manifold M ≈ T

3#T
3, we define a new coordinate

s ∈ [−T/2, T/2], on the glued cylinder (denoted by CT ) by

s = t1 + log(R) − T/2 = T/2 − log(R) − t2.

New data are then constructed by cutoff functions as follows:

γT := χ1γ1 + χ2γ2, μT := χ1μ1 + χ2μ2, and KT := χ1K1 + χ2K2,

where, similar to before, we use the subscripts 1 and 2 to denote restric-
tions of the conformally transformed data on each gluing region, and
where {χ1, χ2} is a partition of unity with respect to an open cover of
M whose intersection consists of {(s, θ) ∈ CT : s ∈ (−1, 1)}. Note that
while it may seem redundant to define both μT and KT on the gluing
cylinder since trK ≡ 0 in the neighborhoods we’re considering, we still
make some use of KT to define the glued data at the very end, since
trK �≡ 0 outside of the gluing region. We also define a new conformal
factor

ψT = χ̃1ψ1 + χ̃2ψ2,
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where χ̃1, χ̃2 are cutoff functions such that χ̃i|T3
j\BR(pj) = δij and on CT ,

χ̃1(s, θ) =

⎧⎪⎪⎨⎪⎪⎩
1 s ∈ [−T/2, T/2 − 1)
interpolation s ∈ [T/2 − 1, T/2 − 1/2)
0 s ∈ [T/2 − 1/2, T/2]

, and

χ̃2(s, θ) =

⎧⎪⎪⎨⎪⎪⎩
0 s ∈ [−T/2, 1/2 − T/2]
interpolation s ∈ (1/2 − T/2, 1 − T/2]
1 s ∈ (1 − T/2, T/2]

.

Remark 1. All conformal factors and cutoff functions/partitions of unity
must be chosen so that M satisfies the following symmetry:

1. There exists a diffeomorphism β : M → M that takes a point on one T3

to the corresponding one on the other T
3. In particular, on the gluing

neck, β(s, θ) = (−s, θ), so the cross-section s = 0 is fixed by β.
2. The reflection β satisfies: β∗γT = γT and β∗KT = −KT .

In particular, on the gluing neck, we must have that χ1(s, θ) = χ2(−s, θ) and
χ̃1(s, θ) = χ̃2(−s, θ).

Remark 2. For the purposes of this paper, and in accord with the construc-
tion in [14], we call T the gluing parameter. We expect that the geometry of
the central gluing neck of the resulting initial data set behaves like a small
perturbation of a neighborhood of the minimal 2-sphere in a time-symmetric
slice of the Schwarzschild spacetime with mass mT ∼ Ce−αT for positive con-
stants C and α which are independent of T . Existence of solutions to the
conformally modified momentum and Hamiltonian constraints follows from
perturbation arguments as T → ∞, where we see a degeneration in the ge-
ometry of the initial data sets.

At this stage, reversing the asymptotically cylindrical blowing-up process,
we have data for an approximate solution:

(M,γT , KT ) =
(
T

3#T
3, ψ4

TγT , ψ
−2
T μT + trγT KT

3 ψ4
TγT

)
.

The remaining steps in the CIP gluing construction are to perturb μT and
ψT using the conformal method so that the resulting data

(1) (M, γ̃T , K̃T ) =
(
T

3#T
3, ψ̃4

TγT , ψ̃
−2
T μ̃T + trγT KT

3 ψ̃4
TγT

)
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solve the vacuum Einstein equations. The most technical and detailed aspects
of finding μ̃T and ψ̃T are described in [14] Sections 3-6, while Sections 2-4 of
[8] sketch the modifications one must make in order to localize the construc-
tion: in particular, one must solve boundary value problems with the elliptic
operators in question, and then apply a smoothing procedure from [6]. Since
we will make use of estimates on these perturbations, we sketch some of the
analysis involved:

• The new tensor μT is perturbed by solving a boundary value problem
with the vector Laplacian so that the resulting tensor, μ̃T := μT −σT , is
transverse-traceless with respect to γT in the gluing region (where τ is
constant) and σT = 0 on the boundary—since μ̃T is only different from
μ1 and μ2 in the very center of the neck where the latter two are inter-
polated, the perturbation is only needed in that area. Because all the
relevant differential operators preserve the symmetry of Remark 1, all
analysis can be done in function spaces where the reflection symmetry
is preserved.

• Using a contraction mapping argument, the conformal factor ψT is per-
turbed so that the resulting function, ψ̃T := ψT + ηT , satisfies the Lich-
nerowicz equation (with respect to γT with boundary conditions fixing
ηT to be 0 on the boundary. Again, all analysis is done in function
spaces that preserve the reflection symmetry). In addition, the pertur-
bation term ηT satisfies the following weighted Hölder estimate:

(2) ||ηT ||k+2,α,δ := ||w−δ
T ηT ||k+2,α ≤ Ce−T/4,

where k ∈ Z≥0, δ ∈ (0, 1), wT |CT := e−T/4 cosh(s/2), the unweighted
Hölder norm is defined as in Definition 2 of [14], and C > 0 is indepen-
dent of T .

• Applying the above procedure for small enough R, a compactly sup-
ported, smooth deformation procedure per [6] is applied across annuli
about the boundaries of the gluing neighborhoods. This perturbation
agrees with the IMP construction near the middle of the gluing neck
and the original data near the gluing neighborhood boundaries.

We now have that the data (M, γ̃T , K̃T ) as in Equation 1 satisfies the
Einstein vacuum constraint equations as well as the symmetry of Remark 1.
When convenient, we suppress the dependence on T and denote the final
initial data set by (M, γ̃, K̃). However, for the above analysis as well as the
bounds we use below, it is necessary that T be sufficiently large.



Null geodesic incompleteness of spacetimes 845

3. Proof of the Theorem

Let Σ̃ be the cross-section {(s, θ) ∈ CT : s = 0} with data induced by
(M, γ̃, K̃). Using the symmetry of Remark 1, we demonstrate below that Σ̃
is a MOTS and a MITS. First note that

K̃|Σ̃ = β∗K̃|Σ̃ = −K̃|Σ̃,

so K̃|Σ̃ ≡ 0. Likewise, if we let ν be the unit normal pointing in the positive s
direction (since orthogonality properties of the original metric are preserved
under conformal transformations, the unit normal to Σ̃ after the final con-
formal transformation is a rescaling of ∂

∂s), and if we let H+ and H− be the
mean curvatures of Σ̃ associated to ν and −ν, respectively, we have

H+ = β∗H+ = H− = −H+,

so HΣ̃ ≡ 0. Thus, Σ̃ is a spacetime minimal surface, and in particular satisfies
the MOTS and MITS equation

trΣ̃ K̃ ±HΣ̃ = 0.

Now consider the following covering space of M : given one of the tori at
the beginning of the gluing construction, take a universal cover and on each
copy of the gluing neighborhood, identically glue in the other torus (using
pullback data on the universal cover of the first torus) as described above.
Call the resulting space N . Fixing a single copy of Σ̃ in this covering space,
we are in the situation of Proposition 1.1 of [7]:

i Because the CIP construction is vacuum, it trivially satisfies the null en-
ergy condition, and N is a noncompact Cauchy surface for its spacetime
evolution.

ii The hypersurface Σ̃ is a closed, connected MOTS, and its complement
in N consists of two disjoint open sets, one of which has noncompact
closure (without loss of generality, let ν point toward this end).

iii We must show that either the null second fundamental form χ of Σ̃ is
not identically zero, that Σ̃ is strictly stable, or that there exists a null
geodesic along which a certain genericity condition holds.

We now show that the last item is satisfied; in particular, we will show that
either the first or second condition of the (iii) holds.
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Suppose that χ ≡ 0. It suffices to show that there exists a function φ ∈
C∞(Σ̃) such that Lφ > 0, where L : C∞(Σ̃) → C∞(Σ̃) is the MOTS stability
operator (see [1]):

Lφ : = −Δφ + 2〈X,∇φ〉

+
(1

2RΣ̃ − (μ + J(ν)) − 1
2 |χ|

2 + divX − |X|2
)
φ,

and where all differential operators and inner products are taken with respect
to the induced metric on Σ̃, RΣ̃ is the scalar curvature of Σ̃, μ and J are the

respective energy and momentum densities, and X :=
(
K̃(ν, ·)|

T Σ̃

)�
. Now in

our case, μ and J are both zero because N is vacuum, and χ disappears by
assumption. In addition, since K̃|Σ̃ ≡ 0 and all derivatives are taken with
respect to Σ̃, all X terms disappear, whence the stability operator simplifies
to

Lφ = −Δφ + 1
2RΣ̃φ.

Let φ ≡ 1, so we are left to show that RΣ̃ > 0. But now recall that
before the final conformal transformation in the IMP gluing construction,
the spherical cross sections close to the middle of the neck have metrics that
are arbitrarily close to the standard spherical metric for T large. Thus, we
may choose T large enough so that the scalar curvature of the s = 0 slice is
positive. Denote the s = 0 slice prior to the final conformal transformation
by (Σ, h)—that is, the data on Σ is induced by (M,γT , KT ). Then using
the formula for scalar curvature after a conformal transformation, we see the
scalar curvature of Σ̃ is given by:

RΣ̃ = (ψ̃T )−4
(
RΣ − 4Δ(log(ψ̃T ))

)
= (ψ̃T )−4

(
RΣ + 4

(
||∇ηT ||2

ψ̃2
T

− ΔηT

ψ̃T

))
,

where all derivatives and inner products are taken with respect to the induced
metric on Σ. Note that the second equality follows because ψT |CT is a function
of s, so it is constant on Σ. We must show that the last two terms can be made
arbitrarily small for T large. From our definitions of ψT and wT in Section 2,
we see that

ψT |Σ = ψT (0) = 2elog(R)/2e−T/4 and wT |Σ = e−T/4.
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Combining these with the bound on ηT in (2), we obtain

||ηT ||Σk+2 � e−(1+δ)T/4,

which yields
||ηT ||Σk+2 � e−δT/4ψT |Σ

for δ ∈ (0, 1). Thus, for T sufficiently large, we indeed have that ||∇ηT ||2 and
|ΔηT | are negligible compared with ψ̃2

T and ψ̃T , respectively, and hence RΣ̃
is positive as desired. Thus, if χ ≡ 0, we have Σ̃ is a strictly stable MOTS, so
(iii) is satisfied, and we conclude that any spacetime evolution of N is future
null geodesically incomplete.

It remains to show that any spacetime evolution M̂ of M is future null
geodesically incomplete. We use the following lemma from [12]:

Lemma 2. Let (M, γ̃, K̃) be a smooth spacelike Cauchy surface in a space-
time (M̂, g), and suppose π : N → M is a Riemannian covering map. Then
there exists a Lorentzian covering map π̂ : N̂ → M̂ extending π such that
(N , π∗γ̃, π∗K̃) is a Cauchy surface for the spacetime N̂ .

(N , π∗γ̃, π∗K̃) (N̂ , π̂∗g)

(M, γ̃, K̃) (M̂, g)

π π̂

Now suppose M̂ is future null geodesically complete. Since N̂ is future
null geodesically incomplete, there exists a future inextendible smooth null
geodesic ζ : [0, α) → N̂ that terminates at affine parameter α < ∞. Consider
the smooth null geodesic π̂(ζ) ⊂ M̂ . Then by future null completeness of M̂ ,
we must be able to find a smooth null geodesic ζ̂ : [0,∞) → M̂ extending
π̂(ζ). Let ε > 0 be small enough so that ζ̂(α − ε, α + ε) is contained in a
single evenly-covered neighborhood U ⊂ M̂ , and pick a smooth local section
σ : U → N̂ of the covering such that ζ(t) = σ◦ π̂◦ζ(t) for every t ∈ (α−ε, α).
Then we see that the smooth null geodesic ξ : [0, α + ε) → N̂ defined by

ξ(t) :=
{
ζ(t) t ∈ [0, α)
σ ◦ ζ̂(t) t ∈ (α− ε, α + ε)

extends ζ to the future, which contradicts our assumption on ζ. Thus, we
must indeed have that any spacetime evolution of M is future null geodesically
incomplete.
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Lastly, note that since Σ̃ is also marginally inner trapped we may take a
time reversal of the above argument—using a covering space that “unwraps”
the other torus—to conclude past null geodesic incompleteness.
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