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Abstract: We relate shuffle algebras, as defined by Nichols, Feigin-
Odesskii and Rosso, to perverse sheaves on symmetric products of
the complex line (i.e., on the spaces of monic polynomials strat-
ified by multiplicities of roots). More precisely, we construct an
equivalence between:

(i) Braided Hopf algebras of a certain type.
(ii) Factorizable collections of perverse sheaves on all the sym-

metric products.

Under this equivalence, the Nichols algebra associated to an ob-
ject V corresponds to the collection of the intersection cohomology
extensions of the local systems on the open configuration spaces
associated to the tensor powers of V . Our approach is based on
using real skeleta of complex configuration spaces.
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Introduction

A. First goal of the paper Shuffle algebras were introduced by
Feigin–Odesskii [17] and Rosso [52] but a closely related construction goes
back to the 1978 paper of Nichols [49]. In modern terms, an object V of
a braided monoidal abelian category pV ,b, Rq gives rise to three bialgebras
in V :
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(1) The tensor algebra T!pV q “
À

ně0 V
bn with tensor multiplication and

with the comultipliction making V primitive.
(2) The cotensor, or “big shuffle” algebra T˚pV q which is the same object

À

ně0 V
bn but with the shuffle multiplication involving the R-matrices,

see (3.1.1) below. We have a canonical morphism α : T!pV q Ñ T˚pV q.
(3) The Nichols algebra (or the “true shuffle algebra”) T!˚pV q defined as

the image of α.

For instance, the positive part U`
q pgq of the quantum group with Cartan

matrix }aij}
r
i,j“1 is obtained as T!˚pV q for V an object of the category of Zr-

graded vector spaces with braiding given by the factors qaij , see [17], [52] and
Example 3.1.5 below for a precise formulation.

The first goal of this paper is to relate the above structures with the
familiar phenomenon in the theory of perverse sheaves. If X is a complex
algebraic variety and j : U ãÑ X is an affine open subset, then a local system
L on U gives three perverse sheaves on X:

(11) The zero extension j!L.
(21) The full direct image j˚L. We have a canonical morphism α1 : j!L Ñ

j˚L.
(31) The intermediate (or intersection cohomology) extension j!˚L which is

the image of α1.

It turns out that (1)–(3) can be interpreted as a particular case of (11)–
(31), if we take for X the symmetric products Symn

pCq, put U “ Symn
‰pCq to

be the generic stratum and take L to be the local system on U corresponding
to the object V bn with its natural action of the braid group. Here we consider
all n at once and work with local systems and perverse sheaves with values
in V .

Our interpretation can be seen as a nonlinear analog of several “local-
ization” results, starting from the Beilinson-Bernstein picture [6], which deal
with modules over a given (Lie) algebra, not algebras themselves. In such re-
sults, (11) and (21) correspond to the induced and co-induced Verma modules,
α1 to the Shapovalov form and (31) to the irreducible quotient of the Verma.

B. Second goal: skeletology Our second goal is to develop, a little further,
the method of totally real skeleta in the study of perverse sheaves i.e., in
describing the category PervpX,Sq for a stratified complex manifold pX,Sq.
While the full range of this method is still not clear to us, in good cases [22]
[32] [34] it works like this. We choose an appropriate “skeleton” (totally real
subanalytic subset) i : K ãÑ X with the properties:
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• For any F P PervpX,Sq, the complex i!F is quasi-isomorphic to a single
sheaf RKpFq. Therefore, taking the stalk of RKpFq at any given x P K

gives an exact functor RK,x : PervpX,Sq Ñ Vect.
• The functors RK,x take Verdier duality (denoted F ÞÑ DF) to vector

space duality. Therefore the sheaf structure on RKpDFq defines an extra
cosheaf structure on RKpFq with the same (co)stalks.

• The sheaf and cosheaf structures on RKpFq are compatible in a certain
sense. Spelling out these compatibility conditions amounts to defining
the notion of a bisheaf on K. The category PervpX,Sq is then identified
with the category of such bisheaves.

In the above situation of X “ Symn
pCq with its natural “diagonal” stratifi-

cation, we can take K “ Symn
pRq. In this case a source of “bisheaves” can

be found in graded bialgebras: such a bialgebra gives a bisheaf on K encoding
the degree n parts of the two Hochschild complexes: for the multiplication
and comultiplication.

C. Description of results As far as the first goal goes, we establish, in The-
orem 3.3.1, an equivalence of categories L between:

(1) A certain class of graded Hopf algebras (called primitive bialgebras, see
Definition 2.4.10) in an abelian braided category V .

(2) Perverse sheaves on SympCq “
Ů

ně0 Symn
pCq (i.e., collections of per-

verse sheaves Fn on Symn
pCq for all n ě 0) with values in V which

are:

(2a) Smooth with respect to the diagonal stratification, and

(2b) Factorizable, that is, are equipped with a natural multiplicative
structure with respect to the natural semigroup structure on
SympCq, see Definition 3.2.5.

We further prove, in Theorem 3.3.3, that the functor L takes the tensor,
cotensor and Nichols algebras to the perverse sheaves obtained as j!, j˚ and
j!˚ as explained above in §A.

As far as the second goal goes, we use the skeletal philosophy to connect,
directly, bialgebras with “bisheaves” (and to motivate the idea of bisheaves
in the first place). We also use it to give a very simple proof of the result of
Takeuchi (quoted in Proposition 1.3.3) on the dimension of the linear algebra
data (cohomology with support in R

n) of a perverse sheaf on C
n smooth with

respect to the complexification of a real hyperplane arrangement.
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D. Summary of the paper In Ch. 1 we discuss, at some length, our philos-
ophy of skeleta and bisheaves (§§1.1 and 1.2). In §1.3, we consider examples
of representation of skeleta as limit positions of deformations of “real fronts”
tRepfq ě 0u of holomorphic functions f and give a simple proof of Takeuchi’s
theorem (Prop. 1.3.3). In §1.4 we give a (rather routine) formal treatment of
perverse sheaves with values in an abelian category, the concept which will be
used later in the paper. Here it is convenient to use the sub-analytic topology
of Kashiwara-Schapira [31].

In Ch. 2 we introduce our main object of study: the symmetric product
Symn

pCq together with its natural diagonal stratification. In particular, we
“break the symmetry” of purely complex geometry, by introducing, in §2.2,
the imaginary stratification and the decomposition into fine cells (extension
of the Fox-Neuwirth cells decomposition of Symn

‰pCq). This allows us to con-
struct, for any perverse sheaf F smooth with respect to the diagonal strat-
ification, a natural Cousin resolution, an explicit complex of sheaves E‚pFq

quasi-isomorphic to F , see Proposition 2.3.7. In §2.4 we introduce a natural
class of examples of “bisheaves” on the real skeleton: the data encoding both
the bar and cobar complex of a braided bialgebra. In particular, we introduce,
in Definition 2.4.10 a concept of primitive bialgebras. Such bialgebras will be
later (Theorem 3.3.1) identified with factorizable perverse sheaves.

In Ch. 3 we, first of all, recall the formalism of shuffle algebras in the
generality we need (§3.1). In §3.2 we introduce the concept of factorizable
perverse sheaves with values in a braided category. For this it is convenient
to use the definition of a braided tensor structure based on the E2-operad.
In §3.3 we formulate our main results: the Localization Theorem 3.3.1 on
equivalence between primitve bialgebras and factorizable perverse sheaves
and Theorem 3.3.3 identifying perverse sheaves corresponding to shuffle and
Nichols algebras.

Ch. 4 is devoted to the proof of Theorems 3.3.1 and 3.3.3 by a very di-
rect method. Starting from a primitive bialgebra A, we produce, for each n,
an explicit complex of sheaves E‚

npAq on Symn
pCq. A priori, it is only R-

constructible with respect to the stratification into fine cells, but we prove
that it is in fact, a factorizable perverse sheaf with respect to the complex
(diagonal) stratification. This remarkable phenomenon (the stalks of the com-
plex E‚

npAq jump at real “walls” while their cohomology does not) comes from
contractibility of some combinatorial complexes which appear as multiplicities
and which are treated systematically in Appendix A.

In Ch. 5, which does not depend on the rest of the paper, we illustrate The-
orem 3.3.1 using well known descriptions of perverse sheaves on Symn

pCq for
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small values of n: the classical pΦ,Ψq-description for n “ 2 and the Granger-
Maisonobe description [26] for n “ 3.

Finally, Appendix A discusses various incarnations of a classical combi-
natorial object, the shuffle complex, whose vertices are shuffles of some type
pd1, ¨ ¨ ¨ , dmq, edges correspond to elementary moves etc. Complexes of this
nature appear as multiplicities in the stalks of the Cousin complexes in §4.

E. Relation to previous work In [10] (inspired in turn by [53]), intermedi-
ate extensions of local systems on configuration spaces have been used to
construct the Hochschild complex for the positive part of a small quantum
group with coefficients in a tensor product of irreducible modules. In partic-
ular, one gets in this way the weight components of the irreducible modules
themselves.

To achieve this goal one works at first on Cartesian configuration spaces
(i.e., open parts of Cartesian, not symmetric products of C) and then passes
to invariants with respect to actions of the appropriate symmetric groups.

Unlike [10] (and earlier precursors), we work directly on the symmetric
products Symn

pCq rather than Cartesian powers C
n with diagonal stratifi-

cations. The advantage of this approach is that the linear algebra data have
much smaller size (for n “ 2 we get the classical pΦ,Ψq-description) and
match the features of a graded Hopf algebra very directly.

We have been very much influenced by the unpublished preprint of D.
Gaitsgory [20] on factorizable algebras on configuration spaces. The method
of [20] (see also [21], Theorem 29.2.3) is based on the Koszul duality relation
between bialgebras and E2-algebras, a purely “derived” concept which goes
back to the works of Tamarkin and Kadeishvili, see [57], [58], [28], [12], and
on the correspondence between E2-algebras and factorizable constructible
complexes on Ran spaces due to Lurie [41].

Unlike [20], our approach does not use E2-algebras (even though the E2-
operad provides a natural language for defining braided categories). Instead,
we produce the factorizable perverse sheaf LpAq associated to a bialgebra A
in a completely direct and explicit way: as the sequence of Cousin complexes,
using the 2n-dimensional real geometry of the “imaginary strata” in Symn

pCq.
In fact, this geometry may be useful for constructing manageable models for
the dg-operad e2 (singular chains of the topological operad E2).

More recently, Ellenberg, Tran and Westerland [15], working in a general
braided context, identified the Ext-cohomology of T˚pV q with the homology of
the braid group Brn with coefficients in V bn (twisted by the sign character).
This result (Corollary 4.5 of [15]) is recovered, in an equivalent form, as
our Corollary 3.3.4. An example of particular interest for [15] is V being
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the category of Yetter-Drinfeld modules for a finite group G and V being
associated to a conjugation invariant subset C Ă G. In this case V bn is the
permutation representation associated to the natural action of Brn on Cn,
and its homology is identified with the topological homology of the Hurwitz
space HurCG,n, the unramified cover of Symn

‰pCq associated to the Brn-set Cn,
see [16, 15] for background. Our approach puts these results into perspective
and suggests a similar relation of the Nichols algebra T!˚pV q (for V associated
to G,C) to intersection homology of some compactifications of HurCG,n,

F. Future directions Our approach, being completely elementary, suggests
various generalizations, of which we mention two.

(1) In this paper we consider only non-linear objects: graded Hopf alge-
bras A. One can similarly describe, in terms of perverse sheaves, the natural
linear objects: Yetter-Drinfeld modules over A (which form an abelian cate-
gory) [61] [9]. For this, we need to use the same symmetric products Symn

pCq

but with different stratifications: choose a distinguished point x0 P C, say
x0 “ 0, and stratify Symn

pCq according to the multiplicity of x0 (a separate
non-negative integer) and the collection of multiplicities at other points (an
un-ordered partition). The natural real skeleton corresponding to this strati-
fication is Symn

pRě0q. After passing, as in [20], to E2-algebras Koszul dual to
bialgebras, this fits into the package of factorization algebras on C stratified
by several points, see [1, 13, 25]. To further extend from C to more general
Riemann surfaces, one needs to work in a ribbon braided category [2].

(2) The main context of the Feigin-Odesskii definition [17] of shuffle alge-
bras (and of their many applications ever since) was that of R-matrices which
depend meromorphically on a parameter t P C (with C typically an algebraic
curve). Conceptually, this corresponds to working in a meromorphic braided
category [54], where one has some algebro-geometric structure on the “mod-
uli space” of objects. It was pointed out by Kontsevich and Soibelman [38]
that the parametric shuffle algebra gives rise to some factorization data on
the cartesian products of C. The definition of these factorization data in [38]
is similar to the definition from [10], but the data in [38] are of “coherent”
nature (i.e., involve coherent sheaves). In the case of constant R-matrices,
considered in the present paper, we deal with “constructible” data (perverse
sheaves). It seems very plausible that these two directions: constructible and
coherent, can be unified to give a conceptual interpretation of parametric
shuffle algebras.
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1. Perverse sheaves and “bisheaves” on skeleta

1.1. Skeleta pure with respect to a complex stratification

A. Pure skeleta We fix, once and for all, a base field k of characteristic 0.
We denote Vectk, resp. Vectfdk the category of all, resp. of finite-dimensional,
k-vector spaces.

Let X be a connected complex manifold, dimCpXq “ n. Let S “ tXαuαPA

be a complex analytic Whitney stratification of X. We denote by iα : Xα Ñ X

the embedding of the stratum Xα. By X0 we denote the unique open stratum
of S, so 0 P A is a distinguished element.

Let ShpX,Sq be the abelian category of sheaves of k-vector spaces F
on X constructible with respect to S. This means F is locally constant on
each Xα, with finite-dimensional stalks. Let further DbpX,Sq be the bounded
derived category formed by complexes of sheaves F of C-vector spaces on X

constructible with respect to S. This means each cohomology sheaf H i
pFq

belongs to ShpX,Sq.
Let PervpX,Sq Ă DbpX,Sq be the abelian category formed by perverse

sheaves with respect to the middle perversity. Explicitly, see, e.g., [29] a com-
plex F is perverse, if:

(P`) For every α P A, we have Hn
pi˚αFq “ 0 for n ą ´ dimCpXαq.

(P´) For every α P A, we have Hn
pi!αFq “ 0 for n ă ´ dimCpXαq.

In particular, the conditions imply that the restriction of a perverse F to the
open stratum X0 is a local system in degree p´nq. The category PervpX,Sq

carries the Verdier duality F ÞÑ F˚.
We will also denote

Db
constrpXq “

ď

S

Db
pX,Sq, PervpXq “

ď

S

PervpX,Sq Ă Db
constrpXq

the derived category of complexes of sheaves on X constructible with respect
to some (indeterminate) stratification and the subcategory of perverse sheaves
there.

Let K Ă X be a closed real subanalytic set of pure real dimension n. We
denote iK : K Ñ X the embedding. The Whitney stratification S induces a
stratification (disjoint decomposition) SK of K into strata Kα “ K X Xα.

By a topological ball we will mean a subanalytic subset isomorphic, as
such, to R

m for some m.
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Definition 1.1.1. (a) K is called a skeleton for pX,Sq, if each Kα is a disjoint
union of topological balls of the same dimension.

(b) A skeleton K is called pure, if for any F P PervpX,Sq the complex
i!KF on K is quasi-isomorphic to a single sheaf in degree 0, which we denote
RKpFq “ H

0
KpFq.

We refer to the connected components of Kα as cells of K and denote by
pC,ďq the set of cells of K, ordered by inclusion of closures.

Let ShpK, Cq be the abelian category of sheaves of k-vector spaces on
K which are locally constant (hence constant) on each cell of C, with finite-
dimensional stalks.

If K is a pure skeleton, we have an exact functor of abelian categories

RK “ i!K : PervpX,Sq ÝÑ ShpK, Cq.

In particular, for any cell C P C we have an exact functor

RK,C : PervpX,Sq ÝÑ Vectfdk , F ÞÑ RKpFqC :“ H0
pC,RKpFqq

obtained by taking the stalk of RKpFq at C or, what is the same, at any
point x P C (these stalks are canonically identified for different x P C).

B. Pure skeleta and quiver descriptions of PervpX,Sq In studying perverse
sheaves, considerable effort had been spend on “elementary” descriptions of
the categories PervpX,Sq for some particular stratified spaces pX,Sq, see
[5, 26, 22, 46]. Typically, such a description has the form of an identification

(1.1.2) PervpX,Sq
»

ÝÑ ReppQ,Rq

with ReppQ,Rq, the category of representations of some quiver (oriented
graph) Q subject to a set of relations R, a category which is manifestly abelian.
An object of ReppQ,Rq is a family of vector spaces Vi P Vect (corresponding
to the vertices of Q) and linear operators ae : Vsourcepeq Ñ Vtargetpeq for any
oriented edge e of Q, subject to the relations from the set R.

An identification (1.1.2) contains, in particular, a datum of several exact
functors

PervpX,Sq ÝÑ Vectfdk , F ÞÑ VipFq,

where the VipFq are the vector spaces of the quiver representation correspond-
ing to F . Now, a priori it is not easy to construct such exact functors in the
first place. But if K is a pure skeleton for pX,Sq, then we have a natural
supply of such functors, namely the RK,C , C P C.
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Observation 1.1.3. In most examples, the VipFq can indeed be found as
RK,CpFq for an appropriate skeleton K. Further, the natural maps between
the RK,CpFq coming from the structure of a sheaf on RKpFq, provide precisely
one-half of the arrows ae in the quiver description, the other half being the
“formal adjoints” of these. The key to a quiver description consists therefore
in finding a sufficiently rich pure skeleton for pX,Sq.

Example 1.1.4 (Graphs on surfaces). Let n “ 1, i.e., X be a Riemann
surface. A stratification S consists then of a discrete set N Ă X so that the
strata are XzN and the points of N . A skeleton for pX,Sq is nothing but
a (subanalytic) graph K embedded into X, regardless of its position with
respect to N . In this case it is not hard to prove that every graph is in fact a
pure skeleton, see [34], Prop. 2.2. By taking K sufficiently rich (i.e., passing
through all the points of N and being a spanning graph for X), one can obtain
from this approach a quiver description of PervpX,Nq, see [34]. This contains
the following more well known examples.

Example 1.1.5 (The pΦ,Ψq description). Let X “ C and let N “ t0u

consist of one point. Denote the corresponding category of perverse sheaves
PervpC, 0q. Take for K the closed half-line r0,8q through 0. The cells of K
are t0u and p0,8q. Given F P PervpC, 0q, the stalks of the sheaf Rr0,8qpFq “

H
0
r0,8qpFq at these cells are ΦpFq and ΨpFq, the classical spaces of vanishing

and nearby cycles of F .
Further, a constructible sheaf in Shpr0,8q, Cq is the same as a diagram

v : E0 Ñ E1, where E0 is the stalk at 0, E1 the stalk at p0,8q and v is
the generalization map. So the sheaf structure of Rr0,8qpFq associates to F
the arrow ΦpFq

v
Ñ ΨpFq which is precisely one half of the two arrows in the

classical description [22] [5] of PervpC, 0q as the category of diagrams

Φ
v

Ψ
u

, TΨ :“ IdΨ ´vu, TΦ “ IdΦ ´uv invertible.

We note that invertibility of TΨ implies invertibility of TΦ and vice versa (even
without assuming finite dimensionality of Φ and Ψ), because of the identity

(1.1.6) p1 ´ uvq
´1

“ 1 ` up1 ´ vuq
´1v,

familiar in the theory of the Jacobson radical, cf. [39] §3.2, proof of Proposi-
tion 4. We are grateful to V. Drinfeld for pointing it out to us.

Example 1.1.7 (The “Dirac” description). Keeping the same X “ C

and S “
�

t0u,Czt0u
(

as above, we take K “ R “ p´8,8q the real line
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through 0. This K has three cells: R´ “ p´8, 0q, t0u and R` “ p0,8q.
A constructible sheaf in ShpR, Cq is the same as a diagram of stalks at these
cells and the generalization maps

E´ E0
γ´ γ`

E` .

This corresponds to the so-called “Dirac description” of PervpC,Fq, see [32]
§9A, in terms of the diagrams

E´
δ´

E0
γ´ γ`

E`,
δ`

γ´δ´ “ IdE´ , γ`δ` “ IdE` , γ´δ` : E` Ñ E´, γ`δ´ : E´ Ñ E`

invertible.

Again, the structure of the sheaf RRpFq for F P PervpC, 0q provides precisely
one-half of the arrows in the diagram.

Example 1.1.8 (Hyperplane arrangements).More generally, let X “ C
n

and let H “ tHiuiPI be an arrangement of linear hyperplanes in R
n. Then

HC “ tHC
i “ Hi b Cq is an arrangement of hyperplanes in C

n and it gives a
Whitney stratifications S “ SH into the strata

L˝
“ L z

ď

HiČL

pL X HC

i q.

Here L runs over flats of HC, i.e., linear subspaces obtained as intersec-
tions

Ş

jPJ H
C
j for any subset J Ă I (including J “ H which corresponds

to L “ C
n).

Denote the corresponding category of perverse sheaves PervpCn,Hq. It
was studied in [32]. In particular, it was proved there that the real space
K “ R

n Ă C
n “ X is a pure skeleton for this stratification. The set C

consists of faces (of all dimensions) of the real arrangement H.

We recall, see, e.g., [32] §1D:

Definition 1.1.9. A regular cell decomposition of a space X is a stratification
into open topological balls (cells) such that the closure of any cell is a closed
topological ball. A quasi-regular cell complex is a difference XzX 1 of two
regular cell complexes with X 1 a closed cellular subcomplex of X.
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In the examples above (in fact, in most of the examples of skeleta we
know), the stratification SK is a quasi-regular cell decomposition. For a quasi-
regular cell complex, it is standard that taking the stalks at various cells and
generalization maps among them gives an identification

(1.1.10) ShpK, Cq » ReppCq :“ FunppC,ďq,Vectfdk q.

Here ReppCq is the category of representations of the poset pC,ďq, i.e., func-
tors from pC,ďq considered as a category, to Vectfdk .

For more general cell decompositions the role of pC,ďq is played by
ExitpK, Cq, the category of exit paths of the stratification C, see [59].

1.2. Sheaves and bisheaves

A. The idea of bisheaves In the examples we have seen, the linear algebra
data describing F P PervpX,Sq give, in particular, an actual constructible
sheaf on the skeleton K, in terms of its stalks and generalization maps. But
they also contain companion maps in the opposite direction which, similarly,
give a cosheaf on K, that is, a sheaf with values in Vectop

k , the opposite to
the category of vector spaces.

It is suggestive, therefore, to introduce the term bisheaf to describe the
entire set of linear algebra data representing F . Informally, a bisheaf should
consist of an SK-constructible sheaf and cosheaf on K, with the same stalks at
the cells, satisfying some compatibility conditions between the two structures.

Example 1.2.1. For instance, in the situation of Example 1.1.7 we have
K “ R with stratification KS into R´, t0u and R` A SK-constructible sheaf
on K is the same as a diagram

E´ E0
γ´ γ`

E`,

a cosheaf is the same as a diagram

E´

δ´
E0 E`,

δ`

and a bisheaf should be a diagram

E´
δ´

E0
γ´ γ`

E`,
δ`

satisfying the conditions γ˘δ˘ “ Id as well as the invertibility of γ`δ´ and
γ´δ`.
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We do not know1 a general definition of a bisheaf. It seems that it should
not be a purely topological concept involving the stratified space pK,SKq but
should involve information about the complexification pX,Sq as well.

B. Self-dual skeleta The skeleta that have been used, have, in addition to
purity, the following property: the functors RK,C : PervpX,Sq Ñ Vectfdk , take
Verdier duality to the usual duality fo vector spaces, i.e., we have functorial
isomorphisms

RKpDFqC » pRKpFqCq
˚.

This duality then interchanges the sheaf and cosheaf structures. That is, the
additional “cosheaf” structure on the sheaf RKpFq comes from the structure
of sheaf on RKpF˚q.

We will call this property of a pure skeleton self-duality. Using the stan-
dard properties of Verdier duality (interchanging i˚ and i!), for a self-dual
skeleton K we have natural isomorphisms

i˚Ci
!
KF » i!Ci

˚
KF , F P PervpS,Xq, C P C.

1.3. Pure skeleta as degenerations of real fronts. Takeuchi’s
theorem

Let f be a holomorphic function on X. We then have the hypersurface Xf “

tf “ 0u and the closed subanalytic set X`
f “ tRepfq ě 0u which we call the

real front of f . Denote
Xf

if
ãÑ X`

f

jf
ãÑ X

the embeddings. It is known [29] that the functor of vanishing cycles

Φf : Db
constrpXq ÝÑ Db

constrpXf q

perserves perverse sheaves and commutes with Verdier duality. It is also
known (ibid.) that we have a canonical quasi-isomorphism

Φf pFq » i˚f j
!
f pFq.

On the other hand, for a skeleton K and its cell C, the stalk at C of the
complex RKpFq can be written as i˚Ci!KpFq. This suggests a way to construct
pure and self-dual skeleta as limits of isotopic deformations of regions of the
form X`

f .
1Added in print: see however two recent papers by the authors: “Perverse sheaves

over real hyperplane arrangements II”, arXiv:1910.01677, to appear in Publ. RIMS
and “Parabolic induction and perverse sheaves on h{W”, arXiv:2006.04285.
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Figure 1: Deforming tRepzq ě 0u into the half-line.

Example 1.3.1. (a) In the situation of Example 1.1.5, the skeleton r0,8q can
be seen as a limit of isotopic deformations (compatible with our stratification)
of the real front Repzq ě 0.

Example 1.3.2. In the situation of Example 1.1.7, the skeleton R “ p´8,8q

can be seen as a limit of isotopic deformations of the real front tRepz2q ě 0u.
The deformation is achieved by the transformations Tε : C Ñ C, 0 ď ε ď 1,
taking x ` iy to x ` εiy, see Fig. 2. Note that such transformations cannot
be made holomorphic, since we need to decrease the angle of aperture of the
sectors. Nevertheless, they preserve the topology of the situation.

Figure 2: Deforming tRepz2q ě 0u into the real line.

Let us now consider the situation of Example 1.1.8, so we have an arrange-
ment H of hyperplanes in R

n and the corresponding category PervpCn,Hq.
In the following proposition both parts are known but rather non-trivial. Part
(a), already mentioned in Example 1.1.8, was proved in [32] but an equivalent
statement goes back to [10]. Part (b) is a result of Takeuchi [56].

Proposition 1.3.3. (a) The skeleton R
n Ă C

n is pure and self-dual.

(b) For F P PervpCn,Hq the dimension of the stalk RRnpFq0 is equal to
ÿ

L

multT˚
L CnpFq,

where L runs over all complex flats of H and multT˚
L CnpFq is the multiplicity

of the Lagrangian variety T ˚
LC

n in the characteristic cycle of F .
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We now present an extremely simple proof of both statements by the
method of degenerations, developing a higher-dimensional version of Exam-
ple 1.3.2. That is, we take a quadratic form Qpzq on C

n with real coefficients
such that the restriction of Q to R

n is positive definite. Explicitly, we choose
a linear coordinate system x1, ¨ ¨ ¨ , xn on R

n and define

Q : Cn
Ñ C, Qpz1, ¨ ¨ ¨ , znq “

ÿ

z2
i .

The real part RepQq : Cn Ñ R is a nondegenerate quadratic form of signature
pn, nq, and the transformations

Tε : Cn
Ñ C

n, x ` iy ÞÑ x ` iεy, 0 ď ε ď 1,

“flatten” the region RepQq ě 0 into R
n in a way compatible with the strati-

fication SH, much like in Fig. 2. Therefore

(1.3.4) i˚0 i
!
RnpFq » ΦQpFq0

is the stalk at 0 of the perverse sheaf of vanishing cycles ΦQpFq. If we now as-
sume that H is a central arrangement i.e., that t0u is the minimal flat (we can
always reduce to this case by quotienting by the minimal flat), then ΦQpFq is
supported at 0 and so reduces to a single vector space in degree 0. This shows
that the stalk of i!

RnpFq at 0, the minimal celll of the real arrangement, is
concentrated in degree 0. The stalk at any other cell C is analyzed similarly,
by taking the transversal slice to C and using a positive definite quadratic
form on that slice. This proves (a).

Further, (b) follows at once (1.3.4) and the standard microlocal interpreta-
tion of vanishing cycles [29]. That is, the cotangent space of Cn is Cn ˆ C

n˚.
The stratification S “ tL˝u gives rise to the set of Langangian varieties
T ˚
LC

n “ L ˆ LK which can contribute to the characteristic cycle of F . The
graph of dQ is the Lagrangian variety ΓdQ which is the graph of the isomor-
phism C

n Ñ C
n˚ given by the bilinear form corresponding to Q. It meets

each T ˚
LC

n exactly once, transversely, at the point p0, 0q. Let us now deform
ΓdQ a little, replacing Q with Q1 “ Q ` l where l is a generic linear function
on C

n. Then
dim ΦQpFq0 “

ÿ

xPCn

dim ΦQ1pFqx.

But ΓdQ
1 is a generic shift of Γ1 which will meet each T ˚

LC
n exactly once,

transversely, at a point pxL, ξLq which does not belong to any other T ˚
MC

n,
M ‰ L. This implies that

dim ΦQ1pFqxL “ multT˚
L CnpFq

and the claim follows.
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1.4. Perverse sheaves with values in an abelian category

In the remainder of the paper it will be convenient to work with sheaves and
perverse sheaves formed not by vector spaces but by objects of some abelian
category V . In this section we formally sketch this concept. The reader can
assume that V consists of vector spaces with some extra structure (e.g., of
modules over a k-algebra Λ). In such a case the generalization we describe is
really trivial (perverse sheaves with the same extra structure).

A. Sheaves with values in a Grothendieck category Let V be an k-linear
abelian category. Note that there is an intrinsic concept of tensoring an object
V of V with a finite-dimensional k-vector space E, the result of which will be
denoted V bk E.

Let us first assume that V is a Grothendieck category [30], in particular,
that it has arbitrary direct sums and products. For example, one can take for
V the category of all modules over a k-algebra Λ.

Let X be a topological space. We can speak about sheaves on X with
values in V . These are contravariant functors F from the poset of open sets
in X to V satisfying the descent axiom: for any open covering U “

Ť

iPI Ui of
an open set U , the sequence

(1.4.1) 0 Ñ FpUq ÝÑ
ź

iPI

FpUiq ÝÑ
ź

i,jPI

FpUi X Ujq

is exact.
The operation of passing from a presheaf with values in V to the associated

sheaf is defined as usual. A constant sheaf with values in V is the sheaf
associated with a constant presheaf pU Ă Xq ÞÑ a fixed V P V . A local system
on X with values in V is a sheaf locally isomorphic to a constant sheaf. It is
the same as a functor from the fundamental groupoid Π1pXq Ñ V .

We denote by ShpX,Vq the category of sheaves on X with values in V .
It is again a Grothendieck abelian category. By DbpShpXqq we denote the
bounded derived category of ShpX,Vq.

Further, let pX,Sq be a stratified complex manifold. Then, as in §1.1, we
have:

• The abelian category ShpX,S;Vq of S-constructible sheaves on X with
values in V .

• The triangulated category DbpX,S;Vq of S-constructible complexes on
X with values in V .

• The abelian subcategory PervpX,S;Vq Ă DbpX,S;Vq.
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B. Finiteness issues: subanalytic topology The requirement for V to be a
Grothendieck category is, in general, forced by the necessity to have infinite
products as in (1.4.1). This excludes, for instance, the case V “ Vectfdk or any
other abelian category with a perfect duality.

However, if we are interested only in constructible sheaves and complexes,
then the following more restricted framework is sufficient.

Let X be a real analytic manifold. We recall [29], [31] the concept of a
subanalytic set in X. In particular, we have the subanalytic site Xsa of X.
This is the poset of relatively compact subanalytic open subsets U Ă X with
coverings being finite coverings in the usual sense. Since all coverings are
finite, we can speak about sheaves on Xsa with values in any abelian category
V , not necessarily Grothendieck one.

In particular, if pX,Sq is a stratified complex manifold, then we have the
categories

ShpXsa, S;Vq Ă Db
pXsa, S;Vq Ą PervpXsa, S;Vq.

If V has a perfect duality V ÞÑ V ˚, then DbpXsa, S;Vq and PervpXsa, S;Vq

also have a perfect duality which we call the Verdier duality and denote
F ÞÑ DF . For an arbitrary V we have the Verdier duality in the form of
anti-equivalences

D : PervpXsa, S,Vq Ñ PervpXsa, S,Vop
q,

D : Db
pXsa, S;Vq Ñ Db

pXsa, S;Vop
q.

(1.4.2)

Proposition 1.4.3. If V is a Grothendieck abelian category, then the restric-
tion functors

ShpX,S;Vq Ñ ShpXsa, S;Vq, Db
pX,S;Vq Ñ Db

pXsa, S;Vq,

PervpX,S;Vq Ñ PervpXsa, S;Vq

are equivalences of categories.

Proof. Same argument as in [31], §7.1.

C. Conventions for the rest of the paper (1) In the sequel we will drop the
subscript “sa” and simply speak about S-constructible sheaves and complexes
on X with values in V , while having in mind the subanalytic topology. In
particular, we will use freely the standard functorialities such as f˚, f

˚, f!, f!
on constructible complexes on Xsa, see [31], §7.1 for their construction. For
a holomorphic function f , we will also use the vanishing cycle functor Φf as
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well as the fact that it preserves V-valued perverse sheaves and commutes
with Verdier duality in the form (1.4.2).

(2) We will freely use the (obvious) analogs of the concepts and results of
§§1.1-1.3 for perverse sheaves with values in V . In particular, we will use the
concept of a pure skeleton, of a self-dual skeleton (either when V has a perfect
duality or with respect to (1.4.2)), as well as both the pΦ,Ψq-description
and the Dirac descriprion of V-valued perverse sheaves on a disk in terms of
diagrams formed by objects and morphisms of V . In the same vein, we will
use Proposition 1.3.3(a) in the V-valued context.

2. Bisheaves and bialgebras: perverse sheaves on symmetric
products

2.1. The symmetric product Symn
pCq, its complex strata and real

skeleton

A. The complex strata We denote by Σn the symmetric group of order n.
Fix n ě 1 and let X “ Symn

pCq “ C
n{Σn be the nth symmetric product

of C. As well known, it can be seen in either of two ways:

(1) As the space of effective divisors of degree n, i.e., of formal sums
ÿ

λixi, λi P Zą0, xi P C,
ÿ

λi “ n.

(2) As the space of monic polynomials of degree n

fpxq “ xn ` an´1x
n´1

` ¨ ¨ ¨ ` a0, ai P C.

Explicitly, xi in (1) is a root of fpxq with multiplicity λi. The description
(2) makes it clear that Symn

pCq is isomorphic to C
n. The description (1)

gives a natural Whitney stratification of Symn
pCq by the type of divisors. It

is labelled by (unordered) partitions of n, i.e., by sequences

λ “ pλ1 ě ¨ ¨ ¨ ě λp ą 0q, |λ| :“
ÿ

λi “ n.

Here we can think of λ as a Young diagram with n cells. We denote the set
of such partitions (or Young diagrams) by Ppnq. For λ P Ppnq we denote
lpλq “ p the number of parts of λ, i.e., the number of rows in the Young
diagram.

We denote by ď the standard partial ordering on Ppnq whereby λ ď μ if
and only if μ is obtained from λ by moving some cells to the right and up.
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With respect to this order, the 1-part partition pnq is the minimal one while
the partition p1, ¨ ¨ ¨ , 1q is the maximal one.

By definition, the stratum XC
λ associated to λ consists of divisors that

can be represented as
ř

λixi with all xi distinct. For example, XC
1,¨¨¨ ,1 is the

open stratum (all points distinct), while XC
n » C is the minimal stratum (all

points coincide). The following is straightforward.

Proposition 2.1.1. (a) XC
λ is a smooth locally closed subvariety in Symn

pCq

of dimension lpλq. The collection S “ tXC
λ u forms a Whitney stratification

of X “ Symn
pCq.

(b) Fo λ, μ P Ppnq we have XC
λ Ă X

C

μ if and only if λ ď μ.

We will refer to S as the diagonal stratification and use the notation Sn

to emphasize the dependence on n, if needed. We will be interested in the
category PervpSymn

pCq, Sq.
Note that the group structure on C gives a morphism

(2.1.2) σ : Symn
pCq ÝÑ C,

ÿ

λixi ÞÑ
ÿC

λixi,

where
ř

C is the operation of addition in C. We denote Symn
0 pCq the preimage

of 0 under σ. It is identified with the space of monic polynomials fpxq with
an´1 “ 0. Note that we have an identification

Symn
pCq » C ˆ Symn

0 pCq.

It is given by the action of C on Symn
pCq by additive shifts fpxq ÞÑ fpx` cq.

Each stratum Xλ is the product of C and the induced stratum in Symn
0 pCq.

B. The real skeleton Let K “ Symn
pRq Ă Symn

pCq be the nth symmetric
product of R, i.e., the subspace formed by effective divisors consisting of real
points. As in the complex case, we have the action of R on Symn

pRq given
by adding the same number to all the points of a divisor. This action induces
identifications

(2.1.3)
Symn

pRq » R ˆ Symn
0 pRq,

Symn
pRq{R » Symn

0 pRq.

Alternatively, Symn
pRq can be seen as the set of those monic polynomials

whose all roots are real, and Symn
0 pRq as the set of monic polynomial with all

roots real and summing to 0. So Symn
pRq is a closed “curvilinear cone” in the

Euclidean space R
n formed by all monic polynomials with real coefficients.
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Similarly, let R
n
0 » R

n´1 be the Euclidean space of all of monic polyno-
mials with real coefficients and with a1 “ 0. Then Symn

0 pRq is a “curvilinear
cone” in R

n
0 . In examples, it is convenient to visualize Symn

0 pRq instead of
Symn

pRq, factoring out the translation symmetry.

Examples 2.1.4. (a) Let n “ 2. Then R
2
0 “ R is the real line formed by

polynomials x2 ` a “ 0, and Sym2
0pRq “ ta ď 0u is the negative real line.

(b) Let n “ 3. Then R
3
0 consists of real cubic polynomials of the form

x3 ` ax ` b, and

Sym3
0pRq “

�

pa, bq| 4a3
` 27b2 ď 0

(

is the interior of the real semi-cubical parabola, see Fig. 3.

We note that K “ Symn
pRq has a natural stratification SK labelled by

ordered partitions of n, i.e., sequences

(2.1.5) α “ pα1, ¨ ¨ ¨ , αpq, αi P Zą0,
ÿ

αi “ n.

We denote lpαq “ p the length of α, and by α “ pασp1q ě ¨ ¨ ¨ ě ασppqq (for
appropriate σ P Sp) the ordered partition corresponding to α.

The stratum Kα “ Symn
αpRq corresponding to α, consists of divisors of

the form
α1x1 ` ¨ ¨ ¨ ` αpxp, xi P R, x1 ă ¨ ¨ ¨ ă xp.

The number of ordered partitions of n is 2n´1, they are in bijection with
arbitrary subsets of the set of plus signs in the equality

n “ 1 ` 1 ` 1 ` ¨ ¨ ¨ ` 1.

Conceptually, these plus signs correspond to simple roots of the root system
An´1. To get α we simply perform the additions corresponding to the chosen
subset of the plus signs. We therefore denote the set of ordered partitions of
n by 2n´1 and equip it with the partial order of reverse inclusion of subsets.
Geometrically, we view 2n´1 as the set of vertices of an pn ´ 1q-dimensional
cube.

Further, given α P 2n´1, we denote by α_ the complementary ordered
partition, for which the corresponding subset in t1, ¨ ¨ ¨ , n ´ 1u are comple-
mentary. Thus, for example, p1, 1, 1q_ “ p3q etc. Note that the un-ordered
partition α_ corresponds to the transpose of the Young diagram correspond-
ing to the un-ordered partition α.
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Figure 3: The real skeleton K “ K3 in Sym3
0pCq and its strata labelled by

23´1.

Example 2.1.6. Let n “ 3. The poset 23´1, with order indicated by arrows,
has the form

p2, 1q

p3q p1, 1, 1q

p1, 2q.

Proposition 2.1.7. For each α P 2n´1, the stratum Kα is a cell of real
dimension lpαq. We have Kα Ă Kβ if and only if α ď β in 2n´1. The image
of Kα under the embedding Symn

pRq Ă Symn
pCq lies in the stratum Xα.

2.2. Imaginary strata and fine cells

A. The imaginary strata of Symn
pCq The imaginary part map Im : C Ñ R

gives a mapping

I : Symn
pCq Ñ Symn

pRq “ K, z “
ÿ

λizi ÞÑ
ÿ

λi Impziq.

The fibers of I are totally real subanalytic subspaces (not necessarily sub-
manifolds) of Symn

pCq.
We call the imaginary stratification of Symn

pCq the pullback, under I, of
the stratification pKαq of K and denote the corresponding strata, as well as
their embeddings, by

XI
α “ I´1

pKαq, jα : XIm
α ãÑ X “ Symn

pCq, α P 2n´1.
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Explicitly, a point (written as a diivisor) z P Symn
pCq lying in XIm

α splits
(in a unique way) into a sum of effective divisors z1 ` ¨ ¨ ¨ ` zp such that

(2.2.1) Ipz1q “ α1 ¨ y1, ¨ ¨ ¨ , Ipzpq “ αp ¨ yp, y1 ă ¨ ¨ ¨ ă yp,

see Fig. 4.

Figure 4: A point z of XIm
α .

We also have the similar real part map

R : Symm
Cq Ñ Symm

pRq, m ě 0.

Applying it to the divisor zν corresponding to z as above gives a map ρα,ν :
XI

α Ñ Symαν pRq, ν “ 1, ¨ ¨ ¨ , p. These maps combine into a projection

(2.2.2) ρα “ pρα,νq
p
ν“1 : XI

α ÝÑ

p
ź

ν“1
Symαν pRq, ρα,νpzq “ Rpzνq,

and the following is clear.

Proposition 2.2.3. ρα is a locally trivial fibration with fibers homeomor-
phic to R

lpαq. In particular, XI
α is a contractible CW-complex of pure real

dimension n ` lpαq.

Examples 2.2.4. (a) If α “ pnq is the partition with one part, then XIm
pnq

consists of tz1, ¨ ¨ ¨ , znu with Impz1q “ ¨ ¨ ¨ “ Impznq and so is identified with
R ˆ Symn

pRq.

(b) Note that I preserves the total sum of the points of a divisor so induces
a map

I0 : Symn
0 pCq ÝÑ Symn

0 pRq.
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Consider n “ 2. After undertifying Sym2
0pCq with C and Sym2

0pRq with Rě0
we get the map

C ÝÑ Rě0, z ÞÑ pIm
?
zq

2.

The preimage of 0 under this map is the positive line Rě0 and the other
preimages are parabolas positioned horizontally (so the positive line is the
“infinitely sharp parabola”). the induced imaginary strata on Sym2

0pCq “ C

are the positive real line and its complement:

SIm
2 X Sym2

0pCq “ Rě0, SIm
1,1 X Sym2

0pCq “ C ´ Rě0.

B. The fine cells We will further consider the preimages, under ρα, of the
product strata of

śp
ν“1 Symαν pRq and call these preimages the fine cells.

From this point of view, fine cells are labelled by pairs pα,Γq, where α “

pα1, ¨ ¨ ¨ , αpq P 2n´1 and Γ “ pγp1q, ¨ ¨ ¨ , γppqq is a sequence of ordered parti-
tions, with γpνq P 2αν´1.

Note that for a given α, a datum of Γ as above is equivalent to a datum
of a single partition γ P 2n´1 refining α. This γ is obtained simply by writing
all the parts of all the γpiq together in a single sequence. Thus, a fine cell is
labelled by a pair α ď γ of ordered partitions of n, and will be denoted Xrα:γs.
Thus

XI
α “

ğ

γěα

Xrα:γs.

Proposition 2.2.5. (a) Xrα:γs is a topological cell (space homeomorphic to
an open ball) of dimension lpαq ` lpγq.

(b) The collection of the Xrα:γs, α ď γ, forms a cell decomposition (strat-
ification into cells) of Symn

pCq refining the complex stratification S. More
precisely, let λ P Ppnq is an unordered partition of n. The complex stratum
XC

λ is the following union of fine cells:

XC

λ “
ğ

αďγ
γ“λ

Xrα:γs.

(c) We have Xrα:γs Ă Xrα1:γ1s if and only if α ď α1 and γ ď γ1 in 2n´1.

(d) In addition, for any α P 2n´1 and λ P Ppnq we have

XI
α X XC

λ “
ğ

γ“λ
αďγ

Xrα:γs.
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Proof. Proposition 2.2.3 implies part (a). The other parts are straightfor-
ward.

We denote the stratification into fine cells by Sfine.

Examples 2.2.6. (a) For n “ 2 the stratification induced by Sfine on
Sym2

0pCq “ C is the cell decomposition consisting of the point 0, the open
half line Rą0 and the complement CzRě0. This example illustrates the fact
that the cell decomposition Sfine is not regular: the closure of one cell can
approach a lower dimensional cell from more than one direction.

(b) The open complex stratum Symn
‰pCq “ XC

1n Ă Symn
pCq is the union

of fine cells Xrα:1ns for all α “ pα1, ¨ ¨ ¨ , αpq P 2n´1. This is the classical Fox-
Neuwirth cell decomposition of Symn

‰pCq, see [18] [19] used for computing the
cohomology of the braid group Brn “ π1pSymn

‰pCqq.

2.3. Perverse sheaves on Symn
pCq: generalities

Let V be an abelian category. For each n ě 1 we consider the category
PervpSymn

pCq, S,Vq of V-valued perverse sheaves on Symn
pCq smooth with

respect to the diagonal stratification. An elementary description of this cat-
egory is known for n ď 3. The case n “ 1 is trivial (the objects are constant
sheaves), and the cases n “ 2, 3 are recalled in Ch. 5. In this section we collect
several general remarks.

A. Purity of the skeleton

Proposition 2.3.1. The skeleton K “ Symn
pRq is pure and self-dual for

pX “ Symn
pCq, Sq with respect to perverse sheaves with values in any cate-

gory V.

To prove this, note that we have the diagram

(2.3.2) C
n ICn

p“pC

R
n

pR

Symn
pCq

I Symn
pRq,

where the vertical arrows are the maps of taking the quotient by Σn. Inside
C

n, we have the root arrangement (for the Lie algebra glnpCq)

HC “
ď

0ďiăjďn

HC

ij , HC

ij “
�

pz1, ¨ ¨ ¨ , znq
ˇ

ˇ zi “ zj
(

.
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It is the complexification of the similar arrangement H in R
n.

Proposition 2.3.3. Suppose F P PervpSymn
pCq, S,Vq. Then:

(a) p˚F P PervpCn,H,Vq.
(b) F “ pp˚p

˚FqΣn.

Proposition 2.3.3 implies that we can embed PervpSymn
pCq, S,Vq into

the category of Σn-equivariant perverse sheaves on pCn,Hq. Objects of the
latter category can, in principle, be analyzed by the methods of [32] [60].
In this paper we use a different approach, intrinsic to Symn

pCq. It has the
advantage of involving linear algebra data of much smaller size and can be
seen as a generalization of the most classical pΦ,Ψq-description of PervpC, 0q

(Example 1.1.5).

Proof of Proposition 2.3.3. (a) Because the strata of S are the images of the
strata of SH, we have that p˚F is an SH-constructible complex. Let us verify
the perversity condition pP`q for p˚F . Since p preserves the dimensions of the
strata, the condition follows from the same condition for F . The condition
pP´q for p˚F is equivalent to pP`q for the Verdier dual Dpp˚Fq, which is
identified with p˚pDFq. So pP´q for p˚F follows from pP`q for DF , i.e., from
pP´q for F . Here D is understood in the sense of (1.4.2).

Part (b) is clear.

Proof of Proposition 2.3.1. Proposition 2.3.3 implies that

(2.3.4) RΓKF “
`

p˚RΓRnpp˚Fq
˘Σn ,

and so our statement follows from Proposition 1.3.3(a).

B. The total vanishing cycle functor For F P PervpSymn
pCq, S,Vq we de-

note

(2.3.5) ΦtotpFq “ RKpFq0 P ObpVq

the stalk at 0 P K of the sheaf RKpFq and call it the total vanishing cycle
space of F .

Recall that the coefficients a1, ¨ ¨ ¨ , an of an indeterminate monic poly-
nomial form a coordinate system on Symn

pCq, and Symn
0 pCq is defined by

a1 “ 0.
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Proposition 2.3.6.

ΦtotpFq » Φa2

`

F |Symn
0 pCq

˘

0

is identified with the stalk at 0 of the perverse sheaf of vanishing cycles of the
restriction F |Symn

0 pCq with respect to the linear function a2.

Proof. Under the projection p : Cn Ñ Symn
pCq the coordinates am are the

elementary symmetric functions of the standard coordinates x1, ¨ ¨ ¨ , xn on C
n.

In particular, the quadratic form Qpxq “ x2
1`¨ ¨ ¨`x2

n descends to the function
a2

1 ´ 2a2 on Symn
pCq. So by (2.3.4) and (1.3.4),

ΦtotpFq » ΦQpp˚Fq
Σn
0 “ Φa2

1´2a2pFq0 “ Φ´2a2

`

F |Symn
0 pCq

˘

0,

as claimed.

C. The Cousin resolution We now formulate a general scheme of analyzing
objects of PervpSymn

pCq, S,Vq which is similar in spirit to the one used for
hyperplane arrangements in [32] but is intrinsic to Symn

pCq. We fix a k-linear
abelian category V . Recall that jα : XI

α Ñ Symn
pCq is the embedding of the

imaginary stratum corresponding to α P 2n´1.

Proposition 2.3.7. Let F P PervpSymn
pCq, S,Vq.

(a) For any α P 2n´1 the complex j!
αF on XIm

α is quasi-isomorphic to a
single sheaf in degree equal to ´lpαq.

(b) Denoting the sheaf in (a) by rEα “ rEαpFq, the complex Rjα˚
rEα reduces

to a single sheaf Eα “ EαpFq “ R0jα˚j
!
αF . This sheaf is constant on each

fine cell.

(c) F has an explicit representative (the Cousin resoluton) of the form

E‚
pFq “

"

Ep1,¨¨¨ ,1qpFq
δ

Ñ
à

lpαq“n´1
EαpFq

δ
Ñ ¨ ¨ ¨

δ
Ñ EpnqpFq

*

.

The grading of this complex is such that EnpFq is situated in degree 0.

Proof. (a) Suppose first that α “ pnq, so XI
α consists of divisors whose all

components have the same imaginary part. In this case our statement is es-
sentially equivalent to Proposition 2.3.1: indeed, K consists of divisors whose
all components have the same imaginary part which is, moreover, equal to 0.
So we establish the claim for α “ pnq. Let now α “ pα1, ¨ ¨ ¨ , αpq be arbitrary
and suppose z P XI

α is any point. Let us write z “ z1 ` ¨ ¨ ¨ ` zp as in (2.2.1).
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Then, near z, the pair pXI
α , Symn

pCqq is homeomorphic to the product of the
pairs pXI

pαiq
, SymαipCqq, and so our claim follows.

(b) Let z P Symn
pCq. The stalk at z of Rqj˚

rEαpFq is HqpU XXI
α ,

rEαpFqq,
where U is a small ball around z in Symn

pCq. We note that the imaginary
strata XI

α are the images, under p, of the tube cells R
n ` iC where C runs

over the cells of the real arrangement HR, see [32], §3C. Therefore U XXI
α is

the disjoint union of the images, under p, of the intersections of balls in C
n

with the tube cells and Hq of (the pullback of) rEαpFq over such intersections
vanish for q ą 0.

(c) This is a general formal consequence of (a) and (b) and of a spectral
sequence (Postnikov system) corresponding to any complex of sheaves on any
filtered topological space, see, e.g., [32] §1B.

2.4. Expected answer: bar-construction for bialgebras

A. Representations and double representations of 2n´1 We retain the nota-
tion of §2.1.

Definition 2.4.1. Let V be an abelian category.
(a) By a representation of 2n´1 in V we mean a covariant functor γ :

2n´1 Ñ V , i.e., a commutative cube of objects and morphisms
`

Eα, α P 2n´1; γαα1 : Eα ÝÑ Eα1 , α ď α1
˘

,

γαα2 “ γα1α2 ˝ γαα1 for α ď α1
ď α2.

We denote by Repp2n´1,Vq the category of representations of 2n´1 in V
(b) By an anti-representation of 2n´1 in V we mean a contravariant func-

tor δ : 2n´1 Ñ A, i.e., a commutative cube of objects and morphisms of the
form

`

Eα, α P 2n´1; δα1α : Eα1 ÝÑ Eα, α ď α1
˘

.

(c) By a double representation of 2n´1 in V we mean a diagram in V
`

Eα, α P 2n´1; γαα1 : Eα ÝÑ Eα1 , δα1α : Eα1 ÝÑ Eα, α ď α1
˘

such that pEα, γαα1 q is a representation of 2n´1, and pEα, δα1αq is an anti-
representation. We denote by Repp2q

p2n´1,Vq the category of double repre-
sentations of 2n´1 in V .

Proposition 2.1.7 implies at once:
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Corollary 2.4.2. The category ShpK,SK ,Vq is identified with Repp2n´1,Vq.

Remarks 2.4.3. (a) Note that a representation of 2n´1 is determined by its
elementary arrows

γαα1 , α ď α1, lpα1
q “ lpαq ` 1

which correspond to the edges of the cube. The existence of compatible γαα1

for all α ď α1 means that the cube is commutative in the usual sense (each 2-
dimensional face is a commutative square). Similarly for anti-representations.

(b) Any representation E “ pEα, γαα1 q of 2n´1 (a commutative cube) in V
can be converted into a cochain complex in V by putting alternating ˘ signs
on the elementary arrows and summing over α with fixed lpαq. We denote
the complex thus obtained by

C‚
pEq “

"

Epnq

γ
Ñ

à

α1`α2“n

aią0

Epα1,α2q

γ
Ñ

à

α1`α2`α3“n

aią0

Epα1,α2,α3q

γ
Ñ ¨ ¨ ¨

γ
Ñ Ep1,1,¨¨¨ ,1q

*

.

We fix its grading so that Epnq has degree 1.
Similarly, any anti-representation E “ pEα, δα1αq gives rise to a chain

complex C‚pEq. We can view C‚pEq as a homological complex (differental δ
lowering the degree by 1) with the same grading as C‚pEq. Alternatively, we
can convert it into a cohomological complex by reversing the degree, that is,
by putting

C‚pEq “

"

Ep1,1,¨¨¨ ,1q
δ

Ñ¨ ¨ ¨
δ

Ñ
à

α1`α2`α3“n

aią0

Epα1,α2,α3q
δ

Ñ
à

α1`α2“n

aią0

Epα1,α2q
δ

ÑEpnq

*

.

with Epnq in degree p´1q.
A double representation E “ pEα, γαα1 , δα1αq gives therefore a complex

with two differentials γ and δ, one raising, the other lowering the degrees.

B. (Anti-)representations from (co)algebras Let pV ,b,1q be a k-linear
monoidal abelian category. We assume that b is exact in each variable.

By a connected graded algebra in V we mean a Zě0-graded associative
algebra A “

À

ně0 An in V with A0 “ 1 being the unit. We denote by
μp,q : Ap b Aq Ñ Ap`q the components of the multiplication μ in A.

Given such an A, for each n ě 0 we have the anti-representation BnpAq

of 2n´1 called the nth bar-cube of A. Explicitly,
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(1) BnpAqpα1,¨¨¨ ,αpq “ Aα1 b ¨ ¨ ¨ b Aαp

(2) The elementary maps δα1α1 are given by the appropriate components
μpq tensored by the identities.

The commutativity of the cube follows from the associativity of A. For
example, for n “ 3 the diagram B3pAq has the form

A2 b A1
μ2,1

A3 A1 b A1 b A1.

Id bμ1,1

μ1,1bId

A1 b A2.

μ1,2

The corresponding chain complex, written as a cohomological one, will be
called the nth bar-complex of A and denoted

BnpAq

(2.4.4)

“

"

Abn
1

δ
Ñ ¨ ¨ ¨

δ
Ñ

à

α1`α2`α3“n

aią0

Aα1 b Aα2 b Aα3
δ

Ñ
à

α1`α2“n

aią0

Aα1 b Aα2
δ

Ñ An

*

,

its grading normalized so that An is in degree p´1q. We note that

(2.4.5) HjBnpAq “ TorA´j,np1,1q

is the nth graded component of TorA´jp1,1q with respect to the additional
grading coming from the grading of A.

Dually, by a graded coconnected coalgebra in V we mean a Zě0-graded
coassociative coalgebra A “

À

ně0 An in V with A0 “ 1 and the counit
being the projection to A0 “ 1. We denote by Δp,q : Ap`q Ñ Ap b Aq the
components of the comultiplication Δ in A. We note that

Δ0,n : An ÝÑ A0 b An “ 1 b An “ An

is the identity, and similarly for Δn,0. In particular, A1 “consists of primitive
elements”, i.e., Δ|A1 “ 1 b Id ` Id b1.

A graded coconnected coalgebra A gives a representation B
:
npAq of 2n´1

in V called the nth cobar-cube. Explicitly,
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(1) B
:
npAqpα1,¨¨¨ ,αpq “ Aα1 b ¨ ¨ ¨ b Aαp

(2) The elementary maps γα1α are given by the appropriate components
Δpq tensored by the identities.

The cochain complex of B:
npAq will be called the nth cobar-complex of A and

denoted

B:
npAq

(2.4.6)

“

"

An
γ

Ñ
à

α1`α2“n

aią0

Aα1 b Aα2
γ

Ñ
à

α1`α2`α3“n

aią0

Aα1 b Aα2 b Aα3
γ

Ñ ¨ ¨ ¨
γ

Ñ Abn
1

*

,

its grading normalized so that An is in degree 1. As in the algebra case,

HjB:
npAq “ Cotorj,nA p1,1q.

C. Bialgebras and Hopf algebras in a braided monoidal category Let
pV ,b,1, Rq be an k-linear braided monoidal category. So for any V1, V2 P V
one has the R-matrix

RV1,V2 : V1 b V2
„

ÝÑ V2 b V1

satisfying the braiding axioms [27]. These axioms imply, in particular, the
Yang-Baxter equation for any RV,V : V b V Ñ V b V . (Some physicists
would call a braiding structure a statistics.)

Recall [47] [55] that we can speak about bialgebras in V . More precisely, if
A is an associative algebra in V with multiplication μ : AbA Ñ A, then AbA
becomes an associative algebra with multiplication being the composition

pA b Aq b pA b Aq » A b pA b Aq b A
IdA bRA,AbIdA

ÝÑ A b pA b Aq b A »

» pA b Aq b pA b Aq
μbμ
ÝÑ A b A.

(2.4.7)

Definition 2.4.8. (a) A bialgebra in V is an object A made into an associative
algebra with unit u : 1 Ñ A via μ : A b A Ñ A and into a coassociative
coalgebra with counit ε : A Ñ 1 via Δ : A Ñ AbA so that Δ is a morphism
of algebras where A b A has the algebra structure (2.4.7).

(b) An antipode in a bialgebra A in V is a morphism σ : A Ñ A such that
the two compositions

μ ˝ pσ b Idq ˝ Δ, μ ˝ pId bσq ˝ Δ : A ÝÑ A
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are equal to η ˝ ε. A bialgebra equipped with antipode is called a Hopf alge-
bra.

We further recall the concept of the duals, see, e.g., [2] §2.1 or [55] §2.
Let V be any monoidal category and V,W be two objects. A duality datum
between V and W is a pair of morphisms

u : 1 ÝÑ V b W, c : V b W ÝÑ 1

such that the following diagrams commute:

V
V bu

Id

V b W b V

cbV

V

W
ubW

Id

V b W b V

Wbc

V

In this case W is defined by V uniquely up to a unique isomorphism, is
called the right dual of V and denoted W “ V ˚. Similarly V is defined by W
uniquely up to a unique isomorphism, is called the left dual of W and denoted
V “ ˚W . An object having a left (resp. right) dual is called left (resp, right)
dualizable.

Any monoidal category V can be considered as a 2-category Ω´1V with
one object, so objects V P V become 1-morphisms of Ω´1V . The concept of
left and right duals of objects in V becomes a particular case of the concept
of the left and right adjoint of a 1-morphism of a 2-category (e.g., of the left
and right adjoint of a functor between usual categories). The duality datum
corresponds to the unit and counit of an adjunction.

Let us now return to the case when V is a braided monoidal category. In
this case a left dual is also a right dual and vice versa, so we use the notation
V ˚ and speak simply about dualizable objects. A morphism f : V Ñ W
between dualizable objects gives the adjoint morphism f t : W ˚ Ñ V ˚. If
every object of V is dualizable, then V is called rigid. In this case we can
think of V ÞÑ V ˚ as a perfect duality on V .

Proposition 2.4.9. Let V be a braided monoidal k-linear abelian category.
Let A be a bialgebra V which is dualizable as an object of V. Then:

(a) A˚ is also a bialgebra with μA˚ “ Δt
A and ΔA˚ “ μt

A. Further, if A
is a Hopf algebra, then A˚ is a Hopf algebra with antipode σA˚ “ σt

A.
(b) If A is a Hopf algebra, then the antipode in A is invertible.

Proof. (a) is Theorem 2.16 and (b) is a particular case of Theorem 4.1 of
[55].
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D. Primitive bialgebras. Relation to PervpSymn
pCq, Sq Let V be a braided

monoidal k-linear abelian category as above.

Definition 2.4.10. A primitive bialgebra in V is a graded bialgebra A “
À

ně0 An which is connected and coconnected.

For any partition pα1, ¨ ¨ ¨ , αkq P 2n´1 of n, αj ą 0 and a primitive bial-
gebra A, we denote

Δα1,¨¨¨ ,αk
: An ÝÑ Aα1 b ¨ ¨ ¨ b Aαk

, μα1,¨¨¨ ,αk
: Aα1 b ¨ ¨ ¨ b Aαk

ÝÑ An

the corresponding components of the iterated (co)multiplication. For the triv-
ial partition pnq of n we put Δpnq “ μpnq “ IdAn .

Proposition 2.4.11. Let A be a primitive bialgebra. For n ě 0 define the
morphism σn : An Ñ An by

σn “
ÿ

pα1,¨¨¨ ,αkqP2n´1

p´1q
k´1μα1,¨¨¨ ,αk

˝ Δα1,¨¨¨ ,αk
.

Then:

(a) σ “
À

n σn : A Ñ A is an antipode for A.

(b) If each An is dualizable, then σ is invertible.

Proof. Part (a) is verified by a direct check, cf. [40] §1.2 for a similar formula in
the non-braided case. Part (b) follows from Proposition 2.4.9, if we consider A
itself as a dualizable object in the braided category formed by graded objects
of V .

Given a primitive bialgebra A and n ě 0, the co-representation BnpAq

and the representation B
:
npAq of 2n´1 combine into a double representation

which we denote BBnpAq and call the nth bibar-cube of A. For example, for
n “ 3 the diagram BB3pAq has the form

(2.4.12) A2 b A1
Δ1,1bId

μ2,1

A3

Δ2,1

Δ1,2

A1 b A1 b A1
Id bμ1,1

μ1,1bId

A1 b A2.
Id bΔ1,1

μ1,2
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It is natural to expect that the double representation BBnpAq actually
comes from a perverse sheaf on Symn

pCq smooth with respect to the diagonal
factorization S. In the next chapter we give a precise result to this effect.

3. Factorizable perverse sheaves and bialgebras

3.1. Shuffle algebras in braided categories

A. The tensor algebra We return to the situation of §2.4C, that is, of a
braided k-linear monoidal category pV ,b,1, Rq. Let V P V ; consider the
tensor algebra

T!pV q “

8
à

n“0
V bn

with the multiplication

V bm
b V bn

ÝÑ V bm`n

begin the identity map. So as an algebra, T!pV q is free. It has a unique struc-
ture of a bialgebra in V for which the comultiplication

Δ!
“ Δ!,R : T!pV q ÝÑ T!pV q b T!pV q

is defined as the unique algebra map for which T 1
! pV q “ V is primitive, that

is,
Δ!

|T 1
! pV q “ 1 b Id ` Id b1 : V ÝÑ V b V.

If we think of V as consisting of “vectors” x P V , then

Δ!
pxq “ x b 1 ` 1 b x, x P V.

Since the algebra structure on T!pV q b T!pV q is defined using the R matrix,
see (2.4.7), the comultiplication Δ! depends on R. We have put an index R
at Δ! to stress its dependence on R.

B. The cotensor (big shuffle) algebra Dually, we have the cotensor algebra
T˚pV q which is a bialgebra in V with the same underlying object:

T˚pV q “

8
à

n“0
V bn.
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Its comultiplications

Δm,n “ Δp˚q
m,n : V bm`n

ÝÑ V bm
b V bn

are the identity maps, whereas the multiplication ‹R on T˚pV q is the so-called
shuffle product, depending on R. That is,

‹
m,n
R : V bm

b V bn
ÝÑ V bm`n

acts as

(3.1.1) ‹
m,n
R “

ÿ

wPXm,n

Rw.

Here

Xm,n “ tw P Σm`n| if i ď m, j ě m ` 1 then wpiq ă wpjqu Ă Σm`n

is the subset of pm,nq-shuffles. The braiding axioms for R imply the associa-
tivity of ‹R. Sometimes T˚pV q is referred to as the big shuffle algebra. As a
coalgebra, T˚pV q is cofree. The following is straightforward.

Proposition 3.1.2. (a) T!pV q and T˚pV q are primitive (Definition 2.4.10)
bialgebras in V. In particular, they are Hopf algebras.

(b) Let V be a dualizable object of V. Then T!pV q and T˚pV q are dualizable
as objects of the category of graded objects in V and T˚pV q is identified with
the Hopf algebra dual to T!pV q.

C. The small shuffle (Nichols) algebra Let us now assume, in addition, that
V is abelian and b is exact in each variable.

Note that we have a canonical morphism of algebras in V

α : T!pV q ÝÑ T˚pV q.

It sends the component T 1
! pV q “ V by the identity into the component

T 1
˚ pV q “ V and is uniquely defined by this property. Indeed, T!pV q is freely

generated by V , so to define its algebra morphism into anything, it is enough
the specify the values on V in an arbitrary way.

Proposition 3.1.3. α is a morphism of bialgebras.
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Proof. One has to check that α preserves comultiplication, i.e., that

α b α ˝ Δ! “ Δ˚ ˝ α : T!pV q ÝÑ T˚pV q b T˚pV q.

Both maps are morphisms of algebras and T!pV q is generated as an algebra
by V “ T 1

! pV q. But on this component both maps agree. In the element
notation, they both send any x to x b 1 ` 1 b x.

Definition 3.1.4. The Nichols (or small shuffle) algebra of an object V P V
is the bialgebra

T pV q!˚ :“ αpT!pV qq.

So it is a subalgebra of T˚pV q and a quotient of T!pV q.

Example 3.1.5 (Abelian monodromy).Let Λ » Z
r be a free abelian

group of finite rank, and c : Λ bZ Λ ÝÑ k˚ be a group homomorphism. If
we pick a Z-basis e1, . . . , er P Λ, then c will be determined by an rˆ r matrix
cij “ cpei b ejq P k˚ Consider the category VectΛ of Λ-graded vector spaces
whose objects we write as

V “ ‘λPΛ Vλ.

We can introduce on it a braiding given by the R-matrices

Rpx b yq “ cpλ, μqy b x

for x P Vλ, y P Vμ (“an abelian monodromy”, as a physicist would say).
In particular, let A “ }aij} be a Cartan matrix and put cij “ qaij . Let

V “ kr “ Λ bZ k with its standard Λ-grading. Let g be the semi-simple Lie
algebra with Cartan matrix A. Then:

• If q is not a root of 1, then T!˚pV q “ U`
q pgq is the positive part of

quantum universal enveloping algebra of g, see [17] [52].
• If q is a root of 1, then it was proved in [52] that T!˚pV q “ u`

q pgq is
the positive part of Lusztig’s small (or restricted, see [43]) quantum
enveloping algebra associated to g and q. In particular, T!˚pV q is finite-
dimensional.

This can be seen as an interpretation of the Lusztig’s construction of U`
q pgq

(resp. u`
q pgq) as the quotient of a free Lie algebra by the kernel of the natural

bilinear form x´,´y, see [42], Ch. 1, [51]. In other words, taking the image of
α in forming the Nichols algebra has the effect of quotienting by the kernel
of x´,´y, which is the universal way to encode the quantum Serre relations
in U`

q pgq.
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3.2. Factorizable perverse sheaves

A. The E2-operad and braided categories An interpretation going back to
Deligne, views a braided monoidal structure in a category V as a datum, for
each n ě 0, of n-fold tensor product functors in V labelled by n-tuples of
distinct points in C. It is convenient to reformulate this approach as follows,
replacing points by disks.

Let D “ t|z| ď 1u be the standard unit disk in C. We denote by E2
the operad of little 2-disks in R

2 “ C, see [48] [13]. Thus, for each n ě 0,
the topological space E2pnq consists of n-tuples of disjoint round open disks
pU1, ¨ ¨ ¨ , Unq in D. Equivalently, we can see E2pnq as consisting of embeddings

φ “ pφ1, ¨ ¨ ¨ , φnq :
n
ğ

i“1
D ÝÑ D

such that each φi : D Ñ D is a composition of a dilation and a translation.
This interpretation makes manifest the operadic compositions

E2pkq ˆ E2pn1q ˆ ¨ ¨ ¨ ˆ E2pnkq ÝÑ E2pn1 ` ¨ ¨ ¨ ` nkq.

Thus E2 is an operad in the category T op of topological spaces. Passing to
fundamental groupoids, we get an operad Π1pE2q in the category of groupoids.
We note that each E2pnq is a Kpπ, 1q-space, so Π1pE2pnqq contains all the
information about its homotopy type.

Proposition 3.2.1. Let V be a category. Giving a braided monoidal struc-
ture in V is equivalent to making V into a Π1pE2q-algebra in the category of
categories, that is, defining:

(1) For any n ě 0 and any disjoint open round disks U1, ¨ ¨ ¨ , Un Ă D, an
n-variable functor

âpnq

pU1,¨¨¨ ,Unq
: Vn

ÝÑ V , pV1, ¨ ¨ ¨ , Vnq ÞÑ
â

pU1,¨¨¨ ,Unq
Vi,

(2) For any path γ : r0, 1s Ñ E2pnq, joining pU1, ¨ ¨ ¨Unq and pU 1
1, ¨ ¨ ¨U 1

nq, a
natural isomorphism of functors

Rγ :
âpnq

pU1,¨¨¨ ,Unq
ÝÑ

âpnq

pV1,¨¨¨ ,Vnq

depending only on the homotopy class of γ.
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(3) These data are required to be compatible with the operadic composi-
tions.

For any open U Ă C let Un
‰ Ă Un be the set of pz1, ¨ ¨ ¨ , znq where

zi P U are such that zi ‰ zj for i ‰ j. Given n objects V1, ¨ ¨ ¨ , Vn P V and
pz1, ¨ ¨ ¨ , znq P Dn

‰, we denote

(3.2.2)
â

pz1,¨¨¨ ,znq
Vi “

â

pU1,¨¨¨ ,Unq
Vi,

where the Ui are sufficiently small open disks centered around zi. This defines
a local system on Dn

‰ with values in V . Since the embedding Dn ‰ C
n
‰

is a homotopy equivalence, this local system extends canonically to a local
system in C

n
‰, and so we can and will use the notation

Â

pz1,¨¨¨ ,znq Vi for any
pz1, ¨ ¨ ¨ , znq P C

n
‰.

We will refer to the above point of view on braided categories (many
tensor products operations, labelled by pU1, ¨ ¨ ¨ , Unq or pz1, ¨ ¨ ¨ , znq) as the
operadic point of view, as opposed to the classical point of view (one operation
b together with braiding isomorphisms).

B. Braidings on derived categories and perverse sheaves Let V be a braided
abelian k-linear category, with b exact in each argument. We extend the
braiding to CbpVq, the category of bounded cochain complexes over V in a
standard way. In other words, the operation b on CpVq is defined to be the
usual graded tensor product of complexes (with differential defined by the
Leibniz rule). The braiding on CbpVq is modified by the Koszul sign rule.
That is, for objects V,W P V and integers m,n P Z, the tensor product and
braiding of the shifted objects are defined by

pV rmsq b pW rnsq “ pV b W qrm ` ns, RV rms,W rns “ p´1q
mnRV,W rm ` ns.

(3.2.3)

Because of bi-exactness of b, the braided structure descends to DbpVq, the
bounded derived category of V .

For any stratified complex manifold pX,Sq this induces a braided
monoidal structure on the derived category DbpX,S,Vq of S-constructible
complexes on X with values in V . The abelian subcategory of perverse sheaves
is typically not closed under b. However, the exterior tensor product of per-
verse sheaves is perverse.

That is, if pX,Sq and pY, T q are two stratified complex manifolds, we have
the functor

b : PervpX,S,Vq ˆ PervpY, T,Vq ÝÑ PervpX ˆ Y, S ˆ T,Vq.
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Denoting by π : X ˆ Y Ñ Y ˆ X the permutation, we have the external
braiding isomorphism

RF ,G : F b G ÝÑ π˚
pG b Fq.

Note that a “locally constant perverse sheaf” on X is in fact a local system
placed in degree p´ dimXq. Therefore RF ,G involves the Koszul sign rule even
for “locally constant” F and G.

Further, we extend the operadic point of view on the braiding to the ex-
ternal tensor products of perverse sheaves. That is, let pXi, Siq, i “ 1, ¨ ¨ ¨ ,m,
be several stratified complex manifolds and Fi P PervpXi, Si,Vq. Then for
any disjoint open disks U1, ¨ ¨ ¨ , Um in the unit disk D we have the object

ò

pU1,¨¨¨ ,Umq
Fi P Perv

´

ź

Xi,
ź

Si,V
¯

.

C. Factorizable perverse sheaves with values in a braided abelian category
Let now V be a braided monoidal abelian category, as before.

For any open set U Ă C we denote SympUq “
Ů

ně0 Symn
pUq. We de-

note by Sn,U the diagonal stratification of Symn
pUq and by SU the result-

ing stratification of SympUq. In the case U “ C we abbreviate Sn,U to Sn

and SU to S. Denote by PervpSympUq, SU ;Vq the product of the categories
PervpSymn

pUq, Sn,U ;Vq. Thus an object of PervpSympUq, SU ;Vq is a collec-
tion F “ pFnqně0 of perverse sheaves F P PervpSymn

pUq, Sn,U ;Vq.
Let pU1, ¨ ¨ ¨Umq be a point of E2pmq, i.e., a tuple of disjoint round open

disks in D. Consider the Cartesian product
śm

i“1 SympUiq with its stratifica-
tion ΠSUi formed by the products of the strata of the SUi . Since U1, ¨ ¨ ¨ , Um

are disjoint, we have a canonical identification (“addition map”)

(3.2.4) a :
m
ź

i“1
SympUiq

„
ÝÑ Sym

ˆ m
ď

i“1
Ui

˙

.

Definition 3.2.5. A factorizable perverse sheaf on SympCq with values in V
is an object F “ pFnq of PervpSympCq, S;Vq together with the data of

(*) For each m ě 0 and each pU1, ¨ ¨ ¨Umq P E2pmq, an isomorphism

μU1,¨¨¨ ,Um :
ò

pU1,¨¨¨ ,Umq
F |SympUiq ÝÑ a˚

`

F |Symp
Ť

Uiq

˘

,

these isomorphisms compatible with the operadic compositions.
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Examples 3.2.6. The condition “compatible with operadic compositions”
includes, in particular, the following:

(a) Associativity for binary tensor products. That is, suppose we have
three disjoint round disks U1, U2, U3 Ă D. Then the two ways of decomposing
the map

μU1,U2,U3 : bpU1,U2,U3qF |SympUiq ÝÑ a˚F |SympU1YU2YU3q

as a composition of two 2-variable μ’s, are equal.

(b) Compatibility with restrictions. Suppose U1, ¨ ¨ ¨ , Un are disjoint disks
as above and U 1

i Ă Ui are smaller disks. Then the restriction of μU1,¨¨¨ ,Un to
Ò

pU 1
1,¨¨¨ ,U

1
nq F |SympUiq is equal to μU 1

1,¨¨¨ ,U
1
n

We denote by FPSpVq the category formed by factorizable perverse
sheaves on pSympCq, Sq with values in V .

Remark 3.2.7. Note that the isomorphism (3.2.4) holds for arbitrary, not
necessarily round, disjoint topological disks U1, ¨ ¨ ¨ , Um Ă C. One can show
that for a factorizable perverse sheaf F and any such disjoint Ui there is
a natural identification of a˚

`

F |Symp
Ť

Uiq

˘

with “the” tensor product of the
F |SympUiq. To formulate it canonically, we need a version of braided tensor
product labelled by arbitrary sequence of disjoint topological disks. This can
be achieved by forming an extended, colored version of the E2-operad where
each topological disk U Ă C is a separte color, cf. [13] §3.1.2. Since this
generalization is not necessary for us, we do not pursue it here.

3.3. From bialgebras to factorizable sheaves: the localization
theorem

A. Statement of results Let Brn be the Artin braid group on n strands. Let

jn : Symn
‰pCq “ XC

1n ãÑ Symn
pCq

be the embedding of the open stratum (polynomials with distinct roots). Its
fundamental group is Brn.

As before, let V be a k-linear braided monoidal abelian category with b

bi-exact. Recall that we have extended the braided monoidal structure to the
bounded derived category DbpVq.

For any object V P DbpVq the tensor power V bn a representation of
Brn and so gives a DbpVq-valued local system on Symn

‰pCq which we denote
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LnpV q. In the language of Proposition 3.2.1, various determinations of V bn

form, by the very definition, a DbpVq-valued local system on the space E2pnq

which is homotopy equivalent to Symn
‰pCq. This is LnpV q. We will view LnpV q

as a complex of locally constant sheaves on Symn
‰pCq. Recall also the notation

Kn “ Symn
pRq for the real skeleton of Symn

pCq.
Let PBpVq be the category of primitive bialgebras in V .

Theorem 3.3.1. There is an equivalence of categories (called the localization
functor)

L : PBpVq ÝÑ FPSpVq, A ÞÑ LpAq “
`

LnpAq P PervpSymn
pCq, Sn;Vq

˘

with the following properties:

(a) The restriction LnpFq|Symn
‰pCq is identified with the local system

LnpA1r1sq of determinations of pA1r1sqbn.
(b) The total space of vanishing cycles ΦtotpLnpAqq, see (2.3.5), is identified

with An.
(c) More generally, the cubical diagram associated to the constructible sheaf

RKnpLnpAqq is identified with B
:
npAq, the nth cobar-cube of A.

(d) The stalk if LnpAq at 0 is identified with the nth bar-complex of A

B‚
npAq “

"

Abn
1 Ñ

à

lpαq“n´1

n´1
â

i“1
Aαi Ñ ¨ ¨ ¨ Ñ

à

α1`α2“n

Aα1bAα2 Ñ An

*

,

with grading normalized so that Abn
1 is in degree p´nq.

(e) Suppose V is rigid. Then for the primitive bialgebra A˚ dual to A we
have that LnpA˚q “ DpLnpAqq is the Verdier dual to LnpAq.

Remark 3.3.2. In part (a) of the theorem, pA1r1sqbn is identified with
Abn

1 rns, that is, the nth tensor power of A1 put in degree p´nq. However,
the braid group action on pA1r1sqbn differs from that on Abn

1 by twisting
with the sign character Brn Ñ Σn

sgn
Ñ t˘1u. This is because we extend the

braided structure on V to the derived category of V by using the Koszul sign
rule (3.2.3).

We denote Sym‰pCq “
Ů

n Symn
‰pCq and write j : Sym‰pCq ãÑ SympCq

for the embedding. For an object V P V we denote LpV r1sq the local system
on Sym‰pCq which on Symn

‰pCq is LnpV r1sq.

Theorem 3.3.3. Let V be any object of V. Then:
(a) We have LpT!pV qq » j!LpV r1sq.
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(b) We also have LpT˚pV qq » j˚LpV r1sq

(c) Further, the canonical map α : T!pV q Ñ T˚pV q is sent by L to the
canonical map c : j! Ñ j˚, and the Nichols algebra T!˚pV q corresponds, under
L, to the intersection cohomology extension j!˚LpV r1sq.

Theorems 3.3.1 and 3.3.3 will be proved in the next Ch. 4. Here we
note the following corollary which was proved, in an equivalent form, in [15],
Th. 1.3.

Corollary 3.3.4. We have an identification

Hj
pBrn, V bn

bk sgnq » TorT˚pV q

n´j,n p1,1q.

Proof of the corollary. Let jn : Symn
‰pCq Ñ Symn

pCq be the embedding.
By 3.3.3 (b) LnpT˚pV qq » jn˚LnpV r1sq. Because of the quasi-homogeneity
of the diagonal stratification S of Symn

pCq (the C
˚-action coming from the

standard dilation action on C), the stalk of jn˚LnpV r1sq at 0 is identified with
the complex

RΓpSymn
pCq, jn˚LnpV r1sqq » RΓpSymn

‰pCq,LnpV r1sqq

and the complex in the RHS calculates H‚pBrn, V bnbk sgnqrns. So our state-
ment follows from Theorem 3.3.1(d).

B. Example: Yetter-Drinfeld modules and Hurwitz spaces Let us explain the
relation of our results with the work [15] of Ellenberg, Tran and Westerland.

Let G be a finite group with multiplication m : G ˆ G Ñ G. A Yetter-
Drinfeld G-module (YD G-module, for short) is a finite-dimensional G-graded
k-vector space V “

À

gPG Vg with a right G-action such that Vg ¨ h “ Vh´1gh;
this is the same as a module over the Drinfeld double of the group ring krGs.
Such objects form a k-linear abelian rigid braided monoidal category YG with
b being the usual graded tensor product and braiding given by

Rpv b wq “ w b pv ¨ hq, v P Vg, w P Vh.

Alternatively, we can consider character sheaves, i.e., conjugation equivariant
sheaves F of finite-dimensional k-vector spaces on G as a discrete space.
Such a sheaf F gives a YD G-module V “ ΓpG,F q of global sections, and
the monoidal operation corresponds to the convolution of sheaves F ˚ F 1 “

m˚pF bF 1q. The braided category of character sheaves (i.e., the category YG)
can be, therefore, seen as a categorification of the commutative ring of class
functions on G under convolution. See [2] §3.2, [44] for more background.
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If C Ă G is a conjugation invariant subset, then the constant sheaf kC

is a character sheaf with corresponding YD G-module V “ kC (the k-span
of C). In this case the Brn-module V bn “ kCn is the permutation module
corresponding to the Brn-action on the Cartesian power Cn given on the
standard generators by

σipg1, ¨ ¨ ¨ , gnq “
`

g1, ¨ ¨ ¨ , gi´1, gi`1, g
´1
i`1gigi`1, gi`2, ¨ ¨ ¨ , gn

˘

,

i “ 1, ¨ ¨ ¨ , n ´ 1.

(This action reflects the embedding of Brn into the automorphism group of
the free group.) The Hurwitz space associated to G, C and n is the unramified
covering

pn : HurCG,n ÝÑ Symn
‰pCq

associated to the Brn-set Cn. It has the following relations to moduli of
branched covers (see [16] §2 for a systematic discussion):

(1) Let D “ t|z| ă 1u be the unit disk in C and D be its closure |z| ď 1.
The complex manifold

HurCG,npDq “ p´1
n pSymn

‰pDqq

parametrizes G-coverings π : Y Ñ D ramified at some n points in
D, with monodromies around these points liying in C, together with a
distinguished point y P π´1p1q.

(2) The quotient Deligne-Mumford stack HurCG,n{{G parametrizes
G-coverings of the affine line A

1 ramified at n points with monodromies
around these points lying in C.

Note that the intrepretation (1) gives a map M : HurCG,npDq Ñ G given
by the counterclockwise monodromy around the boundary of D, and so we
have a disjoint union decomposition (G-grading)

HurCG,npDq “
ğ

gPG

HurCG,npDqg, HurCG,npDqg :“ M´1
pgq.

Together with the natural G-action on HurCG,npDq (change of y) this makes
HurCG,npDq into a “YD G-module in the category of complex manifolds”.

Thus the (untwisted) local system LnpV q of determinations of V bn is the
direct image pn˚kHurCG,n

. By introducing a minus sign into the braiding, the
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authors of [15] realize V bnbsgn as pn˚kHurCG,n
, which, by Corollary 3.3.4 (i.e.,

Thm. 1.3 of [15]) identifies the topological cohomology of Hurwitz spaces as

Hj
pHurCG,n,kq » TorT˚pV q

n´j,n pk,kq.

We note that Theorem 3.3.3(c) provides a similar geometric intnerpreta-
tion of the Nichols algebra T!˚pV q:

Corollary 3.3.5. We have an identification

TorT!˚pV q

n´j,n pk,kq “ H
j
pSymn

pCq, j!˚pn˚kHurCG,n
q.

It is interesting whether the RHS of this identification, involving the in-
tersection cohomology extension of a local system, can be described in terms
of intersection cohomology of some natural compactification of the Hurwitz
space.

Remark 3.3.6. The formulation of [15] proceeds in the dual form, using
Ext-cohomology, not Tor-homology of T˚pV q, which is related to the ho-
mology rather than cohomology of HurCG,n. This has the convenience that
Ext‚

pk,kq forms an algebra, rather than a coalgebra. The fact that this al-
gebra is (graded) braided-commutative reflects the phenomenon, mentioned
in the Introduction, that the Koszul dual of a Hopf algebra is an E2-algebra.
In fact, the appearance of E2-algebras in this context is more fundamental,
since:

(1) The Hurwitz spaces HurCG,npDq themselves, taken for all n ě 0, form,
naturally, an E2-algebra in the (braided monoidal) category of YD-
modules in complex manifolds.

(2) Similarly, the quotients HurCG,npDq{{G form an E2-algebra in the more
usual (symmetric monoidal) category of analytic stacks.

These algebra structures are given by appropriate versions of the gluing maps
of [16] §2.3.

4. Proof of Localization Theorem: Cousin complexes

4.1. The Cousin sheaves of a coalgebra

Our proof of Theorem 3.3.1 consists in constructing the perverse sheaf LnpAq

as an explicit complex of sheaves on Symn
pCq, which we call the Cousin

complex. In this section we describe the sheaves constituting this complex.
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A. Objects Az and local systems LαpAq Let A “
À8

n“0 be a graded object
in V with A0 “ 1. Let z P Symn

pCq be a point understood as an unordered
divisor z “

řd
i“1 λizi with λi ě 1 and zi ‰ zj . The operadic point of view on

the braided structure in V allows us to form the object

Az “
â

pz1,¨¨¨ ,zdq
Aλi ,

which is canonically (up to a unique isomorphism) independent on the order-
ing of z1, ¨ ¨ ¨ , zd. Given an unordered partition λ “ pλ1, ¨ ¨ ¨ , λdq P Ppnq, the
objects Az, z P XC

λ , form a local system on the complex stratum XC
λ . We

denote this local system LλpAq. For λ “ 1n we get the local system LnpA1q

of determinations of Abn
1 on Symn

‰pAq, see §3.2A.

B. Cousin sheaves EαpAq of a coalgebra Let us further assume that A is a
graded coassociative coalgebra in V with counit given by the projection to
A0 “ 1, satisfying the primitivity condition (2) of Definition 2.4.10.

Since the objects Az are canonically determined by the points
z P Symn

pCq, it is natural to consider the following.

Problem 4.1.1. Arrange the objects Az into a constructible sheaf on Symn
pCq

so that these objects are the stalks and the sheaf structure (generalization
maps) is given by the comultiplication Δ in A.

However, this is impossible unless Δ is cocommutative.

Example 4.1.2. Let n “ 2. After quotienting by translations, Sym2
pCq be-

comes the complex plane, with the open stratum, the reduction of XC

12 “

Sym2
‰pCq being C

˚ and the closed stratum, the reduction of XC

p2q
, being the

point 0. So the local system L12pAq on C
˚ has monodromy R : A1 b A1 Ñ

A1 b A1, and the stalk of Lp2qpAq at 0 is A2. To combine them into a con-
structible sheaf on C, we need to specify a morphism ε : A2 Ñ A1 b A1 such
that R ˝ ε “ ε, so the comultiplication cannot do this in general.

Nevertheless we have interesting partial solutions to Problem 4.1.1, which
produce sheaves not on all Symn

pCq but on some subspaces.

Proposition 4.1.3. Let α P 2n´1. The comultiplication Δ in A defines a
sheaf rEαpAq on XI

α whose stalk at any z P XI
α is identified with Az and the

generalization maps are given by the appropriate components of Δ.

Remark 4.1.4. The reason why it becomes possible to arrange the Az into a
sheaf on XI

α is that the intersection of each XI
α with each XC

λ is contractible,
see Proposition 2.2.5.
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Proof of the proposition. Recall the “real parts” projection

ρα : XI
α ÝÑ

k
ź

ν“1
Symαν pRq

For each m ě 0 let B:
mpAq be the mth cobar-cube associated to the coalgebra

structure on A and let RmpAq be the constructible sheaf on the stratified
space pKm “ Symm

pRq, Km,Sq corresponding to B
:
mpAq. Define, using the

“classical” point of view (one tensor product operation) on the braided struc-
ture:

(4.1.5) rEα
pAq “ ρ˚

α

ˆ k
ò

ν“1
Rαν pAq

˙

.

Let us show why, at the level of stalks, this gives the desired answer.
Let first m ě 0 and consider a point x of Symm

pRq written as an ordered
divisor m1x1 ` ¨ ¨ ¨ ` mpxp, with x1 ă ¨ ¨ ¨xp and m1 ` ¨ ¨ ¨ ` mp “ m. The
stalk of RmpAq at x is, in the “classical” notation

(4.1.6) RmpAqx “ Am1 b ¨ ¨ ¨Amp .

Let now α “ pα1, ¨ ¨ ¨ , αkq P 2n´1 and z “ tz1, ¨ ¨ ¨ , znu P XI
α . In other

words, according to the increasing order of the Impzjq, the zj are subvidided
into k groups, so that the elements the νth group, of cardinality αν , have
the same imaginary part. The νth component of the projection ρα is the
map XI

α Ñ Symαν pRq which sends z into the points represented by the real
parts of the zj from the νth group. Let us now write z itself as a divisor
řd

i“1 λizi with z1, ¨ ¨ ¨ , zd being distinct and λi ą 0. From the above we con-
clude that in the “classical” notation, the stalk of rEαpAq at z would be simply
the tensor product

Âd
i“1 Aλi , taken in the lexicographic order with respect

first, to the imaginary and then to the real parts of z1, ¨ ¨ ¨ , zd. This is pre-
cisely Az.

Let us form the complexes (recall that jα˚ means the derived direct image)

(4.1.7) Eα
pAq “ jα˚

rEα
pAq, jα : XI

α ãÑ Symn
pCq.

We call EαpAq the αth Cousin sheaf of A; it will be proved later that is indeed
quasi-isomorphic to a single sheaf in degree 0. In order to establish this and
other properties of EαpAq we need some preparations.
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C. Contingency matrices and double cosets Let ξ “ pξ1, ¨ ¨ ¨ , ξrq and η “

pη1, ¨ ¨ ¨ , ηsq be two ordered partitions of the same number m “
ř

ξi “
ř

ηj .
By a pξ, ηq-contingency matrix2 we will mean an rˆs matrix ζ “ }ζij}

j“1,¨¨¨ ,s
i“1,¨¨¨ ,r

with entries in Zě0 such that
ÿ

j

ζij “ ξi, @i “ 1, ¨ ¨ ¨ , r,
ÿ

i

ζij “ ηj , @j “ 1, ¨ ¨ ¨ , s,

and, in addition, each row and each column has a nonzero entry. We denote
the set of pξ, ηq-contingency matrices by Spξ, ηq.

Example 4.1.8. Let η “ 1m be the maximal ordered partition. Then a
pξ, 1mq-contingency matrix is the same as a shuffle of type ξ, i.e., a sequence
pX1, ¨ ¨ ¨ , Xrq of subsets of t1, ¨ ¨ ¨ ,mu with |Xi| “ ξi, forming a disjoint de-
composition. In particular,

|Spξ, 1mq| “
m!

pξ1q! ¨ ¨ ¨ pξrq! .

Let F be a field and Let P pξq Ă GLmpF q be the parabolic subgroup of
block upper triangular matrices with blocks of sizes ξ1, ¨ ¨ ¨ , ξr, and similarly
for P pηq. Recall that Σm denotes the symmetric group, i.e., the Weyl group
of GLmpF q. Let Σpξq “ Σξ1 ˆ ¨ ¨ ¨ ˆ Σξr Ă Σm be the Weyl group of the Levi
subgroup of P pξq, and similarly for Σpηq.

Proposition 4.1.9. We have the identifications (parabolic Bruhat decompo-
sition)

P pξqzGLmpF q{P pηq » Spξ, ηq » ΣpξqzΣm{Σpηq.

Proof. This is well known. For a discussion of the first identification (possible
relative positions of a pair of partial flags in Fm) see, e.g., [8]. As for the
second identification, see [14] Lemma 3.3, which has been visualized as the
“balls in boxes” picture in [50] §6.

Given ζ P Spξ, ηq, we have an ordered partition lexpζq of m obtained by
reading the nonzero entries of ζ in the lexicographic order, starting from the
first column ζ1,1, ¨ ¨ ¨ , ζs,1, then the second column ζ1,2, ¨ ¨ ¨ , ζs,2 and so on.
Note that lexpζq ą η is a refinement of η (but not necessrily a refinement
of ξ).

2the statisticians call such matrices contingency tables with margins pξ, ηq (the
name given by Karl Pearson at the beginning of the last century), cf. [14].
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Let now n ě 0 and α, β, γ P 2n´1 be three ordered partitions of n such
that α ě β ď γ. Writing β “ pβ1, ¨ ¨ ¨ , βkq, the inequality β ď γ means that
each βi is the sum of a string of consecutive γ’s:

βi “ γri ` γri`1 ` ¨ ¨ ¨ ` γri`1´1, for some 1 “ r1 ă ¨ ¨ ¨ ă rk`1 “ lpγq ` 1.
(4.1.10)

Similarly, the inequality α ě β means that

βi “ αsi ` αsi`1 ` ¨ ¨ ¨ ` αsi`1´1, for some 1 “ s1 ă ¨ ¨ ¨ ă sk`1 “ lpαq ` 1.
(4.1.11)

This means that for each i we have two ordered partitions of βi which we
denote

α{βi “ pαsi , αsi`1, ¨ ¨ ¨ , αsi`1´1q, γ{βi “ pγri , γri`1, ¨ ¨ ¨ , γri`1´1q.

We put

Spα, β, γq “

k
ź

i“1
Spα{βi, γ{βiq.

Thus, an element of Spα, β, γq is a sequence �ζ “ pζp1q, ¨ ¨ ¨ , ζpkqq of contingency
matrices ζpiq P Spα{βi, γ{βiq. For such a sequence �ζ we denote by Lexp�ζq the
ordered partition of n formed by writing lexpζp1qq, ¨ ¨ ¨ , lexpζpkqq in a single
sequence. We note that Lexp�ζq ě β is a refinement of β (but not necessarily
a refinement of α).

D. Properties of the Cousin sheaves Recall that A “
À

nAn is a graded
coalgebra in the braided category V , as in §B We study the complexes EαpAq

defined in (4.1.7).
For any ordered partition θ “ pθ1, ¨ ¨ ¨ , θpq P 2n´1 we denote Aθ “ Aθ1 b

¨ ¨ ¨ b Aθp .
For two ordered partitions ξ, η P 2m´1 and a contingency matrix ζ “

}ζij} P Spξ, ηq we denote Aζ “
Â

i,j Aζij , the tensor product in the sense
of (3.2.2), formed with respect to positioning Aζij at the point pi, jq P R

2 “ C,
i.e., at the complex number i ` j

?
´1.

For α ě β “ pβ1, ¨ ¨ ¨ , βkq ď γ P 2n´1 and a sequence of matrices �ζ “

pζp1q, ¨ ¨ ¨ , ζpkqq P Spα, β, γq we put A
ζ “ Aζp1q b ¨ ¨ ¨ b Aζpkq .

Proposition 4.1.12. (a) The restriction of EαpAq to any fine cell Xrβ:γs,
β ď γ, vanishes unless α ě β.
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(b) Suppose α ě β ď γ. Then the stalk of EαpAq at any point z P Xrβ:γs

is quasi-isomorphic to the object
à


ζPSpα,β,γq

A
ζ .

in degree 0.

This implies immediately:

Corollary 4.1.13. EαpAq is quasi-isomorphic to a single sheaf in degree 0
which is constructible with respect to the stratification by fine cells.

To prove Proposition 4.1.12, let z P Xrβ:γs and U Ă Symn
pCq be a small

ball around z. The stalk of EαpAq at z is, by definition, RΓpU X XI
α ,

rEαpAqq.
So it is enough to show the following.

Proposition 4.1.14. (1) Unless α ě β, the intersection U XXI
α is empty.

(2) Assume α ě β. Then:
(2a) U X XI

α is the union of contractible components T
ζ labelled by
�ζ P Spα, β, γq.

(2b) Further, consider the stratification of XI
α given by XI

α “
Ů

εěαXrα:εs.
The intersection of T
ζ with each stratum Xrα:εs is contractible or
empty, and the minimal stratum meeting T
ζ is X

rα:Lexp
ζqs
.

Proof. Part (1) is clear since the closure of XI
α is the union of Xrβ:γs for

α ě β ď γ.

Let us prove part (2). Since z P Xrβ:γs Ă XI
β , we have a decomposition

z “ z1 ` ¨ ¨ ¨ ` zk where each zi P SymβipCq has the imaginary parts of all
its component points equal; denoting this common value Impziq, we further
have Impz1q ă ¨ ¨ ¨ ă Impzkq. Further, the condition that z P Xrβ:γs means
that each zi, positioned on a horizontal line Impzq “ const, has multiplicities
γri , γri`1, ¨ ¨ ¨ , γri`1´1, see (4.1.10), if read from left to right on that line.

Now suppose we deform z to a point z1 in a small ball U around z, such
that z1 P XI

α . Recall that α ě β, in particular, βi is represented as the
sum (4.1.11).

Such a deformation deforms each zi to some z1
i. The deformation of zi to

z1
i subdivides each zi to a sum zi,si `zi,si`1 ` ¨ ¨ ¨ `zi,si`1´1 so that zi,ν moves

to a divisor z1
i,ν elying on the νth horizontal line Impzq “ const featured in

the definition of the stratum XI
α . Such a separation defines a contingency
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matrix ζpiq P Spα{βi, γ{βiq. This matrix is just the matrix of multiplicities of
the divisor z1

i. So the tensor product Az1
i
is identified with Aζpiq .

Now, deforming the whole of z to z1 amounts to deforming each zi to
a z1

i as above, and this defines a sequence of contingency matrices �ζ “

pζp1q, ¨ ¨ ¨ , ζpkqq. The component T
ζ of the intersection U X XI
α consists, by

definition, of deformations z1 giving the sequence �ζ. The space ΓpT
ζ ,
rEαpAqq

is then identified with the tensor product Az1 for any z1 P T
ζ , and this tensor
product is identified, by the above, with A
ζ .

4.2. The Cousin complexes of a bialgebra as perverse sheaves

A. Definition of the Cousin complexes Assume now that A is a primitive
bialgebra in V . For α, β P 2n´1 and d ą 0 we write α ąd β if α ą β and
lpαq “ lpβq ` d.

Let α “ pα1, ¨ ¨ ¨ , αk`1q ą1 β “ pβ1, ¨ ¨ ¨ , βkq. Define the morphism of
sheaves on XI

β

δ1
α,β : j˚

βEα
pAq “ j˚

β jα˚
rEα

pAq ÝÑ rEβ
pAq

using the multiplication μ in A. More precisely, α ą1 β means that β is
obtained from α by combining together two consecutive parts, say αi and
αi`1:

(4.2.1) β “ pα1, ¨ ¨ ¨ , αi´1, αi ` αi`1, αi`2, ¨ ¨ ¨ , αk`1q,

which is a particular case of (4.1.11). Accordingly, we apply a particular case
of the reasoning of Proposition 4.1.14(2a). That is, let z be a point of XI

β ,
considered as an unordered divisor. The fact that z P XI

β means that z is
decomposed into a sum z1 ` ¨ ¨ ¨ ` zk, where zj is of degree βj and its points
have the same imaginary part. The stalk of j˚

β jα˚
rEα(A) at z is, by definition,

the space of sections of rEαpAq on U X XI
α , where U is a small ball around z

in Symn
pCq. This intersection consists of several components, labelled by the

ways of decomposing zi into a sum of effective divisors

z1
i ` z2

i , z1
i P SymαipCq, z2

i P Symαi`1pCq.

The component, denote it T “ T pz1
i , z2

i q, corresponding to such a decompo-
sition, is obtaind by increasing the imaginary parts of all the points of z1

i by



622 Mikhail Kapranov and Vadim Schechtman

the small increment ε, getting a new divisor w1
i and similarly decreasing the

imaginary parts of the points of z2
i getting a divisor w2

i . The divisor

w “ z1 ` ¨ ¨ ¨ ` zi´1 ` w1
i ` w2

i ` zi`1 ` ¨ ¨ ¨ ` zk´1

represents a point in T mapped by ρα : XI
α Ñ

ś

SymαipRq into the stratum
which is minimal possible for T and so the space of sections of the sheaf rEαpAq

over T is canonically identified with Aw. The multiplication μ in A gives a
morphism Aw Ñ Az. We define the action of δ1

α,β on the stalk of j˚
β jα˚

rEαpAq

at z to be the map Aw Ñ Az given by multiplication in A.

Proposition 4.2.2. The maps of stalks defined above commute with the gen-
eralization maps and so define a morphism of sheaves δ1

α,β : j˚
β jα˚

rEαpAq ÝÑ

rEβpAq.

Proof. The generalization maps are given by the comultiplication in A, the
maps of stalks we defined are given by the multiplication. The commutation
of the two sets of maps follows from the compatibility of multiplication and
comultiplication in A.

More precisely, let us write Definition 2.4.8 of a braided bialgebra dia-
grammatically, as the commutativity of

(4.2.3) A b A

μ

ΔbΔ
A b A b A b A

R23

A b A b A b A

μbμ

A
Δ

A b A,

and decompose this condition into parts corresponding to various graded com-
ponents of AbA. That is, we fix pp, qq, pr, sq P Z

2
` with p`q “ r`s and look

at the matrix element of Δ ˝ μ (the lower left path in the diagram) mapping
from Ap b Aq to Ar b As.

Let Sppp, qq, pr, sqq be the set of 2 ˆ 2 matrices of nonnegative integers
ˆ

p1 p2
q1 q2

˙

such that p1 ` p2 “ p, q1 ` q2 “ q, p1 ` q1 “ r, p2 ` q2 “ s.

(This is a particular case of the definition of contingency matrices in §4.1C.)
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Then (4.2.3) gives

Δr,s ˝ μp,q “
ÿ

´

p1 p2
q1 q2

¯

PSppp,qq,pr,sqq

`

μp1,q1 b μp2,q2

˘

˝
`

Id bRAp2 ,Aq1
b Id

˘

(4.2.4)

˝
`

Δp1,p2 b Δq1,q2

˘

.

We now reduce our question (that δ1
α,β commutes with generalization maps)

to an instance of (4.2.4). Let α ą1 β and z P XI
β be as before. Let us

write the action of δ1
α,β on the stalks at z more explicitly. By the above

assumption (4.2.1), we have βi “ αi ` αi`1. Let us write the summand zi of
z as

zi “ m1zi,1 ` ¨ ¨ ¨ ` mlzi,l,
ÿ

mν “ βi,

Impzi,1q “ ¨ ¨ ¨ “ Impzi,lq, Repzi,1q ă ¨ ¨ ¨ ă Repzi,lq.

A decomposition zi “ z1
i ` z2

i defining a compoment T pz1
i , z2

i q above, i.e., a
summand in pj˚

βæα˚
rEαpAqqz, is given by writing, in some way,

mν “ m1
ν ` m2

ν , ν “ 1, ¨ ¨ ¨ , l.

The corresponding summand is simply

`

i´1
â

m“1
Azm

˘

b

l
â

ν“1
pAm1

ν
b Am2

ν
q b

`

k
â

m“i`1
Azm

˘

,

the stalk rEβpAqz is

`

i´1
â

m“1
Azm

˘

b

l
â

ν“1
Amν b

`

k
â

m“i`1
Azm

˘

,

and the map on the stalks given by δ1
α,β is

l
Â

ν“1
pAm1

ν
b Am2

ν
q

μb¨¨¨bμ l
Â

ν“1
Amν

tensored on the left and right by the identities. We need to show that such
maps commute with the generalization maps for points inside the stratum XI

β

(i.e., from a smaller to a bigger fine cell inside this tratum). For this, it suffices
to consider elementary generalizations, when the dimension of the fine cell
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increases by 1. If we start from z as before, then an elementary generalization
corresponds to splitting just one mj , in some way, as m1

j ` m2
j and moving

from z to a nearby rz which has the form

rz “ z1 ` ¨ ¨ ¨ ` zi´1 ` rzi ` zi`1 ` ¨ ¨ ¨ ` zk,

where zt, t ‰ i are the same as for z, while rzi is obtained by splitting some
the divisor mjzi,j into m1

jz
1
i,j ` m2

jz
2
i,j so that

Impz1
i,jq “ Impz2

i,jq “ Impzi,jq, Repz1
i,jq ă Repz2

i,jq.

So the number mj gets split in two ways:

mj “ m1
j ` m2

j “ m1
j ` m2

j .

We notice that all the tensor products involved will contain the tensor product
of the Azm , m ‰ i, and all the maps involved will be given by identities on
these tensor factors. So in the further discussion we will ignore these factors.
What will remain is the diagrams of the form

l
Â

ν“1
pAm1

ν
b Am2

ν
q

`

j´1
Â

ν“1
Am1

ν
b Am2

ν

˘

b
`

Ap1 b Ap2 b Aq1 b Aq2
˘

b
`

l
Â

ν“j`1
Am1

ν
b Am2

ν

˘

l
Â

ν“1
Amν

`

j´1
Â

nu“1
Amν

˘

b pAm1
j

b Am2
j

q b
`

l
Â

nu“j`1
Amν

˘

μb¨¨¨bμ

Id bΔ
m1

j
,m2

j
bId

with

p1 ` p2 “ m1
j , , q1 ` q2 “ m2

j , p1 ` q1 “ m1
j , p2 ` q2 “ m2

j .

In each such diagram, the left vertical arrow represents (after omitting the
inessential tensor factors, as we agreed) the action of δ on the stalks at z.
The lower horizontal arrow represents the generalization map of rEβpAq from
z to rz. The top horizontal arrow, summed over the admissible p1, p2, q1, q2,
represents the generalization from z to rz in j˚

β jα˚
rEαpAq. The right vertical

arrow, similarly summed, represents the action of δ1
α,β on stalks at rz. So

removing even more inessential factors (corresponding to ν ‰ j), we reduce
our statement to (4.2.4). Proposition 4.2.5 is proved.

By adjunction, the morphism δ1
α,β gives a morphism of sheaves on Symn

pCq

δα,β : Eα
pAq ÝÑ Eβ

pAq, α ą1 β.
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Proposition 4.2.5. The morphisms δα,β define an anti-representation of
2n´1 in the category of sheaves on Symn

pCq, and therefore we have a complex
of sheaves

E‚
npAq “

"

Ep1nq
pAq

δ
Ñ

à

lpαq“n´1
Eα

pAq
δ

Ñ ¨ ¨ ¨
δ

Ñ Epnq
pAq

*

.

Set the grading of this complex so that E1npAq is situated in degree p´nq.

Proof. Follows from the associativity of the multiplication.

We call E‚
npAq the nth Cousin complex of A. By definition, it is a complex

of sheaves on Symn
pCq constructible with respect to the stratification by fine

cells.

Example 4.2.6. Let n “ 2. The complex

E‚
2 pAq “

"

Ep1,1q
pAq

δ
ÝÑ Ep2q

pAq

*

consists of 2 terms. After “reducing” (quotienting) by translations, it can be
seen as a complex of sheaves on C stratified by CzRě0, the reduction of XI

p1,1q

and Rě0, the reduction of XI
p2q

. The sheaf Ep2qpAq lives on Rě0 with stalks
(at 0 and elsewhere) and the generalization map given by A2

Δ
ÝÑ A1 b A1.

The sheaf Ep1,1qpAq is the direct image of the local system associated to
A1 b A1 from CzRě0 to the whole of C. So its stalk at 0 is A b A while the
stalk at any point of Rą0 is the sum of two copies of A b A corresponding
to the two sides of the cut Rě0. The generalization map is given by pId, Rq.
Thus the diagram of stalks and generalization maps given by δ over Rě0 has
the form (δ acts vertically):

A1 b A1
pId,Rq

μ1,1

pA1 b A1q‘2

`

A2
Δ1,1

A1 b A1

The commutativity of this diagram (i,e., the fact that δ is indeed a morphism
of sheaves) is the identity Δ1,1 ˝ μ1,1 “ Id `R which is a particular case
of (4.2.4), see also (5.2.1) below.
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B. Vertical factorizability of Cousin complexes

Definition 4.2.7. Let U1, U2 Ă C be open sets. We say that U1, U2 are verti-
cally disjoint and write U1 ă U2, if Impz1q ă Impz2q for any z1 P U1, z2 P U2.

If U1, U2 are vertically disjoint, then U1 XU2 “ H. As in (3.2.4), we have
the addition map

a “ papqq :
ğ

p`q“n

Symp
pU1q ˆ Symq

pU2q
»

ÝÑ Symn
pU1 Y U2q.

Proposition 4.2.8. The collection of complexes EpAq “ pE‚
npAqqně0 is ver-

tically factorizable. That is, for any vertically disjoint U1, U2 we have an
isomorphism of complexes of sheaves

μpq
U1,U2

: E‚
p pAq|SymppU1q b E‚

q pAq|SymqpU2q ÝÑ a˚
pq

`

E‚
npAq|SymnpU1YU2q

˘

,

these isomorphisms being compatible with restrictions and associative for any
triple U1 ă U2 ă U3 of vertically disjoint open sets.

Proof. Let p ` q “ n. For any two ordered partitions

β “ pβ1, ¨ ¨ ¨ , βkq P 2p´1, γ “ pγ1, ¨ ¨ ¨ , γmq P 2q´1

we denote their concatenation by

β \ γ “ pβ1, ¨ ¨ ¨ , βk, γ1, ¨ ¨ ¨ , γmq P 2n´1.

Our statement follows from the identifications of sheaves

μβ,γ
U1,U2

: Eβ
pAq|SymppU1q b Eγ

pAq|SymqpU2q
»

ÝÑ a˚
pq

`

Eβ\γ
pAq|SymnpU1qYU2q

˘

.

To construct these, we recall that EβpAq is defined as the direct image of the
sheaf rEβpAq from the imaginary stratum XI

β , and similarly for EγpAq. More
precisely, the construction of μβ,γ

U1,U2
follows from:

(1) The equality of subsets

`

XI
β XSymp

pU1q
˘

ˆ
`

XI
γ XSymq

pU2q
˘

“ a´1
pq

ˆ

XI
β\γXSymn

pU1YU2q

˙

,

and
(2) The identification of two sheaves on the space in (1):
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(2L) The restriiction of rEβpAq b rEγpAq to the LHS in (1), and

(2R) The pullback, under apq, of th restriction of rEβ\γpAq to the RHS
in (1).

The equality (1) follows from the very definition of the imaginary strata,
while the identification (2) follows from the very definition of the
sheaves rEα.

C. Stalks of Cousin complexes Recall the notations BnpAq for the nth bar-
complexe of A. For any point z “

řm
i“1 λizi P Symn

pCq we denote

BzpAq “
â

pz1,¨¨¨ ,zmq
BλipAq.

Proposition 4.2.9. (a) The complex E‚
npAq is constructible with respect to

the diagonal stratification S of Symn
pCq by complex strata XC

λ .

(b) In fact, the stalk of E‚
npAq at a point z P Symn

pCq is quasi-isomorphic
to BzpAq.

The proof of Proposition 4.2.9 will occupy the rest of this §C. Before giving
the proof in general, we consider an example which illustrates the situation.

Example 4.2.10. Proposition 4.2.9 means, in particular, that the restriction
of E‚

npAq to the generic stratum Symn
‰pCq “ XC

p1nq
is quasi-isomorphic to

L1npAqrns, the local system of determinations of Abn
1 , put in degree p´nq.

However, the stalk E‚
npAqz, z P Symn

‰pCq, as a complex, depends on the Fox-
Neuwirth cell Xrβ:1ns in which z lies. Let us see why, up to quasi-isomorphism,
the answer is always the same, namely the stalk of L1npAqrns.

The simplest case is when β “ p1nq, i.e., Impz1q ă ¨ ¨ ¨ ă Impznq after a
reordering. In this case only the sheaf Ep1nqpAq has non-trivial stalk at z (the
other sheaves being supported on higher codimension strata), and this stalk
is Abn

1 . So in this case E‚pAqz “ Azrns “ BzpAq as a complex.
The most complicated case is when β “ pnq, i.e., Impz1q “ ¨ ¨ ¨ “ Impznq,

and we can assume Repz1q ă ¨ ¨ ¨ ă Repznq after a reordering. In this case all
the EαpAq will have nontrivial stalks at z. The stalk of a given EαpAq is, by
Proposition 4.1.12, the sum of as many copies of Abn

1 , as there are contingency
matrices ζ of type pα, p1nqq. Such matrices are, by Example, 4.1.8, in bijection
with shuffles of type α, i.e., with sequences pI1, ¨ ¨ ¨ , Ilq of subsets of t1, ¨ ¨ ¨ , nu

forming a disjoint decomposition and such that |Iν | “ αν . Such a sequence
gives a face rI1, ¨ ¨ ¨ , Ils of the nth permutohedron Pn, see Proposition A.1.
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When α and ζ vary, we get precisely all the faces. Thus the stalk at z, as a
complex, is:

E‚
pAqz “ Abn

1 rns bk C‚
pPn,kq,

where C‚pPn,kq is the cellular cochain complex of Pn (with respect to the
CW-decomposition given by the faces) with coefficients in k. Since Pn, being a
convex polytope, is contractible, C‚pPn,kq is quasi-isomorphic to k in degree
0, which gives our desired quasi-isomorphism for E‚pAqz.

Proof of Proposition 4.2.9. We will prove (a) and (b) simultaneously. To
prove (a) we need to show that for any λ P Ppnq, any z P XC

λ and any nearby
z1 lying in the same XC

λ , the generalization map γz,z1 : E‚
npAqz Ñ E‚

npAqz1 is
a quasi-isomorphism. So let z be fixed.

Let β ď γ be such that z P Xrβ:γs. We notice first that because of vertical
factorizability of E‚pAq, both our statements (quasi-isomorphicity of γz

¯
1 for

nearby z1 P XC
λ as well as the identification of E‚

npAqz) reduce to the case
where β “ pnq, i.e., Impz1q “ ¨ ¨ ¨ “ Impzmq. Ordering the zi according to
the increasing real part, we see that zi enters into z with multiplicity γi, i.e.,
λ “ γ is the unordered partition of n associated to then ordered partition γ.
This means that

BzpAq “ BγpAq “ Bγ1pAq b ¨ ¨ ¨ b BγmpAq

(isomorphism of complexes of objects of V). Further, let us write each bar-
complex BγipAq as a sum of explicit summands, i.e., identify, as a graded
object:

BγipAq “
à

θpiq“pθ
piq
1 ,¨¨¨ ,θ

piq
mi

qP2γi

Aθpiqrmis, Aθpiq “ Aθ
piq
1

b¨ ¨ ¨bAθ
piq
mi

, mi “ lpθpiq
q.

Thus, as a graded object,

(4.2.11) BzpAq “
à

pθp1q,¨¨¨ ,θpmqq P
śm

j“1 2γj´1

Aθp1q b ¨ ¨ ¨ b Aθpmq

”

ÿ

lpθpiq
q

ı

.

We compare this with the shape of the stalk E‚
npAqz. By Proposition 4.1.12,

it is a certain direct sum: first, over α P 2n´1 (parametrizing the individual
EαpAq) and, second, over contingency matrices ζ P Spα, γq (parametrizing the
summands in the stalk of EαpAq at z). For such ζ “ }ζij} we denote by ζ‚j the
jth column of ζ. This is a vector in Z

lpαq

ě0 with entries summing up to γj , with
some of these entries possibly being zero. We denote by cjpζq and call the



Shuffle algebras and perverse sheaves 629

reduced jth column of ζ the ordered partition of γj obtained by removing the
zeroes from the entries of ζ‚j . The summand corresponding to α and ζ is, by
Proposition 4.1.12, the tensor product Aζ which we can canonically identify
as

Aζ “ Ac1pζq b ¨ ¨ ¨ b Acmpζq.

So as a graded object,

(4.2.12) E‚
npAqz “

à

αP2n´1

à

ζPSpα,γq

Ac1pζq b ¨ ¨ ¨ b Acmpζqrlpαqs.

This means that each summand Aθp1q b ¨ ¨ ¨ b Aθpmq in (4.2.11) will be found
in (4.2.12) possibly several times: once for each occurrence of α P 2n´1 and
ζ P Spα, γq such that cjpζq “ θpjq for all j “ 1, ¨ ¨ ¨ ,m.

The possible ζ with this property are in bijection with XO-tables of type
plpθp1qq, ¨ ¨ ¨ , lpθpmqq, see Definition A.10. Indeed, all we need to do to recover
ζ is, for any j, to mark by X the positions in the jth column which will be
occupied by nonzero entries of θpjq. There are lpθpjqq such positions. Once we
know ζ, the partition α is found uniquely by summing the rows. This implies
that at the level of graded objects, we have an identification

E‚
npAqz “

à

pθp1q,¨¨¨ ,θpmqq P
śm

j“1 2γj´1

´

Aθp1q b ¨ ¨ ¨ b Aθpmq

”

ÿ

lpθpiq
q

ı¯

(4.2.13)

bk C‚
pXOlpθp1qq,¨¨¨ ,lpθpmqqq,

where C‚pXOlpθp1qq,¨¨¨ ,lpθpmqqq is the XO-cochain complex, see Definition A.14,
and bk means the tensor product of a (graded) object of V and a (graded)
k-vector space given by the k-linear structure on V .

We next define a morphism of graded objects

γ : E‚
npAqz ÝÑ BzpAq

in terms of decompositions (4.2.13) and (4.2.11). For every pθp1q, ¨ ¨ ¨ , θpmqq P
śm

j“1 2γj´1 we consider the morphism of complexes

(4.2.14)
qθp1q,¨¨¨ ,θpmq “ Σ ˝ p,

C‚
pXOlpθp1qq,¨¨¨ ,lpθpmqqq

p
ÝÑ C0

pXOlpθp1qq,¨¨¨ ,lpθpmqqq
Σ

ÝÑ k,

where p is the projection to the degree 0 component and Σ is given by sum-
ming the values of a 0-cochain over all the vertices of the XO-complex. We
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then define γ to act om the summand in (4.2.13) corresponding to
pθp1q, ¨ ¨ ¨ , θpmqq as Id bkqθp1q,¨¨¨ ,θpmq .

We claim that γ is in fact a morphism of complexes. This can either be
seen directly by analyzing the differential in E‚

npAqz (described below) or,
more conveniently for us, deduced from the following observation:

γ is a particular instance of the generalization maps γz,z1 where z1 is a small
displacement of z in the same stratum XC

λ .

More precisely, γ corresponds to the case when z1 is a maximally generic
displacement of z inside XC

λ , that is z1 P Xrγ:γs, while z P Xrpnq:γs. In other
words, assume that the displacement is of the form

z “

m
ÿ

i“1
γizi ù z1

“

m
ÿ

i“1
γiz

1
i, Impz1

1q ă ¨ ¨ ¨ ă Impz1
mq

(we move each zi in the vertical direction a bit to make the imaginary parts
all different). In this case, similarly to Example 4.2.10,

E‚
npAqz1 “ Bz1 pAq

as a complex. If we identify Bz1 pAq with BzpAq by continuity of the braided
tensor product

Âpmq

pz1,¨¨¨ ,zmq
under displacement of the points, then the map

γz,z1 becomes precisely γ. Since we known that each γz,z1 is a morphism of
complexes, so is γ.

We now analyze the differential in E‚
npAqz. Fix α P 2n´1 and ζ P Spα, γq,

so that the corresponding summand in E‚
npAqz is Aζ . Let ζν,‚ be the νth row

of ζ. (After omitting the zeroes, ζν,‚ becomes an ordered partition of αν).
As before, let also θpjq “ cjpζq be the ordered partition of γj obtained by
omitting zeroes of the column ζ‚,j .

Further let β P 2n´1 be such that α ą1 β so β is obtained by combining
some αi and αi`1 together, as in (4.2.1). Let us look at the action of δα,β :
EαpAqz Ñ EβpAqz on the summand Aζ . This action consists of a morphism
δζ,ζ1 : Aζ Ñ Aζ1 , where ζ 1 P Spβ, γq is obtained by adding together the rows
ζi,‚ and ζi`1,‚ and keeping the other rows of ζ intact. Now, there are the
following possibilities:

(0) The rows ζi,‚ and ζi`1,‚ have disjoint sets of X’s (i.e., of positions filled
with non-zero entries).

(1) ζi,‚ and ζi`1,‚ have exactly one X-position in common.
(2`) ζi,‚ and ζi`1,‚ have some number k ě 2 X-positions in common.
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In the case (0) we have Aζ1 “ Aζ and δζ,ζ1 “ ˘ Id. This is a matrix element
of the differential dXO in C‚pXOlpθp1q,¨¨¨ ,lpθpmqq multiplied by the identity of the
first factor in the corresponding summand in (4.2.13).

In the cases (1) and (2`) the differential δζ,ζ1 is given by the multiplication
in A. But the difference between them is as follows. In the case (1) we have a
matrix element of the differential dB in BzpAq “

Â

Bγν pAq (tensored by the
identity of C‚pXOlpθp1q,¨¨¨ ,lpθpmqqq). That last differential is the tensor products
of the differentials in the Bγν pAq and so each matrix element of it acts by
increasing the degree by 1 in just a single tensor factor Bγν pAq, leaving the
other tensor factors intact. In contrast, in the case (2`) the matrix element,
while having a similar general nature (multiplying some groups of components
of A together) acts simultaneously on more than one tensor factor constituting
BzpAq.

To account for this difference, we note that the decomposition (4.2.13)
gives a bigrading of E‚

npAqz, and δζ,ζ1 has, with respect to this bigrading, the
bidegree p1 ´ k, kq in all cases (k “ 0, 1, 2, ¨ ¨ ¨ ). So considering the filtration
of (4.2.13) whose dth layer is the sum of the

´

Aθp1q b ¨ ¨ ¨ b Aθpmq

”

ÿ

lpθpiq
q

ı¯ěd
bk C‚

pXOlpθp1qq,¨¨¨ ,lpθpmqqq,

we see that the quotients of the filtration are the complexes
C‚pXOlpθp1q,¨¨¨ ,lpθpmqqq tensored with various homogeneous parts of Aθp1q b¨ ¨ ¨b

Aθpmq (the latter considered as graded objects with no differential). Since
C‚pXOlpθp1qq,¨¨¨ ,lpθpmqqq is, by Proposition A.15, quasi-isomorphic to k in de-
gree 0, the morphism qθp1q,¨¨¨ ,θpmq in (4.2.14) is a quasi-isomorphism (here we
use the assumptions charpkq “ 0). Therefore the associated graded object,
i.e., the term E1 of the spectral sequence of our filtered complex, is identified
with BzpAq, and the differential d1 is the differential in BzpAq (coming from
Case (1)). We note further that γ is a morphism of filtered complexes if we
consider the “stupid filtration” of the target by the BzpAqěj and so gives a
morphism of the spectral sequences associated to the source and target. By
what we shown, this morphism of spectral sequences gives an isomorphism of
the E1-terms so it is an isomorphism, and therefore γ is a quasi-isomorphism.
In particular, E‚

npAqz is quasi-isomorphic to BzpAq. This proves part (a) of
Proposition 4.2.9.

Let us prove part (b). This part means that each generalization map
γz,z1 where z, z1 lie in the same complex stratum Xλ, is a quasi-isomorphism.
Now, by the transitive property of the generalization maps, it is enough to
establish quasi-isomorphicity for the case when z1 is the maximally generic
displacement within Xλ, considered above. In this case, as we have seen,
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γz,z1 is identified with the map γ which we have just shown to be a quasi-
isomorphism. Proposition 4.2.9 is proved.

D. Costalks of Cousin complexes We now identify the costalks of E‚
npAq,

i.e., the complexes of vector spaces i!zE‚
npAq, z “

řm
i“1 λizi P Symn

pCq. Here
iz : tzu Ñ Symn

pCq is the embedding of z.
Recall that B:

npAq is the nth cobar-complex of A. As before, we write

B:
zpAq “

â

pz1,¨¨¨ ,zmq
B:

λi
pAq.

Proposition 4.2.15. The costalk of E‚
npAq at a point z P Symn

pCq is quasi-
isomorphic to B:

zpAq.

Proof. As with Proposition 4.2.9, we assume that z P Xrβ:γs. Vertical factor-
izability of the E‚

npAq reduces our statement to the case β “ pnq. That is,
z P XI

pnq
lies in the minimal imaginary stratum. Recall that XI

pnq
consists of z

such that Impz1q “ ¨ ¨ ¨ “ Impzmq, or, put differently, z is obtained by a trans-
lation, by a purely imaginary number, from a divisor in Kn “ Symn

pRq. This
means that we have an identification XI

pnq
» Kn ˆ iR. Let ρ : XI

pnq
ÝÑ Kn

be the projection.
We look at the costalks at z of individual terms EαpAq of the complex

E‚
npAq. Recall that we denote by jα : XI

α Ñ Symn
pCq the embedding of the

imaginary stratum corresponding to α.
If α ‰ pnq, then z lies in the closure of XI

α but not in XI
α itself. This

implies that the costalk at z of EαpAq “ jα˚
rEαpAq is 0 by the base change

theorem.
If α “ pnq, then EpnqpAq is already supported on the closed stratum XI

pnq
.

Denoting, by a minor abuse of notation, the embedding tzu Ñ XI
pnq

by the
same symbol iz, we have

i!zEpnq
pAq “ i!z

`

j!
pnqEpnq

pAq
˘

The sheaf j!
pnq

EpnqpAq on XI
pnq

coincides wth j˚
pnq

EpnqpAq and is what we
denoted earlier (4.1.5) by rEpnqpAq. So it has the form ρ˚RnpAq, where RnpAq

is the constructible sheaf on Kn corresponding to B
:
npAq, the nth cobar-cube

of A.
Now, Kn with its stratification SR and XI

pnq
with the pullback stratifica-

tion are quasi-regular cell complexes (see Definition 1.1.9), and RnpAq and,
therefore, Epnq

n pAq are cellular sheaves on them. We now recall the following
well known fact.
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Lemma 4.2.16. Let Y be a quasi-regular cell complex and F be a cellular
sheaf on Y . For a cell σ of Y let jσ : σ Ñ Y be the embedding. Denote
the stalk of F at σ by Fσ “ Γpσ, j˚

σFq. Then the costalk Γpσ, j!
σFq at σ is

quasi-isomorphic to the complex

Fσ
γ

ÝÑ
à

τĄσ
dimpτ“dimpσq`1

Fτ b ORpτ{σq
γ

ÝÑ
à

τĄσ
dimpτ“dimpσq`2

Fτ b ORpτ{σq
γ

ÝÑ ¨ ¨ ¨

where ORpτ{σq is the 1-dimensional relative orientation k-vector space, and
the differential γ is induced by the generalization maps of F . The grading of
this complex is normalized so that Fσ is in degree 0.

We apply this lemma to F “ rEpnqpAq. The cells in XI
pnq

are the fine cells
Xrpnq:γs. If z P Xrpnq:γs as we assumed, then the complex of the lemma will be
precisely BzpAq but with a shift: the grading will start from degree 0 on the
left. This is because it describes the stalk at the cell (i.e., j!

σ instead of j!
z).

Passing from that to the stalk at z itself removes the shift (by introducing
the cohomology of a constant sheaf on the cell with support at z) and we get
BzpAq with correct grading.

E. Perversity of Cousin complexes

Proposition 4.2.17. The complex E‚
npAq is a perverse sheaf constructible

with respect to the stratification S, i.e., an object of PervpSymn
pCq, S,Vq.

Proof. The S-constructibility is shown in Proposition 4.2.9. So it remains to
prove the perversity conditions pP`q and pP´q, see §1.1A.

We start with pP`q. As the stalk i˚zE‚
npAq is quasi-isomorphic to BzpAq

(Proposition 4.2.9), we need to show that the locus of z for which
H´jpBzpAqq ‰ 0, has complex dimension ď j. Indeed, suppose z P XC

λ ,
so z “

řm
i“1 λizi with zi distinct. By definition, BzpAq is the tensor prod-

uct of the BλipAq, and each BλipAq is a complex concentrated in degrees fron
p´λiq to p´1q. So BzpAq is concentrated in degrees from p´nq to p´mq. Now,
the complex dimension of XC

λ is m, and pP`q follows.
The condition pP´q follows similarly from Proposition 4.2.15.

4.3. Factorizability of Cousin complexes: proof of Theorem 3.3.1

A. From vertical factorizability to full factorizability Recall (§3.2) that the
space E2pmq of the E2-operad consists of m-tuples pU1, ¨ ¨ ¨ , Umq of disjoint
round disks in the unit disk D Ă C. Let Eă

2 pnq Ă E2pmq be the subspace
formed by pU1, ¨ ¨ ¨ , Umq such that U1 ă ¨ ¨ ¨ ă Um, see Definition 4.2.7. The
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space Eă

2 pnq is contractible and together they form a (non-symmetric) sub-
operad Eă

2 in E2. Thus Eă

2 is a non-symmetric verstion of the homotopy
associative operad E1.

Let A be a primitive bialgebra in V , as before. We want to equip the col-
lection of perverse sheaves EpAq “ pE‚

npAqq with a structure of a factorizable
perverse sheaf in the sense of Definition 3.2.5. That is, for each m ě 0 and
each pU1, ¨ ¨ ¨Umq P E2pmq, we want to construct an isomorphism of perverse
sheaves (i.e, an isomorphism of the objects of the derived category)

μU1,¨¨¨ ,Um :
ò

pU1,¨¨¨ ,Umq
F |SympUiq ÝÑ a˚

`

F |Symp
Ť

Uiq

˘

,

so that these isomorphisms are compatible with the operadic compositions.
For pU1, ¨ ¨ ¨ , Umq P Eă

2 pmq, such an isomorphism is already given by
Proposition 4.2.8. In this case μU1,¨¨¨ ,Um is in fact an isomorphism of complexes
of sheaves. These isomorphisms are compatible with the operadic composi-
tions in Eă

2 .
Next, we want to define the isomorphisms μU 1

1,¨¨¨ ,U
1
m

for any pU 1
1, ¨ ¨ ¨ , U 1

mq P

E2pmq by extending them from Eă

2 pmq to E2pmq “by continuity”. That is, let

γ : r0, 1s ÝÑ E2pmq, t ÞÑ γptq “ pU1ptq, ¨ ¨ ¨ , Umptqq

be a continuous path in E2pmq. We denote Ui “ Uip0q and U 1
i “ Uip1q. Let

also Uptq “
Ť

Uiptq and U “ Up0q, U 1 “ Up1q.
Because perverse sheaves are a purely topological concept, the 1-param-

eter family of disks Uiptq defines a 1-parameter family of equivalences of cat-
egories (“isomonodromic deformations of perverse sheaves”)

ht : PervpSympUip0q, Sq ÝÑ PervpSympUiptqq, Sq.

Moreover, if F P PervpSympDq, Sq, then ht takes the restriction F |SympU0q

to F |SympUtq. We have a similar family of equivalences of categories for the
unions

kt : PervpSympUp0q, Sq ÝÑ PervpSympUptqq, Sq.

Taking t “ 1, we obtain the isomorphism (“monodromy map”)

Mγ : Hom
ˆ

ò

pU1,¨¨¨ ,Umq
F |SympUiq, a

˚
`

F |SympUq

˘

˙

Ñ Hom
ˆ

ò

pU 1
1,¨¨¨ ,U

1
mq

F |SympU 1
iq, a

˚
`

F |SympU 1q

˘

˙

.
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These isomorphisms are compatible with concatenation of paths.
We now fix pU1, ¨ ¨ ¨ , Umq P Eă

2 pmq, consider some pU 1
1, ¨ ¨ ¨ , U 1

mq P E2pmq

and choose a path γ joining them as above. We define

(4.3.1) μU 1
1,¨¨¨ ,U

1
m

“ MγpμU1,¨¨¨ ,Umq.

For this to be well-defined, we need to establish the following.

Lemma 4.3.2. Suppose γ is a closed path in E2pmq with γp0q “ γp1q “

pU1, ¨ ¨ ¨ , Umq P Eă

2 pmq. Then MγpμU1,¨¨¨ ,Umq “ μU1,¨¨¨ ,Um .

Proof. This follows from the identification, up to quasi-isomorphism, of the
stalks of the E‚

npAq in Proposition 4.2.9. That is, the stalks at z “
řm

i“1 λizi,
zi ‰ zj , are, up to quasi-isomorphism (in particular, at the level of their co-
homology), manifestly factorizable whether z1 ă ¨ ¨ ¨ ă zm or not. This means
that the two morphisms of perverse sheaves, MγpμU1,¨¨¨ ,Umq and μU1,¨¨¨ ,Um , in-
duce the same maps on the cohomology of the stalks of the perverse sheaves
in question. This, in its turn, implies that these two morphisms of perverse
sheaves coincide.

Well-definedness being established, we easily conclude that:

Proposition 4.3.3. The isomorphisms (4.3.1) make EpAq “ pE‚
npAqq into a

factorizable perverse sheaf on SympCq with values in V.

B. Proof of Theorem 3.3.1 Proposition 4.3.3 defines a functor

L : PBpVq ÝÑ FPSpVq, A ÞÑ LpAq “ pLnpAqqně0, LnpAq :“ E‚
npAq.

To prove that L is an equivalence, we construct a functor in the opposite
direction

Φ : FPSpVq ÝÑ PBpVq, F “ pFnqně0 ÞÑ ΦpFq “
à

ně0
ΦnpFq,

ΦnpFq :“ ΦtotpFnq.

We recall (2.3.5) that ΦtotpFnq is the stalk at 0 of the sheaf RKnpFnq “

H
0
Kn

pFq, where Kn “ Symn
pRq. As F is factorizable, we see that the stalk

of RKnpFnq at the stratum Kα, α “ pα1, ¨ ¨ ¨ , αmq P 2n´1, is canonically
identified with Φα1pFqb¨ ¨ ¨bΦαmpFq. Consider the generalization maps from
strata corresponding to α with lpαq “ 1 to strata corresponding to α with
lpαq “ 2, for the sheaf structures of the RKnpFnq. These maps have the form
Δp,q : ΦnpFq Ñ ΦppFq bΦqpFq, p` q “ n. So they give a comultiplication Δ
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on ΦpFq. This comultiplication is coassociative, as one can see by considering
strata corresponding to α with lpαq “ 3. It also satisfies the primitivity
condition because F0 “ 1.

To define a multiplication on ΦpFq we use the Cousin resolution of Fn

from Proposition 2.3.7. That is, we denote jα : XI
α Ñ Symn

pCq the embed-
ding of the imaginary stratum and put rEαpFnq “ j!

αFn, which is a single sheaf
on XI

α . Then we put EαpFnq “ jα˚
rEαpFnq, which is a single sheaf of Symn

pCq,
and these sheaves, taken for all α P 2n´1, form a complex quasi-isomorphic
to Fn.

Now, fix a point z P XI
α . We can write z “

ř

zi where zi is a divisor
of degree αi with all the points on the same horizontal line Impzq “ const.
Therefore the pair pXI

αen, Symn
pCqq near z is homeomorphic to the product

of the pairs pSymαipRq, SymαipCqq near zi. Together with factorizability of F
this implies that the stalk of rEαpFnq at z is the tensor product of the stalks of
H

0
Kαi

pFαiq at zi. This further implies that the stalk at 0 of the direct image
is identified as

Eα
pFnq0 “ Φα1pFq b ¨ ¨ ¨ b ΦαmpFq.

Let now δ be the differential in the Cousin complex of Fn. As a graded sheaf,
this complex is the sum of summands

à

αP2n´1

Eα
pFnqrlpαqs

Consider the action of the components of δ on the stalks of these summands
at 0. The components acting from the summands with lpαq “ 2 to the sum-
mands with lpαq “ 1 have the form μp,q : ΦppFqbΦqpFq Ñ ΦnpFq, p`q “ n.
So they define a multiplication μ in ΦpFq. The condition δ2 “ 0 implies the
associativity of μ. The compatibility of δ and μ follows from the fact that δ is
a morphism of sheaves, i.e., commutes with the generalization maps, by the
same analysis as in the proof of Proposition 4.2.2.

This defines the functor Φ. If F is a factorizable perverse sheaf, then
the above reasoning identifies the complex E‚pFnq with E‚

npΦpAqq, and this
shows that LpΦpFqq » F . If A is a primitive bialgebra, then ΦpLpAqq » A
by Propositions 4.2.9 and 4.2.15. This shows that L is an equivalence of
categories.

Further, Proposition 4.2.9 implies properties (a) and (d) of the functor L
claimed in Theorem 3.3.1. Proposition 4.2.15 implies properties (b) and (c).
Finally, to show the property (e) it is enough to notice that the Verdier
duality interchanges stalks and costalks so the above identification of the
multiplication and comultiplication in A “ ΦpFq identifies comultiplication
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and multiplication in ΦpDFq, thus showing that ΦpDFq » A˚. Theorem 3.3.1
is proved.

4.4. Perverse sheaves corresponding to shuffle algebras: proof of
Theorem 3.3.3

Here we prove Theorem 3.3.3, with the three paragraphs A,B,C below corre-
sponding to parts (a), (b), (c) of the theorem.

A. Localization of the tensor algebra T!pV q Let A “ T!pV q, so An “ V bn.
We know that

E‚
npAq|Symn

‰pCq “ Lp1nqpAq “ LnpV qrns

is the local system of determinations of V bn, pu in degree p´nq. To show that
E‚
npAq » jn!LnpV qrns it is enough to show that the stalk of E‚

npAq at any point
z P Symn

pCq z Symn
‰pCq is an exact complex. By Proposition 4.2.9, this stalk

is the tensor product of the BλipAq, where z “
ř

λizi with zi distinct. The
condition z P Symn

pCq z Symn
‰pCq means that some λi ě 2. So our statement

follows from the following.

Lemma 4.4.1. If A “ T!pV q, then for any m ě 2 the complex BmpAq is
exact.

For example, for m “ 2 the complex B2pAq “ tA1bA1
μ

Ñ A2u is identified
with tV b V

Id
Ñ V b V u and so is exact.

Proof of the lemma. For any graded algebra A we can write BmpAq as the
graded object as follows:

BmpAq “
à

α“pα1,¨¨¨ ,αlqP2m´1

Aα1 b ¨ ¨ ¨ b Aαl
rls,

with the differential given by the multiplication in A. In our case Aαi “ V bαi

and each component of the multiplication is the identity map. Therefore we
have an isomorphism of complexes

BmpAq “
à

α“pα1,¨¨¨ ,αlqP2m´1

V bm
rls » V bm

bk C‚
p2m´1,kq,

where
C‚

p2m´1,kq “
à

α“pα1,¨¨¨ ,αlqP2m´1

krls,
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with the differential being the alternating sum of elementary contractions of
ordered partitions. Now notice that C‚p2m´1,kq is (up to shift) nothing but
the augmented cellular chain complex of the pn´2q-dimensional simplex and
so is exact.

B. Localization of the cotensor algebra T˚pV q Let A “ T˚pV q, so An “ V bn

as before but the multiplication is the shuffe product while the comultipli-
cation Δpq : Ap`q Ñ Ap b Aq is the identity. As before, E‚

npAq|Symn
‰pCq “

LnpAqrns. To prove that E‚
npAq » j˚LnpAqrns, it is enough to prove that the

costalks i!zE‚
npAq are exact for any z P Symn

pCq z Symn
‰pCq. This follows from

Proposition 4.2.15 and from the statement dual to Lemma 4.4.1:

Lemma 4.4.2. Let A “ T˚pV q. Then for any m ě 2 the mth cobar-complex
B:

mpAq is exact.

Proof. Completely parallel to that of Lemma 4.4.1.

C. Localization of the Nichols algebra T!˚pV q We notice the following:

(1) The canonical map α : T!pV q Ñ T˚pV q is the unique morphism of
algebras extending the identity on T!pV q1 “ V “ T˚pV q1.

(2) The canonical map cn : jn!LnpV q Ñ jn˚LnpV q is the unique morphism
of perverse sheaves which is the identity on j˚

njn!LnpV q “ LnpV q “

j˚
njn˚LnpV q.

So Theorem 3.3.1 on equivalence between factorizable perverse sheaves and
primitive bialgebras implies that α corresponds, under this equivalence, to the
collection of the cn. In other words, the functor Φtot, see Theorem 3.3.1(b),
takes jn!LnpV q as well as jn˚LnpV q to V bn, and takes the map cn to αn, the
nth component of α.

Now, Φtot is an exact functor from PervpSymn
pCq, S,Vq to V and so

takes images to images. Therefore it takes pjnq!˚LnpV q to T!˚pV qn, the nth
component of the Nichols algebra. This finishes the proof of Theorem 3.3.3.

5. Examples: Granger-Maisonobe quivers and bialgebras
(Cases n “ 2, 3)

5.1. Generalities: reducing translation invariance

In this chapter we reivew the known elementary classification of perverse
sheaves on Symn

pCq for n “ 2, 3, smooth with respect to the diagonal strat-
ification S. We also show how a primitive braided bialgebra A gives, in an
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elementary way, a perverse sheaf (denoted by LnpAq in Theorem 3.3.1) in
terms of these descriptions.

Let V be a k-linear braided monoidal abelian category with b biexact.
As before, let Symn

0 pCq Ă SymnpCq be the subspace of monic polynomials
with zero subprincipal part, see (2.1.2) ff. Let S0 be the stratification induced
by S on Symn

0 pCq. Since S is translation invariant, we have an identification

(5.1.1) PervpSymn
pCq, S,Vq » PervpSymn

0 pCq, S0,Vq.

Note, however, that this identification involves a shift of degree: perverse
sheaves on pSymn

pCq, Sq are situated, as complexes, in degrees r´n,´1s,
while perverse sheaves on Symn

0 pCq, S0q are situated in degrees r´n`1, 0s. In
particular, it does affect the concept of factorizable perverse sheaves because
of the Koszul sign rule (3.2.3) involved in the braiding of shifted objects.

In this chapter we will work only with Symn
0 pCq, but keep the same no-

tation that we used for various strata in Symn
pCq, assuming that they are

intersected with Symn
0 pCq.

5.2. Case n “ 2: the pΦ,Ψq description

Note that Sym2
0pCq “ C, with the complex strata XC

p2q
and XC

1,1 being
t0u and C ´ t0u. Thus PervpSym2

0pCq, S0,Vq is identified with the category
PervpC, 0,Vq studied in Example 1.1.5 (for the case of V “ Vectk, which
generalizes verbatim to arbitrary V).

In other words, PervpSym2
0pCq, S0,Vq is equivalent to the category of

diagrams formed by two objects and two morphisms of V

E2 “ Φ
v

Ψ “ E1,1
u

such that the morphisms TΨ “ IdΨ ´vu and TΦ “ IdΦ ´uv are invertible.
Let A be a primitive bialgebra in V . We associate to it the diagram

Φ “ A2
v“Δ1,1

A1 b A1 “ Ψ.
u“μ1,1

In the calculations below and in §5.3 later we will assume that we have
a fully faithful embedding of V , as a monoidal (but not as braided monoidal)
category into Vectk, in other words, that objects V of V have consist of
elements, or vectors x P V , so that the tensor product of two objects V b W
consists of sums of formal tensors xi b yi. This assumption is for notational
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simplification only: it is straightforward (but more lengthy) to restate our
arguments entirely in terms of diagrams involving various tensor products
in V .

Then for a b b P A1 b A1 we get, using the assumption that A1 consists
of primitive elements:

vupa b bq “ Δ1,1pabq “
`

Δpaq ¨ Δpbq
˘

1,1 “

“
`

pa b 1 ` 1 b aqpb b 1 ` 1 b bq
˘

1,1 “ pa b 1qp1 b bq ` p1 b aqpb b 1q “

“ a b b ` RA1,A1pa b bq,

the last equality coming from the fact that the multiplication in A b A is
defined using R. Therefore

(5.2.1) TΨ “ Id ´vu “ ´RA1,A1 : A1 b A1 ÝÑ A1 b A1

is the negative of braiding operator and it is invertible by axioms of braided
monoidal categories. This minus sign is an instance of the twist of the braid
group action by the sign character in Remark 3.3.2.

Further, the invertibility of

TΦ “ Id ´μ1,1 ˝ Δ1,1 : A2 ÝÑ A2

follows from that of TΨ by (1.1.6). Note that TΦ “ σ2 is just the antipode of
A acting on A2.

5.3. Case n “ 3: the Granger-Maisonobe quiver

A. Imaginary strata for n “ 3 We have that Sym3
0pCq “ C

2 is the space of
cubic polynomials of the form x3 ` ax` b. The open stratum XC

p1,1,1q
consists

of polynomials with distinct roots, i.e., with non-vanishing discriminant. It is
therefore the complement of the complex semi-cubic parabola

Z “
�

pa, bq P C
2
| 4a3

` 27b2 “ 0
(

.

The other two strata XC

p2,1q
and XC

p3q
are equal to Zzt0u (the smooth locus of

Z) and t0u.
The category of perverse sheaves on C

2 smooth with respect to a semi-
cubic parabola was described in the papers of Granger-Maisonobe [26] and
MacPherson-Vilonen [46] (the latter authors considering the more general
case of a curve of the form am “ bn).
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We want to emphasize that our method (in the main body of the paper) is
a direct generalization of the Granger-Maisonobe approach. In particular, the
cuts (“coupures”) H and MR of [26] (whose idea is attributed by the authors
to Kyoji Saito) are precisely the unions of imaginary strata XI

p2,1q
Y XI

p1,2q

and XI
p3q

“ Sym3
0pRq in our sense. So we can say, together with the authors

of [26], that K. Saito “est a l’origine de ce travail”.
More precisely, for n “ 3 we have 4 imaginary strata:

XI
p3q “ Sym3

0pRq, XI
p1,2q, XI

p2,1q, XI
p1,1,1q

whose real dimensions are equal to 2, 3, 3, 4 respectively. Thus XI
p1,1,1q

Ă

Sym3
0pCq “ C

2 is open, while XI
p1,2q

and XI
p2,1q

are locally closed 3-dimensional
subanalytic hypersurfaces with boundary. The boundary of each of them is
formed by Zzt0u (this boundary actually lies in the stratum). Further, each
of them contains in their closure (but does not actually contain) the stra-
tum XI

p3q
.

For further visualization it is instructive to take, as proposed in [26], the
intersection of the entire picture with the unit sphere S3 “ t|a|2 ` |b2| “

1u Ă C
2. The intersection T “ Z X S3 is, as well known, a trefoil knot in

S3. The intersection with S3 of XI
p3q

, i.e., of the interior of the real semi-
cubic parabola, see Fig. 3, is the same as the intersection of this interior
with the unit circle in R

2. So it is an interval (arc) in S3 beginning and
ending on T and not meeting T at any other points, i.e., a chord C of T . The
two points of C X T , denote them a and b, subdivide T into two halves T`

and T´.
The intersections XI

p1,2q
X S3 and XI

p2,1q
X S3 are 2-dimensional locally

closed surfaces in S3, with boundary. They have T` resp. T´ as the boundary
and approach (but do not actually contain) the chord C. All parts of this
picture are identified with (the intersection with S3 of) various fine cells.
This is shown symbolically in Fig. 5, where T is represented as a circle but
knottedness is not depicted.

B. The Granger-Maisonobe quiver The description of PervpSym3
0pCq, S0,

Vectq was given in [26] is in terms of diagrams of 4 vector spaces denoted there
by E,F1, F2, G. Our method being a direct generalization of the method of
the Granger-Maisonobe approach, their spaces have transparent interpreta-
tion in our general terms. We reproduce this type of diagram below, keeping
their notation on the right and adding our more systematic notation on the
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Figure 5: Imaginary strata and fine cells intersected with S3. Knottedness not
depicted.

left:

(5.3.1) E2,1 “ F1

α

v1

u1
1

E3 “ G
v1
1

v1
2

E1,1,1 “ E
u2

u1

E1,2 “ F2.

β

v2

u1
2

We note that the arguments of [26] generalize verbatim to perverse sheaves
with values in any abelian category, so we have:

Theorem 5.3.2 ([26]). Let V be any k-linear abelian category (not neces-
sarily monoidal). PervpSym3

0pCq, S0,Vq is equivalent to the category of dia-
grams (5.3.1) formed by objects and morphisms of V and satisfying the fol-
lowing relations:

(1) M1 “ v1u1 ` Id and M2 “ v2u2 ` Id are isomorphisms.
(2) u1

1u1 ` u1
2u2 “ 0 and v1v

1
2 ` v2v

1
2 “ 0.

(3) v1
2u

1
1 “ ´α ` u2v1 and v1

1u
1
2 “ ´β ` u1v2.

(4) α and β are isomorphisms.
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(5) v1
1u

1
1 “ Id `βu2M

´1
1 v1 and v1

2u
1
2 “ Id `αu1M

´1
2 v2.

(6) v2α “ M1M2v1 and v1β “ M2M1v2.

Let us analyze this result in a series of remarks.

Remarks 5.3.3. (a) The relations (3) imply that α and β are expressed
through the rest of the generators.

(b) The relations (2) mean that the remaining generators form, up to
replacing some arrows with their negatives, a double representation of 23´1

in V , i.e., we get a commutative square

E2,1
´v1

E3

v1
1

v1
2

E1,1,1

E1,2.

v2

and another commutative square obtained from the “u-part” of the diagram.
(c) Further, let F P PervpSym3

0pCq, S0,Vq. Then the commutative square
in (b) obtained from the diagram (5.3.1) corresponding to F , precisely de-
scribes the constructible sheaf RK0pFq on the real skeleton K0 “ Sym3

0pRq.
This means that Eα is the stalk of RK0pFq at the stratum K0

α “ K0 X Kα,
α P 23´1, while the vi, v

1
i are the generalization maps, see [26] §II.4.

(d) From this point of view, the rest of relations in Theorem 5.3.2 can
be viewed as giving a precise meaning to the concept of a bi-sheaf on K0, by
specifying the compatibility conditions between the sheaf structure (v-part)
and the cosheaf structure (u-part).

C. Granger-Maisonobe relations from a braided bialgebra

Theorem 5.3.4. Let A be a primitive bialgebra in a braided monoidal cate-
gory pV ,b, Rq. Let us associate to it the diagram (5.3.1) by:

A2 b A1
Δ1,1bId

´μ2,1

RA3

´Δ2,1

Δ1,2

A1 b A1 b A1
´ Id bμ1,1

´μ1,1bId

A1 b A2.
Id bΔ1,1

μ1,2

R
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That is, up to signs, the maps ui, u1
i are given by the multiplication, vi, v1

i by the
comultiplication (so they form the bibar-cube B3pAq in V) while α “ RA2,A1

and β “ RA1,A2 are the braiding isomorphisms. Then this diagram satisfies
the relations of Theorem 5.3.2.

Proof. The condition (1) is fulfilled, in virtue of (5.2.1), with

M1 “ ´RA1,A1 b Id, M2 “ ´ Id bRA1,A1 .

As in the case n “ 2, these minus signs are an instance of the braid group
action being twisted by the sign character (Remark 3.3.2).

The conditions (4) are obvious. The relations (2) follow from associa-
tivity and coassociativity. Let us check the remaining relations directly.

Relations (5). Let us check the relation

v1
1u

1
1 “ Id `βu2M

´1
1 v1 : F1 ÝÑ F1,

that is,

p´Δ2,1qp´μ2,1q “ Id `RA1,A2p´ Id bμ1,1qp´R´1
A1,A1

b IdqpΔ1,1 b Idq :
A2 b A1 ÝÑ A2 b A1.

Let x “ a2 b a P A2 bA1 “ F1. As traditional in the theory of Hopf algebras
(“Sweedler notation”), we write symbolically

Δpa2q11 “ b b c,

meaning by b b c a sum of the form
ř

bi b ci. Let us also write, in the same
way,

Rpc b aq “ c1
b a1, R “ RA1,A1 .

Then

v1
1u

1
1pxq “ rΔpa2aqs2,1 “ rpa2 b 1 ` Δpa2q11 ` 1 b a2qpa b 1 ` 1 b aqs2,1 “

“ a2 b a ` Δpa2q11pa b 1q “ a2 b a ` ba1
b c1,

i.e.,
pv1

1u
1
1 ´ Idqpxq “ ba1

b c1.
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On the other hand

βu2M
´1
1 v1pxq “ βu2M

´1
1 pb b c b aq “ RA1,A2pc̃ b b̃aq

where
R´1

pb b cq “ c̃ b b̃

We have to show that

(5.3.5) ba1
b c1

“ RA1,A2pc̃ b b̃aq.

We have a commutative diagram (naturality of the braiding)

A1 b pA1 b A1q

1bμ

RA1,A1bA1
pA1 b A1q b A1

μb1

A1 b A2
RA1,A2

A2 b A1.

On the other hand, RA1,A1bA1 equals the composition

(5.3.6) A1 b A1 b A1
R12
ÝÑ A1 b A1 b A1

R23
ÝÑ A1 b A1 b A1,

whence
RA1bA1,A1R

´1
12 “ R23.

It follows:

RA1,A2p1 b μqR´1
12 “ pμ b 1qRA1,A1bA1R

´1
12 “ pμ b 1qR23,

thus
RA1,A2p1 b μqR´1

12 pb b c b aq “ pμ b 1qR23pb b c b aq,

and this is the sought for relation (5.3.5). The second relation in (5) is proved
similarly.

Relations (3). Let us check that

(5.3.7) v1
2u

1
1 “ ´α ` u2v1 : F1 ÝÑ F2,

i.e.,

Δ1,2p´μ2,1q “ ´RA2,A1 ` p´ Id bμ1,1qpΔ1,1 b Idq : A2 b A1 ÝÑ A1 b A2.
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Dropping the minus signs, we write this as

(5.3.8) Δ1,2μ2,1 “ RA2,A1 ` pId bμ1,1qpΔ1,1 b Idq.

As before, let a2 b a P A2 b A1 and let Δpa2q11 “ b b c. Then

Δ1,2μ2,1pa2 b aq “ rpa2 b 1 ` b b c ` 1 b a2qpa b 1 ` 1 b aqs12 “

“ p1 b a2qpa b 1q ` b b ca.

But, by definition of the product in A b A,

p1 b a2qpa b 1q “ pμ b μqp1 b RA2,A1pa2 b aq b 1q “ RA2,A1pa2 b aq.

So the LHS of (5.3.8), applied to a2 b a, is equal to

(5.3.9) RA2,A1pa2 b aq ` b b ca,

with the first summand in (5.3.9) being the same as the value, at a2 b a, of
the first summand in the RHS of (5.3.8). Now, the second summand in the
RHS of (5.3.8), applied to a2 b a, is

pId bμ1,1qpb b c b aq “ b b ca,

so it coincides with the second summand of (5.3.9) as well, thus proving (5.3.8)
and (5.3.7). The second relation in (3) is proved similarly.

Relations (6): Let us check the identity

(5.3.10) v2α “ M1M2v1 : F1 ÝÑ E,

i.e.,

pId bΔ1,1qRA2,A1

“ p´ Id bRA1,A1qp´RA1,A1 b IdqpΔ1,1 b Idq : A2 b A1 ÝÑ A1 b A1 b A1.

This follows from the commutative diagram (naturality of the braiding)

A2 b A1

RA2,A1

Δ1,1bId
pA1 b A1q b A1

RA1bA1,A1

A1 b A2 Id bΔ1,1
A1 b pA1 b A1q



Shuffle algebras and perverse sheaves 647

and the fact that

RA1bA1,A1 “ pId bRA1,A1qpRA1,A1 b Idq.

The second relation in (6) is proved similarly.

Appendix A. Shuffle complexes

(A.1). The permutohedron and its faces Let n ě 0. By Σn we denote the
symmetric group Autt1, ¨ ¨ ¨ , nu. The nth permutohedron is the convex poly-
tope in R

n defined as

Pn “ Conv
�

rss, s P Σn

(

, rss :“ psp1q, ¨ ¨ ¨ , spnqq P R
n.

The following is well known.

Proposition A.1. (a) Pn is a convex polytope of dimension n ´ 1 with n!
vertices rss, s P Σn.

(b) Faces of Pn (of all dimensions) are labelled by sequences pI1, ¨ ¨ ¨ , Imq

of subsets Iν Ă t1, ¨ ¨ ¨ , nu which form a disjoint decomposition of t1, ¨ ¨ ¨ , nu.
The face rI1, ¨ ¨ ¨ , Ims corresponding to pI1, ¨ ¨ ¨ , Imq has vertices rss for all
permutations s obtained by ordering elements in the Iν in all possible ways.
Thus

rI1, ¨ ¨ ¨ , Ims » P|I1| ˆ ¨ ¨ ¨ ˆ P|Im|

is a product of permutohedra and has dimension n ´ m.

(A.2). The shuffle polytope and the shuffle complex Let pd1, ¨ ¨ ¨ , dmq be a
sequence of non-negative integers and d “ d1 ` ¨ ¨ ¨ ` dm. Recall that a
pd1, ¨ ¨ ¨ , dmq-shuffle is a permutation s P Σd whose restriction onto every
interval

(A.2) d1`¨ ¨ ¨`dj , d1`¨ ¨ ¨`dj`1, ¨ ¨ ¨ , d1`¨ ¨ ¨`dj`1´1, j “ 1, ¨ ¨ ¨ ,m´1,

is monotone (order preserving). The set of pd1, ¨ ¨ ¨ , dmq-shuffles will be de-
noted Xd1,¨¨¨ ,dm Ă Σd.

Example A.3. In examples it is convenient to label integers from the inter-
vals (A.2) by numbered letters such as

a1, ¨ ¨ ¨ , ad1 , b1, ¨ ¨ ¨ , bd2 , c1, ¨ ¨ ¨ , cd3 , etc.

Then a shuffle is a just reordering of these letters which preserves the order of
a’s, the order of b’s etc. For example, a1b1a2b2 and b1b2a1a2 are p2, 2q-shuffles.
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Definition A.4. The shuffle polytope Nd1,¨¨¨ ,dm Ă R
d is the convex hull of the

points rss, s P Xd1,¨¨¨ ,dm .

This Nd1,¨¨¨ ,dm Ă Pd, see Fig. 6 for an illustration.

Figure 6: The hexagon P3 and the triangle N1,2.

Remark A.5. As pointed out in [23], Ch. 12, §2, see also [37], the 2-index
shuffle polytope Nd1,d2 is the same as the resultohedron, i. e., the Newton poly-
tope of the resultant Rpf1, f2q of two indeterminate polynomials of degrees
d1, d2:

f1pxq “ u0x
d1 ` u1x

d1´1
` ¨ ¨ ¨ ` ud1 , f2pxq “ v0x

d2 ` v1x
d2´1

` ¨ ¨ ¨ ` vd2 .

An arbitrary Nd1,¨¨¨ ,dm can also be interpreted in a similar way. For this we in-
troduce m indeterminate polynomials f1pxq, ¨ ¨ ¨ , fmpxq of degrees d1, ¨ ¨ ¨ , dm
and form the expression

Rpf1, ¨ ¨ ¨ , fmq “
ź

iăj

Rpfi, fjq.

Then Nd1,¨¨¨ ,dm can be identified with the Newton polytope of R, i.e., with
the Minkowski sum of the resultohedra Ndi,dj . We do not prove this fact here
since we will not need it.

Definition A.6. The shuffle complex XDd1,¨¨¨ .dm is the union of all the faces
of Nd1,¨¨¨ ,dm Ă Pd, which are also faces of Pd.

Examples A.7. (a) If pd1, ¨ ¨ ¨ , dmq “ p1, ¨ ¨ ¨ , 1q, then

N1,¨¨¨ ,1 “ XD1,¨¨¨ ,1 “ Pm.
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(b) XD1,2 is the union of the two edges of the hexagon P3 represented
by thick lines in Fig. 6.

(c) XD2,2 is the complex in Fig. 7.

Figure 7: The complex XD2,2.

Proposition A.8. Each XDd1,¨¨¨ ,dm is contractible.

The proof will be given in the next §(A.3).

(A.3). Relation to the triangulated product of simplices For any p ě 0
we consider the standard coordinate space R

p`1 with basis e0, ¨ ¨ ¨ , ep. Let
Δp “ Convte0, ¨ ¨ ¨ .epu Ă R

p`1 be the standard p-dimensional simplex within
vertices e0, ¨ ¨ ¨ , ep. It is convenient to identify the set of vertices of Δp with
the standard ordinal rps “ t0, 1, ¨ ¨ ¨ , pu.

Given d1, ¨ ¨ ¨ , dm as before, we consider the product Π “ Δd1 ˆ¨ ¨ ¨ˆΔdm .
It is a convex polytope of dimension d “ d1`¨ ¨ ¨`dm. We denote its vertices by
eσ where σ runs in the set rd1sˆ¨ ¨ ¨ˆrdms which we consider with the partial
order given by the product of the standard orders on the rdjs. We denote by
T the standard triangulation of Π well known in the theory of simplicial sets,
see, e.g., [24] §I.1.5. By definition, simplices of T (of any dimension m) have
the form

Δτ “ Convteτ0 , eτ1 , ¨ ¨ ¨ , eτmu, τ “ pτ0 ă ¨ ¨ ¨ ă τmq, τi P

m
ź

j“1
rdjs,

i.e., they are parametrized by chains in the poset
śm

j“1rdjs. Proposition A.8
follows from the next more precise fact.

Proposition A.9. XDd1,¨¨¨ ,dm is identified with T_, the polyhedral complex
Poincaré dual to T .

Explicitly, to construct T_, we take one vertex for each maximal simplex
of T , these vertices being joined by an edge when the simplices are adjacent
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and so on. That is, cells of T_ correspond to those simplices of T that lie
inside Π (i.e., do not lie on its boundary), with the opposite order of inclusion.

Proof of Proposition A.9. Note first that maximal chains τ in
ś

rdjs (with
m “ d) are in bijection with Xd1,¨¨¨ ,dm . Indeed, such chains can be seen
as “lattice paths” or “taxicab paths” p in the m-dimensional parallelotope
śm

j“1r0, djs, going from the minimal vertex p0, ..., 0q to the maximal one
pd1, ¨ ¨ ¨ .dmq. This is because, τ being maximal, each τν`1 is obtained from τν
by going exactly one step in one of the l directions. See the left part of Fig. 8
for m “ 2.

Figure 8: A taxicab path p representing a shuffle and a block path P.

Further, consider simplices Δτ corresponding to arbitrary chains τ “

pτ0 ă ¨ ¨ ¨ ă τmq. The condition for Δτ to lie inside Π is that τ0 is the minimal
element p0, ¨ ¨ ¨ , 0q of

ś

rdjs and τm is the maximal element pd1, ¨ ¨ ¨ , dmq.
Notice that such τ are in bijection with block paths in the parallelotope

śm
j“1r0, djs, i.e., sequences P “ pP1, ¨ ¨ ¨ ,Pmq of lattice parallelotopes (pos-

sibly degenerate, i.e., of smaller dimension) inside
śm

j“1r0, djs with the fol-
lowing properties:

(1) The minimal (with respect to the product partial order on R
m) vertex

of P1 is p0, ¨ ¨ ¨ , 0q.
(2) For i “ 1, ¨ ¨ ¨ ,m ´ 1, the minimal vertex of Pi`1 coincides with the

maximal vertex of Pi.
(3) The maximal vertex of Pm is pd1, ¨ ¨ ¨ , dmq.

More precisely, since τν`1 ą τν , the difference τi`1 ´ τν , as a vector in
R

m, has the form pq1, ¨ ¨ ¨ , qmq with qi P Zě0, and we have a parallelotope of
these dimensions with minimal vertex τν and maximal vertex τν`1. See the
right part of Fig. 8 for m “ 2.
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It remains to notice that the poset of such block paths P is identified with
the poset of faces of XDd1,¨¨¨ ,dm . For m “ 2 the reader can compare with
the description of all faces of the shuffle polytope Nd1,d2 in [23] Ch. 12, §2 in
terms of “labyrinths”: block paths are precisely the labyrinths corresponding
to faces of Nd1,d2 which are also faces of Pd1`d2 .

This proves Propositions A.9 and A.8.

(A.4). Relation to XO-tables Let pd1, ¨ ¨ ¨ , dmq be as before.

Definition A.10. By an XO-table of type pd1, ¨ ¨ ¨ , dmq we will mean an lˆm
matrix Ξ for some l ě 1 formed by X’s and O’s such that:

(1) The number of X’s in the jth column of Ξ is precisely dj .
(2) Each row of Ξ contains at least one X.

The set of such tables will be denoted XOpd1, ¨ ¨ ¨ , dmq.

The number l “ lpΞq will be called the height of Ξ. It can vary between
maxpd1, ¨ ¨ ¨ , dmq and d1 ` ¨ ¨ ¨ ` dm.

Examples A.11. (a) XO-tables Ξ of maximal height d1 ` ¨ ¨ ¨ ` dm are in
bijection with Xd1,¨¨¨ ,dm . In this case there is exactly one X in every row, so
the columns give a shuffle.

(b) XO-tables of type p1, 2q are depicted in Fig. 9.

Figure 9: XO-tables of type p1, 2q, depicted on vertices and edges to indicate
contractions.

To an XO-table Ξ we can associate an integer matrix rΞ of the same size
by replacing each X with 1 and each O with 0. For any i “ 1, ¨ ¨ ¨ , l “ lpΞq

we denote by rΞi,‚ the ith row of Ξ, and similarly for Ξi ‚.

Definition A.12. Let Ξ,Ξ1 be two XO-table of the same type pd1, ¨ ¨ ¨ , dmq

of heights l, l1 respectively. We say that Ξ1 is a contraction of Ξ and write
Ξ ď Ξ1, if there following holds:
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(C) There is a surjective monotone map ϕ : t1, ¨ ¨ ¨ , lu Ñ t1, ¨ ¨ ¨ , l1u such
that for any i1 P t1, ¨ ¨ ¨ , l1u

rΞ1
i1,‚ “

ÿ

iPϕ´1pi1q

rΞi,‚

(summation of integer vectors).

We say that Ξ is an elementary contraction of Ξ if Ξ ď Ξ1 and l1 “ l ´ 1.

Since all the entries of rΞ, rΞ1 are 0’s and 1’s, the condition (C) means that
the rows Ξi,‚, i P ϕ´1pi1q, have mutually disjoint subsets of positions filled by
X’s, and the row Ξ1

i1,‚ is obtained by putting X’s in all of these positions.

Proposition A.13. (a) ď is a partial order on XOd1,¨¨¨ ,dm with minimal
elements corresponding to shuffles (XO-tables of height d1 ` ¨ ¨ ¨ ` dm).

(b) pXOd1,¨¨¨ ,dm ,ďq is isomorphic to the poset of faces of XDd1,¨¨¨ ,dm .

Proof. (a) is obvious. To prove (b), let us number the X’s in an XO-table Ξ
from 1 to d lexicographically, first from top to bottom in the first column, then
similarly in the second column etc. Then each row will pick up a subset in
t1, ¨ ¨ ¨ , du. Denoting by Iν the subset picked up by the νth row, ν “ 1, ¨ ¨ ¨ , l “

lpΞq, we get a sequence pI1, ¨ ¨ ¨ , Ilq of subsets defining a face rI1, ¨ ¨ ¨ , Ils of Pd

by Proposition A.1. All the vertices of rI1, ¨ ¨ ¨ , Ils are pd1, ¨ ¨ ¨ , dmq-shuffles, so
rI1, ¨ ¨ ¨ , Ils is a face of XDd1,¨¨¨ ,dm . This establishes the claimed isomorphism
of posets.

Definition A.14. The XO-cochain complex of type pd1, ¨ ¨ ¨ , dmq is the
cochain complex of k-vector spaces defined as the graded space

C‚
pXOd1,¨¨¨ ,dmq “

à

ΞPXOd1,¨¨¨ ,dm

krlpΞq ´ ds, d “ d1 ` ¨ ¨ ¨ ` dm,

with the differential given by the alternating sum of elementary contractions.

Corollary A.15. The complex C‚pXOd1,¨¨¨ ,dmq is quasi-isomorphic to k in
degree 0.

Proof. Indeed, it is identified with the cellular cochain complex of XDd1,¨¨¨ ,dm

which is contractible by Proposition A.8.
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