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Abstract: In this note, introducing notions of CH module, CH
morphism and CH connection, we define a meromorphic connec-
tion in the “z-direction” on periodic cyclic homology of an A∞ cat-
egory as a connection on cohomology of a CH module. Moreover,
we study and clarify compatibility of our meromorphic connections
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1. Introduction

In this note we introduce and study a certain meromorphic connection on
periodic cyclic homology of a filtered A∞ category. In [21] Getzler intro-
duced the Gauss-Manin connection on periodic cyclic homology of an A∞
algebra, which we call the Getzler-Gauss-Manin connection in this note. He
constructed the connection at chain level and showed that the curvature is
chain homotopic to zero. His connection does not involve derivative of the
‘z-direction’. Here the parameter z is the auxiliary variable in the cyclic ho-
mology, which is denoted by −u in [21]. In this article we will incorporate
the derivative of the ‘z-direction’ with the connection. This is necessary and
important when we study the relationship between the Fukaya category for a
general, not necessary Calabi-Yau, symplectic manifold and Kyoji Saito’s flat
structure [30]. On the other hand, Katzarkov-Kontsevich-Pantev [25] intro-
duced a connection on periodic cyclic homology which contains the derivative
of the ‘z-direction’. Although the definition of our connection is inspired from
their definition and it looks similar to theirs, they are essentially different as
we will explain later in Remark 1.1.

Our motivation comes from symplectic geometry. We briefly and infor-
mally recall the symplectic geometric background to explain our motivation
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and aim of this article, though these geometric contents are not used in this
note. Let (X,ω) be a closed symplectic manifold. We do not assume c1(X) = 0
here. Let

(1.1) Λ0 =
{ ∞∑

i=0
aiT

λi

∣∣∣∣∣ ai ∈ C, λi ∈ R≥0, λi → ∞
}

be (a version of) the Novikov ring. We choose and fix a homogeneous basis
T0 = 1, T1, . . . , Tm of H∗(X; Λ0). (For simplicity, we assume deg Ti are even.)
Let t =

∑m
i=0 tiTi ∈ H∗(X; Λ0) and denote by ∗t the quantum product on

H∗(X; Λ0) defined by

(a ∗t b, c)PDX =
∑

α∈H2(X;Z)

∞∑
n=0

1
n!GWX

0,α,n+3(t, . . . , t︸ ︷︷ ︸
n

, a, b, c)Tω(α).

Here (·, ·)PDX denotes the Poincaré paring on H∗(X; Λ0) and GWX
0,α,n+3 is

(the Λ0 linear extension of) the genus zero (n+ 3) points Gromov-Witten in-
variant of X with class α. Dubrovin introduced a meromorphic flat connection
∇D called Dubrovin’s quantum connection on the trivial H∗(X; Λ0)-bundle
over H∗(X; Λ0) × P1 satisfying

∇D
∂

∂ti

= ∂

∂ti
+ 1

z
(Ti∗t),

∇D
z ∂
∂z

= z
∂

∂z
− 1

z
(E∗t) + μ,

where z is the parameter sitting in P1, E = c1(X) +
∑m

i=0(1− deg Ti

2 )tiTi and
μ ∈ EndH∗(X; Λ0) defined by μ(a) = 1

2(deg a − dimX
2 )a for a ∈ H∗(X; Λ0).

See, e.g., [10, Lecture 3] and compare Example 5.10 below.
On the other hand, Lagrangian intersection Floer theory on X provides

a filtered A∞ category, called the Fukaya category, denoted by Fuk(X). The
open-closed map p introduced in [14] is extended in [1] to a QH∗(X)-module
homomorphism

(1.2) p̂ : HH∗(Fuk(X); Λ0) → QH∗(X; Λ0)

from the Hochschild homology of the Fukaya category. Here QH∗(X; Λ0) de-
notes the quantum cohomology ring of X with coefficients in Λ0. If we use the
de Rham model, then Fuk(X) has a structure of cyclic filtered A∞ category.
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(See [11], [12], [1].) The open-closed map p̂ will be lifted to a cyclic open-
closed map from the the cyclic homology of Fuk(X) to the (S1-equivariant)
quantum cohomology:

(1.3) ĉp : CH∗(Fuk(X); Λ0[[z]]) → QH∗(X; Λ0[[z]]).

Then general algebraic theory on the Hochschild chain/cochain of an A∞ cate-
gory tells us that the Hochschild chain CC∗(Fuk(X); Λ0[[z]]) has a structure of
DGLA module over the Hochschild cochain CC∗(Fuk(X); Λ0[[z]]) which has
a structure of DGLA. Moreover it is known that QH∗(X; Λ0[[z]]) has a struc-
ture of hypercommutative algebra in the sense of [22] (see Example 3.10 for
the definition). Furthermore, we note that these maps and categories are bulk-
deformed by elements of H∗(X; Λ0). (See [14], [17] for more detailed discussion
on bulk-deformations.) In this situation, we like to construct a meromorphic
connection on periodic cyclic homology of Fuk(X) over H∗(X; Λ0)×P1 which
is compatible with Dubrovin’s quantum connection ∇D under the cyclic open-
closed map ĉp. This is our motivation. In this article we do not touch the
geometric part of the cyclic open-closed map. The purpose of this article
is to extract and describe the properties that the cyclic open-closed map is
supposed to have in terms of purely algebraic language, and to introduce a
meromorphic connection containing the derivative of the z-direction as well,
and to prove that the connection is compatible with Dubrovin’s quantum
connection under the cyclic open-closed map in our algebraic formulation.
In this sense our formulation provides an algebraic counterpart of the cyclic
open-closed map in Lagrangian Floer theory together with our meromorphic
connection, and describes the relation of our meromorphic connection in the
Fukaya A∞ category to Dubrovin’s quantum connection in quantum coho-
mology via the cyclic open-closed map. See Proposition 5.21, Corollary 5.22
and Theorem 6.5, and also Remark 5.23 for the variants. The unitarity of the
A∞ category is used in Section 6. We also note that there is a related result
on compatibility of the Getzler-Gauss-Manin connection under a certain L∞
morphism of modules in deformation quantization [5, Proposition 1.4].

In this note a key ingredient to incorporate the derivative of the z-
direction with the Getzler-Gauss-Manin connection on periodic cyclic ho-
mology of a filtered A∞ category is to consider a Z-grading. To encode a
Z-grading structure in the Fukaya A∞ category Fuk(X)1 we will use the uni-
versal Novikov ring Λe

0 (see Example 4.2 (1) for this notation) by adding one
formal variable e of degree 2 instead of Λ0 in (1.1). This formal variable e was

1More precisely, we consider anchored/graded Lagrangian submanifolds as ob-
jects. See [15], [32] for more details.
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originally used in the universal Novikov ring in Lagrangian Floer theory [13],
[14] in order to encode the Maslov index of holomorphic disks, while Λ0 or its
quotient field Λ without the formal variable e are frequently used in recent
literatures, for example [16], [18], where only Z/2Z-grading is considered. By
using the Z-grading structure we define a meromorphic connection called an
Euler connection in Definition 5.14, which incorporates the derivative of the
z-direction with the Getzler-Gauss-Manin connection.

To establish the compatibility of our Euler connection with Dubrovin’s
quantum connection under the cyclic open-closed map at cohomology level,
we need argument at chain level. In an algebraic aspect, we will study cer-
tain algebraic structure keeping track of information of chain homotopy at
certain depth. For this purpose we introduce the notion of CH module over
an L∞ algebra in Definition 3.6, where ‘CH’ stands for Cartan homotopy. It
is a cousin of the notion of calculus algebra in [8], [36]. (We note that the
Cartan homotopy formula already played an important role in Getzler’s pa-
per [21] to construct the Getzler-Gauss-Manin connection on periodic cyclic
homology.) Actually we will see that the structure of calculus algebra gives a
typical example of our CH module structure and a hypercommutative algebra
mentioned above also provides a typical example of the CH module structure.
(See Examples 3.9, 3.10.) In the language of CH-module and CH-morphism
we define, we formulate and study the compatibility of our Euler connections
under a CH-morphism in Proposition 5.21 and Corollary 5.22, and apply these
results to the situation arising from an A∞ category in Section 6.

Remark 1.1. Our connection formally looks similar to one in [25, p.108]
by replacing our variables z, e by their variables u, t respectively. In fact, the
variable z plays the same role as the variable u. However there are indeed
differences in the following points. Katzarkov-Kontsevich-Pantev consider a
t ∈ AC \ {0}-parametrized family of Z/2Z-graded (DG) algebras (see [4]
for its A∞ version), while we consider a Z-graded family of (DG) algebras.
Their variable t stands for a formal abstract parameter and does not have
a non-trivial grading (but they consider a ‘weight’ instead) because of the
property dAt = t · dA etc, described in [25, p.108]. On the other hand, our
variable e appears in more primitive way and has a geometric meaning in
Lagrangian Floer theory as mentioned above, which naturally involves a Z-
grading. Furthermore, since our Z-graded family of (DG) algebras is different
form one they consider, the Getzler-Gauss-Manin connections associated to
these families are, at least a priori, different.

Remark 1.2. There are related works, e.g. in [19], [33] motivated also by
symplectic geometry. In [19, Section 4.2] Ganatra-Perutz-Sheridan claims the
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compatibility of the Getzler-Gauss-Manin connection and Dubrovin’s quan-
tum connection under the cyclic open-closed map. Their Geztler-Gauss-Manin
connection does not involve the derivative of the z-direction. However they
consider the Calabi-Yau case. So it is actually not necessary for the situation
they study. Moreover, we note that a Z-grading structure naturally appears
in their case.

In [33] Seidel studies a similar quantum connection on equivariant Hamil-
ton Floer homology and its compatibility with Dubrovin’s quantum connec-
tion under the PSS map.

The outline of this paper is in order. Since we borrow Tygan’s reformu-
lation [37], following Barannikov’s idea sketched in [2], of the Getzler-Gauss-
Manin connection in terms of L∞ algebra and L∞ module, we start with re-
calling basic definitions concerning L∞ algebra and L∞ module in Section 2.
In Section 3 we introduce the notion of CH module over an L∞ algebra L
and CH module morphism. For a given L∞ algebra L over a graded algebra
R, we first enhance an L∞ algebra structure on L̃ := L[[z]] ⊕ εL[[z]] with
new formal variables z and ε of deg z = 2 and deg ε = 1, which can be re-
garded as a mapping cone of the morphism z · id ∈ EndR[[z]](L[[z]]). Then a
CH module structure on a graded R[[z]] module M̃ over the L∞ algebra L
is defined as an ‘ε2-truncated’ L∞ module structure on M̃ over the cone L̃.
This structure includes information of chain homotopy at certain depth which
will be used in later argument at chain level. On the other hand, as we men-
tioned above, our motivation comes from symplectic geometry, where the
symplectic energy plays an important role. To encodes the symplectic energy
we will use the Novikov ring/field as coefficients on which the symplectic en-
ergy induces a valuation or norm. Thus in Section 4 we define the normed
(filtered) version of the notion of CH module. In Section 5, after defining the
notion of CH connection on a CH module M̃ over L, we define the Getzler-
Gauss-Manin connection on M̃ for each CH connection and Maurer-Cartan
element of the L∞ algebra L in Definition 5.8. In Subsection 5.4, using the
grading operator and the Euler vector field, we incorporate the derivative of
the z-direction with the Getzler-Gauss-Manin connection defined above. We
call the resulted connection an Euler connection on M̃ . Then for any CH
module morphism which intertwines CH connections we show compatibility
of the Euler connections under the CH module morphism (Proposition 5.21,
Corollary 5.22). Now in Section 6, we study the situation of the Hochschild
chain/cochain of an A∞ category A . It is known that the shifted (reduced)
Hochschild cochain complex CC

•(A )[1] has a structure of DGLA and the
shifted (reduced) Hochschild chain complex CC•(A )[1] has a structure of



Meromorphic connections in filtered A∞ categories 521

DGLA module over CC
•(A )[1]. Moreover we show in Theorem 6.5 that the

reduced Hochschild chain M̃ := CC•(A )[1][[z]] has a CH module structure
over the DGLA L := CC

•(A )[1]. Therefore we can apply the story developed
in up to Section 5 to this situation. Thus this derives a Getzler-Gauss-Manin
connection together with derivative of the z-direction (an Euler connection)
on the periodic cyclic homology of an A∞ category. Finally in Section 7, we
recall the definition of a part of primitive forms and briefly explain relations
to filtered A∞ categories and Euler connections.

2. Preliminaries on L∞ algebras and L∞ modules

In this section, we recall some definitions related to L∞ algebras (e.g. [27]).
Let R = ⊕k∈ZR

k be a (Z−)graded ring. Throughout this paper, we assume
that rings are (graded) commutative and contains Q, i.e., n · 1 is invertible
for each n ∈ Z \ {0}. By graded R modules, we mean left graded R modules,
which are naturally considered as graded R bimodules. Usually, elements of
graded modules are assumed to be homogeneous.

For graded modules, the degree of homogeneous elements are denoted by
| · | and set | · |′ := | · | − 1. For a graded R module V , the one shift V [1] is
defined by V [1]k := V k+1. Let s : V → V [1] be the “identity map” (degree
−1). The graded R module structure of V [1] is defined by rsv := (−1)|r|srv.
To simplify notation, we use the same letter v for sv.

For graded R-modules V,W , the graded tensor product over R is denoted
by V ⊗ W . The symmetric group Sk of degree k naturally acts on V ⊗k.
The coinvariant of this action is called the graded symmetric tensor product
and denoted by V �k. An element σ ∈ Sk is called an (i1, i2, . . . , il)-shuffle if
i1 + · · · + il = k and

σ(1) < σ(2) < · · · < σ(i1), . . . , σ(i1 + · · · + il−1 + 1) < · · · < σ(k).

The set of (i1, i2, . . . , il)-shuffles is denoted by Sh(i1, i2, . . . , il). For
x1, . . . , xk ∈ V and σ ∈ Sk, the Koszul sign ε(σ) is defined by

x1 	 · · · 	 xk = ε(σ)xσ(1) 	 · · · 	 xσ(k).

Note that ε(σ) depends on x1, . . . , xk.
Set EkV := V [1]�k and EV := ⊕0≤kEkV . We define a product EV ⊗

EV → EV and a coproduct Δ : EV → EV ⊗ EV as follows:

(y1 	 · · · 	 yk) · (y′1 	 · · · 	 y′l) = y1 	 · · · 	 yk 	 y′1 	 · · · 	 y′l,
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Δ(y1	 · · · 	 yk)=
∑

p+q=k
0≤p≤k

∑
σ∈Sh(p,q)

ε(σ)yσ(1) 	 · · · 	 yσ(p) ⊗ yσ(p+1) 	 · · · 	 yσ(k),

where ε(σ) is the koszul sign determined by the shifted degree | · |′. We define
a unit η by the inclusion R ∼= E0V ⊂ EV and define a counit ε by the
projection from EV to R. Then (EV, · ,Δ, η, ε) is a bialgebra. We note that η
gives a coaugmentation and (EV, δ, η, ε) is a cocomutative conilpotent cofree
coalgebra (see, e.g., [29, §1]). For

{fk}1≤k ∈
∏
1≤k

Hom1
R(V [1]�k, V [1]),

we define f̂ ∈ Hom1
R(EV,EV ) by

f̂(y1, . . . , yk) =
∑

p+q=k
1≤p≤k

∑
σ∈Sh(p,q)

ε(σ)fp(yσ(1), . . . , yσ(p)) 	 · · · 	 yσ(k).

This gives an isomorphism between the set
∏

1≤k Hom1
R(V [1]�k, V [1]) and the

set of coderivations of (EV,Δ) such that composition of the coderivation and
η is equal to zero. Similarly, for

{fk}1≤k ∈
∏
1≤k

Hom0
R(V [1]�k,W [1]),

we define ef ∈ Hom0
R(EV,EW ) by the following:

f�l(y1, . . . , yk) =
∑

i1+···+il=k
σ∈Sh(i1,...,il)

ε(σ)fi1(yσ(1), . . . , yσ(i1)) 	 · · ·

· · · 	 fil(yσ(i1+···+il−1+1), . . . , yσ(k)),

ef =
∞∑
l=0

f�l

l! .

Then this gives an isomorphism between the set
∏

1≤k Hom0
R(V [1]�k,W [1])

and the set of coalgebra morphisms from EV to EW such that the composi-
tion of the morphism and η is equal to η.

Definition 2.1. Let L be a graded module over R and

{
k} ∈
∏
1≤k

Hom1
R(L[1]�k, L[1]).



Meromorphic connections in filtered A∞ categories 523

The pair (L, {
k}) is called an L∞ algebra over R if {
k} satisfies the relation

̂ ◦ 
̂ = 0.

Remark 2.2. Let (L, {
k}1≤k) be an L∞ algebra. Set

δ = −
1(y), [y1, y2] = (−1)|y1|
2(y1, y2).

Assume that 
k = 0 (3 ≤ k). Then (L, [·, ·], δ) is a differential graded Lie
algebra (DGLA for short). Conversely, a DGLA is naturally considered as an
L∞ algebra.

Definition 2.3. Let (L, {
k}), (L′, {
′k}) be L∞ algebras. A set of morphisms

{fk} ∈
∏
1≤k

Hom0
R(L[1]�k, L′[1])

is called an L∞ morphism if it satisfies 
̂′ ◦ ef = ef ◦ 
̂.

We next recall the definition of L∞ modules over an L∞ algebra (L, {
k}).
Let M be a graded R-module. We consider an EL comodule EL⊗M [1]. By
the construction, there exists an isomorphism between the set

Hom1
R(EL⊗M [1],M [1])

and the set of coderivations of EL ⊗M [1], where (EL, 
̂) is considered as a
differential graded coalgebra. For an element

{
Mk } ∈
∏
0≤k

Hom1
R(L[1]�k ⊗M [1],M [1]),

the corresponding coderivation is denoted by 
̂M ∈ End1
R(EL⊗M [1]). Namely,

writing 
̂M (y1 	 · · · 	 yk ⊗m) as 
̂M (y1, . . . , yk|m), we have

(2.1)


̂M (y1, . . . , yk|m)
=

∑
p+q=k
1≤p≤k

∑
σ∈Sh(p,q)

ε(σ)
p(yσ(1), . . . , yσ(p)) 	 · · · 	 yσ(k) ⊗m

+
∑

p+q=k
0≤p≤k

∑
σ∈Sh(p,q)

ε′(σ)yσ(1) 	 · · · 	 yσ(p) ⊗ 
Mq (yσ(p+1), . . . , yσ(k)|m),

where ε′(σ) = (−1)|yσ(1)|′+···+|yσ(p)|′ε(σ). Note that 
̂M depends on the L∞ al-
gebra structure of L.
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Definition 2.4. (M, {
Mk }0≤k) is called an L∞ module over L if 
̂M ◦ 
̂M = 0.

Remark 2.5. Let L be a DGLA and (M,d) be a DGLA module over the
DGLA L. The action of y ∈ L is denoted by Ly ∈ End|y|

R (M). We consider L
as an L∞ algebra (see Remark 2.2). Set


M0 = −d, 
M1 (y|m) = (−1)|y|Ly(m), 
Mk = 0 (k ≥ 2).

Then (M, {
Mk }0≤k) is an L∞ module. In this way, a DGLA module (M,d,L)
over a DGLA L can be regarded as an L∞ module.

We recall the definition of morphisms of L∞ modules. Let (N, {
Nk }0≤k)
be another L∞ module over L. Then there exists an isomorphism between
the set Hom0

R(EL ⊗ M [1], N [1]) and the set of comodule morphisms from
EL⊗M [1] to EL⊗N [1]. For an element

{fk}0≤k ∈
∏
0≤k

Hom0
R(L[1]�k ⊗M [1], N [1]),

the corresponding comodule morphism is denoted by f̌ .

Definition 2.6. {fk}0≤k is called an L∞ module morphism if it satisfies

̂N ◦ f̌ = f̌ ◦ 
̂M .

Remark 2.7. Let L and L′ be L∞ algebras over R, {fk}1≤k be an L∞
morphism from L to L′, and (M, {
Mk }0≤k) be an L∞ module over L′. Then
(e−f ⊗ id) ◦ 
̂M ◦ (ef ⊗ id) is a coderivation and this coderivation makes
M into an L∞ module over L. Using this construction, we can define L∞
module morphisms between L∞ modules defined over different L∞ algebras.
Similar remarks are applied to the cases of morphisms of CH-modules (Defi-
nition 3.11) and normed CH-modules (Definition 4.9).

3. CH structures

3.1. Notations on formal power series

Let M be a graded additive group and let t1, t2, . . . , tk be formal variables
with degree d1, d2, . . . , dk ∈ Z respectively. The space of degree d formal power
series of t1, . . . , tk (these variables are graded commutative) with coefficients
in M is denoted by M [[t]]d and set M [[t]] := ⊕d∈ZM [[t]]d. Note that the
degrees of coefficients also contribute to the degrees of elements of M [[t]].
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The space of formal Laurent power series M((t)) = ⊕d∈ZM((t))d is defined
similarly. These are naturally considered as graded additive groups.

A morphism from M to another graded additive group N naturally ex-
tends to a morphism from M [[t]] (resp. M((t))) to N [[t]] (resp. N((t))). By
abuse of notation, these extended morphisms are also denoted by the same
symbols.

We use multi-index notation, i.e., tα := tα1
1 · · · tαk

k for α = (α1, . . . , αk) ∈
Zk. If R is a graded ring and M is a graded module over R, then R[[t]] (resp.
R((t))) has a natural graded ring structure and M [[t]] (resp. M((t))) has a
natural (left) graded module structure over R[[t]] (resp. R((t))). Note that
the ring structure and module structure are determined by the following sign
rules:

tαr = (−1)|r||tα|rtα, tαm = (−1)|m||tα|mtα, (r ∈ R,m ∈ M).

3.2. CH structures

In §3.2, we introduce CH structures. This construction is inspired by [37]. Let
(L, {
k}1≤k) be an L∞ algebra over a graded algebra R. Let z and ε be formal
variables with degree

|z| = 2, |ε| = 1.
We introduce a “mapping cone” of the morphism z · id ∈ End(L[[z]]). Set

L̃ := L[[z]] ⊕ εL[[z]].

Then L̃[1] is naturally identified with L[1][[z]] ⊕ εL[1][[z]]. Note that ε ◦ s =
−s ◦ ε, where ε is the multiplication by ε. We define operations 
̃k on L̃[1] by
the following equations:

(3.1)

̃k(y1 + εy′1, . . . , yk + εy′k)

:=
k(y1, . . . , yk) −ε
k∑

i=1
(−1)#
k(y1, . . . , y

′
i, . . . , yk) +

{
zy′1 if k = 1,
0 if k ≥ 2,

where # := |y1|′ + · · · + |yi−1|′ and |yi|′ = |yi| + 1 for yi ∈ L[[z]].

Proposition 3.1. (L̃, {
̃k}1≤k) is an L∞ algebra over R[[z]].

Proof. We put


̃′k(y1 + εy′1, . . . , yk + εy′k) := 
k(y1, . . . , yk) − ε
k∑

i=1
(−1)#
k(y1, . . . , y

′
i, . . . , yk).
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Then it is easy to see that they satisfy the L∞ relations. Hence it is sufficient
to show that the coefficient of z in the formula


̃1
̃k(y1+εy′1, . . . , yk+εy′k)+
k∑

i=1
(−1)#
̃k(y1+εy′1, . . . , 
̃1(yi+εy′i), . . . , yk+εy′k)

is equal to zero, where # := |y1 + εy′1|′ + · · ·+ |yi−1 + εy′i−1|′. This statement
follows by direct calculation.

Let (L′, {
′k}1≤k) be another L∞ algebra. For en element

{fk} ∈
∏
1≤k

Hom0
R(L[1]�k, L′[1]),

we set

(3.2)
f̃k(y1 + εy′1, . . . , yk + εy′k)

:=fk(y1, . . . , yk) + ε
k∑

i=1
(−1)#fk(y1, . . . , y

′
i, . . . , yk),

where # := |y1 + εy′1|′ + · · · + |yi−1 + εy′i−1|′.

Proposition 3.2. If {fk}1≤k is an L∞ morphism from L to L′, then {f̃k}1≤k

is also an L∞ morphism from L̃ to L̃′.

Proof. It is sufficient to show that the coefficient of z in the formula


̃1f̃k(y1+εy′1, . . . , yk+εy′k)−
k∑

i=1
(−1)#f̃k(y1+εy′1, . . . , 
̃1(yi+εy′i), . . . , yk+εy′k)

is equal to zero, where # := |y1 + εy′1|′ + · · ·+ |yi−1 + εy′i−1|′. This follows by
direct calculation.

Now we consider the following decreasing filtration on L̃[1] which is de-
fined by the number of ε:

· · ·F−2 := L̃[1] ⊇ F−1 := L̃[1] ⊃ F 0 := L[1][[z]] ⊃ F 1 := 0 ⊇ · · · .

Let M̃ be a graded R[[z]] module. Then M̃ [1] is equipped with the following
filtration:

· · ·F−1 := M̃ [1] ⊇ F 0 := M̃ [1] ⊃ F 1 := 0 ⊇ · · · .
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We note that tensor products of modules with filtrations are naturally
equipped with filtrations. We consider a set of morphisms


M̃k ∈ Hom1
R[[z]](L̃[1]�k ⊗ M̃ [1], M̃ [1]) (0 ≤ k).

Note that 	 and ⊗ are defined over R[[z]]. We denote by


̂M̃ ∈ Hom1
R[[z]](EL̃⊗ M̃ [1], EL̃⊗ M̃ [1])

the coderivation corresponding to 
M̃k .

Definition 3.3. Let (L, {
k}1≤k) be an L∞ algebra over a graded algebra R

and M̃ a graded R[[z]] module. Let n ∈ Z≥0. A set of morphisms {
M̃k }0≤k is
called an L∞ module structure on M̃ over L̃ mod εn if it satisfies

(3.3) (
̂M̃ ◦ 
̂M̃ )(F a) ⊂ F a+n

for any a ∈ Z. Here F a is the filtration on EL̃⊗M̃ [1] induced by the filtrations
on L̃[1] and M̃ [1] defined as above.

Remark 3.4. Let ε : EL̃ → R[[z]] be the counit. By the explicit formula (2.1)
(modify the sign ε′(σ) to ε(σ)), the morphism ε⊗id gives an isomorphism from
the set of coderivations (of degree 2) of EL̃⊗M̃ [1] to Hom2

R(EL̃⊗M̃ [1], M̃ [1])
and this isomorphism preserves the filtrations. Moreover

F a+nM̃ [1] =
{
M̃ [1] (a + n ≤ 0),
0 (a + n ≥ 1).

Hence the condition (
̂M̃ ◦ 
̂M̃ )(F a) ⊂ F a+n is equivalent to the condition

(
(ε⊗ id) ◦ 
̂M̃ ◦ 
̂M̃

)
(F 1−n) = 0.

Remark 3.5. When n = 1, the condition (3.3) yields 
M̃ ◦ 
̂M̃ (F 0) = 0.
Thus an L∞ module structure on M̃ over L̃ mod ε is nothing but an L∞
module structure on M̃ over L[[z]]. When n = 2, the condition (3.3) implies

M̃ ◦ 
̂M̃ (F−1) = 0.

Definition 3.6. An L∞ module structure on M̃ over L̃ mod ε2 is called a
CH structure on M̃ over L. A graded R[[z]] module M̃ with a CH structure
over L is called a CH module over L.
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Let (M̃, {
M̃k }0≤k) be a CH module over an L∞ algebra (L, {
k}0≤k). We
put

(3.4) δ := −
1, [y1, y2] := (−1)|y1|
2(y1, y2) for all y1, y2 ∈ L,

and

(3.5) d := −
M̃0 , Ly := (−1)|y|
M̃1 (y| · ) for all y ∈ L[[z]] ⊂ L̃.

Moreover, associated to the CH module structure, we define maps Iy1 and
ρy1,y2 for y1, y2 ∈ L[[z]] by

(3.6) Iy1 := (−1)|y1|+1
M̃1 (εy1| · ), ρy1,y2 := (−1)|y1|+|y2|
M̃2 (y1, εy2| · ).

Now we write down explicitly the relations of the CH module structure
under the following conditions:

(3.7)
{

k = 0 (3 ≤ k),

M̃k = 0 (3 ≤ k), 
M̃2 (y1, y2| · ) = 0 for all y1, y2 ∈ L[[z]] ⊂ L̃.

Note that (L, δ, [·, ·]) is a DGLA over R and (M̃, d,L) is a DGLA module over
the DGLA L[[z]], where the DGLA structure on L linearly extends to L[[z]].

Remark 3.7. We will consider L (resp. I) as an element of

HomR[[z]]
(
L[[z]],EndR[[z]](M̃)

)
of degree 0 (resp. degree 1). Similarly, we will consider

ρ ∈ Hom0
R[[z]]

(
L[[z]] ⊗ L[[z]],EndR[[z]](M̃)

)
.

The L∞ relations mod ε2 yield the following relations among the oper-
ators (see Remark 3.4):

[d, Iy] + Iδy + zLy = 0,(3.8)
I[y1,y2] − (−1)|y1|[Ly1 , Iy2 ] + [d, ρy1,y2 ] − ρδy1,y2 − (−1)|y1|ρy1,δy2 = 0,(3.9)
ρ[y1,y2],y3 − ρy1,[y2,y3] + (−1)|y1||y2|ρy2,[y1,y3] − [Ly1 , ρy2,y3 ](3.10)

+ (−1)|y1||y2|[Ly2 , ρy1,y3 ] = 0.

Conversely, we easily see the following:
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Proposition 3.8. Let (L, δ, [ ·, · ]) be a DGLA over R and (M̃, d,L) be a
DGLA module over the DGLA L[[z]] equipped with morphisms I and ρ where

I ∈ Hom1
R[[z]]

(
L[[z]],EndR[[z]](M̃)

)
,

ρ ∈ Hom0
R[[z]]

(
L[[z]] ⊗ L[[z]],EndR[[z]](M̃)

)
.

Suppose that these morphisms satisfy the relations (3.8), (3.9) and (3.10).
Then, by the formulas (3.4), (3.5) and (3.6), these morphisms give a CH
structure on M̃ over L which satisfies the conditions (3.7).

Example 3.9 (Calculus algebra). To give an example of CH module, we recall
the definition of calculus (e.g., [8], [36]). Let (V,∧) be a graded commutative
algebra over R, W be a graded module over V with the structure morphism
ι• : V ⊗W → W and B ∈ End−1

R (W ) be a degree −1 morphism with B2 = 0.
Assume V [1] is equipped with a graded Lie algebra structure [·, ·] and W [1] is
equipped with a graded Lie module structure L• : V [1] ⊗W [1] → W [1]. For
x ∈ V , the morphisms (−1)|x|′ [x, · ] ∈ EndR(V ) and (−1)|x|′Lx ∈ EndR(W )
are denoted by lx. The 7-tuple (V,W,∧, [·, ·], ι•,L•, B) is called a calculus if
they satisfy

lx1(x2 ∧ x3) = (lx1x2) ∧ x3 + (−1)(|x1|+1)|x2|x2 ∧ lx1x3

and

lx1∧x2 = lx1 ◦ ιx2 + (−1)|x1|ιx1 ◦ lx2 , ιlx1x2 = [lx1 , ιx2 ], lx = [B, ιx].

For a calculus, set

L := V [1], M̃ := W [1][[z]], d := zB, Lx := Lx, Ix := (−1)|x|ιx (x ∈ V ).

Then M̃ is a CH module over L with 
M̃k = 0, (k ≥ 2).

Example 3.10 (Hypercommutative algebra). We recall the definition of hy-
percommutative algebra [22]. Let A be a graded R module equipped with
a symmetric k-ary operation ( ·, . . . , · ) : A�k → A of degree 4 − 2k for
each k ≥ 2. For a subset S = {i1, i2, . . . , ik} ⊂ N (i1 < · · · < ik) and
xi1 , . . . , xik ∈ A, we will denote xi1 	 · · · 	 xik by xS . We call A a hypercom-
mutative algebra if∑
S1�S2={3,4,...,k−1}

±(x1, xS1 , (x2, xS2 , xk)) =
∑

S1�S2={3,4,...,k−1}
±(x2, xS1 , (x1, xS2 , xk)),
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where ± are the Koszul signs. These equations are called the WDVV equa-
tions.

Set L := A[1], which is considered as an abelian graded Lie algebra. We
also set M̃ := A[[z]]. We define 
M̃k by


M̃k (x1, . . . , xk|m) := 0,


M̃k (εx1, x2, . . . , xk|m) := (−1)1+|x1|+|x2|+···+|xk|(x1, x2, . . . , xk,m),

where x1, . . . , xk,m ∈ A[[z]]. Note that the double suspensions s2xi are also
denoted by the same symbol xi. Then M̃ is a CH module over L. Moreover,
if we define 
M̃k (εx1, εx2, . . . , xk|m) = 0, we obtain a trivially extended L∞
module mod ε3 structure in this example by using the WDV V equations.

We next define morphisms of CH modules. Let M̃ and Ñ be CH modules
over L. We consider a set of morphisms

{fk}0≤k ∈
∏
0≤k

Hom0
R[[z]](L̃[1]�k ⊗ M̃ [1], Ñ [1]).

Definition 3.11. The set {fk}0≤k is called a CH module morphism from M̃
to Ñ if it satisfies

(
̂Ñ ◦ f̌ − f̌ ◦ 
̂M̃ )(F a) ⊂ F a+2

for all a ∈ Z.

Remark 3.12. Let L,L′ be L∞ algebras and {fk}1≤k be an L∞ morphism
from L to L′. Then the morphism ef̃ preserves the filtrations. Hence a CH
module over L′ naturally gives a CH module over L (see also Remark 2.7).

Let {fk}0≤k be a CH module morphism from M̃ to Ñ . For y ∈ L[[z]] and
m ∈ M̃ we put

(3.11) Fy(m) := (−1)|y|f1(y|m), F ε
y(m) := (−1)|y|+1f1(εy|m).

Thus we have F, F ε ∈ HomR[[z]]

(
L[[z]],EndR[[z]](M̃, Ñ)

)
. Then we find

(3.12) Iy ◦ f0 − f0 ◦ Iy = d ◦ F ε
y − (−1)|y|F ε

y ◦ d− F ε
δy − zFy.

Here f0 ∈ EndR[[z]](M̃ [1], Ñ [1]) is naturally considered as an element of
EndR[[z]](M̃, Ñ).
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4. Normed objects

4.1. Preliminaries on norms

A main reference of this subsection is [3]. We basically follow the terminol-
ogy used there. Let V = ⊕k∈ZV

k be an graded additive group. A (non-
archimedean) norm on V is a function ‖ · ‖ : V → R≥0 with the following
properties:

• ‖v1 − v2‖ ≤ max{‖v1‖, ‖v2‖} for all v1, v2 ∈ V .
• ‖v‖ = 0 if and only if v = 0.
• ‖v‖ = max

k∈Z
‖vk‖, where v =

∑
vk (vk ∈ V k).

A graded additive group with a norm is called a graded normed group.
A graded normed group V is said to be complete if each V k is a complete met-
ric space with respect to the norm. Set ‖V ‖ := sup{‖v‖ | v ∈ V }. A graded
normed group V is said to be bounded if ‖V ‖ ≤ C for some constant C ∈ R≥0.

Let W be another graded normed group. Then V ⊗W is equipped with
a norm which is defined by ‖∑k

i=1 vi ⊗ wi‖ = sup1≤i≤k ‖vi‖ · ‖wi‖. The com-
pletion of (V ⊗W )k is denoted by (V ⊗̂W )k. The completed tensor product
is defined by V ⊗̂W := ⊕(V ⊗̂W )k. The completed symmetric tensor product
	̂ and the completed direct sum ⊕̂ are defined similarly.

A group morphism f : V → W is said to be contractive if ‖f(v)‖ ≤ ‖v‖
for all v ∈ V .

Let R be a graded ring and ‖ · ‖ be a norm on R (as a graded addi-
tive group). The norm ‖ · ‖ is called a ring norm if it satisfies ‖r1r2‖ ≤
‖r1‖‖r2‖ (r1, r2 ∈ R) and ‖1‖ = 1. A graded ring equipped with a ring norm
is called a graded normed ring.

Let V be a graded module over a graded normed ring R and ‖ · ‖ be a
norm on V . The norm ‖ · ‖ is called a module norm if it satisfies ‖rv‖ ≤
‖r‖‖v‖ (r ∈ R, v ∈ V ). A graded module equipped with a module norm is
called a graded normed module.

Let K be a normed ring (ungraded, i.e., concentrated in degree zero). Let
R be a graded normed algebra over K, i.e., R is a graded algebra over K

equipped with a norm ‖ · ‖ such that ‖ · ‖ is a ring norm and a K module
norm.

Example 4.1. Here are some examples of normed rings K.

1. A field with the trivial valuation.
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2. The universal Novikov field

Λ :=

⎧⎨⎩
∞∑
i=0

aiT
λi

∣∣∣∣∣∣
ai ∈ C, λi ∈ R, lim

i→∞
λi = ∞

λ0 < λ1 < λ2 < · · ·

⎫⎬⎭.

The norm on Λ is defined by ‖
∞∑
i=0

aiT
λi‖ := e−λ0 . Note that Λ is a non-

archimedean valuation field.
3. The Novikov ring Λ0 = {x ∈ Λ | ‖x‖ ≤ 1} (the valuation ring of Λ),

where the norm is induced from Λ.

Example 4.2. Here are some examples of graded normed algebras and graded
normed modules.

1. Let R be an (ungraded) normed algebra over K (e.g., R = Λ0,K = C).
Set Re := R((e)), where e is a formal variable of degree 2. Note that
R((e)) = ⊕kR((e))k = R[e, e−1] (see §3.1). Set

‖
∑
k∈Z

rke
k‖ := max

k∈Z
‖rk‖, (rk ∈ R).

Then Re is a graded normed algebra over K.
2. Let R be a graded normed algebra over K and z be a formal variable

of degree 2. Assume that R is bounded. We define a norm on R[[z]] by

‖
∞∑
k=0

rkz
k‖ := sup

k∈Z≥0

‖rk‖.

Then R[[z]] is a graded normed algebra.
Let M be a graded bounded normed module over R. Similar to R[[z]],
M [[z]] is also equipped a norm and M [[z]] is a graded normed module
over R[[z]].

3. Let R be a graded normed algebra over K and let t1, . . . , tm be formal
variables with degree d1, . . . , dm ∈ Z. Assume that R is bounded. Take
some constant C ∈ R>1. We define a norm on R[[t]] by

‖
∑
α

rαt
α‖ := sup

α
‖rα‖‖tα‖,

where ‖tα‖ := C−α1−···−αm . Then R[[t]] is a graded normed algebra
over K.
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Let M be a graded bounded normed module over R. Similar to R[[t]],
M [[t]] is also equipped with a norm and M [[t]] is a graded normed
module over R[[t]].

Remark 4.3. If a graded bounded normed group V is complete, then
V [[z]], V [[t]] are also complete.

4.2. Normed L∞ algebras and modules

Let R be a graded normed algebra over a normed ring K. Assume that R is
complete. Let L be an L∞ algebra equipped with a complete R module norm.
Set ÊL := ⊕̂L[1]�̂k. As in the case of EL, we can define morphisms ·,Δ, η, ε
on ÊL. Morphisms 
k ∈ Hom1

R(L[1]�k, L[1]) (1 ≤ k) with ‖
k(y1, . . . , yk)‖ ≤
‖y1‖ · · · ‖yk‖ naturally extend to a contractive coderivation 
̂ of ÊL with

̂◦η = 0. Also as in the case of EL, this correspondence gives an isomorphism.
A set of morphisms {
k}1≤k corresponding to a contractive morphism 
̂ is also
said to be contractive. Similarly, we can define contractive morphisms ef , 
̂M , f̌
(see §2) and corresponding sets of morphisms are also said to be contractive.

Definition 4.4. A normed L∞ algebra is a pair (L, {
k}1≤k), where

• L is a graded complete normed R-module.
• {
k} is an L∞-structure on L.
• {
k} is contractive.

Definition 4.5. A morphism between normed L∞ algebras is defined by a
contractive L∞ morphism, which is called a normed L∞ morphism.

Definition 4.6. A normed L∞ module over a normed L∞ algebra L is a pair
(M, {
Mk }0≤k), where

• M is a graded complete normed R-module.
• {
Mk } is an L∞-module structure on M over (L, {
k}1≤k).
• {
Mk } is contractive.

Definition 4.7. A morphism between normed L∞ modules is defined by
a contractive L∞ module morphism, which is called a normed L∞ module
morphism.

4.3. Normed CH modules

We assume ‖R‖ ≤ 1. Let L be a normed L∞ algebra with ‖L‖ ≤ 1. We define
a norm on L̃ by ‖y + εy′‖ := max{‖y‖, ‖y′‖} (see Example 4.2 (2) for the
definition of the norm on L[[z]]). Then (L̃, {
̃k}) is a normed L∞ algebra.
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Definition 4.8. A normed CH module over a normed L∞ algebra L is a pair
(M̃, {
M̃k }0≤k), where

• M̃ is a graded complete normed R[[z]] module.
• {
M̃k } is a CH structure on M̃ .
• {
M̃k } is contractive.

Definition 4.9. A morphism between normed CH modules is defined by a
contractive CH module morphism, which is called a normed CH morphism.

5. Getzler-Gauss-Manin connections

5.1. Connections on CH modules

Let R be a graded algebra over a ring K. In this subsection R and K are not
assumed to be normed. The graded Lie algebra of derivations of R is denoted
by DerK(R), i.e.,

DerK(R) := ⊕kDerkK(R),

DerkK(R) :=
{
X ∈ Endk

K(R)
∣∣∣ X(rr′) = X(r)r′ + (−1)k|r|rX(r′)

}
.

Definition 5.1. We define E ∈ Der0K(R) by E(r) := 1
2 |r|r. This vector field

is called an Euler vector field.

For a graded R module V , a connection on V is a (degree preserving)
morphism

∇ : DerK(R) → EndK(V )

such that ∇X(rv) = (Xr)v+(−1)|X||r|r∇Xv, for X ∈ DerK(R), r ∈ R, v ∈ V .
For a connection ∇ on V , a connection on V [1] is defined by the formula
(−1)|X|∇X . For another graded R module W with a connection ∇, graded
R modules V ⊕W,V ⊗W,HomR(V,W ) are also equipped with connections.
These connections are also denoted by ∇. Explicitly, the connections on V⊗W
and HomR(V,W ) are defined by the following formulas:

∇X(v ⊗ w) = (∇Xv) ⊗ w + (−1)|X||v|v ⊗ (∇Xw),
(∇Xf)(v) = ∇X(f(v)) − (−1)|f ||X|f(∇Xv).

The curvature R∇(X, Y ) is defined by

∇X∇Y − (−1)|X||Y |∇Y∇X −∇[X,Y ].
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A connection ∇ is called flat if ∇ is an endomorphism of a graded Lie algebra,
i.e., R∇ = 0.

Let L be an L∞ algebra over R and ∇ be a connection on the graded
R module L. Then ∇ naturally gives connections on EL and EndR(EL),
which are also denoted by ∇. A connection ∇ is called an L∞ connection
if ∇X( 
̂ ) = 0 for any X ∈ DerK(R). Explicitly, this equality is written as
follows:

∇X(
k(y1,. . . , yk))=(−1)|X|
k∑

i=1
(−1)(|y1|′+···+|yi−1|′)|X|
k(y1, . . . ,∇Xyi, . . . yk).

For a connection ∇ on L, we define a morphism

∇̃ : DerK(R) → EndK[[z]](L̃)

by

(5.1) ∇̃X(y + εy′) := ∇X(y) + (−1)|X|ε∇X(y′).

Note that ∇X linearly extends as a K[[z]] module morphism.

Definition 5.2. Let M̃ be a CH module over an L∞ algebra L and ∇ be an
L∞ connection on L. A CH connection on M̃ is a morphism

∇̃ : DerK(R) → EndK[[z]](M̃)

such that ∇̃ is a connection on M̃ regarded as a graded R module and satisfies
the following relations:

∇̃X(
M̃k (y1, . . . , yk|m))

=(−1)|X|
k∑

i=1
(−1)(|y1|′+···+|yi−1|′)|X|
M̃k (y1, . . . , ∇̃Xyi, . . . , yk|m)

+ (−1)(1+|y1|′+···+|yk|′)|X|
M̃k (y1, . . . , yk|∇̃Xm)

for yi ∈ L̃ (not L[[z]]). Here ∇̃ in the first term on the right hand side is the
connection induced by the L∞ connection ∇ on L as in (5.1).

Remark 5.3. For a connection ∇̃ on M̃ , we define a connection on M̃ [1] by
(−1)|X|∇̃. We use the same symbol by abuse of notation.
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Definition 5.4. Let (M̃, ∇̃) and (Ñ , ∇̃) be CH modules with CH connections
over an L∞ algebra L with an L∞ connection ∇. We say that a CH module
morphism {fk}0≤k from M̃ to Ñ preserves the CH connections if

∇̃X ◦ f̌ = f̌ ◦ ∇̃X

for any X ∈ DerK(R). Here f̌ ∈ Hom0
R[[z]](EL̃ ⊗ M̃ [1], EL̃ ⊗ Ñ [1]) is the

comodule morphism corresponding to {fk}0≤k and ∇̃X are the K[[z]] linear
morphisms induced from the L∞ connection and CH connections.

5.2. Maurer-Cartan elements

Let L be a normed L∞ algebra over a graded complete normed ring R. Let
γ ∈ L1 ∼= L[1]0. If ‖γ‖ < 1, then we can define

eγ :=
∞∑
k=0

1
k!

k︷ ︸︸ ︷
γ	̂ · · · 	̂γ ∈ ÊL0.

This is a group like element, i.e., Δeγ = eγ⊗̂eγ and ε(eγ) = 1. Moreover, the
morphism eγ · is an isomorphism with the inverse e−γ ·.
Definition 5.5. γ ∈ L1 is called a Maurer-Cartan element of L if ‖γ‖ < 1
and γ satisfies 
̂(eγ) = 0, i.e.,

∞∑
k=1


k(γ, . . . , γ)/k! = 0.

This equation is called a Maurer-Cartan equation.

For a Maurer-Cartan element γ of L, we can twist L∞ structure of L by


̂γ := e−γ 
̂eγ .

Explicitly, the corresponding set of morphisms {
γk}1≤k is written as follows:


γk(y1, . . . yk) :=
∞∑
i=0

1
i!
k+i(

i︷ ︸︸ ︷
γ, . . . , γ, y1, . . . , yk).

We note that the Maurer-Cartan equation for γ implies “
γ0 = 0”. By construc-
tion, we easily see that {
γk}1≤k gives an L∞ algebra structure. To simplify
notation, this L∞ algebra is denoted by Lγ .
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Let L′ be another normed L∞ algebra and {fk}0≤k be a normed L∞
morphism from L to L′. For γ ∈ L1 with ‖γ‖ < 1, we see that ef (eγ) is a
group like element. Hence there exists a unique element f∗γ ∈ EL′ 0 such that
‖f∗γ‖ < 1 and ef (eγ) = ef∗γ . Explicitly, we have

f∗γ =
∞∑
k=1

1
k!fk(γ, . . . , γ).

Moreover, if γ is a Maurer-Cartan element, then f∗γ is also a Maurer-Cartan
element. Set ef,γ := e−f∗γefeγ , then we easily see that ef,γ is a coalgebra
morphism with ef,γ ◦ ηEL = ηEL′ . (Here ηEV denotes a unit of EV . See the
beginning of Section 2.) The corresponding set of morphisms is denoted by
{fγ

k }0≤k. If γ is a Maurer-Cartan element, then {fγ
k }0≤k gives a normed L∞

morphism from Lγ to L′ f∗γ .
We next consider twists of normed CH modules. Assume ‖R‖, ‖L‖ ≤

1. Then L̃ is also a normed L∞ algebra. If γ is a Maurer-Cartan element
of L, then we easily see that γ is also a Maurer-Cartan element of L̃. Let
(M̃, {
M̃k }0≤k) be a normed CH module over L. By the left multiplication, eγ

gives an automorphism of ÊL̃⊗̂M̃ [1]. We define {
M̃,γ
k }0≤k by


̂M̃,γ := e−γ 
̂M̃eγ .

Note that e−γ 
̂M̃eγ is a contractive coderivation of ÊL̃γ⊗̂M̃ [1].

Proposition 5.6. For a Maurer-Cartan element γ of L, the pair (M̃, {
M̃,γ
k })

is a normed CH module over the normed L∞ algebra Lγ.

Proof. By the definition, we have 
̂M̃,γ ◦ 
̂M̃,γ = e−γ 
̂M̃ ◦ 
̂M̃eγ . Since the
automorphism eγ preserves the filtration on ÊL̃γ⊗̂M̃ [1], we see that 
̂M̃,γ ◦

̂M̃,γ(F a) ⊂ F a+2.

This normed CH module is denoted by M̃γ . Accordingly, the correspond-
ing maps in (3.5), (3.6) are denoted by

(5.2) dγ , Lγ
y , Iγy1 , ργy1,y2 .

Let Ñ be another normed CH module over L and {fk}0≤k be a normed
CH morphism from M̃ to Ñ . Set

(5.3) f̌γ := e−γ f̌eγ .
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This is a contractive comodule morphism and the corresponding set of mor-
phisms is denoted by {fγ

k }0≤k.

Proposition 5.7. {fγ
k }0≤k is a normed CH morphism from M̃γ to Ñγ.

Proof. By definition, we have


̂Ñ,γ ◦ f̌γ − f̌γ ◦ 
̂M̃,γ = e−γ(
̂Ñ ◦ f̌ − f̌ ◦ 
̂M̃ )eγ ,

which implies the proposition.

For the normed CH morphism {fγ
k }0≤k, the corresponding maps in (3.11)

are denoted by

(5.4) F γ
y , F ε,γ

y .

5.3. Getzler-Gauss-Manin connections

In [21], Getzler constructed a connection on periodic cyclic homology of A∞
algebras. Following Barannikov’s idea outlined in [2, Remark 3.3], Tsygan re-
formulated this connection in terms of L∞ modules in [37]. We adapt Tsygan’s
reformulation and introduce similar connections on our normed CH modules.

In the rest of Section 5, let K be a complete normed ring and R be
a graded complete normed algebra over K unless otherwise mentioned. Let
L be a normed L∞ algebra over R with an L∞ connection ∇. We assume
that ‖K‖, ‖R‖, ‖L‖ ≤ 1. Let M̃ be a normed CH module over L with a CH
connection ∇̃. Let γ ∈ L1 be a Maurer-Cartan element.

Definition 5.8. We define a morphism z∇G : DerK(R) → EndK[[z]](M̃) as
follows:

z∇G
X := z∇̃X − (−1)|X|Iγ∇Xγ .

This morphism is called a Getzler-Gauss-Manin connection (GGM connection
for short).

Remark 5.9. See (3.6) and Remark 3.7 for the definition of I. Since I is
a morphism from L ⊗ M̃ , the connection ∇ in the term Iγ∇Xγ should be
considered as a connection on L (not a connection on L[1]).

Since Iγ∇Xγ ∈ End2+|X|
R[[z]] (M̃), we see that z∇G satisfies the “Leibniz rule”

in the following form:

z∇G
X(rm) = z(Xr)m + (−1)|X||r|rz∇G

Xm.
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Thus the GGM connection z∇G itself is not a connection in the sense of the
beginning of Subsection 5.1, but later ∇G := (z∇G)/z will be regarded as a
meromorphic connection and also called a GGM connection.

Example 5.10 (Continued from Example 3.10). Let A be a finite-dimen-
sional graded vector space over a field K and choose a homogeneous basis
{T0, . . . , Tm}. Assume that Ae := A((e)) be a hypercommutative algebra over
Ke := K((e)). (See Example 4.2 (1) for the notation.) Choose formal variables
t0, . . . , tm with degrees 2 − |T0|, . . . , 2 − |Tm| respectively. Set R := Ke[[t]].
Then Ae[[t]] is naturally considered as a hypercommutative algebra over R
equipped with the trivial connection. By Example 3.10, Ae[[t]] is a CH module
over Ae[[t]][1]. We define a Maurer Cartan element γ to be t =

∑m
i=0 Titi. Set

(Ti1 , . . . , Tik)γ :=
∞∑
l=0

1
l! (

l︷ ︸︸ ︷
γ, . . . , γ, Ti1 , . . . , Tik), Ti ∗t Tj := (Ti, Tj)γ .

Then Ae[[t]] with operators (·, . . . , ·)γ is a hypercommutative algebra. In this
setting we see that z∇G

∂
∂ti

= z ∂
∂ti

+ Ti∗t. This gives a reinterpretation of
Dubrovin’s connection in [9].

To show that GGM connection defines a morphism on cohomology, we
use the following lemmas:

Lemma 5.11. 
γ1(∇Xγ) = 0.

Proof. Since |γ| = 1, we easily see that

∇X
k(γ, . . . , γ) = (−1)|X|k
k(γ, . . . , γ,∇Xγ).

Hence we have


γ1(∇Xγ) =
∞∑
k=0


1+k(γ, . . . , γ,∇Xγ)/k! = (−1)|X|∇X

( ∞∑
k=1


k(γ, . . . , γ)/k!
)

= 0.

Lemma 5.12. [∇̃X , 

M̃,γ
0 ] = (−1)|X|
M̃,γ

1 (∇Xγ| · ).

Proof. We see that

[∇̃X , 

M̃,γ
0 ] = [∇̃X ,

∞∑
k=0


M̃k (γ, . . . , γ| · )/k! ]
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= (−1)|X|
∞∑
k=0


M̃1+k(γ, . . . , γ,∇Xγ| · )/k!

= (−1)|X|
M̃1 (∇Xγ| · ).

Proposition 5.13. [dγ , z∇G
X ] = 0.

Proof. By Equation (3.8) and Lemma 5.11, we have [dγ , Iγ∇Xγ ] + zLγ
∇Xγ =

0. By Lemma 5.12, we have [dγ , z∇̃X ] = (−1)1+|X|zLγ
∇Xγ . This proposition

follows from these equations.

5.4. Euler connections

In [25, §2.2.5], Katzarkov-Kontsevich-Pantev introduced a connection in the
“u-direction” on a cyclic homology (see also [34]). Inspired by their construc-
tion (but different from theirs as noted in Remark 1.1), we extend a GGM
connection to a “connection in the z-direction”. In different contexts, similar
constructions have been considered by many people (e.g., [23, §4.1], [33] and
see also Remark 1.2).

In §5.4, we continue to use the same notations as in §5.3. We note that

DerK(R) ∼= {X ∈ DerK(R[[z]]) | Xz = 0} ⊂ DerK(R[[z]])

and DerK(R[[z]]) = DerK(R) ⊕ 〈 d
dz 〉. Let deg ∈ End0

K(M̃) be the degree
operator, i.e., degm := |m|m.

Definition 5.14. We define a morphism z2∇E : DerK(R[[z]]) → EndK(M̃)
as follows:

z2∇E
X := z2∇G

X ,

z2∇E
d
dz

:= z

2 deg−z∇G
E ,

where X ∈ DerK(R) and E is the Euler vector of R. This morphism is called
an Euler connection.

Since deg(rm) = 2(Er)m+2(z d
dz r)m+ r degm and z∇G

Erm = z(Er)m+
rz∇G

Em, we see that ∇E
d
dz

satisfies the following “Leibniz rule”:

z2∇E
d
dz

(rm) = (z2 d

dz
r)m + rz2∇E

d
dz

m.

Proposition 5.15 (cf. [34, §2.2]). [z2∇E
d
dz

, dγ ] = z
2d

γ.
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Proof. Since dγ is a degree one operator, we see [deg, dγ ] = dγ . Hence this
proposition follows from Proposition 5.13.

From this lemma, we easily see that z2∇E descends to a morphism on
cohomology. Set M̃((z)) := M̃⊗R[[z]]R((z)). By abuse of notation, we consider
∇G,∇E as meromorphic connections (on complexes or cohomology).

Remark 5.16. The Euler connection has an irregular singularity at z = 0,
but formal in the z-direction. Hence we can not consider the “Stokes struc-
ture” of the Euler connection.

Proposition 5.17. If ∇G is flat on cohomology, then ∇E is also flat on
cohomology.

Proof. By the assumption, we have

[∇E
d
dz

,∇E
X ] = [ 1

2z deg,∇G
X ] − [ 1

z
∇G

E ,∇G
X ]

= 1
2z |X|∇G

X − 1
z
∇G

[E,X] −
1
z
R∇G(E,X)

= −1
z
R∇G(E,X),

where we use [deg,∇G
X ] = |X|∇G

X and [E,X] = 1
2 |X|X. Hence we have

[∇E
d
dz

,∇E
d
dz

] = [∇E
d
dz

,
1
z

(1
2 deg−∇E

E

)
]

= −1
z
∇E

d
dz

+ 1
z
[∇E

d
dz

,
1
2 deg−∇E

E ]

= −1
z
∇E

d
dz

+ 1
z
∇E

d
dz

+ 1
z2R

∇G(E,E)

= 1
z2R

∇G(E,E).

This proposition follows from these equations.

Remark 5.18. By a direct calculation, we see that

R∇G(X, Y )

=R∇̃(X, Y )

− 1
z

(
(−1)|X|+|Y |IγR∇(X,Y )γ + (−1)|Y |ργ∇Xγ,∇Y γ − (−1)|X|+|X||Y |ργ∇Y γ,∇Xγ

)
+ 1

z2 (−1)|X|+|Y |[Iγ∇Xγ , I
γ
∇Y γ ].

(5.5)
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On the other hand, if the CH structure extends to an L∞ module structure
mod ε3, then the L∞ module relations mod ε3 implies


M̃,γ
0 
M̃,γ

2 (εy1, εy2|m) + (−1)|y1|+|y2|
M̃,γ
2 (εy1, εy2|
M̃,γ

0 m)

+(−1)|y1|
M̃,γ
1 (εy1|
M̃,γ

1 (εy2|m)) + (−1)|y1||y2|+|y2|
M̃,γ
1 (εy2|
M̃,γ

1 (εy1|m))

−
M̃,γ
2 (ε
γ1y1, εy2|m) − (−1)|y1||y2|
M̃,γ

2 (ε
γ1y2, εy1|m)

+
M̃,γ
2 (zy1, εy2|m) + (−1)|y1||y2|
M̃,γ

2 (zy2, εy1|m)
=0,

where y1, y2 ∈ L[[z]]. Set Lγ
y1,y2 := (−1)|y1|+|y2|
M̃,γ

2 (εy1, εy2| · ) ∈ End(M̃).
Then the above formula is written as follows:

[d,Lγ
y1,y2 ] + Lγ

δy1,y2
+ (−1)|y1|Lγ

y1,δy2

=(−1)|y1|[Iγy1 , I
γ
y2 ] + z

(
ργy1,y2 + (−1)|y1||y2|ργy2,y1

)
.

Combing (5.5) with this formula, we find that ∇G is flat on cohomology if
∇ and ∇̃ are flat and the CH structure extends to an L∞ module structure
mod ε3.

Remark 5.19. In Example 5.20 below, we will use the following variant of the
GGM connection. Let L be an L∞ algebra (not normed) over a graded ring R
and M̃ a CH module over L, and let ∇ be a connection on L (not necessary
an L∞ connection) and ∇̃ : DerK(R) → EndK[[z]](M̃) a connection on M̃
regarded as a graded R module (not necessary a CH-connection). Suppose
that we have a degree one morphism

c1 : DerK(R) → L,

for which ∇ satisfies

(5.6) (∇X
k)(y1, . . . , yk) = (−1)|X|
k+1(c1(X), y1, . . . , yk)

and ∇̃ satisfies

(5.7)
(∇̃X


M̃
k )(y1 + εy′1, . . . , yk + εy′k|m)

=(−1)|X|
M̃k+1(c1(X), y1 + εy′1, . . . , yk + εy′k|m).

Then the connections ∇ and ∇̃ satisfy the properties in Lemma 5.11 and
Lemma 5.12. Thus in Definition 5.8, replacing the CH connection by the
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connection ∇̃ above and ∇Xγ by c1(X), we can define a (variant of) GGM
connection on cohomology. Similarly, we can define a (variant of) Euler con-
nection as well in this setting.

Example 5.20 (Continued from Example 5.10). Suppose that there exists
an element

c1 ∈ A2 ⊂ Ae,2

with

(5.8) (c1, x1, . . . , xk) = e
d

de
(x1, . . . , xk).

We define a degree one R module morphism

c1 : DerK(R) → Ae[1]

by c1(e d
de) := c1 and c1( ∂

∂ti
) := (−1)|Ti|Ti. Then the trivial connections ∇

and ∇̃ satisfy the condition of Remark 5.19. Set

E := c1 +
m∑
i=0

(−1)|Ti|(2 − |Ti|
2 )Titi ∈ Ae[[t]].

Then we easily see that

∇E
∂

∂ti

= ∂

∂ti
+ 1

z
Ti∗t, ∇E

d
dz

= d

dz
+ deg

2z − E∗t

z2 ,

where t =
∑m

i=0 Titi and deg is the degree operator of A.

Now let Ñ be another normed CH module equipped with a CH connection
and {fk}0≤k be a morphism of normed CH modules from M̃ to Ñ preserv-
ing the CH connections on M̃ and Ñ in the sense of Definition 5.4. Then
recalling (5.2), (5.3), (5.4), we have

Proposition 5.21.

∇G
X ◦ fγ

0 − fγ
0 ◦ ∇G

X = (−1)|X|+1dγ ◦ F ε,γ
∇G

Xγ
− F ε,γ

∇G
Xγ

◦ dγ .

Proof. Since the morphism preserves the CH connections, we see that

∇̃X ◦ fγ
0 = fγ

0 ◦ ∇̃X − (−1)|X|F γ
∇Xγ .
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By Equation 3.12 and Lemma 5.11, we have

zF γ
∇Xγ + Iγ∇Xγ ◦ f

γ
0 = fγ

0 ◦ Iγ∇Xγ + dγ ◦ F ε,γ
∇Xγ − (−1)|X|+1F ε,γ

∇Xγ ◦ dγ .

The proposition follows from these equations.

Since fγ
0 is degree zero, we obtain deg ◦fγ

0 = fγ
0 ◦ deg. Hence we have the

following:

Corollary 5.22.

∇E
d
dz

◦ fγ
0 − fγ

0 ◦ ∇E
d
dz

= 1
z

(
dγ ◦ F ε,γ

∇E
Eγ

− F ε,γ
∇E

Eγ
◦ dγ

)
.

Proposition 5.21 and Corollary 5.22 imply that fγ
0 intertwines the Euler

connections on cohomology.

Remark 5.23 (Continued from Remark 5.19). We consider the situation of
the variants of the GGM connection and the Euler connection in Remark 5.19.
Instead of assuming that a morphism {fk}0≤k of normed CH modules from
M̃ to Ñ preserves the CH connections, we assume that {fk}0≤k satisfies

(∇̃X ◦ fk − fk ◦ ∇̃X)(y1 + εy′1, . . . , yk + εy′k|m)
=fk+1(c1(X), y1 + εy′1, . . . , yk + εy′k|m)

for any X ∈ DerK(R). Here ∇̃ in the first term is the connection on Ñ [1] as
in (5.7) and one in the second term is the connection on L̃[1]�k⊗M̃ [1] induced
by the connections ∇, ∇̃ on L, M̃ in (5.6), (5.7) respectively. Then Proposi-
tion 5.21 for the variant of the GGM connection ∇G holds and Corollary 5.22
for the variant of the Euler connection ∇E also holds.

6. CH structures on Hochschild invariants

6.1. CH structures on Hochschild invariants

In §6.1, we give an explicit formula of a CH structure on Hochschild invariants
of an A∞ category (cf. [6], [37]). We mainly follow [21] for the definitions of
operators on Hochschild invariants. Let R be a graded ring (not normed).
Let A be a set of objects ObA with a set of morphisms HomA (X, Y ) for
each X, Y ∈ ObA , where HomA (X, Y ) is a graded R module. We assume
HomA (X,X) is equipped with a degree preserving R module morphism η :
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R → HomA (X,X) for each X ∈ ObA . This morphism η is called a unit and
η(1) is denoted by 1. Set

A (X0, . . . , Xk) := HomA (X0, X1)[1] ⊗ · · · ⊗ HomA (Xk−1, Xk)[1].

The Hochschild cochain complex and the Hochschild chain complex are de-
fined by

CC•(A )l :=
∏

X0,...,Xk∈ObA

Homl
R

(
A (X0, . . . , Xk),HomA (X0, Xk)

)
,

CC•(A ) :=
⊕
l∈Z

CC•(A )l,

CC•(A )l :=
⊕

X0,...Xk∈ObA

(
HomA (X0, X1) ⊗ A (X1, . . . , Xk, X0)

)l
,

CC•(A ) :=
⊕
l∈Z

CC•(A )l.

For ϕ, ψ ∈ CC•(A )[1], we define a composition ϕ ◦ ψ by

ϕ ◦ ψ(x1, . . . , xk) :=
∑

0≤i≤j≤k

(−1)#ϕ(x1, . . . , xi, ψ(xi+1, . . . , xj), xj+1, . . . , xk),

where xi ∈ HomA(Xi−1, Xi)[1] and the sign # is |ψ|′(|x1|′ + · · · + |xi|′). Set

[ϕ, ψ] := ϕ ◦ ψ − (−1)|ϕ|′|ψ|′ψ ◦ ϕ.

For X = x0 ⊗ · · · ⊗ xk ∈ A (X0, . . . , Xk, X0) ⊂ CC•(A )[1], we define Lϕ(X)
by

Lϕ(X) :=
∑

0≤i≤j≤k

(−1)#1x0 ⊗ · · · ⊗ xi ⊗ ϕ(xi+1, . . . , xj) ⊗ xj+1 · · · ⊗ xk

+
∑

0≤i≤j≤k

(−1)#2ϕ(xj+1, . . . , xk, x0, . . . , xi) ⊗ xi+1 ⊗ · · · ⊗ xj ,

where
#1 := |ϕ|′(|x0|′ + · · · + |xi|′),
#2 := (|x0|′ + · · · + |xj |′)(|xj+1|′ + · · · + |xk|′).

Proposition 6.1 (see, e.g., [21], [24, Proposition 3.1.]). The shifted Hoch-
schild cochain complex (CC•(A )[1], [·, ·]) is a graded Lie algebra and
(CC•(A )[1],L) is a graded Lie module over it.
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Following [21, §2], we define a morphism ρ by

ρϕ,ψ

:=
∑

0≤i≤j≤s≤t≤k

(−1)#ϕ(xj+1, . . . , xs, ψ(xs+1, . . . , xt), xt+1, . . . , xk, x0, . . . , xi)

⊗ xi+1 ⊗ · · · ⊗ xj ,

where # = |ψ|′(|xj+1|′ + · · ·+ |xs|′) + (|x0|′ + · · ·+ |xj |′)(|xj+1|′ + · · ·+ |xk|′).
The next proposition will be proved in §6.2.

Proposition 6.2.

ρ[ϕ1,ϕ2],ψ − ρϕ1,[ϕ2,ψ] + (−1)|ϕ1|′|ϕ2|′ρϕ2,[ϕ1,ψ]

=[Lϕ1 , ρϕ2,ψ] − (−1)|ϕ1|′|ϕ2|′ [Lϕ2 , ρϕ1,ψ].

The reduced Hochschild cochain complex CC
•(A ) is defined by

CC
•(A ) := {ϕ ∈ CC•(A ) | ϕ(. . . , 1, . . . ) = 0}

and the reduced Hochschild chain complex CC•(A ) is defined by the relation

x0 ⊗ x1 ⊗ · · · xi−1 ⊗ 1 ⊗ xi+1 ⊗ · · · ⊗ xk = 0 (1 ≤ i ≤ k).

Then CC
•(A )[1] is a sub graded Lie algebra and L naturally induces a graded

Lie module structure on CC•(A )[1], which is also denoted by L. We define
the following morphisms:

B(X) :=
∑

0≤i≤k

(−1)#11 ⊗ xi+1 ⊗ · · · ⊗ xk ⊗ x0 ⊗ · · · ⊗ xi,

B1
ϕ(X) :=

∑
0≤i≤j≤s≤k

(−1)#1+#21 ⊗ xi+1 ⊗ · · · ⊗ xj ⊗ ϕ(xj+1, . . . , xs) ⊗ · · ·

· · · ⊗ xk ⊗ x0 ⊗ · · · ⊗ xi,

where #1 = (|x0|′ + · · · + |xi|′)(|xi+1|′ + · · · + |xk|′) and #2 = |ϕ|′(|xi+1|′ +
· · ·+ |xj |′). By the definition, we can check the following (e.g., [21, Definition
2.1 and Theorem 2.2]):

[B,B] = 0,(6.1)
[B,Lϕ] = 0,(6.2)
[B,B1

ϕ] = 0.(6.3)

The next proposition will be proved in §6.2.
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Proposition 6.3. [B, ρϕ,ψ] + B1
[ϕ,ψ] − (−1)|ϕ|′ [Lϕ, B

1
ψ] = 0

Now we recall the definition of A∞ structures.

Definition 6.4. A strictly unital curved A∞ structure on A is an element
m ∈ CC•(A )[1]1 with

[m,m] = 0, m2(1, x) = (−1)|x|m2(x, 1), mk(. . . , 1, . . . ) = 0 (k �= 2).

Here the length k part of m is denoted by mk. In case m0 = 0, m is called a
strictly unital A∞ structure on A .

Let m be a strictly unital curved A∞ structure on A and set

b := Lm, b1ϕ := ρm,ϕ, δ := [m, · ].

Then these morphisms naturally induce morphisms on reduced Hochschild
complexes, which are denoted by the same symbols. Note that (δ, [·, ·]) makes
CC

•(A )[1] into a DGLA and (b,L) makes CC•(A )[1] into a DGLA module
over the DGLA CC

•(A )[1]. By Proposition 6.2 and [m,m] = 0, we have

ρδϕ,ψ − b1[ϕ,ψ] + (−1)|ϕ|′ρϕ,δψ = [b, ρϕ,ψ] − (−1)|ϕ|′ [Lϕ, b
1
ψ],(6.4)

b1δψ + [b, b1ψ] = 0.(6.5)

We use the following identity (see, e.g., [21, Definition 2.1 and Theorem 2.2])

[B, b1ϕ] + [b, B1
ϕ] + B1

δϕ + Lϕ = 0.(6.6)

Now we set

L := CC
•(A )[1], M̃ := CC•(A )[1][[z]].

We note that the natural z-linear extensions of morphisms L, ρ, etc. are de-
noted by the same symbols. For ϕ ∈ L[[z]] we put

d := b + zB, Iϕ := b1ϕ + zB1
ϕ.

Then combining Propositions 6.1, 6.2, 6.3, and the equalities (6.1), (6.2),
(6.3), (6.4), (6.5), (6.6) we obtain the following theorem:

Theorem 6.5. The morphisms L, I, ρ give a CH structure on M̃ over the
DGLA L.
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Proof. Using Proposition 6.1, the equalities (6.1), (6.2), and [m,m] = 0,
we see that (M̃, d,L) is a DGLA module over the DGLA L[[z]], where the
DGLA structure on L is z-linearly extended to L[[z]]. By Proposition 3.8,
it is sufficient to show the equalities (3.8)), (3.9), (3.10). We note that the
equality (3.10) is a direct consequence of Proposition 6.2. We check (3.8)
and (3.9). Since

[d, Iϕ] + Iδϕ + zLϕ

=[b, b1ϕ] + b1δϕ + z([b, B1
ϕ] + [B, b1ϕ] + B1

δϕ + Lϕ) + z2[B,B1
ϕ],

the equality (3.8) follows from (6.3), (6.5), (6.6). Since

I[ϕ,ψ]− (−1)|ϕ|′[Lϕ, Iψ] + [d, ρϕ,ψ] − ρδϕ,ψ − (−1)|ϕ|′ρϕ,δψ
=b1[ϕ,ψ]− (−1)|ϕ|′[Lϕ, b

1
ψ] + [b, ρϕ,ψ] − ρδϕ,ψ − (−1)|ϕ|′ρϕ,δψ

+ z(B1
[ϕ,ψ]−(−1)|ϕ|′[Lϕ, B

1
ψ] + [B, ρϕ,ψ]),

the equality (3.9) follows from (6.4) and Proposition 6.3.

Definition 6.6. The cohomology of (CC•(A )[[z]], b+zB) is called a negative
cyclic homology and the cohomology of (CC•(A )((z)), b + zB) is called a
periodic cyclic homology.

Remark 6.7. Let K be an ungraded field and R be a graded algebra over
Ke = K((e)). Note that K and Ke are equipped with the trivial norms. Assume
that R is equipped with a norm ‖·‖ such that R is a graded complete normed
algebra over Ke, i.e., ‖ · ‖ is a ring norm and a Ke module norm. We also
assume ‖R‖ ≤ 1. Let m be a strictly unital A∞ structure on A over K. Then
m gives a DGLA structure on CC

•(A )[1] and this DGLA structure naturally
extends to CC

•(A )[1]⊗̂KR, where CC
•(A )[1] is considered as a graded K

module with the trivial norm. In this note, we define a gapped filtered graded
A∞ structure on A by a Maurer-Cartan element m+ ∈ CC

•(A )[1]⊗̂KR with
‖m+‖ < 1 and we call such a triple (A ,m,m+) a gapped filtered graded A∞
category over R. See [14, Definition 3.2.26] for the definition of gappedness
of a filtered A∞ algebra over the universal Novikov ring, and see also [14,
Definition 3.7.5].

Remark 6.8. We consider the same setting as in Remark 6.7. Let (A ,m,m+)
be a gapped filtered graded A∞ category over R as above. Then the trivial
connection ∇ on the normed DGLA CC

•(A )[1]⊗̂KR is an L∞ connection
and the trivial “connection” ∇̃ on the normed CH module

(CC•(A )[1]⊗̂KR)[[z]]
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is a CH connection. Here the normed DGLA structure and the normed CH
structure are determined by m (not twisted by the Maurer-Cartan element
m+). Since m+ is a Maurer-Cartan element of CC

•(A )[1]⊗̂KR, we can con-
sider the Euler connection on the cohomology of the (m+-twisted) normed
CH module (CC•(A )[1]⊗̂KR)[[z]]m+ . See Subsection 5.2 for this notation. In
a way similar to [21], we can prove flatness of ∇G on cohomology and also
flatness of ∇E by Proposition 5.17.

6.2. Proofs of Propositions 6.2 and 6.3

Propositions 6.2 and 6.3 follow by direct calculation. To write down the proofs,
we use operadic notation. In [26], they introduce a 2-colored operad called
the Kontsevich-Soibelman operad and show that this operad naturally acts
on Hochschild invariants (see also [7], [38]). In this article, we will follow [38,
§3]. They use “trees” to describe the operadic structure. We use parentheses
notation to describe the operadic structure. We note that there is a one to
one correspondence between trees and parentheses. To simplify notation, the
special vertex out is omitted, i.e., {out{· · · }} is denoted by {· · · } (see also
Example 6.10 below).

Remark 6.9. Precisely, we consider the degree one shift of the Kontsevich-
Soibelman operad which acts on the pair (CC

•(A )[1], CC•(A )[1]). The
CC

•(A )[1] part of this structure is closely related to the brace algebra [20].

Example 6.10.

ϕ ◦ ψ = ϕ{ψ}, Lϕ = {in, ϕ} + {ϕ{in}}, ρϕ,ψ = {ϕ{ψ, in}},
B = {1, in}, B1

ϕ = {1, ϕ, in}.

Proof of Proposition 6.2. Proposition 6.2 easily follows from the next
lemma.

Lemma 6.11.

ρϕ1◦ϕ2,ψ − ρϕ1,[ϕ2,ψ] + (−1)|ϕ1|′|ϕ2|′ [Lϕ2 , ρϕ1,ψ]
={ϕ1{ϕ2{ψ, in}}} + (−1)|ϕ1|′|ϕ2|′{ϕ2{ϕ1{ψ, in}}}.

Proof. By the definition, we have

ρϕ1,ϕ2◦ψ = {ϕ1{ϕ2{ψ}, in}}, ρϕ1,ψ◦ϕ2 = {ϕ1{ψ{ϕ2}, in}}.



550 Hiroshi Ohta and Fumihiko Sanda

By direct calculation, we see that

ρϕ1◦ϕ2,ψ

={ϕ1{ϕ2, ψ, in}}
+ (−1)|ϕ2|′|ψ|′({ϕ1{ψ, ϕ2, in}} + {ϕ1{ψ, in, ϕ2}} + {ϕ1{ψ, ϕ2{in}}})
+ {ϕ1{ϕ2{ψ}, in}} + {ϕ1{ϕ2{ψ, in}}}.
ρϕ1,ψ ◦ Lϕ2

={ϕ1{ψ, in}, ϕ2} + {ϕ1{ψ{ϕ2}, in}} + {ϕ1{ψ, ϕ2, in}} + {ϕ1{ψ, in, ϕ2}}
+ (−1)|ϕ2|′|ψ|′{ϕ1{ϕ2, ψ, in}} + {ϕ1{ψ, ϕ2{in}}}.
Lϕ2 ◦ ρϕ1,ψ

=(−1)|ϕ1|′|ϕ2|′+|ϕ2|′|ψ|′{ϕ1{ψ, in}, ϕ2} + {ϕ2{ϕ1{ψ, in}}}.

This lemma follows from these equations. Note that Lϕ2 is degree |ϕ2|′ and
ρϕ1,ψ is degree |ϕ1|′ + |ψ|′. We also note that in this calculation we do not
need to assume ϕ1, ϕ2, ψ are reduced cochains.

We next prove Proposition 6.3.

Proof of Proposition 6.3. By the definition, we have

[B, ρϕ,ψ] = B ◦ ρϕ,ψ = {1, ϕ{ψ, in}},
B1

ϕ◦ψ = {1, ϕ{ψ}, in},
B1

ψ◦ϕ = {1, ψ{ϕ}, in}.

By direct calculation, we have

B1
ψ ◦ Lϕ = {1, ψ, ϕ{in}} + {1, ψ, in, ϕ} + {1, ψ, ϕ, in}

+ (−1)|ϕ|′|ψ|′{1, ϕ, ψ, in} + {1, ψ{ϕ}, in},
Lϕ ◦B1

ψ = (−1)|ϕ|′({1, ϕ, ψ, in} + {1, ϕ{ψ, in}} + {1, ϕ{ψ}, in})
+ (−1)|ϕ|′+|ϕ|′|ψ|′({1, ψ, ϕ{in}} + {1, ψ, in, ϕ} + {1, ψ, ϕ, in}).

Since B1
ψ is degree |ψ|′ + 1, we have

(−1)|ϕ|′ [Lϕ, B
1
ψ] = {1, ϕ{ψ, in}} + {1, ϕ{ψ}, in} − (−1)|ϕ|′|ψ|′{1, ψ{ϕ}, in}.

The proposition follows from these equations.
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7. Primitive forms without higher residue pairings

In this section, we briefly recall a part of the definition of the primitive forms
[30]. Let K be a field (ungraded) and R be a graded algebra over the graded
ring Ke := K((e)). Let M̃ be a finitely generated free graded R[[z]] module
equipped with an integrable (flat) meromorphic connection

∇ : DerK
(
R((z))

)
→ EndK

(
M̃((z))

)
,

where M̃((z)) := M̃ ⊗R[[z]] R((z)). We assume that ∇ has pole order at
most 2 in the z-direction and pole order at most 1 in another direction (i.e.,
z∇Xm ∈ M̃ for X ∈ DerK(R) and m ∈ M̃). An element ζ ∈ M̃ r is said to be
primitive if the morphism

[z∇ζ] : DerKe(R) → (M̃/zM̃)[r + 2]

is an isomorphism as R modules. If ζ ∈ M̃ r is primitive, then z∇ζ :
DerKe(R)[[z]] → M̃ [r + 2] is also an isomorphism as R[[z]] modules. By this
isomorphism, ∇ gives a meromorphic connection on DerKe(R)((z)) which is
also denoted by ∇. For the Euler vector field E ∈ Der0K(R), there exists a
unique element E′ ∈ Der0Ke(R) such that [z∇Eζ] = [z∇E′ζ]. By abuse of
notation, this vector field E′ is also denoted by E and called an Euler vector
field.

Definition 7.1 (cf. [31, Definition 6.1, (P1), (P3), (P4), (P5)]). An element
ζ ∈ M̃ r is called a primitive form without higher residue pairing if

• ζ is primitive.
• z∇ d

dz
ζ = −∇Eζ + r

2ζ.
• z∇XY ∈ DerKe(R) ⊕ zDerKe(R) for all X, Y ∈ DerKe(R).
• z2∇ d

dz
Y ∈ DerKe(R) ⊕ zDerKe(R) ⊕ z2DerKe(R) for all Y ∈ DerKe(R).

Remark 7.2. In this note, there is no specific reason to exclude the parts
related to higher residue parings from the definition of the primitive forms.

Remark 7.3 (Continued from Remarks 6.7 and 6.8). Let (A ,m,m+) be
a gapped filtered graded A∞ category over R as in Remark 6.7. We define
a graded R[[z]] module M̃ by the cohomology of the normed CH module
CC•(A )[1]⊗̂KR)[[z]]m+ . The graded R[[z]] module M̃ is equipped with the
Euler connection ∇E. If M̃ is finitely generated and free over R[[z]], then we
can consider primitive forms without higher residue pairings on (M̃,∇E). We
note that, in this categorical setting, primitive forms are closely related to
(smooth or proper) Calabi-Yau structures (see, e.g., [19]).
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Example 7.4 (Continued from Example 5.20). An element 1 in A0 is called
a unit (of the hyper commutative algebra Ae) if

(1, x1, . . . , xk) =
{
x1 k = 1,
0 k ≥ 2.

Suppose that Ae has a unit 1, then 1 is also a unit of Ae[[t]]. Since z∇E
∂

∂ti

1 = Ti,

we see that 1 is primitive (with respect to the Euler connection) and ∂
∂ti

is
identified with Ti. Hence 1 is a primitive form without a higher residue pairing.
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