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1. Introduction

For any triangle on the Euclidean plane, its congruence class is uniquely
determined by its side lengths. Therefore the area, which is an invariant of
the congruence class, can be written in terms of the side lengths, known as
Heron’s formula (see Step 1 in Section 2). On the other hand, like rhombi,
the congruence class of a quadrilateral is not uniquely determined by its side
lengths. When we confine ourselves to a quadrilateral inscribed in a round
circle, its congruence class is uniquely determined by its side lengths, and
there is a area formula in terms of its side lengths knows as Brahmagupta’s
formula (see Step 1 in Section 2). In general, the side lengths of a convex
n-gon inscribed in a circle, which we will call a cyclic n-gon, determine its
congruence class uniquely so that there should be an area formula in terms of
its side lengths. For this problem, Matsumoto et al. [2] proved the following
result:

Theorem 1 ([2, Theorem 1]). In Euclidean geometry, there is no area for-
mula of the general cyclic n-gon for n ≥ 5 in terms of its side lengths by
using only four arithmetic operations of addition, subtraction, multiplication
and division, and k-th roots.
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This result recalls the Abel-Ruffini theorem that there is no formula of
a solution of the general polynomial of degree n for n ≥ 5 in terms of its
coefficients, using only arithmetic operations and k-th roots [5]. In this paper
we show that the similar result also holds for other classical geometry, namely
hyperbolic and spherical geometry:

Theorem 2. Let S be the area of a cyclic n-gon for n ≥ 5 in hyperbolic
and spherical geometry whose side lengths are a1, a2, · · · .an. Then there is no
formula of cos S

2 in terms of s(a1), s(a2), · · · , s(an), only by using arithmetic
operations and k-th roots, where s(x) is equal to sinh x

2 for hyperbolic geometry
while it is equal to sin x

2 for spherical geometry.

The content of this paper is as follows; in Section 2 we will recall the idea
of Matsumoto et al. for Euclidean geometry step by step. After considering
the comparison between Euclidean and hyperbolic distances, we will check
that the argument of Matsumoto et al. also works for hyperbolic geometry in
Section 3. In Section 4 we will treat the case of spherical geometry.

2. On the area of a Euclidean cyclic polygon

In this Section, we review the proof due to Matsumoto et al. [2] that there is
no area formula for a Euclidean cyclic n-gon for n ≥ 5 in terms of the four
arithmetic operations and k-th roots of its side lengths step by step.

Step 1

There are well-known area formulas for a triangle and a cyclic quadrilateral;
Heron’s formula: The area S of a triangle with its side lengths a, b and c can
be written as

S =
√
s(s− a)(s− b)(s− c),

where s = a+b+c
2 .

Brahmagupta’s formula: The area S of a cyclic quadrilateral with its side
lengths a, b, c and d can be written as

S =
√

(s− a)(s− b)(s− c)(s− d),

where s = a+b+c+d
2 .

For a pentagon ABCDE in Figure 1, let us denote the length of the
diagonal AC by x. Since the area of the pentagon is the sum of those of the
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Figure 1: The inscribed pentagon ABCDE.

triangle ABC and the quadrilateral ACDE, we have the following equation
by means of Heron’s formula and Brahmagupta’s formula:

2(a2 + b2 − c2 − d2 − e2)x2 − 8cdex + 16S2 − a4 − b4 + c4 + d4 + e4

−2(−a2b2 + c2d2 + d2e2 + e2c2) = 8S
√
−x4 + 2(a2 + b2)x2 − (a2 − b2)2,

which implies that the diagonal length x satisfies a quartic equation whose
coefficients belong to Q(a, b, c, d, e, S) [2, lemma1]. From Galois theory [5], we
see that x can be expressed by the four arithmetic operations and k-th roots
of a, b, c, d, e, S.

Step 2

We denote the lengths of the diagonals AC and AD of a pentagon in Figure 2
by x and y respectively.

Figure 2: The inscribed pentagon ABCDE.
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The inscribed quadrilateral ABCD is decomposed into two triangles ABC

and ACD. If we denote the angle ∠ABC by θ, then ∠ADC = π − θ, and by
using the cosine formula for triangles ABC and ACD, we have

x2 = a2 + b2 − 2ab cos θ = c2 + y2 − 2cy cos(π − θ) = c2 + y2 + 2cy cos θ.

Eliminating cosθ, we get [2, lemma2]

(1) x2 = (a2 + b2)cy + (c2 + y2)ab
ab + cy

.

Similarly considering the quadrilateral ACDE, we have

(2) y2 = (x2 + c2)de + (d2 + e2)cx
cx + de

.

Eliminating y in (1) and (2), the diagonal length x satisfies the following
polynomial equation of degree 7 whose coefficients belong to Q(a, b, c, d, e):

cdex7 + (c2d2 + d2e2 + e2c2 − a2b2)x6
(3)

+ cde{(c2 + d2 + e2) − 2(a2 + b2)}x5

+ {c2d2e2 + 2a2b2(c2 + d2 + e2) − 2(a2 + b2)(c2d2 + d2e2 + e2c2)}x4

+ cde{(a2 + b2)2 + 4a2b2 − 2(a2 + b2)(c2 + d2 + e2)}x3

+ {(a2 + b2)2(c2d2 + d2e2 + e2c2) − 2c2d2e2(a2 + b2)
− a2b2(c2 + d2 + e2)2}x2 + cde(c2 + d2 + e2)(a2 − b2)2x + c2d2e2(a2 − b2)2

= 0.

Assuming a = b, the above equation (3) reduces to the following quintic
equation [2, lemma2]:

cdex5 + (c2d2 + d2e2 + e2c2 − a4)x4(4)
+ cde{(c2 + d2 + e2) − 4a2}x3

+ {c2d2e2 + 2a4(c2 + d2 + e2) − 4a2(c2d2 + d2e2 + e2c2)}x2

+ 4a2cde{(2a2 − (c2 + d2 + e2)}x
+ a2{4a2(c2d2 + d2e2 + e2c2) − 4c2d2e2 − a2(c2 + d2 + e2)2} = 0.
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Step 3

For a cyclic pentagon with side lengths (a, b, c, d, e) = (1, 1, 2, 3, 4) (for the
existence of such a pentagon, see [2, Proposition 4]), the diagonal length x
becomes a solution of the following quintic equation reduced from (4):

(5) f(x) = 8x5 + 81x4 + 200x3 − 114x2 − 864x− 723 = 0.

Then f(x) is irreducible over Q whose Galois group is isomorphic to the
symmetric group S5 of five letters which is not solvable [2, lemma3].

Now we can prove Theorem 1 for n = 5 as follows. Suppose that the area S
of a cyclic pentagon can be written in terms of the four arithmetic operations
and k-th roots of its side lengths. Then x could also be calculated in the same
way from the side lengths because of Step 1. Applying Galois theory [5],
we see that Galois group of the minimal polynomial of x over Q(a, b, c, d, e)
is solvable, which contradicts that the Galois group of the equation (5) is
isomorphic to S5.

Step 4

For n ≥ 6, suppose that there is an area formula F (a1, a2, · · · , an) for a
generic cyclic n-gon in terms of the four arithmetic operations and k-th
roots of its side lengths a1, a2, · · · , an. Then there exists ε > 0 such that
for any t satisfying 0 < t < ε, there is a cyclic n-gon with side lengths
a1 = a2 = 1, a3 = 2, a4 = 3, a5 = 4, a6 = t, · · · , an = t [2, Proposition 4].
If we denote the area formula F (1, 1, 2, 3, 4, t, · · · , t) by F (t) for simplicity,
then limt→+0 F (t) = S0 holds where S0 is the area of the cyclic pentagon
with side lengths 1, 1, 2, 3, 4 [2, Proposition 2]. If we consider t as a complex
variable, F (t) can be considered as a single-valued algebraic function on a
domain in C containing the open interval (0, ε). Then F (t) can be written as

the fraction of Puiseux series like F (t) = c0 + c1t
1
p + c2t

2
p + · · ·

d0 + d1t
1
q + c2t

2
q + · · ·

, which im-

plies limt→+0 F (t) = c0
d0

= S0 [2, Proposition 2]. From the assumption, the
area F (t) can be written by the four arithmetic operations and k-th roots of
its side lengths, hence the coefficients ci, dj of the numerator and the denom-
inator of F (t) are elements of a radical extension of Q. Therefore S0 = c0

d0
belongs to a radical extension of Q which contradicts to the conclusion for a
pentagon in Step 3. To summarize, for n ≥ 6, there is no area formula for a
generic Euclidean cyclic n-gon in terms of the four arithmetic operations and
k-th roots of its side lengths.
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3. On the area of a hyperbolic cyclic polygon

Relations between Euclidean and hyperbolic distances

We take the unit disk D in R2 as a model of hyperbolic geometry. Let C be
the Euclidean circle of radius re < 1 with its center at the origin O in D. C
can be also considered as the hyperbolic circle whose radius is denoted by rh.
Then we have the following relation between re and rh [1]:

(6) re = tanh rh
2 .

Proposition 1. For P,Q ∈ C, the Euclidean distance de(P,Q) and the hy-
perbolic distance dh(P,Q) between P and Q satisfy

(7) s(dh(P,Q)) = sinh dh(P,Q)
2 = 1

1 − r2
e

de(P,Q).

By means of (6), it can be rewritten as

(8) de(P,Q) = (1 − tanh2 rh
2 )s(dh(P,Q)).

Proof. First we consider the Euclidean triangle OPQ and the hyperbolic tri-
angle OPQ.

Figure 3: The Euclidean resp. hyperbolic triangle OPQ.

Let M and M ′ be the points of the Euclidean segment PQ and the hy-
perbolic segment PQ such that OM and OM ′ are perpendicular to these
segments respectively. For the hyperbolic triangle OM ′Q, the hyperbolic sine
formula implies

sinh rh
sin π

2
=

sinh dh(P,Q)
2

sin ∠POQ
2

,



On the area formulas of inscribed polygons in classical geometry 563

while for the Euclidean triangle OMQ the Euclidean sine formula implies

re
sin π

2
=

de(P,Q)
2

sin ∠POQ
2

.

Eliminating sin ∠POQ
2 in the above equations, we have

sinh dh(P,Q)
2 = sinh rh

2re
× de(P,Q).

Also from (6) we have

sinh rh
2re

=
2 sinh rh

2 cosh rh
2

2 tanh rh
2

= cosh2 rh
2 = 1

1 − tanh2 rh
2

= 1
1 − r2

e

.

Hence we get

sinh dh(P,Q)
2 = 1

1 − r2
e

de(P,Q).

For n points A1, A2, · · · , An of C in cyclic order, let aek and ahk be the Eu-
clidean and the hyperbolic distances between Ak and Ak+1 (k = 1, 2, · · · , n)
where we assume that An+1 = A1. Proposition 1 implies the following iden-
tities:

s(ahk) = sinh ahk
2 = 1

1 − r2
e

aek, a
e
k = (1 − tanh2 rh

2 )s(ahk) (k = 1, 2, · · · , n).

Next result is due to Matsumoto et al. [2].

Proposition 2 ([2, Proposition 4]). For positive numbers a1, a2, · · · , an sat-
isfying that an is the largest, there is a Euclidean cyclic n-gon whose side
lengths are a1, a2, · · · , an if and only if the following inequality holds:

n−1∑
k=1

ak/an > 1.

The similar statement also holds for hyperbolic geometry.

Proposition 3. For positive numbers a1, a2, · · · , an satisfying that an is the
largest, there is a hyperbolic cyclic n-gon whose side lengths are a1, a2, · · · , an
if and only if the following inequality holds:

(9)
n−1∑
k=1

s(ak)/s(an) > 1.
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Proof. We assume the existence of a hyperbolic n-gon inscribed in a circle of
hyperbolic radius rh whose hyperbolic side lengths are ah1 , a

h
2 , · · · , ahn. Apply-

ing a hyperbolic isometry we may assume that the center of the circumscribed
circle is the origin O in D. Let ae1, a

e
2, · · · , aen be the Euclidean side lengths

of the Euclidean cyclic n-gon sharing vertices of this hyperbolic n-gon. Then
from (8) and Proposition 2, we have

n−1∑
k=1

s(ahk)/s(ahn) =
n−1∑
k=1

aek/a
e
n > 1.

On the other hand, suppose that positive real numbers ah1 , a
h
2 , · · · , ahn

satisfy the inequality
n−1∑
k=1

s(ahk)/s(ahn) > 1

under the assumption that ahn is the largest among ah1 , a
h
2 , · · · , ahn. Propo-

sition 2 implies that there is a Euclidean cyclic n-gon whose side lengths
are s(ah1), s(ah2), · · · , s(ahn). Denote the Euclidean radius of the circumscribed
circle of this Euclidean n-gon by re. For any λ > 0, there is a Euclidean
cyclic n-gon with the circumscribed circle of radius λre, whose side lengths
are λs(ah1), λs(ah2), · · · , λs(ahn) by similarity. Now for any λ satisfying 0 <
λ < 1/re, this Euclidean cyclic n-gon inscribes the circle of Euclidean radius
λre < 1. In particular for λ0 =

√
1+4r2

e−1
2r2

e
we have

1
1 − (λ0re)2

λ0s(ahk) = s(ahk).

Therefore by (7), there exists the hyperbolic cyclic n-gon having sides lengths
ah1 , a

h
2 , · · · , ahn which shares vertices of this Euclidean cyclic n-gon.

Corollary 1.

1. There is a hyperbolic cyclic pentagon with side lengths a1, a2, · · · , a5
satisfying s(a1) = s(a2) = 1, s(a3) = 2, s(a4) = 3 and s(a5) = 4.

2. For any t satisfying 0 < t < 4, there is a hyperbolic cyclic n-gon
with side lengths a1, a2, · · · , an satisfying s(a1) = s(a2) = 1, s(a3) =
2, s(a4) = 3, s(a5) = 4, s(a6) = t, · · · , s(an) = t.

In the following we will see the arguments in Section 2 also hold for
hyperbolic geometry.
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Step 1

The next formula for the area S of a hyperbolic triangle with side lengths
a, b, c is a hyperbolic analog of Heron’s formula [4]:

(10) cos S2 =
1 + 1

2(s(a)2 + s(b)2 + s(c)2)√
1 + s(a)2

√
1 + s(b)2

√
1 + s(c)2

where s(x) = sinh x
2 . Similarly the next formula for the area S of a hyper-

bolic cyclic quadrilateral with side lengths a, b, c, d is a hyperbolic analog of
Brahmagupta’s formula [4, Theorem 3.4.]:

(11) cos S2 =
1 + 1

2(s(a)2 + s(b)2 + s(c)2 + s(d)2) − s(a)s(b)s(c)s(d)√
1 + s(a)2

√
1 + s(b)2

√
1 + s(c)2

√
1 + s(d)2

.

Let S be the area of a hyperbolic cyclic pentagon ABCDE with side
lengths a, b, c, d, e, and x be the hyperbolic length of the diagonal AC. We
denote the areas of the hyperbolic triangle ABC and the hyperbolic cyclic
quadrilateral ACDE by S1 and S2 respectively. Then the additivity of areas
S = S1 + S2 and the addition formula of cosine show

cos S2 − cos S1

2 cos S2

2 = sin S1

2 sin S2

2 .

By squaring both sides, we have

cos2 S1

2 + cos2 S2

2 = 1 − cos2 S

2 + 2 cos S2 cos S1

2 cos S2

2 .

Applying (10) and (11) to cos S1
2 and cos S2

2 , the following equation holds:

(s(a)2 + s(b)2 + s(x)2 + 2)2(1 + s(c)2)(1 + s(d)2)(1 + s(e)2)
+ (s(x)2 + s(c)2 + s(d)2 + s(e)2 + 2 − 2s(x)s(c)s(d)s(e))2

(1 + s(a)2)(1 + s(b)2)

= 4(1 − cos2 S

2 )(1 + s(x)2)(1 + s(a)2)(1 + s(b)2)(1 + s(c)2)

(1 + s(d)2)(1 + s(e)2)

+ 2 cos S2 (s(a)2 + s(b)2 + s(x)2 + 2)

(s(x)2 + s(c)2 + s(d)2 + s(e)2 + 2 − 2s(x)s(c)s(d)s(e))√
1 + s(a)2

√
1 + s(b)2

√
1 + s(c)2

√
1 + s(d)2

√
1 + s(e)2.
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Therefore s(x) is a solution of the quartic equation whose coefficients belong to
Q(s(a), s(b), s(c), s(d), s(e),

√
1 + s(a)2,

√
1 + s(b)2,

√
1 + s(c)2,

√
1 + s(d)2,√

1 + s(e)2, cos S
2 ). From Galois theory s(x) can be written in terms of arith-

metic operations and k-th roots of s(a), s(b), s(c), s(d), s(e) and cos S
2 .

Step 2

After replacing a, b, c, d, e, x in (3) with ae, be, ce, de, ee, xe, and multiplying
( 1
1−r2

e
)10 to (3), from (7) we have

s(c)s(d)s(e)s(x)7 + (s(c)2s(d)2 + s(d)2s(e)2 + s(e)2s(c)2 − s(a)2s(b)2)s(x)6

+ s(c)s(d)s(e){(s(c)2 + s(d)2 + s(e)2) − 2(s(a)2 + s(b)2)}s(x)5

+ {s(c)2s(d)2s(e)2 + 2s(a)2s(b)2(s(c)2 + s(d)2 + s(e)2) − 2(s(a)2 + s(b)2)
(s(c)2s(d)2 + s(d)2s(e)2 + s(e)2s(c)2)}s(x)4 + 4s(a)2s(b)2

+ s(c)s(d)s(e){(s(a)2 + s(b)2)2x− 2(s(a)2 + s(b)2)(s(c)2 + s(d)2 + s(e)2)}
s(x)3 + {(s(a)2 + s(b)2)2(s(c)2s(d)2 + s(d)2s(e)2 + s(e)2s(c)2) − 2s(c)2

s(d)2s(e)2(s(a)2 + s(b)2) − s(a)2s(b)2(s(c)2 + s(d)2 + s(e)2)2}s(x)2

+ s(c)s(d)s(e)(s(c)2 + s(d)2 + s(e)2)(s(a)2 − s(b)2)2s(x) + s(c)2s(d)2s(e)2

(s(a)2 − s(b)2)2 = 0,

where s(a) = sinh a
2 = 1

1−r2
e
ae, see Figure 4.

Figure 4: The Euclidean resp. hyperbolic inscribed pentagon ABCDE.

In particular assuming s(a) = s(b), we have the following equation anal-
ogous to (4):

s(c)s(d)s(e)s(x)5 + (s(c)2s(d)2 + s(d)2s(e)2 + s(e)2s(c)2 − s(a)4)s(x)4

+ s(c)s(d)s(e){(s(c)2 + s(d)2 + s(e)2) − 4s(a)2}s(x)3
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+ {s(c)2s(d)2s(e)2 + 2s(a)4(s(c)2 + s(d)2 + s(e)2)
− 4s(a)2(s(c)2s(d)2 + s(d)2s(e)2 + s(e)2s(c)2)}s(x)2

+ 4s(a)2s(c)s(d)s(e){(2s(a)2 − (s(c)2 + s(d)2 + s(e)2)}s(x)
+ s(a)2{4s(a)2(s(c)2s(d)2 + s(d)2s(e)2 + s(e)2s(c)2)
− 4s(c)2s(d)2s(e)2 − s(a)2(s(c)2 + s(d)2 + s(e)2)2}
= 0.

Step 3

By Corollary 1 (1) there is a hyperbolic cyclic pentagon with side lengths
a, b, c, d, e satisfying (s(a), s(b), s(c), s(d), s(e)) = (1, 1, 2, 3, 4). Hence for the
hyperbolic length x of AC, s(x) satisfies the following quintic equation which
is analog of (5) in Step 3 of Section 2.

8s(x)5 + 81s(x)4 + 200s(x)3 − 114s(x)2 − 864s(x) − 723 = 0.

The similar argument of Step 3 in Section 2 implies that for the area
S of a hyperbolic cyclic pentagon with side lengths a, b, c, d, e, we cannot
represent cos S

2 in terms of the four arithmetic operations and k-th roots of
s(a), s(b), s(c), s(d), s(e).

Step 4

For n ≥ 6, suppose that there is a formula F (s(a1), s(a2), · · · , s(an)) of
cos S

2 for the area S of a generic hyperbolic cyclic n-gon with side lengths
a1, a2, · · · , an in terms of the four arithmetic operations and k-th roots of
s(a1), s(a2), · · · , s(an). By Corollary 1 (2), there exists ε > 0 such that for
any t satisfying 0 < t < ε, there is a hyperbolic cyclic n-gon satisfying
s(a1) = s(a2) = 1, s(a3) = 2, s(a4) = 3, s(a5) = 4, s(a6) = t, · · · , s(an) = t.
Then the same argument of Step 4 in Section 2 implies that for n ≥ 5, there
is no formula of cos S

2 in terms of the four arithmetic operations and k-th
roots of s(a1), s(a2), · · · , s(an) for a generic hyperbolic cyclic n-gon.

4. On the area of a spherical cyclic polygon

Relations between Euclidean and spherical distances

For a model of spherical geometry, we consider the unit sphere S2 in R3 with
chordal metric [1]. We denote the image of A ∈ S2 under the stereographic



568 Yohei Komori et al.

projection from the north pole N = (0, 0, 1) on the xy-plane by A′. Then
the origin O = (0, 0) is the image of the south pole N = (0, 0,−1). Let us
denote the Euclidean length of the segment OA′ on the xy-plane by re and
the spherical length of the arc SA on S2 by rs. Then we have the following
relation between re and rs:

(12) re = tan rs
2 .

Figure 5: The stereographic projection.

Similar to Proposition 1 in Section 3, from the Euclidean and the spherical
sine formulas we have

Proposition 4. Let C2 denote a spherical circle centered at S on S2 and
P,Q be points of C2. Moreover denote the images of C2, P,Q under the stere-
ographic projection from N by C1, P

′, Q′ respectively. Then the Euclidean dis-
tance de(P ′, Q′) of P ′ and Q′ and the spherical distance ds(P,Q) of P and Q
satisfy the following relation:

(13) s(ds(P,Q)) = sin ds(P,Q)
2 = 1

1 + r2
e

de(P ′, Q′).

The next result is an analog of Proposition 3 in Section 3.

Proposition 5. Let positive real numbers a1, a2, · · · , an be assumed that an
is the largest. If a1, a2, · · · , an are sufficiently small and satisfy the following
inequality

(14)
n−1∑
k=1

s(ak)/s(an) > 1,

then there is a spherical cyclic n-gon with the spherical side lengths
a1, a2, · · · , an.
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Proof. By Proposition 2, there is a cyclic n-gon with side lengths
s(a1), s(a2), · · · , s(an) in Euclidean geometry. Denote the radius of the cir-
cumscribed circle by re. From now we assume that re < 1

2 by taking

a1, a2, · · · , an sufficiently small. Then λ0 = 1−
√

1−4r2
e

2r2
e

satisfies 0 < λ0 < 1
re

. In
this case, there is a Euclidean n-gon in D inscribed in the circle centered at O
with Euclidean radius λ0re whose side lengths λ0s(a1), λ0s(a2), · · · , λ0s(an).
Then considering the preimage of this Euclidean n-gon by the stereographic
projection, we have a spherical cyclic n-gon on S2 whose spherical side lengths
are a1, a2, · · · , an because of 1

1+(λ0re)2λ0s(ak) = s(ak).

Corollary 2.

1. For a sufficiently large k, there is a spherical cyclic pentagon satisfying
s(a1) = s(a2) = 1/k, s(a3) = 2/k, s(a4) = 3/k and s(a5) = 4/k.

2. For k in (1), there exists ε > 0 such that for any t satisfying 0 < t < ε,
there is a spherical cyclic n-gon with side lengths a1, a2, · · · , an satisfy-
ing s(a1) = s(a2) = 1/k, s(a3) = 2/k, s(a4) = 3/k, s(a5) = 4/k, s(a6) =
t, · · · , s(an) = t.

In the following, we will show that the arguments for Euclidean geometry
in Section 2 also hold for spherical geometry step by step.

Step 1

The next formula for the area S of a spherical triangle with side lengths a, b, c
is a spherical analog of Heron’s formula [3]:

(15) cos S2 =
1 − 1

2(s(a)2 + s(b)2 + s(c)2)√
1 − s(a)2

√
1 − s(b)2

√
1 − s(c)2

where s(x) = sin x
2 .

Similarly the next formula for the area S of a spherical cyclic quadrilateral
with side lengths a, b, c, d is a spherical analog of Brahmagupta’s formula [3,
Page 182, Proposition 5]:

(16) cos S2 =
1 − 1

2(s(a)2 + s(b)2 + s(c)2 + s(d)2) − s(a)s(b)s(c)s(d)√
1 − s(a)2

√
1 − s(b)2

√
1 − s(c)2

√
1 − s(d)2

.

Let S be the area of a spherical cyclic pentagon ABCDE with side lengths
a, b, c, d, e, and x be the spherical length of the diagonal AC. We can calcu-
late in the same way as a hyperbolic pentagon, so that s(x) is a root of a
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quartic equation whose coefficients belong to Q(s(a), s(b), s(c), s(d), s(e),√
1 − s(a)2,

√
1 − s(b)2,

√
1 − s(c)2,

√
1 − s(d)2,

√
1 − s(e)2, cos S

2 ). From
Galois theory s(x) can be written in terms of arithmetic operations and k-th
roots of s(a), s(b), s(c), s(d), s(e), cos S

2 .

Step 2

Replace a, b, c, d, e, x in (3) with ae, be, ce, de, ee, xe, multiply ( 1
1+r2

e
)10 to (3)

and apply (13), we have the equation analogues to (3). In particular for the
case that s(a) = s(b), we have the following equation which is an analog
of (4):

s(c)s(d)s(e)s(x)5 + (s(c)2s(d)2 + s(d)2s(e)2 + s(e)2s(c)2 − s(a)4)s(x)4

+ s(c)s(d)s(e){(s(c)2 + s(d)2 + s(e)2) − 4s(a)2}s(x)3

+ {s(c)2s(d)2s(e)2 + 2s(a)4(s(c)2 + s(d)2 + s(e)2)
− 4s(a)2(s(c)2s(d)2 + s(d)2s(e)2 + s(e)2s(c)2)}s(x)2

+ 4s(a)2s(c)s(d)s(e){(2s(a)2 − (s(c)2 + s(d)2 + s(e)2)}s(x)
+ s(a)2{4s(a)2(s(c)2s(d)2 + s(d)2s(e)2 + s(e)2s(c)2)−
4s(c)2s(d)2s(e)2 − s(a)2(s(c)2 + s(d)2 + s(e)2)2}
= 0,

where s(a) = sin a
2 = 1

1+r2
e
ae.

Step 3

By Corollary 2 (1) there is a spherical cyclic pentagon with side lengths
a, b, c, d, e satisfying (s(a), s(b), s(c), s(d), s(e)) = (1/k, 1/k, 2/k, 3/k, 4/k) for
a sufficiently large k. Hence for the spherical length x of AC, s(x) = z/k

satisfies the following quintic equation which is analog of (5) in Step 3 of
Section 2:

8z5 + 81z4 + 200z3 − 114z2 − 864z − 723 = 0.

The same argument of Step 3 in Section 2 implies that for the area
S of a spherical cyclic pentagon with side lengths a, b, c, d, e, cos S

2 can-
not be written in terms of the four arithmetic operations and k-th roots
of s(a), s(b), s(c), s(d), s(e).
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Step 4

For n ≥ 6, suppose that there is a formula F (s(a1), s(a2), · · · , s(an)) of
cos S

2 for the area S of a generic spherical cyclic n-gon with side lengths
a1, a2, · · · , an in terms of the four arithmetic operations and k-th roots of
s(a1), s(a2), · · · , s(an). By Corollary 2 (2), there exists ε > 0 such that
for any t satisfying 0 < t < ε, there is a spherical cyclic n-gon satisfying
s(a1) = s(a2) = 1, s(a3) = 2, s(a4) = 3, s(a5) = 4, s(a6) = t, · · · , s(an) = t.
Then the similar argument of Step 4 in Section 2 implies that for n ≥ 5,
there is no formula of cos S

2 in terms of the four arithmetic operations and
k-th roots of s(a1), s(a2), · · · , s(an) for a generic spherical cyclic n-gon.

References

[1] S. Katok: Fuchsian Groups, The University of Chicago Press, 1992.
MR1177168

[2] Y. Matsumoto, Y. Matsutani, M. Oda, T. Sakai and T. Shibuya:
On the area of a polygon inscribed in a circle, L’Enseignement Mathéma-
tique (2) 53 (2007), 127–153. MR2343348

[3] W. M’Clelland and T. Preston: A Treatise on Spherical Trigonom-
etry with application to Spherical Geometry and Numerous Examples.
Part II, London: Macmillian and Co., 1886.

[4] A. Mednykh: Brahmagupta formula for cyclic quadrilaterals in the hy-
perbolic plane. Sib. Èlektron. Mat. Izv. 9 (2012), 247–255. MR2954694

[5] M. M. Postnikov: Foundation of Galois Theory, Dover, 2004.
MR2043554

Yohei Komori
Department of Mathematics, School of Education
Waseda University
Nishi-Waseda 1-6-1, Shinjuku
Tokyo 169-8050
Japan
E-mail: ykomori@waseda.jp

http://www.ams.org/mathscinet-getitem?mr=1177168
http://www.ams.org/mathscinet-getitem?mr=2343348
http://www.ams.org/mathscinet-getitem?mr=2954694
http://www.ams.org/mathscinet-getitem?mr=2043554
mailto:ykomori@waseda.jp


572 Yohei Komori et al.

Runa Umezawa
Department of Mathematics, Faculty of Science and Engineering
Waseda University
Ohkubo 3-4-1, Shinjuku
Tokyo 169-8555
Japan
E-mail: runa-7974@fuji.waseda.jp

Takuro Yasui
Department of Mathematics, School of Education
Waseda University
Nishi-Waseda 1-6-1, Shinjuku
Tokyo 169-8050
Japan
E-mail: jakakemuri@akane.waseda.jp

mailto:runa-7974@fuji.waseda.jp
mailto:jakakemuri@akane.waseda.jp

	Introduction
	On the area of a Euclidean cyclic polygon
	On the area of a hyperbolic cyclic polygon
	On the area of a spherical cyclic polygon
	References

